Genome‐wide DNA methylation changes with age in disease‐free human skeletal muscle

Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging....

Full description

Saved in:
Bibliographic Details
Published inAging cell Vol. 13; no. 2; pp. 360 - 366
Main Authors Zykovich, Artem, Hubbard, Alan, Flynn, James M., Tarnopolsky, Mark, Fraga, Mario F., Kerksick, Chad, Ogborn, Dan, MacNeil, Lauren, Mooney, Sean D., Melov, Simon
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.04.2014
BlackWell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
AbstractList Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.
Author Tarnopolsky, Mark
Mooney, Sean D.
Fraga, Mario F.
Ogborn, Dan
Flynn, James M.
Kerksick, Chad
Melov, Simon
Hubbard, Alan
MacNeil, Lauren
Zykovich, Artem
Author_xml – sequence: 1
  givenname: Artem
  surname: Zykovich
  fullname: Zykovich, Artem
  organization: Buck Institute for Research on Aging
– sequence: 2
  givenname: Alan
  surname: Hubbard
  fullname: Hubbard, Alan
  organization: University of California
– sequence: 3
  givenname: James M.
  surname: Flynn
  fullname: Flynn, James M.
  organization: Buck Institute for Research on Aging
– sequence: 4
  givenname: Mark
  surname: Tarnopolsky
  fullname: Tarnopolsky, Mark
  organization: McMaster University Medical Center
– sequence: 5
  givenname: Mario F.
  surname: Fraga
  fullname: Fraga, Mario F.
  organization: Universidad de Oviedo
– sequence: 6
  givenname: Chad
  surname: Kerksick
  fullname: Kerksick, Chad
  organization: University of New Mexico
– sequence: 7
  givenname: Dan
  surname: Ogborn
  fullname: Ogborn, Dan
  organization: McMaster University Medical Center
– sequence: 8
  givenname: Lauren
  surname: MacNeil
  fullname: MacNeil, Lauren
  organization: McMaster University Medical Center
– sequence: 9
  givenname: Sean D.
  surname: Mooney
  fullname: Mooney, Sean D.
  organization: Buck Institute for Research on Aging
– sequence: 10
  givenname: Simon
  surname: Melov
  fullname: Melov, Simon
  organization: Buck Institute for Research on Aging
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24304487$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH9gwwMgS2wqpCl2bI-TDdJoKAVpBBtga904NxMXxy5xwmh2PALPyJPg6ZQRVAhvbMnfOffnnJKjEAMS8pSzC57PS7DoL3jBS_aAnHCp5azSxfzo8OblMTlN6ZoxrismHpHjQgomZalPyOcrDLHHn99_bFyD9PX7Be1x7LYeRhcDtR2ENSa6cWNHYY3UBdq4hJB2knZApN3UQ6DpC3ocwdN-StbjY_KwBZ_wyd19Rj69ufy4fDtbfbh6t1ysZjaXZzNprVAg51IUipfC2lqIokZblNgKDSB1rUBxKFklW7StZUVTcgZNifOibWpxRl7tfW-musfGYhgH8OZmcD0MWxPBmb9_guvMOn4zolKyUkU2OL8zGOLXCdNoepfyPj0EjFMyXDHNK64Zz-jze-h1nIaQx9tRSmqlpc7Usz87OrTye-UZeLEH7BBTGrA9IJyZXZ5ml6e5zTPD7B5s3XgbTZ7G-X9L-F6ycR63_zE3i-Xlaq_5BcbXtKw
CitedBy_id crossref_primary_10_1093_hmg_ddu564
crossref_primary_10_1111_acel_12470
crossref_primary_10_1007_s11010_022_04408_1
crossref_primary_10_1111_acel_13042
crossref_primary_10_1002_em_21989
crossref_primary_10_1111_acel_12744
crossref_primary_10_1186_s41935_018_0042_1
crossref_primary_10_1371_journal_pone_0128517
crossref_primary_10_1152_japplphysiol_01110_2017
crossref_primary_10_1186_s12864_020_6751_5
crossref_primary_10_1186_s11658_024_00618_1
crossref_primary_10_3390_jox13030024
crossref_primary_10_1002_elps_201600261
crossref_primary_10_1210_jc_2016_1219
crossref_primary_10_1249_JES_0000000000000301
crossref_primary_10_3389_fcell_2024_1378680
crossref_primary_10_1152_ajpregu_00110_2019
crossref_primary_10_1101_gr_169011_113
crossref_primary_10_18632_aging_101298
crossref_primary_10_1186_s12864_019_5880_1
crossref_primary_10_1016_j_archger_2024_105699
crossref_primary_10_1038_ncomms6366
crossref_primary_10_1186_s13148_015_0064_6
crossref_primary_10_3389_fnins_2021_644943
crossref_primary_10_3346_jkms_2024_39_e200
crossref_primary_10_1590_S1516_8913201400029
crossref_primary_10_3390_ijms19061578
crossref_primary_10_1016_j_atherosclerosis_2015_05_001
crossref_primary_10_1111_acel_12996
crossref_primary_10_1186_s13148_018_0538_4
crossref_primary_10_3389_fphys_2021_619447
crossref_primary_10_1186_s13287_022_02706_5
crossref_primary_10_1002_jcsm_12876
crossref_primary_10_1186_s13395_020_00259_w
crossref_primary_10_1111_acel_12293
crossref_primary_10_1016_j_stem_2015_05_009
crossref_primary_10_3390_ijms241914964
crossref_primary_10_3389_fphys_2023_1150821
crossref_primary_10_1007_s00421_015_3246_1
crossref_primary_10_1007_s00335_016_9645_8
crossref_primary_10_1007_s12603_022_1773_0
crossref_primary_10_1016_j_tifs_2023_05_019
crossref_primary_10_1038_s41392_021_00646_9
crossref_primary_10_1002_jcsm_12478
crossref_primary_10_1016_j_yexcr_2022_113299
crossref_primary_10_1186_s13148_017_0399_2
crossref_primary_10_3390_ijms25179684
crossref_primary_10_1016_j_brainres_2016_03_013
crossref_primary_10_1186_s13072_019_0306_5
crossref_primary_10_3390_ijms24032736
crossref_primary_10_1007_s10522_017_9695_7
crossref_primary_10_1096_fj_202302103RRR
crossref_primary_10_1016_j_arr_2024_102267
crossref_primary_10_1042_CS20230319
crossref_primary_10_1073_pnas_1412759111
crossref_primary_10_1002_jcsm_12585
crossref_primary_10_1002_jcsm_12741
crossref_primary_10_1007_s10522_015_9617_5
crossref_primary_10_1016_j_arr_2017_05_002
crossref_primary_10_1186_s12979_023_00384_2
crossref_primary_10_1016_j_mad_2024_112020
crossref_primary_10_1007_s10522_019_09818_1
crossref_primary_10_1080_17476348_2016_1206819
crossref_primary_10_1007_s11357_017_9976_8
crossref_primary_10_3390_gastroent14020016
crossref_primary_10_1016_j_cbpb_2020_110540
crossref_primary_10_1152_japplphysiol_00352_2019
crossref_primary_10_1002_jcsm_12970
crossref_primary_10_1016_j_fsigen_2018_09_003
crossref_primary_10_3390_ani12111399
crossref_primary_10_1016_j_fsigen_2021_102637
crossref_primary_10_3389_fphys_2019_00996
crossref_primary_10_12688_f1000research_9846_1
crossref_primary_10_3389_fendo_2015_00043
crossref_primary_10_1002_rco2_52
crossref_primary_10_1016_j_fsigen_2017_02_009
crossref_primary_10_3389_fgene_2017_00106
crossref_primary_10_1016_j_bbrc_2016_05_057
crossref_primary_10_1186_s12979_022_00285_w
crossref_primary_10_18632_aging_205751
crossref_primary_10_1097_PRS_0000000000009670
crossref_primary_10_1002_jcsm_12556
crossref_primary_10_1038_s41574_023_00943_z
crossref_primary_10_1038_srep06546
crossref_primary_10_1016_j_bbagrm_2015_01_002
crossref_primary_10_1186_s12576_024_00935_2
crossref_primary_10_1007_s40520_024_02877_6
crossref_primary_10_1093_ndt_gfv122
crossref_primary_10_1038_ncomms8557
crossref_primary_10_1186_s12863_023_01152_3
crossref_primary_10_1038_s41598_019_46929_8
crossref_primary_10_1007_s13364_020_00502_1
crossref_primary_10_1016_j_molmet_2018_01_022
crossref_primary_10_3390_genes13071151
crossref_primary_10_3389_fcell_2016_00091
crossref_primary_10_3390_cells12081163
crossref_primary_10_1016_j_mad_2018_01_002
crossref_primary_10_1096_fj_202201510RR
crossref_primary_10_1111_acel_12486
crossref_primary_10_1152_ajpcell_00099_2023
crossref_primary_10_1186_s12864_015_1381_z
crossref_primary_10_1038_s41598_018_37895_8
crossref_primary_10_1152_physiol_00039_2014
crossref_primary_10_1007_s11357_018_0005_3
crossref_primary_10_1016_j_isci_2025_112144
crossref_primary_10_3390_ijms25031833
crossref_primary_10_1038_s41598_020_72730_z
crossref_primary_10_3892_etm_2017_4924
crossref_primary_10_1016_j_exger_2015_08_015
crossref_primary_10_1016_j_ceb_2018_05_016
crossref_primary_10_1096_fj_202100873RR
crossref_primary_10_1002_jcsm_13472
crossref_primary_10_1038_ncomms11089
crossref_primary_10_3390_ijms21176334
Cites_doi 10.1002/biof.5
10.1016/j.cmet.2012.01.001
10.1038/onc.2011.354
10.1212/01.WNL.0000118204.90814.5A
10.2217/epi.12.9
10.1038/srep01630
10.1126/science.1136352
10.1186/scrt83
10.1073/pnas.1002720107
10.1016/j.molcel.2012.10.016
10.1089/dna.2011.1565
10.1016/j.exger.2010.08.029
10.1038/ng1990
10.1096/fj.11-191262
10.1152/jappl.1993.74.2.868
10.1101/gr.118703.110
10.1096/fj.11-186049
10.1186/1471-2105-14-53
10.1371/journal.pgen.1002629
10.1093/hmg/ddq561
10.1101/gr.103606.109
10.1073/pnas.0801330105
10.1038/nature09165
10.1001/jama.299.24.2877
10.1016/0092-8674(95)90344-5
10.1371/journal.pone.0031621
10.1371/journal.pone.0000465
10.1371/journal.pgen.1000971
10.1016/j.molcel.2012.01.017
10.1016/j.neurobiolaging.2005.06.009
10.1016/j.eplepsyres.2011.09.020
10.1093/aje/kwh058
10.1093/gerona/62.10.1088
10.1016/j.arr.2009.03.004
10.1101/gr.119867.110
10.1101/gr.103101.109
10.1038/ng.298
10.1016/j.exger.2013.02.012
10.1016/S0021-9258(18)61057-9
10.1073/pnas.0308035101
10.1371/journal.pone.0028090
10.1002/cm.20042
10.1073/pnas.1120658109
10.1093/bioinformatics/btt316
10.1101/gr.229102
10.1371/journal.pone.0014821
10.1152/physiolgenomics.00148.2010
10.1016/S0248-4900(97)89313-6
ContentType Journal Article
Copyright 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Copyright © 2014 The Anatomical Society and John Wiley & Sons Ltd
2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013
Copyright_xml – notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
– notice: Copyright © 2014 The Anatomical Society and John Wiley & Sons Ltd
– notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/acel.12180
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-9726
EndPage 366
ExternalDocumentID PMC3954952
3242059031
24304487
10_1111_acel_12180
ACEL12180
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CIHR – Institute of Aging
– fundername: Buck Trust
– fundername: Glenn Foundation for Medical Research
– fundername: NIH
  funderid: R01 LM009722; U54‐HG004028; UL1DE019608
– fundername: NHGRI NIH HHS
  grantid: U54 HG004028
– fundername: NHGRI NIH HHS
  grantid: U54-HG004028
– fundername: NLM NIH HHS
  grantid: R01 LM009722
– fundername: NIDCR NIH HHS
  grantid: UL1DE019608
– fundername: NIDCR NIH HHS
  grantid: UL1 DE019608
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFEBI
AFKRA
AFZJQ
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
IPNFZ
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WRC
WXI
XG1
YFH
YUY
~IA
~WT
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QP
7TK
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4480-4cc35a464325183ccb332bec28ef37aa47b5a51a8094fecfc02d810ad8e62fdb3
IEDL.DBID DR2
ISSN 1474-9718
1474-9726
IngestDate Thu Aug 21 18:13:25 EDT 2025
Fri Jul 11 13:48:19 EDT 2025
Wed Aug 13 11:21:01 EDT 2025
Mon Jul 21 06:05:44 EDT 2025
Tue Jul 01 01:49:11 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Wed Jan 22 17:02:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords postmitotic
DNA methylation
genomics
epigenome
skeletal muscle
human aging
Language English
License Attribution
http://creativecommons.org/licenses/by/3.0
2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4480-4cc35a464325183ccb332bec28ef37aa47b5a51a8094fecfc02d810ad8e62fdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12180
PMID 24304487
PQID 1505475747
PQPubID 1036381
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3954952
proquest_miscellaneous_1507191701
proquest_journals_1505475747
pubmed_primary_24304487
crossref_primary_10_1111_acel_12180
crossref_citationtrail_10_1111_acel_12180
wiley_primary_10_1111_acel_12180_ACEL12180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2014
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: April 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Oxford, UK
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2014
Publisher John Wiley & Sons, Inc
BlackWell Publishing Ltd
Publisher_xml – name: John Wiley & Sons, Inc
– name: BlackWell Publishing Ltd
References 2004; 101
2007; 39
1987; 262
2013; 29
2009; 41
2013; 48
2013; 3
2004; 62
2011; 2
2010; 107
2012
2002; 12
2010; 466
1997; 89
2008; 105
2005; 60
2012; 15
2011; 6
2012; 98
2012; 31
2012; 109
2009; 35
2010; 20
2004; 159
2013; 14
1995; 80
2007; 315
2006; 27
1993; 74
2011; 20
2009; 8
2011; 21
2011; 43
2011; 46
2012; 49
2007; 2
2007; 62
2011; 25
2008; 299
2012; 7
2012; 4
2012; 45
2012; 22
2010; 6
1998; 58
2012; 8
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
Ahuja N (e_1_2_9_2_1) 1998; 58
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
Irier HA (e_1_2_9_27_1) 2012
22355382 - PLoS One. 2012;7(2):e31621
23409969 - BMC Bioinformatics. 2013;14:53
23732275 - Bioinformatics. 2013 Aug 1;29(15):1922-4
17322062 - Science. 2007 Feb 23;315(5815):1141-3
20854887 - Exp Gerontol. 2011 Feb-Mar;46(2-3):193-8
20613842 - Nature. 2010 Jul 8;466(7303):253-7
23568264 - Sci Rep. 2013;3:1630
12045153 - Genome Res. 2002 Jun;12(6):996-1006
22164231 - PLoS One. 2011;6(12):e28090
9850084 - Cancer Res. 1998 Dec 1;58(23):5489-94
9561721 - Biol Cell. 1997 Oct;89(7):413-34
20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
21860412 - Oncogene. 2012 Mar 29;31(13):1609-22
21731603 - PLoS One. 2011;6(6):e14821
22405075 - Cell Metab. 2012 Mar 7;15(3):405-11
18577732 - JAMA. 2008 Jun 25;299(24):2877-83
21216877 - Hum Mol Genet. 2011 Mar 15;20(6):1164-72
19716530 - Ageing Res Rev. 2009 Oct;8(4):268-76
20219944 - Genome Res. 2010 Apr;20(4):440-6
22387027 - Mol Cell. 2012 Mar 30;45(6):814-25
15532031 - Cell Motil Cytoskeleton. 2005 Jan;60(1):1-13
20523906 - PLoS Genet. 2010 May;6(5):e1000971
22313030 - DNA Cell Biol. 2012 Oct;31 Suppl 1:S42-8
21613409 - Genome Res. 2012 Feb;22(2):407-19
19151715 - Nat Genet. 2009 Feb;41(2):178-86
21885651 - FASEB J. 2011 Dec;25(12):4312-25
8458808 - J Appl Physiol (1985). 1993 Feb;74(2):868-74
22689993 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10522-7
17921420 - J Gerontol A Biol Sci Med Sci. 2007 Oct;62(10):1088-95
18408153 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5921-6
22532803 - PLoS Genet. 2012;8(4):e1002629
22047982 - Epilepsy Res. 2012 Feb;98(2-3):273-6
15079007 - Neurology. 2004 Apr 13;62(7):1097-104
23177740 - Mol Cell. 2013 Jan 24;49(2):359-67
7889563 - Cell. 1995 Mar 10;80(5):675-9
22449189 - Epigenomics. 2012 Apr;4(2):179-94
22041459 - Stem Cell Res Ther. 2011;2(5):42
15247427 - Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10590-5
17334365 - Nat Genet. 2007 Apr;39(4):457-66
19319843 - Biofactors. 2009 Jan-Feb;35(1):28-35
21885656 - FASEB J. 2011 Dec;25(12):4378-93
3611071 - J Biol Chem. 1987 Jul 25;262(21):9948-51
16085338 - Neurobiol Aging. 2006 Aug;27(8):1145-54
14769646 - Am J Epidemiol. 2004 Feb 15;159(4):413-21
21628449 - Genome Res. 2011 Jul;21(7):1074-86
20876843 - Physiol Genomics. 2011 May 1;43(10):595-603
17520024 - PLoS One. 2007;2(5):e465
20219945 - Genome Res. 2010 Apr;20(4):434-9
23425621 - Exp Gerontol. 2013 May;48(5):492-8
References_xml – volume: 109
  start-page: 10522
  year: 2012
  end-page: 10527
  article-title: Distinct DNA methylomes of newborns and centenarians
  publication-title: Proc. Natl Acad. Sci. U S A
– volume: 20
  start-page: 440
  year: 2010
  end-page: 446
  article-title: Age‐dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer
  publication-title: Genome Res.
– volume: 89
  start-page: 413
  year: 1997
  end-page: 434
  article-title: Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review
  publication-title: Biol. Cell
– volume: 46
  start-page: 193
  year: 2011
  end-page: 198
  article-title: Age‐associated alterations of the neuromuscular junction
  publication-title: Exp. Gerontol.
– volume: 8
  start-page: 268
  year: 2009
  end-page: 276
  article-title: The role of epigenetics in aging and age‐related diseases
  publication-title: Ageing Res. Rev.
– volume: 74
  start-page: 868
  year: 1993
  end-page: 874
  article-title: Effects of motor unit losses on strength in older men and women
  publication-title: J. Appl. Physiol.
– volume: 4
  start-page: 179
  year: 2012
  end-page: 194
  article-title: Promoter CpG island methylation markers in colorectal cancer: the road ahead
  publication-title: Epigenomics
– volume: 6
  start-page: e28090
  year: 2011
  article-title: Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle
  publication-title: PLoS One
– volume: 27
  start-page: 1145
  year: 2006
  end-page: 1154
  article-title: Axonal degeneration affects muscle density in older men and women
  publication-title: Neurobiol. Aging
– volume: 25
  start-page: 4378
  year: 2011
  end-page: 4393
  article-title: Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia
  publication-title: FASEB J
– volume: 101
  start-page: 10590
  year: 2004
  end-page: 10595
  article-title: NFAT is a nerve activity sensor in skeletal muscle and controls activity‐dependent myosin switching
  publication-title: Proc. Natl Acad. Sci U S A
– volume: 105
  start-page: 5921
  year: 2008
  end-page: 5926
  article-title: Activity‐dependent repression of muscle genes by NFAT
  publication-title: Proc. Natl Acad. Sci U S A
– volume: 14
  start-page: 53
  year: 2013
  article-title: STOP using just GO: a multi‐ontology hypothesis generation tool for high throughput experimentation
  publication-title: BMC Bioinformatics
– volume: 159
  start-page: 413
  year: 2004
  end-page: 421
  article-title: Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women
  publication-title: Am. J. Epidemiol.
– volume: 62
  start-page: 1088
  year: 2007
  end-page: 1095
  article-title: Gene expression, fiber type, and strength are similar between left and right legs in older adults
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 35
  start-page: 28
  year: 2009
  end-page: 35
  article-title: Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction
  publication-title: BioFactors
– volume: 262
  start-page: 9948
  year: 1987
  end-page: 9951
  article-title: Genomic 5‐methyldeoxycytidine decreases with age
  publication-title: J. Biol. Chem.
– volume: 466
  start-page: 253
  year: 2010
  end-page: 257
  article-title: Conserved role of intragenic DNA methylation in regulating alternative promoters
  publication-title: Nature
– volume: 58
  start-page: 5489
  year: 1998
  end-page: 5494
  article-title: Aging and DNA methylation in colorectal mucosa and cancer
  publication-title: Cancer Res.
– volume: 315
  start-page: 1141
  year: 2007
  end-page: 1143
  article-title: Gene body‐specific methylation on the active X chromosome
  publication-title: Science
– volume: 80
  start-page: 675
  year: 1995
  end-page: 679
  article-title: Three muscular dystrophies: review loss of cytoskeleton‐extracellular matrix linkage
  publication-title: Cell
– volume: 107
  start-page: 8689
  year: 2010
  end-page: 8694
  article-title: Conservation and divergence of methylation patterning in plants and animals
  publication-title: Proc. Natl Acad. Sci U S A
– volume: 29
  start-page: 1922
  year: 2013
  end-page: 1924
  article-title: Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP‐Seq significance tool
  publication-title: Bioinformatics
– volume: 2
  start-page: e465
  year: 2007
  article-title: Resistance exercise reverses aging in human skeletal muscle
  publication-title: PLoS One
– volume: 31
  start-page: 1609
  year: 2012
  end-page: 1622
  article-title: DNA methylation‐associated silencing of tumor‐suppressor microRNAs in cancer
  publication-title: Oncogene
– volume: 6
  start-page: e14821
  year: 2011
  article-title: Epigenetic predictor of age
  publication-title: PLoS One
– volume: 12
  start-page: 996
  year: 2002
  end-page: 1006
  article-title: The human genome browser at UCSC
  publication-title: Genome Res.
– volume: 43
  start-page: 595
  year: 2011
  end-page: 603
  article-title: Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis
  publication-title: Physiol. Genomics
– volume: 49
  start-page: 359
  year: 2012
  end-page: 367
  article-title: Genome‐wide methylation profiles reveal quantitative views of human aging rates
  publication-title: Mol. Cell
– volume: 62
  start-page: 1097
  year: 2004
  end-page: 1104
  article-title: Large‐scale disruption of microtubule pathways in morphologically normal human spastin muscle
  publication-title: Neurology
– start-page: S42
  issue: Suppl. 1
  year: 2012
  end-page: S48
  article-title: Dynamics of DNA methylation in aging and Alzheimer's disease
  publication-title: DNA Cell Biol.
– volume: 22
  start-page: 407
  year: 2012
  end-page: 419
  article-title: A DNA methylation fingerprint of 1628 human samples
  publication-title: Genome Res.
– volume: 48
  start-page: 492
  year: 2013
  end-page: 498
  article-title: The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size
  publication-title: Exp. Gerontol.
– volume: 60
  start-page: 1
  year: 2005
  end-page: 13
  article-title: Reorganization of microtubule nucleation during muscle differentiation
  publication-title: Cell Motil. Cytoskeleton
– volume: 20
  start-page: 1164
  year: 2011
  end-page: 1172
  article-title: Distinct DNA methylation changes highly correlated with chronological age in the human brain
  publication-title: Hum. Mol. Genet.
– volume: 20
  start-page: 434
  year: 2010
  end-page: 439
  article-title: Human aging‐associated DNA hypermethylation occurs preferentially at bivalent chromatin domains
  publication-title: Genome Res.
– volume: 2
  start-page: 42
  year: 2011
  article-title: DNA methylation in stem cell renewal and multipotency
  publication-title: Stem Cell Res. Ther.
– volume: 6
  start-page: e1000971
  year: 2010
  article-title: Aging and chronic sun exposure cause distinct epigenetic changes in human skin
  publication-title: PLoS Genet.
– volume: 3
  start-page: 1630
  year: 2013
  article-title: An integrative network algorithm identifies age‐associated differential methylation interactome hotspots targeting stem‐cell differentiation pathways
  publication-title: Sci. Rep.
– volume: 98
  start-page: 273
  year: 2012
  end-page: 276
  article-title: Four novel and two recurrent NHLRC1 (EPM2B) and EPM2A gene mutations leading to Lafora disease in six Turkish families
  publication-title: Epilepsy Res.
– volume: 25
  start-page: 4312
  year: 2011
  end-page: 4325
  article-title: Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise
  publication-title: FASEB J
– volume: 41
  start-page: 178
  year: 2009
  end-page: 186
  article-title: The human colon cancer methylome shows similar hypo‐ and hypermethylation at conserved tissue‐specific CpG island shores
  publication-title: Nat. Genet.
– volume: 39
  start-page: 457
  year: 2007
  end-page: 466
  article-title: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome
  publication-title: Nat. Genet.
– volume: 15
  start-page: 405
  year: 2012
  end-page: 411
  article-title: Acute exercise remodels promoter methylation in human skeletal muscle
  publication-title: Cell Metab.
– volume: 8
  start-page: e1002629
  year: 2012
  article-title: Epigenome‐wide scans identify differentially methylated regions for age and age‐related phenotypes in a healthy ageing population
  publication-title: PLoS Genet.
– volume: 7
  start-page: e31621
  year: 2012
  article-title: High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region
  publication-title: PLoS One
– volume: 21
  start-page: 1074
  year: 2011
  end-page: 1086
  article-title: Cell type‐specific DNA methylation at intragenic CpG islands in the immune system
  publication-title: Genome Res.
– volume: 299
  start-page: 2877
  year: 2008
  end-page: 2883
  article-title: Intra‐individual change over time in DNA methylation with familial clustering
  publication-title: JAMA
– volume: 45
  start-page: 814
  year: 2012
  end-page: 825
  article-title: R‐loop formation is a distinctive characteristic of unmethylated human CpG island promoters
  publication-title: Mol. Cell
– ident: e_1_2_9_34_1
  doi: 10.1002/biof.5
– ident: e_1_2_9_4_1
  doi: 10.1016/j.cmet.2012.01.001
– ident: e_1_2_9_33_1
  doi: 10.1038/onc.2011.354
– ident: e_1_2_9_38_1
  doi: 10.1212/01.WNL.0000118204.90814.5A
– ident: e_1_2_9_17_1
  doi: 10.2217/epi.12.9
– ident: e_1_2_9_48_1
  doi: 10.1038/srep01630
– ident: e_1_2_9_24_1
  doi: 10.1126/science.1136352
– ident: e_1_2_9_6_1
  doi: 10.1186/scrt83
– ident: e_1_2_9_19_1
  doi: 10.1073/pnas.1002720107
– ident: e_1_2_9_23_1
  doi: 10.1016/j.molcel.2012.10.016
– start-page: S42
  issue: 1
  year: 2012
  ident: e_1_2_9_27_1
  article-title: Dynamics of DNA methylation in aging and Alzheimer's disease
  publication-title: DNA Cell Biol.
  doi: 10.1089/dna.2011.1565
– ident: e_1_2_9_29_1
  doi: 10.1016/j.exger.2010.08.029
– ident: e_1_2_9_47_1
  doi: 10.1038/ng1990
– volume: 58
  start-page: 5489
  year: 1998
  ident: e_1_2_9_2_1
  article-title: Aging and DNA methylation in colorectal mucosa and cancer
  publication-title: Cancer Res.
– ident: e_1_2_9_11_1
  doi: 10.1096/fj.11-191262
– ident: e_1_2_9_16_1
  doi: 10.1152/jappl.1993.74.2.868
– ident: e_1_2_9_15_1
  doi: 10.1101/gr.118703.110
– ident: e_1_2_9_42_1
  doi: 10.1096/fj.11-186049
– ident: e_1_2_9_50_1
  doi: 10.1186/1471-2105-14-53
– ident: e_1_2_9_5_1
  doi: 10.1371/journal.pgen.1002629
– ident: e_1_2_9_25_1
  doi: 10.1093/hmg/ddq561
– ident: e_1_2_9_46_1
  doi: 10.1101/gr.103606.109
– ident: e_1_2_9_41_1
  doi: 10.1073/pnas.0801330105
– ident: e_1_2_9_35_1
  doi: 10.1038/nature09165
– ident: e_1_2_9_8_1
  doi: 10.1001/jama.299.24.2877
– ident: e_1_2_9_13_1
  doi: 10.1016/0092-8674(95)90344-5
– ident: e_1_2_9_44_1
  doi: 10.1371/journal.pone.0031621
– ident: e_1_2_9_37_1
  doi: 10.1371/journal.pone.0000465
– ident: e_1_2_9_22_1
  doi: 10.1371/journal.pgen.1000971
– ident: e_1_2_9_21_1
  doi: 10.1016/j.molcel.2012.01.017
– ident: e_1_2_9_32_1
  doi: 10.1016/j.neurobiolaging.2005.06.009
– ident: e_1_2_9_43_1
  doi: 10.1016/j.eplepsyres.2011.09.020
– ident: e_1_2_9_30_1
  doi: 10.1093/aje/kwh058
– ident: e_1_2_9_45_1
  doi: 10.1093/gerona/62.10.1088
– ident: e_1_2_9_12_1
  doi: 10.1016/j.arr.2009.03.004
– ident: e_1_2_9_20_1
  doi: 10.1101/gr.119867.110
– ident: e_1_2_9_40_1
  doi: 10.1101/gr.103101.109
– ident: e_1_2_9_28_1
  doi: 10.1038/ng.298
– ident: e_1_2_9_39_1
  doi: 10.1016/j.exger.2013.02.012
– ident: e_1_2_9_49_1
  doi: 10.1016/S0021-9258(18)61057-9
– ident: e_1_2_9_36_1
  doi: 10.1073/pnas.0308035101
– ident: e_1_2_9_14_1
  doi: 10.1371/journal.pone.0028090
– ident: e_1_2_9_10_1
  doi: 10.1002/cm.20042
– ident: e_1_2_9_26_1
  doi: 10.1073/pnas.1120658109
– ident: e_1_2_9_3_1
  doi: 10.1093/bioinformatics/btt316
– ident: e_1_2_9_31_1
  doi: 10.1101/gr.229102
– ident: e_1_2_9_9_1
  doi: 10.1371/journal.pone.0014821
– ident: e_1_2_9_18_1
  doi: 10.1152/physiolgenomics.00148.2010
– ident: e_1_2_9_7_1
  doi: 10.1016/S0248-4900(97)89313-6
– reference: 20523906 - PLoS Genet. 2010 May;6(5):e1000971
– reference: 19151715 - Nat Genet. 2009 Feb;41(2):178-86
– reference: 22164231 - PLoS One. 2011;6(12):e28090
– reference: 22355382 - PLoS One. 2012;7(2):e31621
– reference: 9561721 - Biol Cell. 1997 Oct;89(7):413-34
– reference: 23732275 - Bioinformatics. 2013 Aug 1;29(15):1922-4
– reference: 21885651 - FASEB J. 2011 Dec;25(12):4312-25
– reference: 23177740 - Mol Cell. 2013 Jan 24;49(2):359-67
– reference: 21613409 - Genome Res. 2012 Feb;22(2):407-19
– reference: 19319843 - Biofactors. 2009 Jan-Feb;35(1):28-35
– reference: 21216877 - Hum Mol Genet. 2011 Mar 15;20(6):1164-72
– reference: 19716530 - Ageing Res Rev. 2009 Oct;8(4):268-76
– reference: 17322062 - Science. 2007 Feb 23;315(5815):1141-3
– reference: 18408153 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5921-6
– reference: 8458808 - J Appl Physiol (1985). 1993 Feb;74(2):868-74
– reference: 18577732 - JAMA. 2008 Jun 25;299(24):2877-83
– reference: 3611071 - J Biol Chem. 1987 Jul 25;262(21):9948-51
– reference: 16085338 - Neurobiol Aging. 2006 Aug;27(8):1145-54
– reference: 20613842 - Nature. 2010 Jul 8;466(7303):253-7
– reference: 22387027 - Mol Cell. 2012 Mar 30;45(6):814-25
– reference: 17334365 - Nat Genet. 2007 Apr;39(4):457-66
– reference: 23568264 - Sci Rep. 2013;3:1630
– reference: 22532803 - PLoS Genet. 2012;8(4):e1002629
– reference: 21885656 - FASEB J. 2011 Dec;25(12):4378-93
– reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006
– reference: 15532031 - Cell Motil Cytoskeleton. 2005 Jan;60(1):1-13
– reference: 22449189 - Epigenomics. 2012 Apr;4(2):179-94
– reference: 22041459 - Stem Cell Res Ther. 2011;2(5):42
– reference: 21731603 - PLoS One. 2011;6(6):e14821
– reference: 14769646 - Am J Epidemiol. 2004 Feb 15;159(4):413-21
– reference: 7889563 - Cell. 1995 Mar 10;80(5):675-9
– reference: 20876843 - Physiol Genomics. 2011 May 1;43(10):595-603
– reference: 22689993 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10522-7
– reference: 23425621 - Exp Gerontol. 2013 May;48(5):492-8
– reference: 15247427 - Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10590-5
– reference: 22313030 - DNA Cell Biol. 2012 Oct;31 Suppl 1:S42-8
– reference: 17921420 - J Gerontol A Biol Sci Med Sci. 2007 Oct;62(10):1088-95
– reference: 20854887 - Exp Gerontol. 2011 Feb-Mar;46(2-3):193-8
– reference: 21860412 - Oncogene. 2012 Mar 29;31(13):1609-22
– reference: 9850084 - Cancer Res. 1998 Dec 1;58(23):5489-94
– reference: 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94
– reference: 21628449 - Genome Res. 2011 Jul;21(7):1074-86
– reference: 22047982 - Epilepsy Res. 2012 Feb;98(2-3):273-6
– reference: 23409969 - BMC Bioinformatics. 2013;14:53
– reference: 22405075 - Cell Metab. 2012 Mar 7;15(3):405-11
– reference: 20219945 - Genome Res. 2010 Apr;20(4):434-9
– reference: 17520024 - PLoS One. 2007;2(5):e465
– reference: 15079007 - Neurology. 2004 Apr 13;62(7):1097-104
– reference: 20219944 - Genome Res. 2010 Apr;20(4):440-6
SSID ssj0017903
Score 2.4741
Snippet Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report...
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the...
Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 360
SubjectTerms Adolescent
Adult
Aged
Aging - genetics
Base Composition - genetics
CpG Islands
DNA methylation
DNA Methylation - genetics
epigenome
Gene Expression Regulation
Gene Ontology
Genome, Human - genetics
genomics
human aging
Humans
Male
Muscle, Skeletal - metabolism
Original
postmitotic
Signal Transduction - genetics
skeletal muscle
Young Adult
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEB70iuCL-NvVKhF9UQjubpJN7knOerWIHlIs9G1Jsll62O7Vbg_pf-9MNre2VPq2kCzZnUlmvmQm8wG8VbkvrdIUU68El-hg-dQ5ywuD86uicjKRh-z7oto7kF8P1WE6cOtTWuXGJkZD3aw8nZF_QOCipFaIfj-e_ubEGkXR1UShcRu20AQbM4GtT_PFj_0xjqCnkRu5kFryKZrhVKCUcnmsD8dUW4EKQl52Sddw5vV0ycswNvqh3ftwLwFINhs0_gBuhe4h3BkoJS8ewf6X0K1OAv-zbAL7vJgxooi-GBLe2HDLt2d0-MrQkLBlx1KEhrdnIbDI2Mf6X-iLEJSzk3WPYzyGg935z509nngTuMfNVs6l90JZiVgDwYsR3jshStRVaUIrtLVSO2VVYQ1u7drgW5-XjSly25hQlW3jxBOYdKsuPAOmK1sFWQVc2J5usRp0XwJlWjppW-eaDN5tRFf7VFScuC2O683mgsRcRzFn8GbsezqU0vhvr-2NBuq0nPr6n_IzeD0240Kg6Ibtwmod-2jafOZFBk8HhY3DlFLkKBp8W19R5diBimxfbemWR7HYtqA4qCozeB-VfsOX17Od-bf49Pzmf3gBdxF2pfyfbZicn63DS4Q25-5Vmr9_AdVQ9qY
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS-QwEB9EEXwR_51WV4ncvdxBpW2Spvsgsqz_OE6f3MO3kqQpLq5d3XXRffMj-Bn9JE7SdnVRBN8KnZAyk2R-05nMD-AXD3QkubA59Zj6DB2s31RK-mGC6yu27WQcD9nZeXzaYX8v-eUM1PydlQKHn4Z2lk-qM-jtPd6ND3DD79dVOVKbnu2SkGDoPoceSVgmgzP2lk0QTceQHDLB_CYexlWb0umx047pA9r8WDT5Hsw6b3S8BIsVjCSt0u7LMGOKFZgviSXHq_D_xBT9G_Py9PzQzQw5PG8RSxU9LgvfSHnbd0jsT1iCBwrpFqTK1OCQfGAMcdx9ZHiNXgk1Q25GQ5xnDTrHRxftU79iUPA1hl2Bz7SmXDJEHQhjEqq1ojRCq0WJyamQkgnFJQ9lgkFebnSugyhLwkBmiYmjPFP0B8wW_cJsABGxjA2LDW5xbe-zJujIKOo1UkzmSmUe_K7Vl-qqvbhlueildZhhVZ06VXvwcyJ7WzbV-FSqUVshrddFiviVM8ExCPJgd_Iat4TNc8jC9EdORtgwNAg9WC-NNpkmYjRA1eBoMWXOiYBttz39puheubbb1GZEeeTBH2f4L748bbWP_rmnze8Ib8ECwrGqLqgBs_eDkdlGyHOvdtx6fgVkMP5b
  priority: 102
  providerName: Scholars Portal
Title Genome‐wide DNA methylation changes with age in disease‐free human skeletal muscle
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12180
https://www.ncbi.nlm.nih.gov/pubmed/24304487
https://www.proquest.com/docview/1505475747
https://www.proquest.com/docview/1507191701
https://pubmed.ncbi.nlm.nih.gov/PMC3954952
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRfDFb2u0Hiv6opCS249kC76c9WoRe5RipS8SdjcbPNrmpLlD6pN_gn9j_5LObD7sWRH0JQQyS5LdmZ3f7M7-BuCFShw3KqM99VTEEh1svGmtiYca9SslOplQh2x3ku4cyPeH6nAFXndnYRp-iH7BjSwjzNdk4MbWl4zcOH9M3AiaAnZK1iJEtN9zRxHzVMiul5mMN3EGbrlJKY3nV9Nlb3QFYl7NlLyMYIML2r4Nn7uPbzJPjjYWc7vhvv_G6_i_f3cHbrXYlI0aZboLK766BzeaapVn9-HTO1_NTvz5j5_fpoVnbycjRvWnz5psOtYcIa4ZrewynKXYtGLt9g82KU-9Z6EgIKuP0NUh5mcnixrf8wAOtscft3bitixD7DCWS2LpnFBGIpRBbKSFc1YIjqrAtS9FZozMrDJqaDRGjqV3pUt4oYeJKbRPeVlY8RBWq1nlHwHLUpN6mXqcNxwdktXoHQWOG7fSlNYWEbzshid3LWc5lc44zrvYhfopD_0UwfNe9mvD1PFHqfVulPPWWuscQbGSmcLIKoJn_WO0M9o8MZWfLYJMRrFtMoxgrVGK_jVcigS7BltnS-rSCxCH9_KTavolcHkL2mZVPIJXQRv-8uX5aGv8Idw9_hfhJ3ATMV6bbLQOq_PThX-KOGpuB3CNy70BXH8znuztD8JqxCDYEF53pb4Ah-4eTg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gEaMvRvysoq5RHzTZ2O5H23sg5oTDQ46LIZDwVna323gReki5kPun_BuZ3X4AwfDGW5PddtuZ2fnozM4P4KMMDVMycTn1mFOBBpb2tVY0SlG-YtdOxuOQ7Uzi0b74eSAPluBfexbGlVW2OtEr6nxm3D_yr-i4SJFI9H6_nfylDjXKZVdbCI1aLLbt4hxDtmptawP5-4mxzeHe-og2qALUYCgSUmEMl0qgJUbTnnJjNOcMv4SltuCJUiLRUslIpRj4FNYUJmR5GoUqT23MilxzfO49WBY8DlkPlr8PJ792u7xF0vdYzJFIBO2j2m8aorraIWXskevl4BpQXjWBN_zam-WZV91mb_c2H8OjxmElg1rCVmDJlk_gfg1huXgKuz9sOTu29HyaW7IxGRAHSb2oC-xIfaq4Iu5nL0HFRaYlaTJCtDi1lniEQFL9QduHQQA5nle4xjPYvxOKPodeOSvtSyBJrGIrYouKxLhTsymaS440ZVqoQus8gM8t6TLTNDF3WBpHWRvMODJnnswBfOjmntStO_47a7XlQNZs3yq7FLYA3nfDuPFcNkWVdjb3cxIX7IZRAC9qhnXLMMFDJA3enVxjZTfBNfW-PlJOf_vm3tzlXSUL4Itn-i1vng3Wh2N_9er2b3gHD0Z7O-NsvDXZfg0P0eVrao9WoXd2Ordv0K06028bWSZweNfb5wIfhjQo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-hoiFeJrbxET42T_ACUqQktuNU2ksFdOWr4oFWFS-R7TiiGqSIUiHe9ifsb9xfwtlJs1ZMSLxF8lmO7ny-3_nOdwB7PNCR5MLG1GPqMzSwflMp6YcJ7q_YlpNxfcguunGnx04HfLAAP6ZvYcr6EPWFm9UMd15bBb_P8hkll9rc2toICTrsixzNUtCAxVa_d92rowii6Tojh0wwv4mHcFWe1Gby_Js9b5BeoczXyZKzINZZofYKfKzgI2mV8v4EC6b4DB_KhpLPX6D_0xSjO_P395-nYWbIUbdFbIvo5zLhjZSvfMfEXr4SPEjIsCBVhAan5A_GENezj4x_oTVCWE7uJmNcZxV67eOrw45fdU7wNbpbgc-0plwyRBsIXxKqtaI0QmlFicmpkJIJxSUPZYLOXW50roMoS8JAZomJozxTdA0axagwG0BELGPDYoOqre071gQNGEW-RorJXKnMg_0p-1JdlRW33S1u06l7YVmdOlZ7sFvT3pfFNP5LtT2VQlop1DhF3MqZ4Oj8ePC9HkZVsPENWZjRxNEI634GoQfrpdDqZSJGA2QNzhZz4qwJbJnt-ZFieOPKbVMbCeWRBwdO8G_8edo6PD53X5vvIf4GS5dH7fT8pHu2BcuIyKrUoG1oPD5MzA6inkf1tdrcLxQw_gM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome%E2%80%90wide+DNA+methylation+changes+with+age+in+disease%E2%80%90free+human+skeletal+muscle&rft.jtitle=Aging+cell&rft.au=Zykovich%2C+Artem&rft.au=Hubbard%2C+Alan&rft.au=Flynn%2C+James+M.&rft.au=Tarnopolsky%2C+Mark&rft.date=2014-04-01&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=13&rft.issue=2&rft.spage=360&rft.epage=366&rft_id=info:doi/10.1111%2Facel.12180&rft.externalDBID=10.1111%252Facel.12180&rft.externalDocID=ACEL12180
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon