Genome‐wide DNA methylation changes with age in disease‐free human skeletal muscle
Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging....
Saved in:
Published in | Aging cell Vol. 13; no. 2; pp. 360 - 366 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.04.2014
BlackWell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. |
---|---|
AbstractList | Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome‐wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation.A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3' end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. |
Author | Tarnopolsky, Mark Mooney, Sean D. Fraga, Mario F. Ogborn, Dan Flynn, James M. Kerksick, Chad Melov, Simon Hubbard, Alan MacNeil, Lauren Zykovich, Artem |
Author_xml | – sequence: 1 givenname: Artem surname: Zykovich fullname: Zykovich, Artem organization: Buck Institute for Research on Aging – sequence: 2 givenname: Alan surname: Hubbard fullname: Hubbard, Alan organization: University of California – sequence: 3 givenname: James M. surname: Flynn fullname: Flynn, James M. organization: Buck Institute for Research on Aging – sequence: 4 givenname: Mark surname: Tarnopolsky fullname: Tarnopolsky, Mark organization: McMaster University Medical Center – sequence: 5 givenname: Mario F. surname: Fraga fullname: Fraga, Mario F. organization: Universidad de Oviedo – sequence: 6 givenname: Chad surname: Kerksick fullname: Kerksick, Chad organization: University of New Mexico – sequence: 7 givenname: Dan surname: Ogborn fullname: Ogborn, Dan organization: McMaster University Medical Center – sequence: 8 givenname: Lauren surname: MacNeil fullname: MacNeil, Lauren organization: McMaster University Medical Center – sequence: 9 givenname: Sean D. surname: Mooney fullname: Mooney, Sean D. organization: Buck Institute for Research on Aging – sequence: 10 givenname: Simon surname: Melov fullname: Melov, Simon organization: Buck Institute for Research on Aging |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24304487$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhS1URH9gwwMgS2wqpCl2bI-TDdJoKAVpBBtga904NxMXxy5xwmh2PALPyJPg6ZQRVAhvbMnfOffnnJKjEAMS8pSzC57PS7DoL3jBS_aAnHCp5azSxfzo8OblMTlN6ZoxrismHpHjQgomZalPyOcrDLHHn99_bFyD9PX7Be1x7LYeRhcDtR2ENSa6cWNHYY3UBdq4hJB2knZApN3UQ6DpC3ocwdN-StbjY_KwBZ_wyd19Rj69ufy4fDtbfbh6t1ysZjaXZzNprVAg51IUipfC2lqIokZblNgKDSB1rUBxKFklW7StZUVTcgZNifOibWpxRl7tfW-musfGYhgH8OZmcD0MWxPBmb9_guvMOn4zolKyUkU2OL8zGOLXCdNoepfyPj0EjFMyXDHNK64Zz-jze-h1nIaQx9tRSmqlpc7Usz87OrTye-UZeLEH7BBTGrA9IJyZXZ5ml6e5zTPD7B5s3XgbTZ7G-X9L-F6ycR63_zE3i-Xlaq_5BcbXtKw |
CitedBy_id | crossref_primary_10_1093_hmg_ddu564 crossref_primary_10_1111_acel_12470 crossref_primary_10_1007_s11010_022_04408_1 crossref_primary_10_1111_acel_13042 crossref_primary_10_1002_em_21989 crossref_primary_10_1111_acel_12744 crossref_primary_10_1186_s41935_018_0042_1 crossref_primary_10_1371_journal_pone_0128517 crossref_primary_10_1152_japplphysiol_01110_2017 crossref_primary_10_1186_s12864_020_6751_5 crossref_primary_10_1186_s11658_024_00618_1 crossref_primary_10_3390_jox13030024 crossref_primary_10_1002_elps_201600261 crossref_primary_10_1210_jc_2016_1219 crossref_primary_10_1249_JES_0000000000000301 crossref_primary_10_3389_fcell_2024_1378680 crossref_primary_10_1152_ajpregu_00110_2019 crossref_primary_10_1101_gr_169011_113 crossref_primary_10_18632_aging_101298 crossref_primary_10_1186_s12864_019_5880_1 crossref_primary_10_1016_j_archger_2024_105699 crossref_primary_10_1038_ncomms6366 crossref_primary_10_1186_s13148_015_0064_6 crossref_primary_10_3389_fnins_2021_644943 crossref_primary_10_3346_jkms_2024_39_e200 crossref_primary_10_1590_S1516_8913201400029 crossref_primary_10_3390_ijms19061578 crossref_primary_10_1016_j_atherosclerosis_2015_05_001 crossref_primary_10_1111_acel_12996 crossref_primary_10_1186_s13148_018_0538_4 crossref_primary_10_3389_fphys_2021_619447 crossref_primary_10_1186_s13287_022_02706_5 crossref_primary_10_1002_jcsm_12876 crossref_primary_10_1186_s13395_020_00259_w crossref_primary_10_1111_acel_12293 crossref_primary_10_1016_j_stem_2015_05_009 crossref_primary_10_3390_ijms241914964 crossref_primary_10_3389_fphys_2023_1150821 crossref_primary_10_1007_s00421_015_3246_1 crossref_primary_10_1007_s00335_016_9645_8 crossref_primary_10_1007_s12603_022_1773_0 crossref_primary_10_1016_j_tifs_2023_05_019 crossref_primary_10_1038_s41392_021_00646_9 crossref_primary_10_1002_jcsm_12478 crossref_primary_10_1016_j_yexcr_2022_113299 crossref_primary_10_1186_s13148_017_0399_2 crossref_primary_10_3390_ijms25179684 crossref_primary_10_1016_j_brainres_2016_03_013 crossref_primary_10_1186_s13072_019_0306_5 crossref_primary_10_3390_ijms24032736 crossref_primary_10_1007_s10522_017_9695_7 crossref_primary_10_1096_fj_202302103RRR crossref_primary_10_1016_j_arr_2024_102267 crossref_primary_10_1042_CS20230319 crossref_primary_10_1073_pnas_1412759111 crossref_primary_10_1002_jcsm_12585 crossref_primary_10_1002_jcsm_12741 crossref_primary_10_1007_s10522_015_9617_5 crossref_primary_10_1016_j_arr_2017_05_002 crossref_primary_10_1186_s12979_023_00384_2 crossref_primary_10_1016_j_mad_2024_112020 crossref_primary_10_1007_s10522_019_09818_1 crossref_primary_10_1080_17476348_2016_1206819 crossref_primary_10_1007_s11357_017_9976_8 crossref_primary_10_3390_gastroent14020016 crossref_primary_10_1016_j_cbpb_2020_110540 crossref_primary_10_1152_japplphysiol_00352_2019 crossref_primary_10_1002_jcsm_12970 crossref_primary_10_1016_j_fsigen_2018_09_003 crossref_primary_10_3390_ani12111399 crossref_primary_10_1016_j_fsigen_2021_102637 crossref_primary_10_3389_fphys_2019_00996 crossref_primary_10_12688_f1000research_9846_1 crossref_primary_10_3389_fendo_2015_00043 crossref_primary_10_1002_rco2_52 crossref_primary_10_1016_j_fsigen_2017_02_009 crossref_primary_10_3389_fgene_2017_00106 crossref_primary_10_1016_j_bbrc_2016_05_057 crossref_primary_10_1186_s12979_022_00285_w crossref_primary_10_18632_aging_205751 crossref_primary_10_1097_PRS_0000000000009670 crossref_primary_10_1002_jcsm_12556 crossref_primary_10_1038_s41574_023_00943_z crossref_primary_10_1038_srep06546 crossref_primary_10_1016_j_bbagrm_2015_01_002 crossref_primary_10_1186_s12576_024_00935_2 crossref_primary_10_1007_s40520_024_02877_6 crossref_primary_10_1093_ndt_gfv122 crossref_primary_10_1038_ncomms8557 crossref_primary_10_1186_s12863_023_01152_3 crossref_primary_10_1038_s41598_019_46929_8 crossref_primary_10_1007_s13364_020_00502_1 crossref_primary_10_1016_j_molmet_2018_01_022 crossref_primary_10_3390_genes13071151 crossref_primary_10_3389_fcell_2016_00091 crossref_primary_10_3390_cells12081163 crossref_primary_10_1016_j_mad_2018_01_002 crossref_primary_10_1096_fj_202201510RR crossref_primary_10_1111_acel_12486 crossref_primary_10_1152_ajpcell_00099_2023 crossref_primary_10_1186_s12864_015_1381_z crossref_primary_10_1038_s41598_018_37895_8 crossref_primary_10_1152_physiol_00039_2014 crossref_primary_10_1007_s11357_018_0005_3 crossref_primary_10_1016_j_isci_2025_112144 crossref_primary_10_3390_ijms25031833 crossref_primary_10_1038_s41598_020_72730_z crossref_primary_10_3892_etm_2017_4924 crossref_primary_10_1016_j_exger_2015_08_015 crossref_primary_10_1016_j_ceb_2018_05_016 crossref_primary_10_1096_fj_202100873RR crossref_primary_10_1002_jcsm_13472 crossref_primary_10_1038_ncomms11089 crossref_primary_10_3390_ijms21176334 |
Cites_doi | 10.1002/biof.5 10.1016/j.cmet.2012.01.001 10.1038/onc.2011.354 10.1212/01.WNL.0000118204.90814.5A 10.2217/epi.12.9 10.1038/srep01630 10.1126/science.1136352 10.1186/scrt83 10.1073/pnas.1002720107 10.1016/j.molcel.2012.10.016 10.1089/dna.2011.1565 10.1016/j.exger.2010.08.029 10.1038/ng1990 10.1096/fj.11-191262 10.1152/jappl.1993.74.2.868 10.1101/gr.118703.110 10.1096/fj.11-186049 10.1186/1471-2105-14-53 10.1371/journal.pgen.1002629 10.1093/hmg/ddq561 10.1101/gr.103606.109 10.1073/pnas.0801330105 10.1038/nature09165 10.1001/jama.299.24.2877 10.1016/0092-8674(95)90344-5 10.1371/journal.pone.0031621 10.1371/journal.pone.0000465 10.1371/journal.pgen.1000971 10.1016/j.molcel.2012.01.017 10.1016/j.neurobiolaging.2005.06.009 10.1016/j.eplepsyres.2011.09.020 10.1093/aje/kwh058 10.1093/gerona/62.10.1088 10.1016/j.arr.2009.03.004 10.1101/gr.119867.110 10.1101/gr.103101.109 10.1038/ng.298 10.1016/j.exger.2013.02.012 10.1016/S0021-9258(18)61057-9 10.1073/pnas.0308035101 10.1371/journal.pone.0028090 10.1002/cm.20042 10.1073/pnas.1120658109 10.1093/bioinformatics/btt316 10.1101/gr.229102 10.1371/journal.pone.0014821 10.1152/physiolgenomics.00148.2010 10.1016/S0248-4900(97)89313-6 |
ContentType | Journal Article |
Copyright | 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. Copyright © 2014 The Anatomical Society and John Wiley & Sons Ltd 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013 |
Copyright_xml | – notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. – notice: 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. – notice: Copyright © 2014 The Anatomical Society and John Wiley & Sons Ltd – notice: 2013 The Authors. published by the Anatomical Society and John Wiley & Sons Ltd. 2013 |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/acel.12180 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-9726 |
EndPage | 366 |
ExternalDocumentID | PMC3954952 3242059031 24304487 10_1111_acel_12180 ACEL12180 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: CIHR – Institute of Aging – fundername: Buck Trust – fundername: Glenn Foundation for Medical Research – fundername: NIH funderid: R01 LM009722; U54‐HG004028; UL1DE019608 – fundername: NHGRI NIH HHS grantid: U54 HG004028 – fundername: NHGRI NIH HHS grantid: U54-HG004028 – fundername: NLM NIH HHS grantid: R01 LM009722 – fundername: NIDCR NIH HHS grantid: UL1DE019608 – fundername: NIDCR NIH HHS grantid: UL1 DE019608 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7QP 7TK ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4480-4cc35a464325183ccb332bec28ef37aa47b5a51a8094fecfc02d810ad8e62fdb3 |
IEDL.DBID | DR2 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 18:13:25 EDT 2025 Fri Jul 11 13:48:19 EDT 2025 Wed Aug 13 11:21:01 EDT 2025 Mon Jul 21 06:05:44 EDT 2025 Tue Jul 01 01:49:11 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Wed Jan 22 17:02:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | postmitotic DNA methylation genomics epigenome skeletal muscle human aging |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/3.0 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4480-4cc35a464325183ccb332bec28ef37aa47b5a51a8094fecfc02d810ad8e62fdb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12180 |
PMID | 24304487 |
PQID | 1505475747 |
PQPubID | 1036381 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3954952 proquest_miscellaneous_1507191701 proquest_journals_1505475747 pubmed_primary_24304487 crossref_primary_10_1111_acel_12180 crossref_citationtrail_10_1111_acel_12180 wiley_primary_10_1111_acel_12180_ACEL12180 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2014 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: April 2014 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Oxford, UK |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Inc BlackWell Publishing Ltd |
Publisher_xml | – name: John Wiley & Sons, Inc – name: BlackWell Publishing Ltd |
References | 2004; 101 2007; 39 1987; 262 2013; 29 2009; 41 2013; 48 2013; 3 2004; 62 2011; 2 2010; 107 2012 2002; 12 2010; 466 1997; 89 2008; 105 2005; 60 2012; 15 2011; 6 2012; 98 2012; 31 2012; 109 2009; 35 2010; 20 2004; 159 2013; 14 1995; 80 2007; 315 2006; 27 1993; 74 2011; 20 2009; 8 2011; 21 2011; 43 2011; 46 2012; 49 2007; 2 2007; 62 2011; 25 2008; 299 2012; 7 2012; 4 2012; 45 2012; 22 2010; 6 1998; 58 2012; 8 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 Ahuja N (e_1_2_9_2_1) 1998; 58 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 Irier HA (e_1_2_9_27_1) 2012 22355382 - PLoS One. 2012;7(2):e31621 23409969 - BMC Bioinformatics. 2013;14:53 23732275 - Bioinformatics. 2013 Aug 1;29(15):1922-4 17322062 - Science. 2007 Feb 23;315(5815):1141-3 20854887 - Exp Gerontol. 2011 Feb-Mar;46(2-3):193-8 20613842 - Nature. 2010 Jul 8;466(7303):253-7 23568264 - Sci Rep. 2013;3:1630 12045153 - Genome Res. 2002 Jun;12(6):996-1006 22164231 - PLoS One. 2011;6(12):e28090 9850084 - Cancer Res. 1998 Dec 1;58(23):5489-94 9561721 - Biol Cell. 1997 Oct;89(7):413-34 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94 21860412 - Oncogene. 2012 Mar 29;31(13):1609-22 21731603 - PLoS One. 2011;6(6):e14821 22405075 - Cell Metab. 2012 Mar 7;15(3):405-11 18577732 - JAMA. 2008 Jun 25;299(24):2877-83 21216877 - Hum Mol Genet. 2011 Mar 15;20(6):1164-72 19716530 - Ageing Res Rev. 2009 Oct;8(4):268-76 20219944 - Genome Res. 2010 Apr;20(4):440-6 22387027 - Mol Cell. 2012 Mar 30;45(6):814-25 15532031 - Cell Motil Cytoskeleton. 2005 Jan;60(1):1-13 20523906 - PLoS Genet. 2010 May;6(5):e1000971 22313030 - DNA Cell Biol. 2012 Oct;31 Suppl 1:S42-8 21613409 - Genome Res. 2012 Feb;22(2):407-19 19151715 - Nat Genet. 2009 Feb;41(2):178-86 21885651 - FASEB J. 2011 Dec;25(12):4312-25 8458808 - J Appl Physiol (1985). 1993 Feb;74(2):868-74 22689993 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10522-7 17921420 - J Gerontol A Biol Sci Med Sci. 2007 Oct;62(10):1088-95 18408153 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5921-6 22532803 - PLoS Genet. 2012;8(4):e1002629 22047982 - Epilepsy Res. 2012 Feb;98(2-3):273-6 15079007 - Neurology. 2004 Apr 13;62(7):1097-104 23177740 - Mol Cell. 2013 Jan 24;49(2):359-67 7889563 - Cell. 1995 Mar 10;80(5):675-9 22449189 - Epigenomics. 2012 Apr;4(2):179-94 22041459 - Stem Cell Res Ther. 2011;2(5):42 15247427 - Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10590-5 17334365 - Nat Genet. 2007 Apr;39(4):457-66 19319843 - Biofactors. 2009 Jan-Feb;35(1):28-35 21885656 - FASEB J. 2011 Dec;25(12):4378-93 3611071 - J Biol Chem. 1987 Jul 25;262(21):9948-51 16085338 - Neurobiol Aging. 2006 Aug;27(8):1145-54 14769646 - Am J Epidemiol. 2004 Feb 15;159(4):413-21 21628449 - Genome Res. 2011 Jul;21(7):1074-86 20876843 - Physiol Genomics. 2011 May 1;43(10):595-603 17520024 - PLoS One. 2007;2(5):e465 20219945 - Genome Res. 2010 Apr;20(4):434-9 23425621 - Exp Gerontol. 2013 May;48(5):492-8 |
References_xml | – volume: 109 start-page: 10522 year: 2012 end-page: 10527 article-title: Distinct DNA methylomes of newborns and centenarians publication-title: Proc. Natl Acad. Sci. U S A – volume: 20 start-page: 440 year: 2010 end-page: 446 article-title: Age‐dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer publication-title: Genome Res. – volume: 89 start-page: 413 year: 1997 end-page: 434 article-title: Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review publication-title: Biol. Cell – volume: 46 start-page: 193 year: 2011 end-page: 198 article-title: Age‐associated alterations of the neuromuscular junction publication-title: Exp. Gerontol. – volume: 8 start-page: 268 year: 2009 end-page: 276 article-title: The role of epigenetics in aging and age‐related diseases publication-title: Ageing Res. Rev. – volume: 74 start-page: 868 year: 1993 end-page: 874 article-title: Effects of motor unit losses on strength in older men and women publication-title: J. Appl. Physiol. – volume: 4 start-page: 179 year: 2012 end-page: 194 article-title: Promoter CpG island methylation markers in colorectal cancer: the road ahead publication-title: Epigenomics – volume: 6 start-page: e28090 year: 2011 article-title: Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle publication-title: PLoS One – volume: 27 start-page: 1145 year: 2006 end-page: 1154 article-title: Axonal degeneration affects muscle density in older men and women publication-title: Neurobiol. Aging – volume: 25 start-page: 4378 year: 2011 end-page: 4393 article-title: Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia publication-title: FASEB J – volume: 101 start-page: 10590 year: 2004 end-page: 10595 article-title: NFAT is a nerve activity sensor in skeletal muscle and controls activity‐dependent myosin switching publication-title: Proc. Natl Acad. Sci U S A – volume: 105 start-page: 5921 year: 2008 end-page: 5926 article-title: Activity‐dependent repression of muscle genes by NFAT publication-title: Proc. Natl Acad. Sci U S A – volume: 14 start-page: 53 year: 2013 article-title: STOP using just GO: a multi‐ontology hypothesis generation tool for high throughput experimentation publication-title: BMC Bioinformatics – volume: 159 start-page: 413 year: 2004 end-page: 421 article-title: Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women publication-title: Am. J. Epidemiol. – volume: 62 start-page: 1088 year: 2007 end-page: 1095 article-title: Gene expression, fiber type, and strength are similar between left and right legs in older adults publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 35 start-page: 28 year: 2009 end-page: 35 article-title: Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction publication-title: BioFactors – volume: 262 start-page: 9948 year: 1987 end-page: 9951 article-title: Genomic 5‐methyldeoxycytidine decreases with age publication-title: J. Biol. Chem. – volume: 466 start-page: 253 year: 2010 end-page: 257 article-title: Conserved role of intragenic DNA methylation in regulating alternative promoters publication-title: Nature – volume: 58 start-page: 5489 year: 1998 end-page: 5494 article-title: Aging and DNA methylation in colorectal mucosa and cancer publication-title: Cancer Res. – volume: 315 start-page: 1141 year: 2007 end-page: 1143 article-title: Gene body‐specific methylation on the active X chromosome publication-title: Science – volume: 80 start-page: 675 year: 1995 end-page: 679 article-title: Three muscular dystrophies: review loss of cytoskeleton‐extracellular matrix linkage publication-title: Cell – volume: 107 start-page: 8689 year: 2010 end-page: 8694 article-title: Conservation and divergence of methylation patterning in plants and animals publication-title: Proc. Natl Acad. Sci U S A – volume: 29 start-page: 1922 year: 2013 end-page: 1924 article-title: Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP‐Seq significance tool publication-title: Bioinformatics – volume: 2 start-page: e465 year: 2007 article-title: Resistance exercise reverses aging in human skeletal muscle publication-title: PLoS One – volume: 31 start-page: 1609 year: 2012 end-page: 1622 article-title: DNA methylation‐associated silencing of tumor‐suppressor microRNAs in cancer publication-title: Oncogene – volume: 6 start-page: e14821 year: 2011 article-title: Epigenetic predictor of age publication-title: PLoS One – volume: 12 start-page: 996 year: 2002 end-page: 1006 article-title: The human genome browser at UCSC publication-title: Genome Res. – volume: 43 start-page: 595 year: 2011 end-page: 603 article-title: Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis publication-title: Physiol. Genomics – volume: 49 start-page: 359 year: 2012 end-page: 367 article-title: Genome‐wide methylation profiles reveal quantitative views of human aging rates publication-title: Mol. Cell – volume: 62 start-page: 1097 year: 2004 end-page: 1104 article-title: Large‐scale disruption of microtubule pathways in morphologically normal human spastin muscle publication-title: Neurology – start-page: S42 issue: Suppl. 1 year: 2012 end-page: S48 article-title: Dynamics of DNA methylation in aging and Alzheimer's disease publication-title: DNA Cell Biol. – volume: 22 start-page: 407 year: 2012 end-page: 419 article-title: A DNA methylation fingerprint of 1628 human samples publication-title: Genome Res. – volume: 48 start-page: 492 year: 2013 end-page: 498 article-title: The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size publication-title: Exp. Gerontol. – volume: 60 start-page: 1 year: 2005 end-page: 13 article-title: Reorganization of microtubule nucleation during muscle differentiation publication-title: Cell Motil. Cytoskeleton – volume: 20 start-page: 1164 year: 2011 end-page: 1172 article-title: Distinct DNA methylation changes highly correlated with chronological age in the human brain publication-title: Hum. Mol. Genet. – volume: 20 start-page: 434 year: 2010 end-page: 439 article-title: Human aging‐associated DNA hypermethylation occurs preferentially at bivalent chromatin domains publication-title: Genome Res. – volume: 2 start-page: 42 year: 2011 article-title: DNA methylation in stem cell renewal and multipotency publication-title: Stem Cell Res. Ther. – volume: 6 start-page: e1000971 year: 2010 article-title: Aging and chronic sun exposure cause distinct epigenetic changes in human skin publication-title: PLoS Genet. – volume: 3 start-page: 1630 year: 2013 article-title: An integrative network algorithm identifies age‐associated differential methylation interactome hotspots targeting stem‐cell differentiation pathways publication-title: Sci. Rep. – volume: 98 start-page: 273 year: 2012 end-page: 276 article-title: Four novel and two recurrent NHLRC1 (EPM2B) and EPM2A gene mutations leading to Lafora disease in six Turkish families publication-title: Epilepsy Res. – volume: 25 start-page: 4312 year: 2011 end-page: 4325 article-title: Expression and regulation of Homer in human skeletal muscle during neuromuscular junction adaptation to disuse and exercise publication-title: FASEB J – volume: 41 start-page: 178 year: 2009 end-page: 186 article-title: The human colon cancer methylome shows similar hypo‐ and hypermethylation at conserved tissue‐specific CpG island shores publication-title: Nat. Genet. – volume: 39 start-page: 457 year: 2007 end-page: 466 article-title: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome publication-title: Nat. Genet. – volume: 15 start-page: 405 year: 2012 end-page: 411 article-title: Acute exercise remodels promoter methylation in human skeletal muscle publication-title: Cell Metab. – volume: 8 start-page: e1002629 year: 2012 article-title: Epigenome‐wide scans identify differentially methylated regions for age and age‐related phenotypes in a healthy ageing population publication-title: PLoS Genet. – volume: 7 start-page: e31621 year: 2012 article-title: High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region publication-title: PLoS One – volume: 21 start-page: 1074 year: 2011 end-page: 1086 article-title: Cell type‐specific DNA methylation at intragenic CpG islands in the immune system publication-title: Genome Res. – volume: 299 start-page: 2877 year: 2008 end-page: 2883 article-title: Intra‐individual change over time in DNA methylation with familial clustering publication-title: JAMA – volume: 45 start-page: 814 year: 2012 end-page: 825 article-title: R‐loop formation is a distinctive characteristic of unmethylated human CpG island promoters publication-title: Mol. Cell – ident: e_1_2_9_34_1 doi: 10.1002/biof.5 – ident: e_1_2_9_4_1 doi: 10.1016/j.cmet.2012.01.001 – ident: e_1_2_9_33_1 doi: 10.1038/onc.2011.354 – ident: e_1_2_9_38_1 doi: 10.1212/01.WNL.0000118204.90814.5A – ident: e_1_2_9_17_1 doi: 10.2217/epi.12.9 – ident: e_1_2_9_48_1 doi: 10.1038/srep01630 – ident: e_1_2_9_24_1 doi: 10.1126/science.1136352 – ident: e_1_2_9_6_1 doi: 10.1186/scrt83 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.1002720107 – ident: e_1_2_9_23_1 doi: 10.1016/j.molcel.2012.10.016 – start-page: S42 issue: 1 year: 2012 ident: e_1_2_9_27_1 article-title: Dynamics of DNA methylation in aging and Alzheimer's disease publication-title: DNA Cell Biol. doi: 10.1089/dna.2011.1565 – ident: e_1_2_9_29_1 doi: 10.1016/j.exger.2010.08.029 – ident: e_1_2_9_47_1 doi: 10.1038/ng1990 – volume: 58 start-page: 5489 year: 1998 ident: e_1_2_9_2_1 article-title: Aging and DNA methylation in colorectal mucosa and cancer publication-title: Cancer Res. – ident: e_1_2_9_11_1 doi: 10.1096/fj.11-191262 – ident: e_1_2_9_16_1 doi: 10.1152/jappl.1993.74.2.868 – ident: e_1_2_9_15_1 doi: 10.1101/gr.118703.110 – ident: e_1_2_9_42_1 doi: 10.1096/fj.11-186049 – ident: e_1_2_9_50_1 doi: 10.1186/1471-2105-14-53 – ident: e_1_2_9_5_1 doi: 10.1371/journal.pgen.1002629 – ident: e_1_2_9_25_1 doi: 10.1093/hmg/ddq561 – ident: e_1_2_9_46_1 doi: 10.1101/gr.103606.109 – ident: e_1_2_9_41_1 doi: 10.1073/pnas.0801330105 – ident: e_1_2_9_35_1 doi: 10.1038/nature09165 – ident: e_1_2_9_8_1 doi: 10.1001/jama.299.24.2877 – ident: e_1_2_9_13_1 doi: 10.1016/0092-8674(95)90344-5 – ident: e_1_2_9_44_1 doi: 10.1371/journal.pone.0031621 – ident: e_1_2_9_37_1 doi: 10.1371/journal.pone.0000465 – ident: e_1_2_9_22_1 doi: 10.1371/journal.pgen.1000971 – ident: e_1_2_9_21_1 doi: 10.1016/j.molcel.2012.01.017 – ident: e_1_2_9_32_1 doi: 10.1016/j.neurobiolaging.2005.06.009 – ident: e_1_2_9_43_1 doi: 10.1016/j.eplepsyres.2011.09.020 – ident: e_1_2_9_30_1 doi: 10.1093/aje/kwh058 – ident: e_1_2_9_45_1 doi: 10.1093/gerona/62.10.1088 – ident: e_1_2_9_12_1 doi: 10.1016/j.arr.2009.03.004 – ident: e_1_2_9_20_1 doi: 10.1101/gr.119867.110 – ident: e_1_2_9_40_1 doi: 10.1101/gr.103101.109 – ident: e_1_2_9_28_1 doi: 10.1038/ng.298 – ident: e_1_2_9_39_1 doi: 10.1016/j.exger.2013.02.012 – ident: e_1_2_9_49_1 doi: 10.1016/S0021-9258(18)61057-9 – ident: e_1_2_9_36_1 doi: 10.1073/pnas.0308035101 – ident: e_1_2_9_14_1 doi: 10.1371/journal.pone.0028090 – ident: e_1_2_9_10_1 doi: 10.1002/cm.20042 – ident: e_1_2_9_26_1 doi: 10.1073/pnas.1120658109 – ident: e_1_2_9_3_1 doi: 10.1093/bioinformatics/btt316 – ident: e_1_2_9_31_1 doi: 10.1101/gr.229102 – ident: e_1_2_9_9_1 doi: 10.1371/journal.pone.0014821 – ident: e_1_2_9_18_1 doi: 10.1152/physiolgenomics.00148.2010 – ident: e_1_2_9_7_1 doi: 10.1016/S0248-4900(97)89313-6 – reference: 20523906 - PLoS Genet. 2010 May;6(5):e1000971 – reference: 19151715 - Nat Genet. 2009 Feb;41(2):178-86 – reference: 22164231 - PLoS One. 2011;6(12):e28090 – reference: 22355382 - PLoS One. 2012;7(2):e31621 – reference: 9561721 - Biol Cell. 1997 Oct;89(7):413-34 – reference: 23732275 - Bioinformatics. 2013 Aug 1;29(15):1922-4 – reference: 21885651 - FASEB J. 2011 Dec;25(12):4312-25 – reference: 23177740 - Mol Cell. 2013 Jan 24;49(2):359-67 – reference: 21613409 - Genome Res. 2012 Feb;22(2):407-19 – reference: 19319843 - Biofactors. 2009 Jan-Feb;35(1):28-35 – reference: 21216877 - Hum Mol Genet. 2011 Mar 15;20(6):1164-72 – reference: 19716530 - Ageing Res Rev. 2009 Oct;8(4):268-76 – reference: 17322062 - Science. 2007 Feb 23;315(5815):1141-3 – reference: 18408153 - Proc Natl Acad Sci U S A. 2008 Apr 15;105(15):5921-6 – reference: 8458808 - J Appl Physiol (1985). 1993 Feb;74(2):868-74 – reference: 18577732 - JAMA. 2008 Jun 25;299(24):2877-83 – reference: 3611071 - J Biol Chem. 1987 Jul 25;262(21):9948-51 – reference: 16085338 - Neurobiol Aging. 2006 Aug;27(8):1145-54 – reference: 20613842 - Nature. 2010 Jul 8;466(7303):253-7 – reference: 22387027 - Mol Cell. 2012 Mar 30;45(6):814-25 – reference: 17334365 - Nat Genet. 2007 Apr;39(4):457-66 – reference: 23568264 - Sci Rep. 2013;3:1630 – reference: 22532803 - PLoS Genet. 2012;8(4):e1002629 – reference: 21885656 - FASEB J. 2011 Dec;25(12):4378-93 – reference: 12045153 - Genome Res. 2002 Jun;12(6):996-1006 – reference: 15532031 - Cell Motil Cytoskeleton. 2005 Jan;60(1):1-13 – reference: 22449189 - Epigenomics. 2012 Apr;4(2):179-94 – reference: 22041459 - Stem Cell Res Ther. 2011;2(5):42 – reference: 21731603 - PLoS One. 2011;6(6):e14821 – reference: 14769646 - Am J Epidemiol. 2004 Feb 15;159(4):413-21 – reference: 7889563 - Cell. 1995 Mar 10;80(5):675-9 – reference: 20876843 - Physiol Genomics. 2011 May 1;43(10):595-603 – reference: 22689993 - Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10522-7 – reference: 23425621 - Exp Gerontol. 2013 May;48(5):492-8 – reference: 15247427 - Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10590-5 – reference: 22313030 - DNA Cell Biol. 2012 Oct;31 Suppl 1:S42-8 – reference: 17921420 - J Gerontol A Biol Sci Med Sci. 2007 Oct;62(10):1088-95 – reference: 20854887 - Exp Gerontol. 2011 Feb-Mar;46(2-3):193-8 – reference: 21860412 - Oncogene. 2012 Mar 29;31(13):1609-22 – reference: 9850084 - Cancer Res. 1998 Dec 1;58(23):5489-94 – reference: 20395551 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94 – reference: 21628449 - Genome Res. 2011 Jul;21(7):1074-86 – reference: 22047982 - Epilepsy Res. 2012 Feb;98(2-3):273-6 – reference: 23409969 - BMC Bioinformatics. 2013;14:53 – reference: 22405075 - Cell Metab. 2012 Mar 7;15(3):405-11 – reference: 20219945 - Genome Res. 2010 Apr;20(4):434-9 – reference: 17520024 - PLoS One. 2007;2(5):e465 – reference: 15079007 - Neurology. 2004 Apr 13;62(7):1097-104 – reference: 20219944 - Genome Res. 2010 Apr;20(4):440-6 |
SSID | ssj0017903 |
Score | 2.4741 |
Snippet | Summary
A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report... A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the... Summary A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 360 |
SubjectTerms | Adolescent Adult Aged Aging - genetics Base Composition - genetics CpG Islands DNA methylation DNA Methylation - genetics epigenome Gene Expression Regulation Gene Ontology Genome, Human - genetics genomics human aging Humans Male Muscle, Skeletal - metabolism Original postmitotic Signal Transduction - genetics skeletal muscle Young Adult |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEB70iuCL-NvVKhF9UQjubpJN7knOerWIHlIs9G1Jsll62O7Vbg_pf-9MNre2VPq2kCzZnUlmvmQm8wG8VbkvrdIUU68El-hg-dQ5ywuD86uicjKRh-z7oto7kF8P1WE6cOtTWuXGJkZD3aw8nZF_QOCipFaIfj-e_ubEGkXR1UShcRu20AQbM4GtT_PFj_0xjqCnkRu5kFryKZrhVKCUcnmsD8dUW4EKQl52Sddw5vV0ycswNvqh3ftwLwFINhs0_gBuhe4h3BkoJS8ewf6X0K1OAv-zbAL7vJgxooi-GBLe2HDLt2d0-MrQkLBlx1KEhrdnIbDI2Mf6X-iLEJSzk3WPYzyGg935z509nngTuMfNVs6l90JZiVgDwYsR3jshStRVaUIrtLVSO2VVYQ1u7drgW5-XjSly25hQlW3jxBOYdKsuPAOmK1sFWQVc2J5usRp0XwJlWjppW-eaDN5tRFf7VFScuC2O683mgsRcRzFn8GbsezqU0vhvr-2NBuq0nPr6n_IzeD0240Kg6Ibtwmod-2jafOZFBk8HhY3DlFLkKBp8W19R5diBimxfbemWR7HYtqA4qCozeB-VfsOX17Od-bf49Pzmf3gBdxF2pfyfbZicn63DS4Q25-5Vmr9_AdVQ9qY priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fS-QwEB9EEXwR_51WV4ncvdxBpW2Spvsgsqz_OE6f3MO3kqQpLq5d3XXRffMj-Bn9JE7SdnVRBN8KnZAyk2R-05nMD-AXD3QkubA59Zj6DB2s31RK-mGC6yu27WQcD9nZeXzaYX8v-eUM1PydlQKHn4Z2lk-qM-jtPd6ND3DD79dVOVKbnu2SkGDoPoceSVgmgzP2lk0QTceQHDLB_CYexlWb0umx047pA9r8WDT5Hsw6b3S8BIsVjCSt0u7LMGOKFZgviSXHq_D_xBT9G_Py9PzQzQw5PG8RSxU9LgvfSHnbd0jsT1iCBwrpFqTK1OCQfGAMcdx9ZHiNXgk1Q25GQ5xnDTrHRxftU79iUPA1hl2Bz7SmXDJEHQhjEqq1ojRCq0WJyamQkgnFJQ9lgkFebnSugyhLwkBmiYmjPFP0B8wW_cJsABGxjA2LDW5xbe-zJujIKOo1UkzmSmUe_K7Vl-qqvbhlueildZhhVZ06VXvwcyJ7WzbV-FSqUVshrddFiviVM8ExCPJgd_Iat4TNc8jC9EdORtgwNAg9WC-NNpkmYjRA1eBoMWXOiYBttz39puheubbb1GZEeeTBH2f4L748bbWP_rmnze8Ib8ECwrGqLqgBs_eDkdlGyHOvdtx6fgVkMP5b priority: 102 providerName: Scholars Portal |
Title | Genome‐wide DNA methylation changes with age in disease‐free human skeletal muscle |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.12180 https://www.ncbi.nlm.nih.gov/pubmed/24304487 https://www.proquest.com/docview/1505475747 https://www.proquest.com/docview/1507191701 https://pubmed.ncbi.nlm.nih.gov/PMC3954952 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qRfDFb2u0Hiv6opCS249kC76c9WoRe5RipS8SdjcbPNrmpLlD6pN_gn9j_5LObD7sWRH0JQQyS5LdmZ3f7M7-BuCFShw3KqM99VTEEh1svGmtiYca9SslOplQh2x3ku4cyPeH6nAFXndnYRp-iH7BjSwjzNdk4MbWl4zcOH9M3AiaAnZK1iJEtN9zRxHzVMiul5mMN3EGbrlJKY3nV9Nlb3QFYl7NlLyMYIML2r4Nn7uPbzJPjjYWc7vhvv_G6_i_f3cHbrXYlI0aZboLK766BzeaapVn9-HTO1_NTvz5j5_fpoVnbycjRvWnz5psOtYcIa4ZrewynKXYtGLt9g82KU-9Z6EgIKuP0NUh5mcnixrf8wAOtscft3bitixD7DCWS2LpnFBGIpRBbKSFc1YIjqrAtS9FZozMrDJqaDRGjqV3pUt4oYeJKbRPeVlY8RBWq1nlHwHLUpN6mXqcNxwdktXoHQWOG7fSlNYWEbzshid3LWc5lc44zrvYhfopD_0UwfNe9mvD1PFHqfVulPPWWuscQbGSmcLIKoJn_WO0M9o8MZWfLYJMRrFtMoxgrVGK_jVcigS7BltnS-rSCxCH9_KTavolcHkL2mZVPIJXQRv-8uX5aGv8Idw9_hfhJ3ATMV6bbLQOq_PThX-KOGpuB3CNy70BXH8znuztD8JqxCDYEF53pb4Ah-4eTg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gEaMvRvysoq5RHzTZ2O5H23sg5oTDQ46LIZDwVna323gReki5kPun_BuZ3X4AwfDGW5PddtuZ2fnozM4P4KMMDVMycTn1mFOBBpb2tVY0SlG-YtdOxuOQ7Uzi0b74eSAPluBfexbGlVW2OtEr6nxm3D_yr-i4SJFI9H6_nfylDjXKZVdbCI1aLLbt4hxDtmptawP5-4mxzeHe-og2qALUYCgSUmEMl0qgJUbTnnJjNOcMv4SltuCJUiLRUslIpRj4FNYUJmR5GoUqT23MilxzfO49WBY8DlkPlr8PJ792u7xF0vdYzJFIBO2j2m8aorraIWXskevl4BpQXjWBN_zam-WZV91mb_c2H8OjxmElg1rCVmDJlk_gfg1huXgKuz9sOTu29HyaW7IxGRAHSb2oC-xIfaq4Iu5nL0HFRaYlaTJCtDi1lniEQFL9QduHQQA5nle4xjPYvxOKPodeOSvtSyBJrGIrYouKxLhTsymaS440ZVqoQus8gM8t6TLTNDF3WBpHWRvMODJnnswBfOjmntStO_47a7XlQNZs3yq7FLYA3nfDuPFcNkWVdjb3cxIX7IZRAC9qhnXLMMFDJA3enVxjZTfBNfW-PlJOf_vm3tzlXSUL4Itn-i1vng3Wh2N_9er2b3gHD0Z7O-NsvDXZfg0P0eVrao9WoXd2Ordv0K06028bWSZweNfb5wIfhjQo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-hoiFeJrbxET42T_ACUqQktuNU2ksFdOWr4oFWFS-R7TiiGqSIUiHe9ifsb9xfwtlJs1ZMSLxF8lmO7ny-3_nOdwB7PNCR5MLG1GPqMzSwflMp6YcJ7q_YlpNxfcguunGnx04HfLAAP6ZvYcr6EPWFm9UMd15bBb_P8hkll9rc2toICTrsixzNUtCAxVa_d92rowii6Tojh0wwv4mHcFWe1Gby_Js9b5BeoczXyZKzINZZofYKfKzgI2mV8v4EC6b4DB_KhpLPX6D_0xSjO_P395-nYWbIUbdFbIvo5zLhjZSvfMfEXr4SPEjIsCBVhAan5A_GENezj4x_oTVCWE7uJmNcZxV67eOrw45fdU7wNbpbgc-0plwyRBsIXxKqtaI0QmlFicmpkJIJxSUPZYLOXW50roMoS8JAZomJozxTdA0axagwG0BELGPDYoOqre071gQNGEW-RorJXKnMg_0p-1JdlRW33S1u06l7YVmdOlZ7sFvT3pfFNP5LtT2VQlop1DhF3MqZ4Oj8ePC9HkZVsPENWZjRxNEI634GoQfrpdDqZSJGA2QNzhZz4qwJbJnt-ZFieOPKbVMbCeWRBwdO8G_8edo6PD53X5vvIf4GS5dH7fT8pHu2BcuIyKrUoG1oPD5MzA6inkf1tdrcLxQw_gM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome%E2%80%90wide+DNA+methylation+changes+with+age+in+disease%E2%80%90free+human+skeletal+muscle&rft.jtitle=Aging+cell&rft.au=Zykovich%2C+Artem&rft.au=Hubbard%2C+Alan&rft.au=Flynn%2C+James+M.&rft.au=Tarnopolsky%2C+Mark&rft.date=2014-04-01&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=13&rft.issue=2&rft.spage=360&rft.epage=366&rft_id=info:doi/10.1111%2Facel.12180&rft.externalDBID=10.1111%252Facel.12180&rft.externalDocID=ACEL12180 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |