FluNet: An AI-Enabled Influenza-Like Warning System

Influenza is an acute viral respiratory disease that is currently causing severe financial and resource strains worldwide. With the COVID-19 pandemic exceeding 153 million cases worldwide, there is a need for a low-cost and contactless surveillance system to detect symptomatic individuals. The objec...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 21; no. 21; pp. 24740 - 24748
Main Authors Ward, Ryan J., Mark Jjunju, Fred Paul, Kabenge, Isa, Wanyenze, Rhoda, Griffith, Elias J., Banadda, Noble, Taylor, Stephen, Marshall, Alan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1530-437X
1558-1748
DOI10.1109/JSEN.2021.3113467

Cover

Loading…
Abstract Influenza is an acute viral respiratory disease that is currently causing severe financial and resource strains worldwide. With the COVID-19 pandemic exceeding 153 million cases worldwide, there is a need for a low-cost and contactless surveillance system to detect symptomatic individuals. The objective of this study was to develop FluNet, a novel, proof-of-concept, low-cost and contactless device for the detection of high-risk individuals. The system conducts face detection in the LWIR with a precision rating of 0.98, a recall of 0.91, an F-score of 0.96, and a mean intersection over union of 0.74 while sequentially taking the temperature trend of faces with a thermal accuracy of ± 1 K. In parallel, determining if someone is coughing by using a custom lightweight deep convolutional neural network with a precision rating of 0.95, a recall of 0.92, an F-score of 0.94 and an AUC of 0.98. We concluded this study by testing the accuracy of the direction of arrival estimation for the cough detection revealing an error of ± 4.78°. If a subject is symptomatic, a photo is taken with a specified region of interest using a visible light camera. Two datasets have been constructed, one for face detection in the LWIR consisting of 250 images of 20 participants' faces at various rotations and coverings, including face masks. The other for the real-time detection of coughs comprised of 40,482 cough / not cough sounds. These findings could be helpful for future low-cost edge computing applications for influenza-like monitoring.
AbstractList Influenza is an acute viral respiratory disease that is currently causing severe financial and resource strains worldwide. With the COVID-19 pandemic exceeding 153 million cases worldwide, there is a need for a low-cost and contactless surveillance system to detect symptomatic individuals. The objective of this study was to develop FluNet, a novel, proof-of-concept, low-cost and contactless device for the detection of high-risk individuals. The system conducts face detection in the LWIR with a precision rating of 0.98, a recall of 0.91, an F-score of 0.96, and a mean intersection over union of 0.74 while sequentially taking the temperature trend of faces with a thermal accuracy of ± 1 K. In parallel, determining if someone is coughing by using a custom lightweight deep convolutional neural network with a precision rating of 0.95, a recall of 0.92, an F-score of 0.94 and an AUC of 0.98. We concluded this study by testing the accuracy of the direction of arrival estimation for the cough detection revealing an error of ± 4.78°. If a subject is symptomatic, a photo is taken with a specified region of interest using a visible light camera. Two datasets have been constructed, one for face detection in the LWIR consisting of 250 images of 20 participants' faces at various rotations and coverings, including face masks. The other for the real-time detection of coughs comprised of 40,482 cough / not cough sounds. These findings could be helpful for future low-cost edge computing applications for influenza-like monitoring.Influenza is an acute viral respiratory disease that is currently causing severe financial and resource strains worldwide. With the COVID-19 pandemic exceeding 153 million cases worldwide, there is a need for a low-cost and contactless surveillance system to detect symptomatic individuals. The objective of this study was to develop FluNet, a novel, proof-of-concept, low-cost and contactless device for the detection of high-risk individuals. The system conducts face detection in the LWIR with a precision rating of 0.98, a recall of 0.91, an F-score of 0.96, and a mean intersection over union of 0.74 while sequentially taking the temperature trend of faces with a thermal accuracy of ± 1 K. In parallel, determining if someone is coughing by using a custom lightweight deep convolutional neural network with a precision rating of 0.95, a recall of 0.92, an F-score of 0.94 and an AUC of 0.98. We concluded this study by testing the accuracy of the direction of arrival estimation for the cough detection revealing an error of ± 4.78°. If a subject is symptomatic, a photo is taken with a specified region of interest using a visible light camera. Two datasets have been constructed, one for face detection in the LWIR consisting of 250 images of 20 participants' faces at various rotations and coverings, including face masks. The other for the real-time detection of coughs comprised of 40,482 cough / not cough sounds. These findings could be helpful for future low-cost edge computing applications for influenza-like monitoring.
Influenza is an acute viral respiratory disease that is currently causing severe financial and resource strains worldwide. With the COVID-19 pandemic exceeding 153 million cases worldwide, there is a need for a low-cost and contactless surveillance system to detect symptomatic individuals. The objective of this study was to develop FluNet, a novel, proof-of-concept, low-cost and contactless device for the detection of high-risk individuals. The system conducts face detection in the LWIR with a precision rating of 0.98, a recall of 0.91, an F-score of 0.96, and a mean intersection over union of 0.74 while sequentially taking the temperature trend of faces with a thermal accuracy of ± 1 K. In parallel, determining if someone is coughing by using a custom lightweight deep convolutional neural network with a precision rating of 0.95, a recall of 0.92, an F-score of 0.94 and an AUC of 0.98. We concluded this study by testing the accuracy of the direction of arrival estimation for the cough detection revealing an error of ± 4.78°. If a subject is symptomatic, a photo is taken with a specified region of interest using a visible light camera. Two datasets have been constructed, one for face detection in the LWIR consisting of 250 images of 20 participants' faces at various rotations and coverings, including face masks. The other for the real-time detection of coughs comprised of 40,482 cough / not cough sounds. These findings could be helpful for future low-cost edge computing applications for influenza-like monitoring.
Author Marshall, Alan
Wanyenze, Rhoda
Griffith, Elias J.
Mark Jjunju, Fred Paul
Taylor, Stephen
Kabenge, Isa
Ward, Ryan J.
Banadda, Noble
AuthorAffiliation School of Public Health Makerere University 58588 Kampala Uganda
Department of Agricultural and Biosystems Engineering Makerere University 58588 Kampala Uganda
Department of Electrical Engineering and Electronics University of Liverpool 4591 Liverpool L69 7ZX U.K
AuthorAffiliation_xml – name: Department of Agricultural and Biosystems Engineering Makerere University 58588 Kampala Uganda
– name: Department of Electrical Engineering and Electronics University of Liverpool 4591 Liverpool L69 7ZX U.K
– name: School of Public Health Makerere University 58588 Kampala Uganda
Author_xml – sequence: 1
  givenname: Ryan J.
  orcidid: 0000-0002-9850-5191
  surname: Ward
  fullname: Ward, Ryan J.
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K
– sequence: 2
  givenname: Fred Paul
  orcidid: 0000-0001-6257-434X
  surname: Mark Jjunju
  fullname: Mark Jjunju, Fred Paul
  email: fjjunju@liverpool.ac.uk
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K
– sequence: 3
  givenname: Isa
  surname: Kabenge
  fullname: Kabenge, Isa
  organization: Department of Agricultural and Biosystems Engineering, Makerere University, Kampala, Uganda
– sequence: 4
  givenname: Rhoda
  surname: Wanyenze
  fullname: Wanyenze, Rhoda
  organization: School of Public Health, Makerere University, Kampala, Uganda
– sequence: 5
  givenname: Elias J.
  surname: Griffith
  fullname: Griffith, Elias J.
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K
– sequence: 6
  givenname: Noble
  surname: Banadda
  fullname: Banadda, Noble
  organization: Department of Agricultural and Biosystems Engineering, Makerere University, Kampala, Uganda
– sequence: 7
  givenname: Stephen
  orcidid: 0000-0002-2144-8459
  surname: Taylor
  fullname: Taylor, Stephen
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K
– sequence: 8
  givenname: Alan
  orcidid: 0000-0002-8058-5242
  surname: Marshall
  fullname: Marshall, Alan
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35582344$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9P3DAQxa0KVP71A1SVUCQuXLL1ZBzb6QFphRZYtIIDoPZmOckETLMOxAkSfHoS7YIKh57G0vze0xu_HbbhG0-MfQc-AeDZz_Or2cUk4QlMEACFVF_YNqSpjkEJvTG-kccC1Z8tthPCPeeQqVR9ZVs4QAkKsc3wpO4vqPsVTX00ncczb_Oaymjuq7on_2LjhftL0W_beudvo6vn0NFyj21Wtg70bT132c3J7Pr4LF5cns6Pp4u4EEJ1cQVckrYlWIUVFirNeaZEWYmcY6kgByGzAeCgqlLqSmdJngoQeZYXWgJK3GVHK9-HPl9SWZDvWlubh9YtbftsGuvMx413d-a2eTJaS5GhHgwO1wZt89hT6MzShYLq2npq-mASKWUqNOoRPfiE3jd964fzTJJqzRVHhQO1_2-i9yhv_zkAagUUbRNCS5UpXGc714wBXW2Am7E5MzZnxubMurlBCZ-Ub-b_0_xYaRwRvfNZKvhwFr4C_JOhHg
CODEN ISJEAZ
CitedBy_id crossref_primary_10_3390_s25020387
crossref_primary_10_1016_j_jiph_2023_10_038
crossref_primary_10_3389_fdgth_2023_1196079
crossref_primary_10_1007_s10489_023_05006_4
crossref_primary_10_1016_j_imavis_2022_104610
crossref_primary_10_3390_amh70020011
Cites_doi 10.1055/s-2008-1040947
10.1080/03091900802106638
10.3201/eid1406.070839
10.1145/3381014
10.1364/BOE.8.004480
10.1109/ChinaSIP.2013.6625319
10.1142/S2424862220500268
10.3390/s21041495
10.1109/TPAMI.2018.2884458
10.1109/TPAMI.2002.1017623
10.1007/s00521-019-04037-8
10.1016/j.chaos.2020.110059
10.3390/ai1020009
10.1109/IRI49571.2020.00033
10.1016/j.dsx.2020.04.012
10.1152/physiolgenomics.00029.2020
10.2310/7060.2004.19102
10.1109/TBME.2006.873548
10.1109/CVPR.2001.990517
10.1145/2030112.2030163
10.1109/RBME.2020.2987975
10.1109/ICCV.2011.6126544
10.1038/s41591-020-1123-x
10.1109/BMEI.2013.6746943
10.1109/TII.2019.2891738
10.24251/HICSS.2020.412
10.1109/TBCAS.2016.2598794
10.1186/1745-9974-2-8
10.1111/j.1398-9995.1993.tb02399.x
10.1109/TNNLS.2021.3054306
10.1001/archinte.160.21.3243
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
2021 IEEE
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: 2021 IEEE
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SP
7U5
8FD
L7M
7X8
5PM
DOI 10.1109/JSEN.2021.3113467
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Solid State and Superconductivity Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 24748
ExternalDocumentID PMC8864938
35582344
10_1109_JSEN_2021_3113467
9540654
Genre orig-research
Journal Article
GrantInformation_xml – fundername: University of Liverpool Global Challenges Research Fund (GCR) Overseas Development Assistance (ODA) Seed Fund
  grantid: EEG10176
  funderid: 10.13039/501100000836
– fundername: Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/P004040/1
  funderid: 10.13039/501100000266
– fundername: ;
  grantid: EEG10176
– fundername: ;
  grantid: EP/P004040/1
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
NPM
7SP
7U5
8FD
L7M
7X8
5PM
ID FETCH-LOGICAL-c447t-f106e8ad1a73f3c75b0974df4b03d71b14696e8017fd68f892b5414b9bc861363
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Thu Aug 21 14:10:39 EDT 2025
Fri Jul 11 10:59:32 EDT 2025
Mon Jun 30 10:19:51 EDT 2025
Thu Jan 02 22:34:44 EST 2025
Thu Apr 24 23:10:03 EDT 2025
Tue Jul 01 04:26:40 EDT 2025
Wed Aug 27 02:29:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords COVID
COVID-19
SARS
machine learning
face detection
Cough detection
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
This article is free to access and download, along with rights for full text and data mining, re-use and analysis.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-f106e8ad1a73f3c75b0974df4b03d71b14696e8017fd68f892b5414b9bc861363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9850-5191
0000-0002-2144-8459
0000-0001-6257-434X
0000-0002-8058-5242
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8864938
PMID 35582344
PQID 2588070373
PQPubID 75733
PageCount 9
ParticipantIDs proquest_journals_2588070373
ieee_primary_9540654
crossref_primary_10_1109_JSEN_2021_3113467
pubmed_primary_35582344
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8864938
proquest_miscellaneous_2666548388
crossref_citationtrail_10_1109_JSEN_2021_3113467
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationTitleAlternate IEEE Sens J
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
hay (ref16) 2004; 54
ref11
ref10
(ref2) 2020
ref17
ref19
ref18
sainath (ref45) 2015
(ref37) 2021
(ref5) 2020
ref48
(ref39) 2020
ref47
ref42
ref41
ref43
ref8
ref7
(ref1) 2020
ref9
ref4
(ref36) 2021
ref6
ref40
reese (ref44) 2012
(ref38) 2020
ref31
ref30
ref32
salman (ref20) 2020; 4
(ref35) 2020
bradski (ref33) 2000; 25
(ref34) 2020
ref24
ref23
ref26
ref25
lumpur (ref3) 2004
ref22
ref28
ref27
ref29
ward (ref49) 2021
(ref46) 2021
gozes (ref21) 2020
References_xml – year: 2020
  ident: ref2
  publication-title: Coronavirus Disease (COVID-19)
– ident: ref19
  doi: 10.1055/s-2008-1040947
– start-page: 1
  year: 2012
  ident: ref44
  article-title: A comparison of face detection algorithms in visible and thermal spectrums
  publication-title: Proc Int Conf Adv Comput Sci Appl
– ident: ref17
  doi: 10.1080/03091900802106638
– ident: ref4
  doi: 10.3201/eid1406.070839
– year: 2004
  ident: ref3
  publication-title: Informal consultation on influenza pandemic preparedness in countries with limited resources
– ident: ref23
  doi: 10.1145/3381014
– ident: ref48
  doi: 10.1364/BOE.8.004480
– ident: ref32
  doi: 10.1109/ChinaSIP.2013.6625319
– ident: ref14
  doi: 10.1142/S2424862220500268
– ident: ref9
  doi: 10.3390/s21041495
– ident: ref41
  doi: 10.1109/TPAMI.2018.2884458
– volume: 54
  start-page: 448
  year: 2004
  ident: ref16
  article-title: The use of infrared thermometry for the detection of fever
  publication-title: Br J Gen Pract
– ident: ref43
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref10
  doi: 10.1007/s00521-019-04037-8
– year: 2020
  ident: ref35
  publication-title: ReSpeaker Mic Array V2 0-Seeed Wiki
– ident: ref8
  doi: 10.1016/j.chaos.2020.110059
– ident: ref6
  doi: 10.3390/ai1020009
– year: 2021
  ident: ref46
  publication-title: VIVE Tracker (3 0)|VIVE United Kingdom
– ident: ref24
  doi: 10.1109/IRI49571.2020.00033
– ident: ref26
  doi: 10.1016/j.dsx.2020.04.012
– start-page: 1478
  year: 2015
  ident: ref45
  article-title: Convolutional neural networks for small-footprint keyword spotting
  publication-title: Proc INTERSPEECH
– ident: ref7
  doi: 10.1152/physiolgenomics.00029.2020
– year: 2020
  ident: ref38
  publication-title: Intel neural compute stick 2
– year: 2021
  ident: ref36
  publication-title: Buy a Raspberry Pi High Quality Camera-Raspberry Pi
– ident: ref15
  doi: 10.2310/7060.2004.19102
– ident: ref29
  doi: 10.1109/TBME.2006.873548
– year: 2021
  ident: ref49
  publication-title: COVID-19 Thermal Face & Cough Dataset
– ident: ref42
  doi: 10.1109/CVPR.2001.990517
– ident: ref28
  doi: 10.1145/2030112.2030163
– year: 2020
  ident: ref21
  article-title: Rapid AI development cycle for the coronavirus (COVID-19) pandemic: Initial results for automated detection & patient monitoring using deep learning CT image analysis
  publication-title: arXiv 2003 05037
– year: 2021
  ident: ref37
  publication-title: Raspberry Pi High Quality Camera Lens-The Pi Hut
– year: 2020
  ident: ref1
  publication-title: Estimated Influenza Illnesses Medical Visits Hospitalizations and Deaths in the United States-2018-2019 Influenza Season|CDC
– year: 2020
  ident: ref34
  publication-title: Thermal Cameras for Your Smartphone-Seek Thermal|Affordable Infrared Thermal Imaging Cameras
– ident: ref25
  doi: 10.1109/RBME.2020.2987975
– volume: 25
  start-page: 120
  year: 2000
  ident: ref33
  article-title: The openCV library
  publication-title: Software Tools
– ident: ref40
  doi: 10.1109/ICCV.2011.6126544
– year: 2020
  ident: ref5
  publication-title: Symptoms of Coronavirus|CDC
– ident: ref12
  doi: 10.1038/s41591-020-1123-x
– ident: ref30
  doi: 10.1109/BMEI.2013.6746943
– ident: ref11
  doi: 10.1109/TII.2019.2891738
– ident: ref47
  doi: 10.24251/HICSS.2020.412
– volume: 4
  start-page: 18
  year: 2020
  ident: ref20
  article-title: COVID-19 detection using artificial intelligence
  publication-title: International Journal of Academic Engineering Research
– ident: ref27
  doi: 10.1109/TBCAS.2016.2598794
– ident: ref31
  doi: 10.1186/1745-9974-2-8
– ident: ref18
  doi: 10.1111/j.1398-9995.1993.tb02399.x
– year: 2020
  ident: ref39
  publication-title: Raspberry Pi
– ident: ref22
  doi: 10.1109/TNNLS.2021.3054306
– ident: ref13
  doi: 10.1001/archinte.160.21.3243
SSID ssj0019757
Score 2.3691282
Snippet Influenza is an acute viral respiratory disease that is currently causing severe financial and resource strains worldwide. With the COVID-19 pandemic exceeding...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 24740
SubjectTerms Acoustics
Artificial intelligence
Artificial neural networks
Cameras
Cough
Cough detection
COVID
COVID-19
Direction of arrival
Edge computing
Error detection
face detection
Face recognition
Influenza
Low cost
machine learning
Pandemics
Recall
Respiratory diseases
SARS
Sensors
Temperature measurement
Temperature sensors
Warning systems
Title FluNet: An AI-Enabled Influenza-Like Warning System
URI https://ieeexplore.ieee.org/document/9540654
https://www.ncbi.nlm.nih.gov/pubmed/35582344
https://www.proquest.com/docview/2588070373
https://www.proquest.com/docview/2666548388
https://pubmed.ncbi.nlm.nih.gov/PMC8864938
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BLxsPY6N8lI8pk_aEcEliJ7Z5q6ZWgEZfRrW-RbFjCwRK0ZY8jL-ec5wGqCq0t0i-WPbZd77z-X4H8D1Hx1ihWU8SrWLCjA6JDGNLuLIst1ymQrhs5OtJejFlV7NktganXS6MMaZ5fGYG7rOJ5RdzXbursjOJ5kWasHVYR8fN52p1EQPJG1RPFOCQMMpnbQQzCuXZ1a_RBD3BOEIHNaK-pPzLGdQUVVllXy4_k3x17oy34HoxYv_c5H5QV2qgn5bAHP93Sp_hU2uABkO_Y77Amim3YfMVLOE2fGgro9_-6wEdP9QTU50HwzIYXpJRk2pVBJe-tslTTn7e3Zvgt79fCTz--Q5Mx6ObHxekLbRANGO8Ihb9QiPyIso5tVTzRIXoZhSWqZAWPFKoTSUSoPDaIhVWyFi56uFKKi3QHEjpLmyU89LsQ5CiwaUNKg5WoHrAHqQxNqa55AVyPqZ9CBesz3SLQu6KYTxkjTcSysytVuZWK2tXqw8n3S-PHoLjPeKeY3JH2PK3D0eL9c1aIf2bxQkqL9R4HEf1rWtG8XIxk7w08xppUleeWVAh-rDnt0PXt0OmjynDzvmbjdIROOjuty3l3W0D4S1EyiQVB6tHewgf3Zx8yuMRbFR_anOMtk-lvjab_hlMJv1p
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N8TD2AOyTwmBB4gnNbRI7sb23amrVjrYvbKJvUezY2rQpnSB5YH895zgN2zQh3iL5Ytln3_nO5_sdwJccHWOFZj1JtIoJMzokMowt4cqy3HKZCuGykeeLdHLJzpfJcgNOulwYY0zz-Mz03WcTyy9WunZXZQOJ5kWasBfwEs_9JPLZWl3MQPIG1xNFOCSM8mUbw4xCOTj_PlqgLxhH6KJG1BeV_3sKNWVVnrMwnz6UfHDyjN_AfD1m_-Dkpl9Xqq_vn8A5_u-k3sLr1gQNhn7P7MCGKXdh-wEw4S5stbXRr37vAR3f1gtTnQbDMhhOyahJtiqCqa9ucp-T2fWNCX74G5bAI6Dvw-V4dHE2IW2pBaIZ4xWx6BkakRdRzqmlmicqREejsEyFtOCRQn0qkQDF1xapsELGytUPV1JpgQZBSg9gs1yV5h0EKZpc2qDqYAUqCOxBGmNjmkteIOdj2oNwzfpMtzjkrhzGbdb4I6HM3GplbrWydrV68LX75c6DcPyLeM8xuSNs-duDo_X6Zq2Y_sriBNUX6jyOo_rcNaOAuahJXppVjTSpK9AsqBA9OPTboevbYdPHlGHn_NFG6QgcePfjlvL6qgHxFiJlkor3z4_2GLYmF_NZNpsuvn2AV25-PgHyCDarn7X5iJZQpT41AvAHqHgAwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FluNet%3A+An+AI-Enabled+Influenza-Like+Warning+System&rft.jtitle=IEEE+sensors+journal&rft.au=Ward%2C+Ryan+J.&rft.au=Mark+Jjunju%2C+Fred+Paul&rft.au=Kabenge%2C+Isa&rft.au=Wanyenze%2C+Rhoda&rft.date=2021-11-01&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=21&rft.issue=21&rft.spage=24740&rft.epage=24748&rft_id=info:doi/10.1109%2FJSEN.2021.3113467&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2021_3113467
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon