Proinflammatory cytokine interferon‐γ and microbiome‐derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease
Summary Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg) are CD4+CD25++forkhead box protein 3 (FoxP3+) cells that regulate the immune response. Conversely t...
Saved in:
Published in | Clinical and experimental immunology Vol. 187; no. 3; pp. 490 - 506 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley and Sons Inc
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-9104 1365-2249 1365-2249 |
DOI | 10.1111/cei.12911 |
Cover
Loading…
Abstract | Summary
Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg) are CD4+CD25++forkhead box protein 3 (FoxP3+) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down‐regulate the Th17‐driven immune response. As the active state of CD has been associated with impairments in Treg cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non‐coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate‐producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)‐γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial‐derived metabolites.
Celiac disease is an autoimmune enteropathy triggered by the ingestion of gluten. We show that the intestinal microenvironment that characterize the preclinical and active state of the disease plays a role in modulating the ratio between FOXP3 isoforms and, for the first time, we mechanistically associate the alternative splicing process with microbial derived metabolites. |
---|---|
AbstractList | Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (T
reg
) are CD4
+
CD25
++
forkhead box protein 3 (FoxP3
+
) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down‐regulate the Th17‐driven immune response. As the active state of CD has been associated with impairments in T
reg
cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of
FOXP3
Δ2 isoform over FL, while both isoforms were expressed similarly in non‐coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate‐producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)‐γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial‐derived metabolites. Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (T ) are CD4 CD25 forkhead box protein 3 (FoxP3 ) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down-regulate the Th17-driven immune response. As the active state of CD has been associated with impairments in T cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non-coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate-producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)-γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial-derived metabolites. Summary Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg) are CD4+CD25++forkhead box protein 3 (FoxP3+) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down‐regulate the Th17‐driven immune response. As the active state of CD has been associated with impairments in Treg cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non‐coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate‐producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)‐γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial‐derived metabolites. Celiac disease is an autoimmune enteropathy triggered by the ingestion of gluten. We show that the intestinal microenvironment that characterize the preclinical and active state of the disease plays a role in modulating the ratio between FOXP3 isoforms and, for the first time, we mechanistically associate the alternative splicing process with microbial derived metabolites. Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg) are CD4+CD25++forkhead box protein 3 (FoxP3+) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down-regulate the Th17-driven immune response. As the active state of CD has been associated with impairments in Treg cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non-coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate-producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)-γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial-derived metabolites. Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (T sub(reg)) are CD4 super(+)CD25 super(++)for khead box protein 3 (FoxP3 super(+)) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Delta 2, cannot properly down-regulate the Th17-driven immune response. As the active state of CD has been associated with impairments in T sub(reg) cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Delta 2 isoform over FL, while both isoforms were expressed similarly in non-coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate-producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)- gamma and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial-derived metabolites. Celiac disease is an autoimmune enteropathy triggered by the ingestion of gluten. We show that the intestinal microenvironment that characterize the preclinical and active state of the disease plays a role in modulating the ratio between FOXP3 isoforms and, for the first time, we mechanistically associate the alternative splicing process with microbial derived metabolites. Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg ) are CD4+ CD25++ forkhead box protein 3 (FoxP3+ ) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down-regulate the Th17-driven immune response. As the active state of CD has been associated with impairments in Treg cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non-coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate-producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)-γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial-derived metabolites.Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small intestine. Regulatory T cells (Treg ) are CD4+ CD25++ forkhead box protein 3 (FoxP3+ ) cells that regulate the immune response. Conversely to its counterpart, FoxP3 full length (FL), the alternatively spliced isoform FoxP3 Δ2, cannot properly down-regulate the Th17-driven immune response. As the active state of CD has been associated with impairments in Treg cell function, we aimed at determining whether imbalances between FoxP3 isoforms may be associated with the disease. Intestinal biopsies from patients with active CD showed increased expression of FOXP3 Δ2 isoform over FL, while both isoforms were expressed similarly in non-coeliac control subjects (HC). Conversely to what we saw in the intestine, peripheral blood mononuclear cells (PBMC) from HC subjects did not show the same balance between isoforms. We therefore hypothesized that the intestinal microenvironment may play a role in modulating alternative splicing. The proinflammatory intestinal microenvironment of active patients has been reported to be enriched in butyrate-producing bacteria, while high concentrations of lactate have been shown to characterize the preclinical stage of the disease. We show that the combination of interferon (IFN)-γ and butyrate triggers the balance between FoxP3 isoforms in HC subjects, while the same does not occur in CD patients. Furthermore, we report that lactate increases both isoforms in CD patients. Collectively, these findings highlight the importance of the ratio between FoxP3 isoforms in CD and, for the first time, associate the alternative splicing process mechanistically with microbial-derived metabolites. |
Author | Lima, R. S. Mukherjee, R. Yan, S. Leonard, M. M. Lammers, K. M. Fasano, A. Serena, G. Sapone, A. Camhi, S. Patel, S. Nath, B. J. |
AuthorAffiliation | 2 Graduate Program in Life Sciences, University of Maryland School of Medicine Baltimore MD USA 5 European Biomedical Research Institute of Salerno (EBRIS) Salerno Italy 1 Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition Center for Celiac Research, Mucosal Immunology and Biology Research Center Boston MA USA 3 Celiac Center, Division of Gastroenterology, Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA USA 4 Department of Gastroenterology Massachusetts General Hospital Boston MA USA |
AuthorAffiliation_xml | – name: 5 European Biomedical Research Institute of Salerno (EBRIS) Salerno Italy – name: 4 Department of Gastroenterology Massachusetts General Hospital Boston MA USA – name: 3 Celiac Center, Division of Gastroenterology, Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA USA – name: 1 Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition Center for Celiac Research, Mucosal Immunology and Biology Research Center Boston MA USA – name: 2 Graduate Program in Life Sciences, University of Maryland School of Medicine Baltimore MD USA |
Author_xml | – sequence: 1 givenname: G. surname: Serena fullname: Serena, G. organization: Graduate Program in Life Sciences, University of Maryland School of Medicine – sequence: 2 givenname: S. surname: Yan fullname: Yan, S. organization: Center for Celiac Research, Mucosal Immunology and Biology Research Center – sequence: 3 givenname: S. surname: Camhi fullname: Camhi, S. organization: Center for Celiac Research, Mucosal Immunology and Biology Research Center – sequence: 4 givenname: S. surname: Patel fullname: Patel, S. organization: Center for Celiac Research, Mucosal Immunology and Biology Research Center – sequence: 5 givenname: R. S. surname: Lima fullname: Lima, R. S. organization: Center for Celiac Research, Mucosal Immunology and Biology Research Center – sequence: 6 givenname: A. surname: Sapone fullname: Sapone, A. organization: Beth Israel Deaconess Medical Center and Harvard Medical School – sequence: 7 givenname: M. M. surname: Leonard fullname: Leonard, M. M. organization: Center for Celiac Research, Mucosal Immunology and Biology Research Center – sequence: 8 givenname: R. surname: Mukherjee fullname: Mukherjee, R. organization: Beth Israel Deaconess Medical Center and Harvard Medical School – sequence: 9 givenname: B. J. surname: Nath fullname: Nath, B. J. organization: Massachusetts General Hospital – sequence: 10 givenname: K. M. surname: Lammers fullname: Lammers, K. M. organization: Center for Celiac Research, Mucosal Immunology and Biology Research Center – sequence: 11 givenname: A. surname: Fasano fullname: Fasano, A. email: afasano@mgh.harvard.edu organization: European Biomedical Research Institute of Salerno (EBRIS) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27936497$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkFuFDEQRS0URCaBBRdAXsJiEtvd7W5vkNAoQKRIsIC1ZburM0W67cH2ZJgdR8gZcgXuwSE4CQ4TIkAC4Y3lqle_yvp1QPZ88EDIY86OeDnHDvCIC8X5PTLjlWzmQtRqj8wYY2quOKv3yUFKH8pTSikekH3RqkrWqp2R67cxoB9GM00mh7ilbpvDBXqg6DPEAWLw3z5fff1Cje_phC4Gi2GCEush4iWUIGRjw4gZEu3RZZOBwgrPwUNGR9MGs1tSC3kD4OkQ4sUSTE9t-ERXMWRATyuKKZTMlEpb6gKMaFwRS2ASPCT3BzMmeHR7H5L3L0_eLV7Pz968Ol28OJu7uu74nDuhpByMbZtBtBXrrbVNbUzdu6Z1gnXWwaA6CV2r6lpaZk3VqLZnHTioKl4dkuc73dXaTtA78DmaUa8iTiZudTCof894XOrzcKkboZio2iLw9FYgho9rSFlPmByMo_EQ1knzTnalD2_5f6CNkE0nmSzok1_Hupvnp4cFeLYDijcpRRjuEM70zX7osh_6x34U9vgP1mExDMPNj3D8V8UGR9j-XVovTk53Fd8BwZHTrA |
CitedBy_id | crossref_primary_10_1080_10408398_2022_2121262 crossref_primary_10_3389_fcimb_2023_1242681 crossref_primary_10_1080_1744666X_2021_1880320 crossref_primary_10_3389_fnut_2020_00152 crossref_primary_10_1080_1744666X_2021_1840354 crossref_primary_10_3389_fimmu_2018_00530 crossref_primary_10_21508_1027_4065_2021_66_2_116_122 crossref_primary_10_3389_fnut_2019_00167 crossref_primary_10_1371_journal_pone_0215132 crossref_primary_10_3389_fimmu_2023_1278560 crossref_primary_10_3389_fimmu_2020_00957 crossref_primary_10_3390_life13102039 crossref_primary_10_1093_intimm_dxae049 crossref_primary_10_1073_pnas_2020322118 crossref_primary_10_3390_ijms241914434 crossref_primary_10_3390_biomedicines10040874 crossref_primary_10_1128_spectrum_01468_24 crossref_primary_10_23736_S2724_5276_20_06166_6 crossref_primary_10_1016_j_crmicr_2021_100069 crossref_primary_10_1038_s41392_021_00486_7 crossref_primary_10_1038_s41598_019_43426_w crossref_primary_10_3390_cells13201680 crossref_primary_10_1016_j_biopha_2023_114763 crossref_primary_10_1097_TP_0000000000004342 crossref_primary_10_1007_s12602_024_10416_y crossref_primary_10_3389_fimmu_2018_02411 crossref_primary_10_1007_s00424_018_2136_x crossref_primary_10_1093_nutrit_nux054 crossref_primary_10_1016_j_humic_2018_12_001 crossref_primary_10_3390_nu11102403 crossref_primary_10_1039_C9RA10365A crossref_primary_10_3390_microorganisms7060173 crossref_primary_10_1002_open_201700197 crossref_primary_10_3390_ijms25042090 crossref_primary_10_3390_nu13061755 crossref_primary_10_1002_eji_202250002 crossref_primary_10_2139_ssrn_4069034 crossref_primary_10_1126_sciimmunol_abo5407 crossref_primary_10_1186_s40168_022_01429_2 crossref_primary_10_3389_fimmu_2021_642166 crossref_primary_10_3390_brainsci10070437 crossref_primary_10_1007_s11882_019_0871_5 crossref_primary_10_1039_D1FO00490E crossref_primary_10_1093_gastro_goac011 crossref_primary_10_3389_fmicb_2018_02597 crossref_primary_10_3389_fimmu_2022_911151 crossref_primary_10_1016_j_gtc_2018_09_011 crossref_primary_10_3390_ijms22147426 crossref_primary_10_1111_apt_16161 |
Cites_doi | 10.1111/j.1365-2249.2008.03662.x 10.1177/0961203310382428 10.1080/08916930802350789 10.1007/s00262-014-1581-4 10.1111/apm.12556 10.1056/NEJMcp1113994 10.1371/journal.pone.0033387 10.1038/ni.1663 10.4049/jimmunol.180.7.4785 10.1371/journal.pone.0006104 10.3390/nu3100858 10.1111/j.1365-3083.2012.02740.x 10.1016/j.immuni.2013.03.002 10.1038/nature12721 10.1038/nri3738 10.1172/JCI24685 10.1152/physrev.00045.2009 10.1677/jme.1.02072 10.1159/000260087 10.1016/j.smim.2003.12.003 10.1080/00365520802624177 10.1080/00365520510024034 10.1182/blood-2007-09-115014 10.1016/j.it.2007.06.006 10.1371/journal.pone.0027644 10.1186/1742-4690-4-57 10.1097/MIB.0b013e31828029a9 10.4049/jimmunol.177.5.3133 10.1186/1471-230X-13-113 10.1007/s10620-008-0501-x 10.1016/j.jpeds.2012.05.008 10.1038/srep14674 10.1038/mi.2008.75 10.1128/AEM.00869-13 10.1007/s12026-008-8029-x 10.1053/j.gastro.2008.03.023 10.1007/978-0-387-72005-0_12 10.4049/jimmunol.0901919 10.1053/gast.2002.35355 10.1097/MOG.0b013e328365d30f 10.1016/j.humimm.2005.06.001 10.3389/fimmu.2012.00051 10.1016/j.yexmp.2012.09.013 10.1111/j.1399-302X.2005.00237.x 10.1016/j.febslet.2014.06.040 10.1371/journal.pone.0032588 10.1016/S1568-9972(02)00054-X 10.1097/MPG.0b013e3181818fb9 10.1111/j.1753-4887.2012.00498.x 10.1038/83713 10.1038/ajg.2011.397 10.1007/s10620-012-2184-6 10.1016/j.coi.2015.03.007 10.1038/nature06878 |
ContentType | Journal Article |
Copyright | 2017 British Society for Immunology 2017 British Society for Immunology. |
Copyright_xml | – notice: 2017 British Society for Immunology – notice: 2017 British Society for Immunology. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
DOI | 10.1111/cei.12911 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE CrossRef AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Regulation of FoxP3 isoforms in coeliac disease |
EISSN | 1365-2249 |
EndPage | 506 |
ExternalDocumentID | PMC5290237 27936497 10_1111_cei_12911 CEI12911 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: The National Institutes of Health (NIH) funderid: DK048373; DK104344 – fundername: NIDDK NIH HHS grantid: R01 DK048373 – fundername: NIDDK NIH HHS grantid: R01 DK104344 – fundername: The National Institutes of Health (NIH) grantid: DK048373; DK104344 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 169 1OC 24P 29B 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AABZA AACZT AAESR AAEVG AAHHS AAONW AAPXW AARHZ AAUAY AAVAP AAZKR ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABJNI ABLJU ABNHQ ABOCM ABPTD ABPVW ABQNK ABXVV ACAHQ ACCFJ ACFBH ACGFO ACGFS ACMXC ACPOU ACPRK ACSCC ACUFI ACUHS ACXQS ADBBV ADEOM ADIPN ADIYS ADIZJ ADKYN ADMGS ADOZA ADQBN ADVEK ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFFZL AFGKR AFPWT AFRAH AFTUV AFXAL AFZJQ AGMDO AGUTN AHMMS AIACR AIAGR AIURR AIWBW AJAOE AJBDE AJEEA ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB AOIJS ATGXG ATUGU AZBYB AZVAB BAFTC BAWUL BCRHZ BEYMZ BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HZI HZ~ IH2 IHE IPNFZ IX1 J0M J5H K48 KBUDW KBYEO KOP KSI KSN LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NOMLY NU- O66 O9- OAUYM OBS OCZFY OHT OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 Q~Q R.K ROL ROX RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WVDHM WXI X7M XG1 Y6R YFH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAFWJ AAYXX ABGNP ABVGC AEMQT AGORE AJBYB AJNCP ALXQX CITATION AAMMB ACVCV AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJDVS CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 5PM |
ID | FETCH-LOGICAL-c4481-1c2966fab75f2730dbbb54aa4dc57c208bcef986e879446b0ba3597d08ece3313 |
IEDL.DBID | DR2 |
ISSN | 0009-9104 1365-2249 |
IngestDate | Thu Aug 21 14:38:59 EDT 2025 Fri Jul 11 13:42:11 EDT 2025 Fri Jul 11 11:18:14 EDT 2025 Mon Jul 21 05:36:21 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Tue Jul 01 03:52:48 EDT 2025 Wed Jan 22 16:25:06 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | celiac disease autoimmunity microbiome Treg |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2017 British Society for Immunology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4481-1c2966fab75f2730dbbb54aa4dc57c208bcef986e879446b0ba3597d08ece3313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1111/cei.12911 |
PMID | 27936497 |
PQID | 1852658606 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5290237 proquest_miscellaneous_1868313171 proquest_miscellaneous_1852658606 pubmed_primary_27936497 crossref_primary_10_1111_cei_12911 crossref_citationtrail_10_1111_cei_12911 wiley_primary_10_1111_cei_12911_CEI12911 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2017 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hoboken |
PublicationTitle | Clinical and experimental immunology |
PublicationTitleAlternate | Clin Exp Immunol |
PublicationYear | 2017 |
Publisher | John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley and Sons Inc |
References | 2012; 161 2009; 44 2015; 34 2013; 29 2009; 42 2006; 37 2008; 9 2010; 184 2014; 63 2012; 367 2012; 57 2005; 66 2006; 177 2007; 28 2013; 19 2009; 54 2013; 13 2006; 21 2011; 20 2010; 152 2014; 14 2007; 4 2012; 26 2008; 111 2008; 152 2015; 5 2007; 601 2013; 504 2005; 115 2002; 1 2005; 40 2016; 124 2001; 27 2011; 3 2011; 6 2012; 107 2012; 76 2012; 93 2008; 180 2012; 3 2013; 38 2004; 16 2013; 79 2002; 123 2008; 47 2008; 42 2009; 4 2008; 135 2013 2008; 453 2012; 70 Suppl 1 2009; 2 2012; 7 2010; 90 2014; 588 Cheng (2021120808024976400_cei12911-bib-0042) 2013; 13 Meresse (2021120808024976400_cei12911-bib-0020) 2009; 2 Monteleone (2021120808024976400_cei12911-bib-0027) 2010; 184 Sellitto (2021120808024976400_cei12911-bib-0036) 2012; 7 Zhou (2021120808024976400_cei12911-bib-0016) 2008; 42 Goodman (2021120808024976400_cei12911-bib-0039) 2013; 29 Lin (2021120808024976400_cei12911-bib-0009) 2011; 20 Allan (2021120808024976400_cei12911-bib-0018) 2005; 115 Lionetti (2021120808024976400_cei12911-bib-0055) 2012; 161 Du (2021120808024976400_cei12911-bib-0017) 2008; 180 Schmitt (2021120808024976400_cei12911-bib-0038) 2015; 34 Eslami (2021120808024976400_cei12911-bib-0056) 2016; 124 Tjellstrom (2021120808024976400_cei12911-bib-0035) 2013 Sanchez (2021120808024976400_cei12911-bib-0041) 2013; 79 Hmida (2021120808024976400_cei12911-bib-0033) 2012; 107 Chai (2021120808024976400_cei12911-bib-0050) 2014; 588 Takata (2021120808024976400_cei12911-bib-0053) 2011; 6 Wacklin (2021120808024976400_cei12911-bib-0040) 2013; 19 Schmidt (2021120808024976400_cei12911-bib-0003) 2012; 3 Zhou (2021120808024976400_cei12911-bib-0015) 2008; 453 Forsberg (2021120808024976400_cei12911-bib-0024) 2002; 123 Vinolo (2021120808024976400_cei12911-bib-0045) 2011; 3 Zhang (2021120808024976400_cei12911-bib-0012) 2008; 9 Sapone (2021120808024976400_cei12911-bib-0025) 2010; 152 Garrote (2021120808024976400_cei12911-bib-0022) 2008; 47 Hu (2021120808024976400_cei12911-bib-0013) 2007; 28 Furusawa (2021120808024976400_cei12911-bib-0044) 2013; 504 Bennett (2021120808024976400_cei12911-bib-0007) 2001; 27 Simell (2021120808024976400_cei12911-bib-0054) 2005; 40 Sekirov (2021120808024976400_cei12911-bib-0047) 2010; 90 Mowat (2021120808024976400_cei12911-bib-0049) 2014; 14 Eiro (2021120808024976400_cei12911-bib-0026) 2012; 57 Mailer (2021120808024976400_cei12911-bib-0043) 2015; 5 Lopes (2021120808024976400_cei12911-bib-0006) 2006; 177 Lammers (2021120808024976400_cei12911-bib-0034) 2008; 135 Mailer (2021120808024976400_cei12911-bib-0019) 2009; 4 Granzotto (2021120808024976400_cei12911-bib-0031) 2009; 54 Fontenelle (2021120808024976400_cei12911-bib-0046) 2012; 76 Fasano (2021120808024976400_cei12911-bib-0021) 2012; 367 Kelly (2021120808024976400_cei12911-bib-0048) 2012; 70 Suppl 1 Lyssuk (2021120808024976400_cei12911-bib-0028) 2007; 601 Owen (2021120808024976400_cei12911-bib-0008) 2006; 37 Devaud (2021120808024976400_cei12911-bib-0005) 2014; 63 Cianci (2021120808024976400_cei12911-bib-0032) 2012; 26 Tiittanen (2021120808024976400_cei12911-bib-0029) 2008; 152 Vorobjova (2021120808024976400_cei12911-bib-0030) 2009; 44 Jounai (2021120808024976400_cei12911-bib-0052) 2012; 7 Ohkura (2021120808024976400_cei12911-bib-0004) 2013; 38 Piccirillo (2021120808024976400_cei12911-bib-0002) 2004; 16 Deng (2021120808024976400_cei12911-bib-0011) 2012; 93 Amarnath (2021120808024976400_cei12911-bib-0037) 2007; 4 Sanchez (2021120808024976400_cei12911-bib-0010) 2005; 66 Castellanos-Rubio (2021120808024976400_cei12911-bib-0023) 2009; 42 Lee (2021120808024976400_cei12911-bib-0014) 2008; 111 Kopitar (2021120808024976400_cei12911-bib-0051) 2006; 21 Asseman (2021120808024976400_cei12911-bib-0001) 2002; 1 23521883 - Immunity. 2013 Mar 21;38(3):414-23 12848995 - Autoimmun Rev. 2002 Aug;1(4):190-7 20664075 - Physiol Rev. 2010 Jul;90(3):859-904 18485912 - Gastroenterology. 2008 Jul;135(1):194-204.e3 16390334 - Oral Microbiol Immunol. 2006 Feb;21(1):1-5 18626575 - Immunol Res. 2008;42(1-3):19-28 19096978 - Scand J Gastroenterol. 2009;44(4):422-30 22110705 - PLoS One. 2011;6(11):e27644 22861803 - Nutr Rev. 2012 Aug;70 Suppl 1:S18-30 17712998 - Adv Exp Med Biol. 2007;601:113-9 23478804 - Inflamm Bowel Dis. 2013 Apr;19(5):934-41 25063364 - Cancer Immunol Immunother. 2014 Sep;63(9):869-76 22824744 - J Biol Regul Homeost Agents. 2012 Apr-Jun;26(2):171-9 18667914 - J Pediatr Gastroenterol Nutr. 2008 Aug;47 Suppl 1:S27-32 18975083 - Dig Dis Sci. 2009 Jul;54(7):1513-9 19940509 - Int Arch Allergy Immunol. 2010;152(1):75-80 26441347 - Sci Rep. 2015 Oct 06;5:14674 22108452 - Am J Gastroenterol. 2012 Apr;107(4):604-11 27245496 - APMIS. 2016 Aug;124(8):697-710 22505996 - PLoS One. 2012;7(4):e32588 23844808 - BMC Gastroenterol. 2013 Jul 11;13:113 24997344 - FEBS Lett. 2014 Nov 17;588(22):4167-75 24082880 - Microb Ecol Health Dis. 2013 Sep 25;24:null 18849990 - Nat Immunol. 2008 Nov;9(11):1297-306 22432018 - PLoS One. 2012;7(3):e33387 24100716 - Curr Opin Gastroenterol. 2013 Nov;29(6):614-20 16920951 - J Immunol. 2006 Sep 1;177(5):3133-42 25879814 - Curr Opin Immunol. 2015 Jun;34:130-6 16901927 - J Mol Endocrinol. 2006 Aug;37(1):97-104 22562536 - Dig Dis Sci. 2012 Sep;57(9):2278-85 19568423 - PLoS One. 2009 Jul 01;4(7):e6104 16265775 - Scand J Gastroenterol. 2005 Oct;40(10):1182-91 12198691 - Gastroenterology. 2002 Sep;123(3):667-78 23835180 - Appl Environ Microbiol. 2013 Sep;79(18):5472-9 17618833 - Trends Immunol. 2007 Aug;28(8):329-32 21078762 - Lupus. 2011 Feb;20(2):137-43 15036231 - Semin Immunol. 2004 Apr;16(2):81-8 18354202 - J Immunol. 2008 Apr 1;180(7):4785-92 11137993 - Nat Genet. 2001 Jan;27(1):20-1 22704250 - J Pediatr. 2012 Nov;161(5):908-14 23252527 - N Engl J Med. 2012 Dec 20;367(25):2419-26 20061410 - J Immunol. 2010 Feb 15;184(4):2211-8 22566933 - Front Immunol. 2012 Mar 21;3:51 24226770 - Nature. 2013 Dec 19;504(7480):446-50 16216670 - Hum Immunol. 2005 Aug;66(8):869-73 23041265 - Exp Mol Pathol. 2012 Dec;93(3):334-8 22724664 - Scand J Immunol. 2012 Nov;76(5):457-63 17688698 - Retrovirology. 2007 Aug 09;4:57 16211090 - J Clin Invest. 2005 Nov;115(11):3276-84 22254083 - Nutrients. 2011 Oct;3(10):858-76 18223166 - Blood. 2008 Apr 1;111(7):3599-606 19127457 - Autoimmunity. 2009 Jan;42(1):69-73 18368049 - Nature. 2008 May 8;453(7192):236-40 18435801 - Clin Exp Immunol. 2008 Jun;152(3):498-507 25234148 - Nat Rev Immunol. 2014 Oct;14(10):667-85 19079330 - Mucosal Immunol. 2009 Jan;2(1):8-23 |
References_xml | – volume: 40 start-page: 1182 year: 2005 end-page: 91 article-title: Natural history of transglutaminase autoantibodies and mucosal changes in children carrying HLA‐conferred celiac disease susceptibility publication-title: Scand J Gastroenterol – volume: 7 start-page: e33387 year: 2012 article-title: Proof of concept of microbiome‐metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at‐risk infants publication-title: PLOS ONE – volume: 27 start-page: 20 year: 2001 end-page: 1 article-title: The immune dysregulation, polyendocrinopathy, enteropathy, X‐linked syndrome (IPEX) is caused by mutations of FOXP3 publication-title: Nat Genet – volume: 93 start-page: 334 year: 2012 end-page: 8 article-title: Molecular and biological role of the FOXP3 N‐terminal domain in immune regulation by T regulatory/suppressor cells publication-title: Exp Mol Pathol – volume: 2 start-page: 8 year: 2009 end-page: 23 article-title: Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis publication-title: Mucosal Immunol – volume: 4 start-page: e6104 year: 2009 article-title: Absence of leucine zipper in the natural FOXP3Delta2Delta7 isoform does not affect dimerization but abrogates suppressive capacity publication-title: PLOS ONE – volume: 601 start-page: 113 year: 2007 end-page: 9 article-title: Reduced number and function of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythematosus publication-title: Adv Exp Med Biol – volume: 1 start-page: 190 year: 2002 end-page: 7 article-title: About CD4pos CD25pos regulatory cells publication-title: Autoimmun Rev – volume: 79 start-page: 5472 year: 2013 end-page: 9 article-title: Duodenal–mucosal bacteria associated with celiac disease in children publication-title: Appl Environ Microbiol – volume: 5 start-page: 14674 year: 2015 article-title: IL‐1beta promotes Th17 differentiation by inducing alternative splicing of FOXP3 publication-title: Sci Rep – volume: 7 start-page: e32588 year: 2012 article-title: Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9‐dependent crosstalk with myeloid dendritic cells publication-title: PLoS One – volume: 504 start-page: 446 year: 2013 end-page: 50 article-title: Commensal microbe‐derived butyrate induces the differentiation of colonic regulatory T cells publication-title: Nature – volume: 54 start-page: 1513 year: 2009 end-page: 9 article-title: Regulatory T‐cell function is impaired in celiac disease publication-title: Dig Dis Sci – volume: 367 start-page: 2419 year: 2012 end-page: 26 article-title: Clinical practice. Celiac disease publication-title: N Engl J Med – volume: 152 start-page: 498 year: 2008 end-page: 507 article-title: Infiltration of forkhead box P3‐expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes publication-title: Clin Exp Immunol – volume: 44 start-page: 422 year: 2009 end-page: 30 article-title: Increased FOXP3 expression in small‐bowel mucosa of children with coeliac disease and type I diabetes mellitus publication-title: Scand J Gastroenterol – volume: 63 start-page: 869 year: 2014 end-page: 76 article-title: Foxp3 expression in T regulatory cells and other cell lineages publication-title: Cancer Immunol Immunother – volume: 29 start-page: 614 year: 2013 end-page: 20 article-title: Regulatory cell populations in the intestinal mucosa publication-title: Curr Opin Gastroenterol – volume: 57 start-page: 2278 year: 2012 end-page: 85 article-title: Duodenal expression of Toll‐like receptors and interleukins are increased in both children and adult celiac patients publication-title: Dig Dis Sci – volume: 161 start-page: 908 year: 2012 end-page: 14 article-title: Prevalence and natural history of potential celiac disease in at‐family‐risk infants prospectively investigated from birth publication-title: J Pediatr – volume: 4 start-page: 57 year: 2007 article-title: Endogenous TGF‐beta activation by reactive oxygen species is key to Foxp3 induction in TCR‐stimulated and HIV‐1‐infected human CD4+CD25– T cells publication-title: Retrovirology – volume: 184 start-page: 2211 year: 2010 end-page: 8 article-title: Characterization of IL‐17A‐producing cells in celiac disease mucosa publication-title: J Immunol – volume: 42 start-page: 19 year: 2008 end-page: 28 article-title: FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity publication-title: Immunol Res – volume: 20 start-page: 137 year: 2011 end-page: 43 article-title: Association of single‐nucleotide polymorphisms in FOXP3 gene with systemic lupus erythematosus susceptibility: a case–control study publication-title: Lupus – volume: 3 start-page: 51 year: 2012 article-title: Molecular mechanisms of Treg‐mediated T cell suppression publication-title: Front Immunol – volume: 111 start-page: 3599 year: 2008 end-page: 606 article-title: FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA‐binding activity of AP‐1 publication-title: Blood – volume: 13 start-page: 113 year: 2013 article-title: Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease publication-title: BMC Gastroenterol – volume: 9 start-page: 1297 year: 2008 end-page: 306 article-title: Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17‐producing T cells publication-title: Nat Immunol – volume: 70 Suppl 1 start-page: S18 year: 2012 end-page: 30 article-title: Microbiome and immunological interactions publication-title: Nutr Rev – volume: 115 start-page: 3276 year: 2005 end-page: 84 article-title: The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs publication-title: J Clin Invest – volume: 3 start-page: 858 year: 2011 end-page: 76 article-title: Regulation of inflammation by short chain fatty acids publication-title: Nutrients – volume: 21 start-page: 1 year: 2006 end-page: 5 article-title: Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation publication-title: Oral Microbiol Immunol – volume: 124 start-page: 697 year: 2016 end-page: 710 article-title: strain SJ‐3C‐US induces human dendritic cells (DCs) maturation and confers an anti‐inflammatory phenotype to DCs publication-title: APMIS – volume: 135 start-page: 194 year: 2008 end-page: 204 e3 article-title: Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3 publication-title: Gastroenterology – volume: 42 start-page: 69 year: 2009 end-page: 73 article-title: TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin publication-title: Autoimmunity – volume: 37 start-page: 97 year: 2006 end-page: 104 article-title: Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison's disease in the United Kingdom population publication-title: J Mol Endocrinol – volume: 177 start-page: 3133 year: 2006 end-page: 42 article-title: Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor publication-title: J Immunol – volume: 14 start-page: 667 year: 2014 end-page: 85 article-title: Regional specialization within the intestinal immune system publication-title: Nat Rev Immunol – volume: 16 start-page: 81 year: 2004 end-page: 8 article-title: Naturally‐occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance publication-title: Semin Immunol – start-page: 24 year: 2013 article-title: Faecal short‐chain fatty acid pattern in childhood coeliac disease is normalised after more than one year's gluten‐free diet publication-title: Microb Ecol Health Dis – volume: 66 start-page: 869 year: 2005 end-page: 73 article-title: Analysis of a GT microsatellite in the promoter of the foxp3/scurfin gene in autoimmune diseases publication-title: Hum Immunol – volume: 123 start-page: 667 year: 2002 end-page: 78 article-title: Paradoxical coexpression of proinflammatory and down‐regulatory cytokines in intestinal T cells in childhood celiac disease publication-title: Gastroenterology – volume: 107 start-page: 604 year: 2012 end-page: 11 article-title: Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? publication-title: Am J Gastroenterol – volume: 6 start-page: e27644 year: 2011 article-title: The lactic acid bacterium suppresses autoimmune encephalomyelitis by inducing IL‐10‐producing regulatory T cells publication-title: PLoS One – volume: 28 start-page: 329 year: 2007 end-page: 32 article-title: Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT publication-title: Trends Immunol – volume: 152 start-page: 75 year: 2010 end-page: 80 article-title: Differential mucosal IL‐17 expression in two gliadin‐induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease publication-title: Int Arch Allergy Immunol – volume: 19 start-page: 934 year: 2013 end-page: 41 article-title: The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease publication-title: Inflamm Bowel Dis – volume: 38 start-page: 414 year: 2013 end-page: 23 article-title: Development and maintenance of regulatory T cells publication-title: Immunity – volume: 47 start-page: S27 year: 2008 end-page: 32 article-title: Celiac disease pathogenesis: the proinflammatory cytokine network publication-title: J Pediatr Gastroenterol Nutr – volume: 76 start-page: 457 year: 2012 end-page: 63 article-title: n‐Butyrate anergized effector CD4+ T cells independent of regulatory T cell generation or activity publication-title: Scand J Immunol – volume: 90 start-page: 859 year: 2010 end-page: 904 article-title: Gut microbiota in health and disease publication-title: Physiol Rev – volume: 588 start-page: 4167 year: 2014 end-page: 75 article-title: T cells and intestinal commensal bacteria–ignorance, rejection, and acceptance publication-title: FEBS Lett – volume: 26 start-page: 171 year: 2012 end-page: 9 article-title: New insights on the role of T cells in the pathogenesis of celiac disease publication-title: J Biol Regul Homeost Agents – volume: 34 start-page: 130 year: 2015 end-page: 6 article-title: Regulation of human helper T cell subset differentiation by cytokines publication-title: Curr Opin Immunol – volume: 453 start-page: 236 year: 2008 end-page: 40 article-title: TGF‐beta‐induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function publication-title: Nature – volume: 180 start-page: 4785 year: 2008 end-page: 92 article-title: Isoform‐specific inhibition of ROR alpha‐mediated transcriptional activation by human FOXP3 publication-title: J Immunol – volume: 152 start-page: 498 year: 2008 ident: 2021120808024976400_cei12911-bib-0029 article-title: Infiltration of forkhead box P3-expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2008.03662.x – volume: 20 start-page: 137 year: 2011 ident: 2021120808024976400_cei12911-bib-0009 article-title: Association of single-nucleotide polymorphisms in FOXP3 gene with systemic lupus erythematosus susceptibility: a case–control study publication-title: Lupus doi: 10.1177/0961203310382428 – volume: 42 start-page: 69 year: 2009 ident: 2021120808024976400_cei12911-bib-0023 article-title: TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin publication-title: Autoimmunity doi: 10.1080/08916930802350789 – volume: 63 start-page: 869 year: 2014 ident: 2021120808024976400_cei12911-bib-0005 article-title: Foxp3 expression in T regulatory cells and other cell lineages publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-014-1581-4 – volume: 124 start-page: 697 year: 2016 ident: 2021120808024976400_cei12911-bib-0056 article-title: Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs publication-title: APMIS doi: 10.1111/apm.12556 – volume: 367 start-page: 2419 year: 2012 ident: 2021120808024976400_cei12911-bib-0021 article-title: Clinical practice. Celiac disease publication-title: N Engl J Med doi: 10.1056/NEJMcp1113994 – volume: 7 start-page: e33387 year: 2012 ident: 2021120808024976400_cei12911-bib-0036 article-title: Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants publication-title: PLOS ONE doi: 10.1371/journal.pone.0033387 – volume: 9 start-page: 1297 year: 2008 ident: 2021120808024976400_cei12911-bib-0012 article-title: Interactions among the transcription factors Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin 17-producing T cells publication-title: Nat Immunol doi: 10.1038/ni.1663 – volume: 180 start-page: 4785 year: 2008 ident: 2021120808024976400_cei12911-bib-0017 article-title: Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3 publication-title: J Immunol doi: 10.4049/jimmunol.180.7.4785 – volume: 4 start-page: e6104 year: 2009 ident: 2021120808024976400_cei12911-bib-0019 article-title: Absence of leucine zipper in the natural FOXP3Delta2Delta7 isoform does not affect dimerization but abrogates suppressive capacity publication-title: PLOS ONE doi: 10.1371/journal.pone.0006104 – volume: 3 start-page: 858 year: 2011 ident: 2021120808024976400_cei12911-bib-0045 article-title: Regulation of inflammation by short chain fatty acids publication-title: Nutrients doi: 10.3390/nu3100858 – volume: 76 start-page: 457 year: 2012 ident: 2021120808024976400_cei12911-bib-0046 article-title: n-Butyrate anergized effector CD4+ T cells independent of regulatory T cell generation or activity publication-title: Scand J Immunol doi: 10.1111/j.1365-3083.2012.02740.x – volume: 38 start-page: 414 year: 2013 ident: 2021120808024976400_cei12911-bib-0004 article-title: Development and maintenance of regulatory T cells publication-title: Immunity doi: 10.1016/j.immuni.2013.03.002 – volume: 26 start-page: 171 year: 2012 ident: 2021120808024976400_cei12911-bib-0032 article-title: New insights on the role of T cells in the pathogenesis of celiac disease publication-title: J Biol Regul Homeost Agents – volume: 504 start-page: 446 year: 2013 ident: 2021120808024976400_cei12911-bib-0044 article-title: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells publication-title: Nature doi: 10.1038/nature12721 – volume: 14 start-page: 667 year: 2014 ident: 2021120808024976400_cei12911-bib-0049 article-title: Regional specialization within the intestinal immune system publication-title: Nat Rev Immunol doi: 10.1038/nri3738 – volume: 115 start-page: 3276 year: 2005 ident: 2021120808024976400_cei12911-bib-0018 article-title: The role of 2 FOXP3 isoforms in the generation of human CD4+ Tregs publication-title: J Clin Invest doi: 10.1172/JCI24685 – volume: 90 start-page: 859 year: 2010 ident: 2021120808024976400_cei12911-bib-0047 article-title: Gut microbiota in health and disease publication-title: Physiol Rev doi: 10.1152/physrev.00045.2009 – volume: 37 start-page: 97 year: 2006 ident: 2021120808024976400_cei12911-bib-0008 article-title: Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison's disease in the United Kingdom population publication-title: J Mol Endocrinol doi: 10.1677/jme.1.02072 – volume: 152 start-page: 75 year: 2010 ident: 2021120808024976400_cei12911-bib-0025 article-title: Differential mucosal IL-17 expression in two gliadin-induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease publication-title: Int Arch Allergy Immunol doi: 10.1159/000260087 – volume: 16 start-page: 81 year: 2004 ident: 2021120808024976400_cei12911-bib-0002 article-title: Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance publication-title: Semin Immunol doi: 10.1016/j.smim.2003.12.003 – volume: 44 start-page: 422 year: 2009 ident: 2021120808024976400_cei12911-bib-0030 article-title: Increased FOXP3 expression in small-bowel mucosa of children with coeliac disease and type I diabetes mellitus publication-title: Scand J Gastroenterol doi: 10.1080/00365520802624177 – volume: 40 start-page: 1182 year: 2005 ident: 2021120808024976400_cei12911-bib-0054 article-title: Natural history of transglutaminase autoantibodies and mucosal changes in children carrying HLA-conferred celiac disease susceptibility publication-title: Scand J Gastroenterol doi: 10.1080/00365520510024034 – volume: 111 start-page: 3599 year: 2008 ident: 2021120808024976400_cei12911-bib-0014 article-title: FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-1 publication-title: Blood doi: 10.1182/blood-2007-09-115014 – volume: 28 start-page: 329 year: 2007 ident: 2021120808024976400_cei12911-bib-0013 article-title: Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT publication-title: Trends Immunol doi: 10.1016/j.it.2007.06.006 – volume: 6 start-page: e27644 year: 2011 ident: 2021120808024976400_cei12911-bib-0053 article-title: The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells publication-title: PLoS One doi: 10.1371/journal.pone.0027644 – volume: 4 start-page: 57 year: 2007 ident: 2021120808024976400_cei12911-bib-0037 article-title: Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25– T cells publication-title: Retrovirology doi: 10.1186/1742-4690-4-57 – volume: 19 start-page: 934 year: 2013 ident: 2021120808024976400_cei12911-bib-0040 article-title: The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease publication-title: Inflamm Bowel Dis doi: 10.1097/MIB.0b013e31828029a9 – volume: 177 start-page: 3133 year: 2006 ident: 2021120808024976400_cei12911-bib-0006 article-title: Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor publication-title: J Immunol doi: 10.4049/jimmunol.177.5.3133 – start-page: 24 year: 2013 ident: 2021120808024976400_cei12911-bib-0035 article-title: Faecal short-chain fatty acid pattern in childhood coeliac disease is normalised after more than one year's gluten-free diet publication-title: Microb Ecol Health Dis – volume: 13 start-page: 113 year: 2013 ident: 2021120808024976400_cei12911-bib-0042 article-title: Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease publication-title: BMC Gastroenterol doi: 10.1186/1471-230X-13-113 – volume: 54 start-page: 1513 year: 2009 ident: 2021120808024976400_cei12911-bib-0031 article-title: Regulatory T-cell function is impaired in celiac disease publication-title: Dig Dis Sci doi: 10.1007/s10620-008-0501-x – volume: 161 start-page: 908 year: 2012 ident: 2021120808024976400_cei12911-bib-0055 article-title: Prevalence and natural history of potential celiac disease in at-family-risk infants prospectively investigated from birth publication-title: J Pediatr doi: 10.1016/j.jpeds.2012.05.008 – volume: 5 start-page: 14674 year: 2015 ident: 2021120808024976400_cei12911-bib-0043 article-title: IL-1beta promotes Th17 differentiation by inducing alternative splicing of FOXP3 publication-title: Sci Rep doi: 10.1038/srep14674 – volume: 2 start-page: 8 year: 2009 ident: 2021120808024976400_cei12911-bib-0020 article-title: Celiac disease: from oral tolerance to intestinal inflammation, autoimmunity and lymphomagenesis publication-title: Mucosal Immunol doi: 10.1038/mi.2008.75 – volume: 79 start-page: 5472 year: 2013 ident: 2021120808024976400_cei12911-bib-0041 article-title: Duodenal–mucosal bacteria associated with celiac disease in children publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00869-13 – volume: 42 start-page: 19 year: 2008 ident: 2021120808024976400_cei12911-bib-0016 article-title: FOXP3 and its partners: structural and biochemical insights into the regulation of FOXP3 activity publication-title: Immunol Res doi: 10.1007/s12026-008-8029-x – volume: 135 start-page: 194 year: 2008 ident: 2021120808024976400_cei12911-bib-0034 article-title: Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3 publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.03.023 – volume: 601 start-page: 113 year: 2007 ident: 2021120808024976400_cei12911-bib-0028 article-title: Reduced number and function of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythematosus publication-title: Adv Exp Med Biol doi: 10.1007/978-0-387-72005-0_12 – volume: 184 start-page: 2211 year: 2010 ident: 2021120808024976400_cei12911-bib-0027 article-title: Characterization of IL-17A-producing cells in celiac disease mucosa publication-title: J Immunol doi: 10.4049/jimmunol.0901919 – volume: 123 start-page: 667 year: 2002 ident: 2021120808024976400_cei12911-bib-0024 article-title: Paradoxical coexpression of proinflammatory and down-regulatory cytokines in intestinal T cells in childhood celiac disease publication-title: Gastroenterology doi: 10.1053/gast.2002.35355 – volume: 29 start-page: 614 year: 2013 ident: 2021120808024976400_cei12911-bib-0039 article-title: Regulatory cell populations in the intestinal mucosa publication-title: Curr Opin Gastroenterol doi: 10.1097/MOG.0b013e328365d30f – volume: 66 start-page: 869 year: 2005 ident: 2021120808024976400_cei12911-bib-0010 article-title: Analysis of a GT microsatellite in the promoter of the foxp3/scurfin gene in autoimmune diseases publication-title: Hum Immunol doi: 10.1016/j.humimm.2005.06.001 – volume: 3 start-page: 51 year: 2012 ident: 2021120808024976400_cei12911-bib-0003 article-title: Molecular mechanisms of Treg-mediated T cell suppression publication-title: Front Immunol doi: 10.3389/fimmu.2012.00051 – volume: 93 start-page: 334 year: 2012 ident: 2021120808024976400_cei12911-bib-0011 article-title: Molecular and biological role of the FOXP3 N-terminal domain in immune regulation by T regulatory/suppressor cells publication-title: Exp Mol Pathol doi: 10.1016/j.yexmp.2012.09.013 – volume: 21 start-page: 1 year: 2006 ident: 2021120808024976400_cei12911-bib-0051 article-title: Commensal oral bacteria antigens prime human dendritic cells to induce Th1, Th2 or Treg differentiation publication-title: Oral Microbiol Immunol doi: 10.1111/j.1399-302X.2005.00237.x – volume: 588 start-page: 4167 year: 2014 ident: 2021120808024976400_cei12911-bib-0050 article-title: T cells and intestinal commensal bacteria–ignorance, rejection, and acceptance publication-title: FEBS Lett doi: 10.1016/j.febslet.2014.06.040 – volume: 7 start-page: e32588 year: 2012 ident: 2021120808024976400_cei12911-bib-0052 article-title: Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells publication-title: PLoS One doi: 10.1371/journal.pone.0032588 – volume: 1 start-page: 190 year: 2002 ident: 2021120808024976400_cei12911-bib-0001 article-title: About CD4pos CD25pos regulatory cells publication-title: Autoimmun Rev doi: 10.1016/S1568-9972(02)00054-X – volume: 47 start-page: S27 year: 2008 ident: 2021120808024976400_cei12911-bib-0022 article-title: Celiac disease pathogenesis: the proinflammatory cytokine network publication-title: J Pediatr Gastroenterol Nutr doi: 10.1097/MPG.0b013e3181818fb9 – volume: 70 Suppl 1 start-page: S18 year: 2012 ident: 2021120808024976400_cei12911-bib-0048 article-title: Microbiome and immunological interactions publication-title: Nutr Rev doi: 10.1111/j.1753-4887.2012.00498.x – volume: 27 start-page: 20 year: 2001 ident: 2021120808024976400_cei12911-bib-0007 article-title: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 publication-title: Nat Genet doi: 10.1038/83713 – volume: 107 start-page: 604 year: 2012 ident: 2021120808024976400_cei12911-bib-0033 article-title: Impaired control of effector T cells by regulatory T cells: a clue to loss of oral tolerance and autoimmunity in celiac disease? publication-title: Am J Gastroenterol doi: 10.1038/ajg.2011.397 – volume: 57 start-page: 2278 year: 2012 ident: 2021120808024976400_cei12911-bib-0026 article-title: Duodenal expression of Toll-like receptors and interleukins are increased in both children and adult celiac patients publication-title: Dig Dis Sci doi: 10.1007/s10620-012-2184-6 – volume: 34 start-page: 130 year: 2015 ident: 2021120808024976400_cei12911-bib-0038 article-title: Regulation of human helper T cell subset differentiation by cytokines publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2015.03.007 – volume: 453 start-page: 236 year: 2008 ident: 2021120808024976400_cei12911-bib-0015 article-title: TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function publication-title: Nature doi: 10.1038/nature06878 – reference: 23252527 - N Engl J Med. 2012 Dec 20;367(25):2419-26 – reference: 20061410 - J Immunol. 2010 Feb 15;184(4):2211-8 – reference: 19127457 - Autoimmunity. 2009 Jan;42(1):69-73 – reference: 22566933 - Front Immunol. 2012 Mar 21;3:51 – reference: 22254083 - Nutrients. 2011 Oct;3(10):858-76 – reference: 23478804 - Inflamm Bowel Dis. 2013 Apr;19(5):934-41 – reference: 12198691 - Gastroenterology. 2002 Sep;123(3):667-78 – reference: 18667914 - J Pediatr Gastroenterol Nutr. 2008 Aug;47 Suppl 1:S27-32 – reference: 20664075 - Physiol Rev. 2010 Jul;90(3):859-904 – reference: 18849990 - Nat Immunol. 2008 Nov;9(11):1297-306 – reference: 23041265 - Exp Mol Pathol. 2012 Dec;93(3):334-8 – reference: 24100716 - Curr Opin Gastroenterol. 2013 Nov;29(6):614-20 – reference: 22505996 - PLoS One. 2012;7(4):e32588 – reference: 22432018 - PLoS One. 2012;7(3):e33387 – reference: 24997344 - FEBS Lett. 2014 Nov 17;588(22):4167-75 – reference: 17712998 - Adv Exp Med Biol. 2007;601:113-9 – reference: 23835180 - Appl Environ Microbiol. 2013 Sep;79(18):5472-9 – reference: 23844808 - BMC Gastroenterol. 2013 Jul 11;13:113 – reference: 18354202 - J Immunol. 2008 Apr 1;180(7):4785-92 – reference: 18223166 - Blood. 2008 Apr 1;111(7):3599-606 – reference: 16216670 - Hum Immunol. 2005 Aug;66(8):869-73 – reference: 25063364 - Cancer Immunol Immunother. 2014 Sep;63(9):869-76 – reference: 22824744 - J Biol Regul Homeost Agents. 2012 Apr-Jun;26(2):171-9 – reference: 19079330 - Mucosal Immunol. 2009 Jan;2(1):8-23 – reference: 22704250 - J Pediatr. 2012 Nov;161(5):908-14 – reference: 15036231 - Semin Immunol. 2004 Apr;16(2):81-8 – reference: 22110705 - PLoS One. 2011;6(11):e27644 – reference: 21078762 - Lupus. 2011 Feb;20(2):137-43 – reference: 17688698 - Retrovirology. 2007 Aug 09;4:57 – reference: 19568423 - PLoS One. 2009 Jul 01;4(7):e6104 – reference: 11137993 - Nat Genet. 2001 Jan;27(1):20-1 – reference: 18975083 - Dig Dis Sci. 2009 Jul;54(7):1513-9 – reference: 22108452 - Am J Gastroenterol. 2012 Apr;107(4):604-11 – reference: 16901927 - J Mol Endocrinol. 2006 Aug;37(1):97-104 – reference: 27245496 - APMIS. 2016 Aug;124(8):697-710 – reference: 24226770 - Nature. 2013 Dec 19;504(7480):446-50 – reference: 23521883 - Immunity. 2013 Mar 21;38(3):414-23 – reference: 18368049 - Nature. 2008 May 8;453(7192):236-40 – reference: 18485912 - Gastroenterology. 2008 Jul;135(1):194-204.e3 – reference: 16211090 - J Clin Invest. 2005 Nov;115(11):3276-84 – reference: 12848995 - Autoimmun Rev. 2002 Aug;1(4):190-7 – reference: 25879814 - Curr Opin Immunol. 2015 Jun;34:130-6 – reference: 16265775 - Scand J Gastroenterol. 2005 Oct;40(10):1182-91 – reference: 19940509 - Int Arch Allergy Immunol. 2010;152(1):75-80 – reference: 17618833 - Trends Immunol. 2007 Aug;28(8):329-32 – reference: 18626575 - Immunol Res. 2008;42(1-3):19-28 – reference: 24082880 - Microb Ecol Health Dis. 2013 Sep 25;24:null – reference: 19096978 - Scand J Gastroenterol. 2009;44(4):422-30 – reference: 22861803 - Nutr Rev. 2012 Aug;70 Suppl 1:S18-30 – reference: 16920951 - J Immunol. 2006 Sep 1;177(5):3133-42 – reference: 22562536 - Dig Dis Sci. 2012 Sep;57(9):2278-85 – reference: 16390334 - Oral Microbiol Immunol. 2006 Feb;21(1):1-5 – reference: 25234148 - Nat Rev Immunol. 2014 Oct;14(10):667-85 – reference: 18435801 - Clin Exp Immunol. 2008 Jun;152(3):498-507 – reference: 22724664 - Scand J Immunol. 2012 Nov;76(5):457-63 – reference: 26441347 - Sci Rep. 2015 Oct 06;5:14674 |
SSID | ssj0006662 |
Score | 2.415036 |
Snippet | Summary
Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the... Coeliac disease (CD) is an autoimmune enteropathy triggered by gluten and characterized by a strong T helper type 1 (Th1)/Th17 immune response in the small... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 490 |
SubjectTerms | Adolescent Adult Aged autoimmunity CD4 Antigens - metabolism celiac disease Celiac Disease - genetics Celiac Disease - metabolism Cytokines - metabolism Down-Regulation - genetics Epigenesis, Genetic - genetics Female Forkhead Transcription Factors - metabolism Humans Inflammation - genetics Inflammation - metabolism Interferon-gamma - metabolism Interleukin-2 Receptor alpha Subunit - metabolism Intestinal Mucosa - metabolism Intestine, Small - metabolism Leukocytes, Mononuclear - metabolism Male microbiome Microbiota - physiology Middle Aged Original Protein Isoforms - metabolism T-Lymphocytes, Regulatory - metabolism Th17 Cells - metabolism Treg Young Adult |
Title | Proinflammatory cytokine interferon‐γ and microbiome‐derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcei.12911 https://www.ncbi.nlm.nih.gov/pubmed/27936497 https://www.proquest.com/docview/1852658606 https://www.proquest.com/docview/1868313171 https://pubmed.ncbi.nlm.nih.gov/PMC5290237 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batVAFB1KoeKL1no7VssoPvQlh1wmkwSfpLS0iiJioQ9CmFtoqCcpJzna-uQn-A3-gv_hR_glrplc7LEq4ltIdpJJsvbMmuy91xDyGBQ1kzrRnpIy9FiRai_zVQAiB-_SUZSEwiXIvuT7h-zZUXy0Qp4MtTCdPsT4w816huuvrYML2VxwcmXKKQYrV9drc7UsIXr9UzoKtDwcVlHDkMh6VSGbxTOeuTwWXSKYl_MkL_JXNwDtXSdvh6Z3eScn00Urp-rjL6qO__ls6-RaT0zp0w5JN8iKqTbIWrdU5fkGufKiD8LfJF9ezWvgElCauRA9VedtfYJD1GpPzAszr6vvnz5_-0pFpems7KSeZgb7NPD-3mCnaQE-W_7cUFzWEl5qTq0wqK2ppM2HEmCifQ4ZBa-2UXpNZX1GnbBEWdGIlk1tGXeD21JV44mFon286RY53Nt9s7Pv9Us9eArzw8ALVIh5VyFkEhcgVL6WUsZMCKZVnKjQT6UyRZZyk6L_YFz6UkSYCmk_NcpEURDdJqtVXZm7hGrlZyIwBdcFYyLRsI84T3lcSMMCFU_I9vDRc9XroNvlON7lw3wIbz93b39CHo2mp534x--MHg7IyeGaNt4iKlMvmtzWpYPgYYr4NxueovlBguvc6dA23ipE38lZlkxIsoTD0cBKgy8fqcpjJxEehxnIGM7cdjD7c-vznd0Dt3Hv3003ydXQkhuXiXefrLbzhXkAatbKLfjgwfMt54k_AHQRPac |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC1FQSyXAIGQYW0Qh1w88tLeJC4oJJpAEiGUSLkgqzcLK4wdjT1AOPEJfAO_wH_wEXwJVe2FDAGEuFl22W7bVd2vXFWvAB4jRE2ljrWjpPQdnifaSV3lIZBD69JBEPvCJsjuR5ND_vwoPFqCJ30tTMsPMfxwI8uw8zUZOP2QPmPlyhRjXK2osPcCdfSm_gXPXv0kj0Jg7vd91HBR5B2vEOXxDKcurkbnIOb5TMmzCNYuQdtX4XU_-Dbz5Hg8b-RYffyF1_F_n-4arHTYlD1tlek6LJlyFS623SpPV-HSXheHvwFfXs4qVE3UpqmN0jN12lTHeIgR_cQsN7Oq_P7p87evTJSaTYuW7WlqcJ9GlX9ncKdpUP-oArpmeFnCvMycEDcolVWy-n2B-sS6NDKG0JoC9ZrJ6gOz3BJFyQJW1BWB7hpvy1SFjywU60JON-Fwe-tgc-J03R4chS6i53jKR9crFzIOc8RUrpZShlwIrlUYK99NpDJ5mkQmwSmER9KVIkBvSLuJUSYIvGANlsuqNOvAtHJT4Zk80jnnItYoH0RREoW5NNxT4Qg2-q-eqY4KnTpyvM16lwjffmbf_ggeDaInLf_H74Qe9qqToXVSyEWUpprXGZWmI8ZDL_FvMlGCw_divM6tVt2GW_k4fUY8jUcQLyjiIEDs4ItHyuKNZQkP_RTxGJ65YfXsz6PPNrd27Mbtfxd9AJcnB3u72e7O_os7cMUnrGMT8-7CcjObm3uI1Bp53xrkD4dBQMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbtRAEC1FQURsIAQIw7dBLLLxyJ922xYrFDJK-EQRIlIWSFZ_hRXGHo09QFhxBM7AFXIPDsFJqG5_yBBAiJ1ll-22_ar7tavqNcAjpKiZUInypBChR02qvMyXARI59C4VRUnIXYLsPts9pM-O4qMVeNzXwrT6EMMPN-sZrr-2Dj5T5oyTS12McbCydb0XKENnsYzo1U_tKOTlYb-MGo6JtJMVsmk8w6nLg9E5hnk-UfIsgXUj0OQKvOnb3iaeHI8XjRjLT7_IOv7nw63D5Y6ZkictlK7Cii434GK7VuXJBqy97KLw1-DrwbxCYCKWpi5GT-RJUx3jIWLFJ-ZGz6vy--cv304JLxWZFq3W01TjPoWAf69xp24Qfbb-uSZ4Wct4iZ5ZZVBbVEnqDwWiiXRJZASJtQ3TKyKqj8QpSxQliUhRV5Zy13hbIit8Yi5JF3C6DoeTndfbu1631oMncYIYeIEMceJluEhig4zKV0KImHJOlYwTGfqpkNpkKdMpdiCUCV_wCOdCyk-11FEURDdgtaxKfROIkn7GA22YMpTyRKF9xFjKYiM0DWQ8gq3-o-eyE0K363G8y_sJEb793L39ETwcTGet-sfvjB70yMnRN23AhZe6WtS5LUxHhodzxL_ZsBSbHyR4nc0WbcOtQuw8Gc2SESRLOBwMrDb48pGyeOs0wuMwQzaGZ245mP259fn2zp7buPXvpvdh7eDpJH-xt__8NlwKLdFxWXl3YLWZL_RdpGmNuOfc8QfMgz-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proinflammatory+cytokine+interferon%E2%80%90%CE%B3+and+microbiome%E2%80%90derived+metabolites+dictate+epigenetic+switch+between+forkhead+box+protein+3+isoforms+in+coeliac+disease&rft.jtitle=Clinical+and+experimental+immunology&rft.au=Serena%2C+G.&rft.au=Yan%2C+S.&rft.au=Camhi%2C+S.&rft.au=Patel%2C+S.&rft.date=2017-03-01&rft.issn=0009-9104&rft.eissn=1365-2249&rft.volume=187&rft.issue=3&rft.spage=490&rft.epage=506&rft_id=info:doi/10.1111%2Fcei.12911&rft.externalDBID=10.1111%252Fcei.12911&rft.externalDocID=CEI12911 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9104&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9104&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9104&client=summon |