Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles
[Display omitted] In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized usin...
Saved in:
Published in | Journal of colloid and interface science Vol. 498; pp. 423 - 432 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts. |
---|---|
AbstractList | In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts. In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts.In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts. [Display omitted] In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts. |
Author | Khojasteh, Hossein Salavati-Niasari, Masoud Safajou, Hamed Mortazavi-Derazkola, Sobhan |
Author_xml | – sequence: 1 givenname: Hamed surname: Safajou fullname: Safajou, Hamed – sequence: 2 givenname: Hossein surname: Khojasteh fullname: Khojasteh, Hossein – sequence: 3 givenname: Masoud surname: Salavati-Niasari fullname: Salavati-Niasari, Masoud email: salavati@kashanu.ac.ir – sequence: 4 givenname: Sobhan surname: Mortazavi-Derazkola fullname: Mortazavi-Derazkola, Sobhan |
BookMark | eNqFkUFvEzEQhS1UJNLSP8Bpj1x2M7PrrL2IC6raglSpHHK3HHu2cbSxF9spCr8ehyCQOJTTSE_vm8P7LtmFD54Ye4fQIGC_3DU741LTAooGugaEfMUWCMOqFgjdBVsAtFgPYhBv2GVKOwDE1WpYsB-3fqu9IVvN25CD0VlPx-xMZekpaquzC74KY2WPlKrwTLEq8bwlT8uvdrl2j23ltQ8m7OeQXKb0ofoTfnexQIVJh_Q3nXUs_ydKb9nrUU-Jrn_fK7a-u13ffK4fHu-_3Hx6qA3nItc0ArVm1CsOehg5wWYklLgxkiNyMGA3WhvsB24F78FK23WcRkldCWHTXbH357dzDN8OlLLau2RomrSncEiqReyl4Fy2_62ilChE20JfqvJcNTGkFGlUxuVfa-Wo3aQQ1EmM2qmTGHUSo6BTRUxB23_QObq9jseXoY9niMpSz46iSsbRSVwZ2WRlg3sJ_wlcIqu_ |
CitedBy_id | crossref_primary_10_1007_s10854_018_9237_3 crossref_primary_10_1016_j_jtice_2021_11_018 crossref_primary_10_1016_j_ijbiomac_2018_12_213 crossref_primary_10_1016_j_apsusc_2019_144037 crossref_primary_10_1016_j_matlet_2019_02_109 crossref_primary_10_1016_j_jwpe_2021_102372 crossref_primary_10_1039_C9RA06045F crossref_primary_10_1039_D3NA01071F crossref_primary_10_1016_j_jpcs_2018_01_043 crossref_primary_10_1016_j_mtla_2022_101619 crossref_primary_10_1007_s10854_017_7644_5 crossref_primary_10_1016_j_envres_2021_110752 crossref_primary_10_1016_j_spmi_2020_106760 crossref_primary_10_1007_s10854_018_9881_7 crossref_primary_10_1039_D2NJ01308H crossref_primary_10_1016_j_diamond_2019_107551 crossref_primary_10_1016_j_matchemphys_2019_05_085 crossref_primary_10_1016_j_solener_2020_03_057 crossref_primary_10_1016_j_seppur_2022_122846 crossref_primary_10_1039_D2MA00276K crossref_primary_10_1002_slct_202400017 crossref_primary_10_1021_acs_iecr_9b04625 crossref_primary_10_1016_j_jallcom_2019_152837 crossref_primary_10_1002_zaac_201800315 crossref_primary_10_1016_j_ijhydene_2019_05_001 crossref_primary_10_2139_ssrn_4194524 crossref_primary_10_3390_foods10081786 crossref_primary_10_1016_j_ceramint_2022_10_118 crossref_primary_10_3390_su152115384 crossref_primary_10_1002_admi_202101467 crossref_primary_10_1016_j_apsusc_2020_148087 crossref_primary_10_1016_j_jcis_2019_01_011 crossref_primary_10_1016_j_rinp_2019_01_046 crossref_primary_10_1007_s10854_023_11685_z crossref_primary_10_1007_s11356_022_19606_z crossref_primary_10_1007_s41061_022_00397_3 crossref_primary_10_1177_00405175211026534 crossref_primary_10_1039_D1CY00307K crossref_primary_10_1039_D3EN00820G crossref_primary_10_1016_j_conbuildmat_2020_119439 crossref_primary_10_1021_acs_iecr_3c01302 crossref_primary_10_1021_acssuschemeng_8b05426 crossref_primary_10_1016_j_jallcom_2019_03_312 crossref_primary_10_1039_D0RA01880E crossref_primary_10_1007_s11270_024_07111_7 crossref_primary_10_1016_j_arabjc_2023_105545 crossref_primary_10_1016_j_physb_2019_07_047 crossref_primary_10_1080_09593330_2019_1663939 crossref_primary_10_1016_j_mtcomm_2020_101560 crossref_primary_10_1007_s41127_021_00041_9 crossref_primary_10_1016_j_jece_2020_104856 crossref_primary_10_1016_j_jelechem_2020_114724 crossref_primary_10_1021_acsabm_1c00379 crossref_primary_10_1016_j_ijbiomac_2023_127400 crossref_primary_10_1016_j_jmrt_2019_09_071 crossref_primary_10_1016_j_totert_2022_100005 crossref_primary_10_1002_app_54361 crossref_primary_10_1016_j_optmat_2018_10_045 crossref_primary_10_1039_C7DT03878J crossref_primary_10_1007_s12034_019_2026_7 crossref_primary_10_1016_j_jcis_2020_04_103 crossref_primary_10_1016_j_cej_2022_136063 crossref_primary_10_1016_j_mseb_2024_117255 crossref_primary_10_1016_j_ceramint_2021_06_199 crossref_primary_10_1007_s10854_019_01147_w crossref_primary_10_1002_crat_201800257 crossref_primary_10_1007_s10854_019_02612_2 crossref_primary_10_1016_j_ijhydene_2024_08_363 crossref_primary_10_1016_j_mseb_2022_116118 crossref_primary_10_1016_j_jmrt_2019_09_078 crossref_primary_10_1080_00958972_2020_1849641 crossref_primary_10_1080_09593330_2019_1672794 crossref_primary_10_1016_j_apsusc_2019_144353 crossref_primary_10_1088_2053_1591_aaedd1 crossref_primary_10_1016_j_micromeso_2018_05_045 crossref_primary_10_1016_j_nanoso_2018_01_014 crossref_primary_10_1002_jccs_201900076 crossref_primary_10_1016_j_porgcoat_2023_107664 crossref_primary_10_1016_j_polymertesting_2017_11_018 crossref_primary_10_1016_j_jtice_2019_08_016 crossref_primary_10_1016_j_jcis_2019_03_055 crossref_primary_10_1016_j_jcis_2023_09_143 crossref_primary_10_1016_j_jallcom_2019_152873 crossref_primary_10_1007_s10904_025_03700_z crossref_primary_10_1039_D0CS00278J crossref_primary_10_1016_j_envres_2023_116145 crossref_primary_10_1016_j_cattod_2018_12_014 crossref_primary_10_1016_j_ijbiomac_2024_130134 crossref_primary_10_1007_s10854_018_0287_3 crossref_primary_10_1016_j_matchemphys_2019_121769 crossref_primary_10_1007_s10311_020_01092_9 crossref_primary_10_1016_j_conbuildmat_2019_07_114 crossref_primary_10_1016_j_ceramint_2019_08_191 crossref_primary_10_1016_j_surfin_2020_100469 crossref_primary_10_3390_ijms251910253 crossref_primary_10_1007_s10854_019_01623_3 crossref_primary_10_1016_j_jphotochem_2020_112423 crossref_primary_10_1016_j_jmrt_2018_11_019 crossref_primary_10_1016_j_psep_2019_01_018 crossref_primary_10_1039_D1DT03715C crossref_primary_10_3390_nano10112317 crossref_primary_10_1016_j_inoche_2022_109936 crossref_primary_10_1557_s43578_021_00309_z crossref_primary_10_1002_aoc_5830 crossref_primary_10_1016_j_jallcom_2019_05_167 crossref_primary_10_1016_j_ccr_2023_215286 crossref_primary_10_1016_j_cclet_2018_10_017 crossref_primary_10_1016_j_ijhydene_2022_01_240 crossref_primary_10_1016_j_apsusc_2018_11_084 crossref_primary_10_3390_ma17020417 crossref_primary_10_1021_acs_jpcc_3c01968 crossref_primary_10_1016_j_ijhydene_2020_03_153 crossref_primary_10_1016_j_jcis_2020_01_079 crossref_primary_10_3934_matersci_2023003 crossref_primary_10_1007_s10098_024_02785_3 crossref_primary_10_1134_S1560090423701075 crossref_primary_10_1016_j_jmrt_2022_04_092 crossref_primary_10_1002_slct_201800982 crossref_primary_10_1109_TNB_2022_3186941 crossref_primary_10_1016_j_compositesb_2018_10_042 crossref_primary_10_1016_j_nanoso_2019_100258 crossref_primary_10_1002_slct_201700775 crossref_primary_10_1016_j_psep_2020_08_042 crossref_primary_10_1016_j_vacuum_2020_109766 crossref_primary_10_1016_j_ijbiomac_2020_07_321 crossref_primary_10_1021_acsanm_3c02360 crossref_primary_10_1016_j_jclepro_2019_04_350 crossref_primary_10_1016_j_apsusc_2018_06_288 crossref_primary_10_1016_j_compositesb_2018_12_100 crossref_primary_10_1021_acsanm_4c05284 crossref_primary_10_1016_j_matlet_2019_01_021 crossref_primary_10_1016_j_jmrt_2020_05_103 crossref_primary_10_1111_php_12937 crossref_primary_10_3390_catal12060618 crossref_primary_10_1016_j_jiec_2019_10_008 crossref_primary_10_1016_j_seppur_2018_01_010 crossref_primary_10_1016_j_ceramint_2020_05_297 crossref_primary_10_1002_tcr_201700022 crossref_primary_10_1007_s11270_024_06969_x crossref_primary_10_1016_j_apsusc_2022_152867 crossref_primary_10_1016_j_colsurfa_2019_124011 crossref_primary_10_1016_j_electacta_2020_135972 crossref_primary_10_1021_acs_iecr_2c03460 crossref_primary_10_1002_slct_201701132 crossref_primary_10_1016_j_jallcom_2022_167723 crossref_primary_10_1007_s13762_018_2048_5 crossref_primary_10_1016_j_apcata_2017_09_028 crossref_primary_10_1002_slct_202100215 crossref_primary_10_1021_acs_langmuir_4c02106 crossref_primary_10_1007_s10854_019_02173_4 crossref_primary_10_1016_j_rechem_2022_100488 crossref_primary_10_1007_s11356_021_17568_2 crossref_primary_10_1016_j_apsusc_2019_143911 crossref_primary_10_1038_s41598_020_70512_1 crossref_primary_10_1016_j_molliq_2021_115734 crossref_primary_10_1016_j_surfcoat_2018_12_052 crossref_primary_10_1021_acs_iecr_9b04468 crossref_primary_10_1021_acsomega_0c02325 crossref_primary_10_1007_s11696_020_01243_w crossref_primary_10_3390_catal8110491 crossref_primary_10_1007_s10854_017_7762_0 crossref_primary_10_1007_s12034_018_1678_z crossref_primary_10_1016_j_ecoenv_2023_115285 crossref_primary_10_1016_j_jwpe_2022_103360 crossref_primary_10_1016_j_jallcom_2019_152347 crossref_primary_10_1016_j_jallcom_2021_162886 crossref_primary_10_1016_j_msec_2019_04_012 crossref_primary_10_1007_s10854_024_11957_2 crossref_primary_10_1016_j_mseb_2019_04_011 crossref_primary_10_1080_00405000_2020_1848113 crossref_primary_10_1016_j_apsusc_2017_08_194 crossref_primary_10_1007_s10895_024_04014_y crossref_primary_10_1007_s12274_017_1776_z crossref_primary_10_1016_j_synthmet_2020_116432 crossref_primary_10_1007_s10854_017_7286_7 crossref_primary_10_1016_j_jphotochem_2020_112530 crossref_primary_10_1021_acs_iecr_8b03016 crossref_primary_10_1016_j_apsusc_2019_05_091 crossref_primary_10_1007_s11164_024_05383_6 crossref_primary_10_1016_j_cej_2023_144782 crossref_primary_10_3390_nano11123195 crossref_primary_10_1007_s10854_019_01214_2 crossref_primary_10_1016_j_biopha_2020_110443 crossref_primary_10_1016_j_gee_2019_04_002 crossref_primary_10_1016_j_microc_2020_105150 crossref_primary_10_1016_j_synthmet_2021_116957 crossref_primary_10_1038_s41598_025_89742_2 crossref_primary_10_1177_09540083211053742 crossref_primary_10_1016_j_tet_2021_132083 crossref_primary_10_1016_j_ceramint_2019_09_044 crossref_primary_10_1021_acsomega_0c04889 crossref_primary_10_1016_j_molliq_2018_11_064 crossref_primary_10_1016_j_jpcs_2023_111677 crossref_primary_10_1021_acsomega_0c03312 crossref_primary_10_1016_j_colsurfa_2022_129632 crossref_primary_10_1016_j_jcis_2019_05_105 crossref_primary_10_1016_j_diamond_2024_111357 crossref_primary_10_1016_j_molliq_2021_116461 crossref_primary_10_1002_wer_1177 crossref_primary_10_1080_24701556_2024_2356046 crossref_primary_10_2139_ssrn_4154130 crossref_primary_10_1007_s10854_018_00568_3 crossref_primary_10_1016_j_ceramint_2024_12_187 crossref_primary_10_1088_1361_6528_ab8084 crossref_primary_10_1016_S1872_2067_20_63560_4 crossref_primary_10_1016_j_nanoso_2019_100405 crossref_primary_10_1016_j_chemosphere_2021_131263 crossref_primary_10_1016_j_chemosphere_2024_143773 crossref_primary_10_1007_s10854_017_7354_z crossref_primary_10_1016_j_jiec_2020_08_022 crossref_primary_10_1002_sia_6761 crossref_primary_10_1016_j_mseb_2019_03_017 crossref_primary_10_20964_2020_02_05 crossref_primary_10_1002_aoc_4698 crossref_primary_10_1016_j_apcatb_2020_119574 crossref_primary_10_1007_s11051_022_05636_8 crossref_primary_10_1007_s10854_020_04054_7 crossref_primary_10_1016_j_apcata_2023_119158 crossref_primary_10_1016_j_diamond_2018_09_019 crossref_primary_10_1021_acsomega_9b02040 crossref_primary_10_1016_j_jhazmat_2021_125330 crossref_primary_10_1016_j_jece_2020_104901 crossref_primary_10_1016_j_mtcomm_2020_101194 crossref_primary_10_1016_j_reactfunctpolym_2022_105208 crossref_primary_10_1038_s41370_020_0241_3 crossref_primary_10_1016_j_jmrt_2019_09_011 crossref_primary_10_3390_catal10080921 crossref_primary_10_1016_j_ijbiomac_2020_10_084 crossref_primary_10_3390_molecules30010099 crossref_primary_10_1016_j_ijhydene_2019_06_083 crossref_primary_10_1002_cssc_201801642 crossref_primary_10_1016_j_jallcom_2019_07_179 crossref_primary_10_1007_s12613_020_2124_y crossref_primary_10_1021_acsomega_8b02817 crossref_primary_10_3390_ma16041742 crossref_primary_10_1007_s41779_018_0246_8 crossref_primary_10_1016_j_ijbiomac_2019_07_098 crossref_primary_10_1007_s10934_019_00767_1 crossref_primary_10_1016_j_heliyon_2024_e31351 crossref_primary_10_1080_01932691_2022_2151456 crossref_primary_10_1016_j_jcis_2018_05_087 crossref_primary_10_1016_j_ijhydene_2017_05_028 crossref_primary_10_3390_catal14120940 crossref_primary_10_1007_s11356_020_12066_3 crossref_primary_10_1007_s10854_018_9701_0 crossref_primary_10_1016_j_mssp_2025_109333 crossref_primary_10_1016_j_coco_2025_102359 crossref_primary_10_1007_s40042_025_01314_9 crossref_primary_10_3390_pr6090137 crossref_primary_10_1002_slct_201803620 crossref_primary_10_1016_j_susmat_2019_e00128 crossref_primary_10_1016_j_inoche_2023_111333 crossref_primary_10_1021_acsomega_1c03189 crossref_primary_10_1016_j_nanoso_2019_100412 crossref_primary_10_1007_s10904_018_0817_8 crossref_primary_10_1016_j_mtcomm_2024_110753 crossref_primary_10_1016_j_apsusc_2019_02_136 crossref_primary_10_1016_j_jhazmat_2019_121016 crossref_primary_10_1021_acs_iecr_8b05586 crossref_primary_10_1016_j_jsamd_2019_08_004 crossref_primary_10_1016_j_jece_2020_104921 |
Cites_doi | 10.1126/science.1075035 10.1016/j.apcata.2006.08.024 10.1038/nmat1849 10.1039/c0cc01259a 10.1016/j.carbon.2014.04.067 10.1021/es0492788 10.1016/j.ultsonch.2011.03.021 10.1016/j.renene.2007.05.018 10.1016/j.diamond.2012.04.003 10.1023/A:1025548512438 10.1021/cs400077r 10.1039/C1RA00621E 10.1007/s10854-015-3884-4 10.1016/S0926-3373(02)00269-2 10.1016/j.diamond.2012.02.016 10.1021/jp0255482 10.1039/C2RA22054G 10.1021/jz900265j 10.1016/j.matlet.2013.07.072 10.1002/anie.200901678 10.1021/ja404851s 10.1016/j.matlet.2005.08.005 10.1021/jp209035e 10.1021/jp025993x 10.1016/S0920-5861(99)00233-3 10.1016/j.powtec.2010.03.034 10.1016/j.diamond.2013.06.011 10.1023/B:CATL.0000011084.43007.80 10.1021/nn901221k 10.1007/s10854-015-4197-3 10.1021/jz100580x 10.1021/am300772t 10.1016/j.carbon.2007.02.034 10.1021/am301782h 10.1016/j.jhazmat.2006.05.075 10.1021/jo401032r 10.1021/ja01539a017 10.4172/2157-7439.1000253 10.1016/j.micron.2013.10.006 10.1039/C6RA13613C |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jcis.2017.03.078 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 432 |
ExternalDocumentID | 10_1016_j_jcis_2017_03_078 S0021979717303442 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c447t-ef0e2cfa540a9f4e0bfe181bc841140c0dbaac1694d7460d8d334ef8e3c160b3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 12:24:16 EDT 2025 Sun Aug 24 04:03:49 EDT 2025 Tue Jul 01 01:18:22 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 Fri Feb 23 02:24:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DRS Photocatalysis GO Palladium Gr TNBT Nanostructures TGA EDS Graphene Gr/Pd/TiO2-NW SEM Gr/Pd/TiO2-NP ICP-OES TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-ef0e2cfa540a9f4e0bfe181bc841140c0dbaac1694d7460d8d334ef8e3c160b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0021979717303442?via%3Dihub |
PQID | 1881772206 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2116874482 proquest_miscellaneous_1881772206 crossref_citationtrail_10_1016_j_jcis_2017_03_078 crossref_primary_10_1016_j_jcis_2017_03_078 elsevier_sciencedirect_doi_10_1016_j_jcis_2017_03_078 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-15 |
PublicationDateYYYYMMDD | 2017-07-15 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of colloid and interface science |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Khojasteh, Salavati-Niasari, Mortazavi-Derazkola (b0035) 2016; 27 Chen, Luo, Huang, Chen, Chen, Chen (b0040) 2013; 38 Bai, Kim, Liao, Liu (b0095) 2013; 78 Kato, Kudo (b0080) 2002; 106 Rao, Sood, Subrahmanyam, Govindaraj (b0120) 2009; 48 Arthi G, Bd (b0135) 2015; 06 Strukul, Gavagnin, Pinna, Modaferri, Perathoner, Centi, Marella, Tomaselli (b0115) 2000; 55 Kim, Moon, Monllor-Satoca, Park, Choi (b0030) 2012; 116 Ihara, Miyoshi, Iriyama, Matsumoto, Sugihara (b0065) 2003; 42 Khan, Al-Shahry, Ingler (b0070) 2002; 297 Yamakata, Ishibashi, Onishi (b0090) 2002; 106 Xiong, Zhang, Ma, Zhao (b0015) 2010; 46 Chin, Park, Kim, Jurng (b0050) 2010; 201 Chang, Shen (b0075) 2006; 60 Sun, Fugetsu (b0130) 2013; 109 Khojasteh, Salavati-Niasari, Mazhari, Hamadanian (b0165) 2016; 6 Khojasteh, Salavati-Niasari, Abbasi, Azizi, Enhessari (b0110) 2016; 27 Tran, Kabiri, Losic (b0180) 2014; 76 Huang, Ge, Lin, Guo, Yuan, Fu, Li (b0170) 2013; 3 Jasuja, Linn, Melton, Berry (b0150) 2010; 1 Prabakar, Takahashi, Nezuka, Takahashi, Nakashima, Kubota, Fujishima (b0060) 2008; 33 Li, Liu, Huang, Yang, Xia, Li (b0155) 2013; 3 Guo, Zhu, Chen, Li, Yu, Liu, Li, Feng, Zhang (b0010) 2011; 18 Roco (b0100) 2003; 5 Kamat (b0140) 2010; 1 David, Bhandavat, Kulkarni, Pahwa, Zhong, Singh (b0145) 2013; 5 Vidhu, Philip (b0020) 2014; 56 Guo, Li, Zhu, Chen, Liu, Zhang, Moon, Song (b0200) 2012; 2 Meng, Li, Cushing, Zhi, Wu (b0160) 2013; 135 Panpranot, Kontapakdee, Praserthdam (b0105) 2006; 314 Orlov, Jefferson, Macleod, Lambert (b0085) 2004; 92 Kyung, Lee, Choi (b0005) 2005; 39 Oller, Gernjak, Maldonado, Pérez-Estrada, Sánchez-Pérez, Malato (b0045) 2006; 138 Zhang, Lv, Li, Wang, Li (b0190) 2010; 4 Pan, Zhao, Liu, Korzeniewski, Wang, Fan (b0185) 2012; 4 Min, Zhang, Chen, Chen, Zhang (b0025) 2012; 26 Hummers, Offeman (b0175) 1958; 80 Geim, Novoselov (b0125) 2007; 6 Stankovich, Dikin, Piner, Kohlhaas, Kleinhammes, Jia, Wu, Nguyen, Ruoff (b0195) 2007; 45 Ban, Hasegawa (b0055) 2012; 25 Sun (10.1016/j.jcis.2017.03.078_b0130) 2013; 109 Pan (10.1016/j.jcis.2017.03.078_b0185) 2012; 4 Kyung (10.1016/j.jcis.2017.03.078_b0005) 2005; 39 Orlov (10.1016/j.jcis.2017.03.078_b0085) 2004; 92 Khojasteh (10.1016/j.jcis.2017.03.078_b0110) 2016; 27 Zhang (10.1016/j.jcis.2017.03.078_b0190) 2010; 4 Guo (10.1016/j.jcis.2017.03.078_b0010) 2011; 18 Ihara (10.1016/j.jcis.2017.03.078_b0065) 2003; 42 Min (10.1016/j.jcis.2017.03.078_b0025) 2012; 26 Roco (10.1016/j.jcis.2017.03.078_b0100) 2003; 5 Khojasteh (10.1016/j.jcis.2017.03.078_b0165) 2016; 6 Chen (10.1016/j.jcis.2017.03.078_b0040) 2013; 38 Kim (10.1016/j.jcis.2017.03.078_b0030) 2012; 116 Jasuja (10.1016/j.jcis.2017.03.078_b0150) 2010; 1 Guo (10.1016/j.jcis.2017.03.078_b0200) 2012; 2 Vidhu (10.1016/j.jcis.2017.03.078_b0020) 2014; 56 Kato (10.1016/j.jcis.2017.03.078_b0080) 2002; 106 Arthi G (10.1016/j.jcis.2017.03.078_b0135) 2015; 06 Khojasteh (10.1016/j.jcis.2017.03.078_b0035) 2016; 27 Prabakar (10.1016/j.jcis.2017.03.078_b0060) 2008; 33 Khan (10.1016/j.jcis.2017.03.078_b0070) 2002; 297 Oller (10.1016/j.jcis.2017.03.078_b0045) 2006; 138 Kamat (10.1016/j.jcis.2017.03.078_b0140) 2010; 1 Chang (10.1016/j.jcis.2017.03.078_b0075) 2006; 60 Stankovich (10.1016/j.jcis.2017.03.078_b0195) 2007; 45 Bai (10.1016/j.jcis.2017.03.078_b0095) 2013; 78 David (10.1016/j.jcis.2017.03.078_b0145) 2013; 5 Meng (10.1016/j.jcis.2017.03.078_b0160) 2013; 135 Huang (10.1016/j.jcis.2017.03.078_b0170) 2013; 3 Geim (10.1016/j.jcis.2017.03.078_b0125) 2007; 6 Xiong (10.1016/j.jcis.2017.03.078_b0015) 2010; 46 Strukul (10.1016/j.jcis.2017.03.078_b0115) 2000; 55 Tran (10.1016/j.jcis.2017.03.078_b0180) 2014; 76 Rao (10.1016/j.jcis.2017.03.078_b0120) 2009; 48 Ban (10.1016/j.jcis.2017.03.078_b0055) 2012; 25 Chin (10.1016/j.jcis.2017.03.078_b0050) 2010; 201 Yamakata (10.1016/j.jcis.2017.03.078_b0090) 2002; 106 Hummers (10.1016/j.jcis.2017.03.078_b0175) 1958; 80 Li (10.1016/j.jcis.2017.03.078_b0155) 2013; 3 Panpranot (10.1016/j.jcis.2017.03.078_b0105) 2006; 314 |
References_xml | – volume: 135 start-page: 10286 year: 2013 end-page: 10289 ident: b0160 article-title: Solar hydrogen generation by nanoscale p–n Junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 380 year: 2010 end-page: 386 ident: b0190 article-title: P25-Graphene composite as a high performance photocatalyst publication-title: ACS Nano – volume: 38 start-page: 52 year: 2013 end-page: 58 ident: b0040 article-title: Preparation and blood compatibility of carbon/TiO publication-title: Diam. Relat. Mater. – volume: 116 start-page: 1535 year: 2012 end-page: 1543 ident: b0030 article-title: Solar photoconversion using graphene/TiO publication-title: J. Phys. Chem. C – volume: 5 start-page: 181 year: 2003 end-page: 189 ident: b0100 article-title: Broader societal issues of nanotechnology publication-title: J. Nanopart. Res. – volume: 25 start-page: 92 year: 2012 end-page: 97 ident: b0055 article-title: Deposition of diamond-like carbon thin films containing photocatalytic titanium dioxide nanoparticles publication-title: Diam. Relat. Mater. – volume: 60 start-page: 129 year: 2006 end-page: 132 ident: b0075 article-title: Synthesis and characterization of chromium doped SrTiO publication-title: Mater. Lett. – volume: 39 start-page: 2376 year: 2005 end-page: 2382 ident: b0005 article-title: Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO publication-title: Environ. Sci. Technol. – volume: 106 start-page: 5029 year: 2002 end-page: 5034 ident: b0080 article-title: Visible-light-response and photocatalytic activities of TiO publication-title: J. Phys. Chem. B – volume: 78 start-page: 8821 year: 2013 end-page: 8825 ident: b0095 article-title: Oxidative heck reaction of glycals and aryl hydrazines: a palladium-catalyzed C-glycosylation publication-title: Org. Chem. – volume: 26 start-page: 32 year: 2012 end-page: 38 ident: b0025 article-title: Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties publication-title: Diam. Relat. Mater. – volume: 42 start-page: 403 year: 2003 end-page: 409 ident: b0065 article-title: Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping publication-title: Appl. Catal. B – volume: 138 start-page: 507 year: 2006 end-page: 517 ident: b0045 article-title: Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale publication-title: J. Hazard. Mater. – volume: 109 start-page: 207 year: 2013 end-page: 210 ident: b0130 article-title: Mass production of graphene oxide from expanded graphite publication-title: Mater. Lett. – volume: 92 start-page: 41 year: 2004 end-page: 47 ident: b0085 article-title: Photocatalytic properties of TiO publication-title: Catal. Lett. – volume: 106 start-page: 9122 year: 2002 end-page: 9125 ident: b0090 article-title: Electron- and hole-capture reactions on Pt/TiO publication-title: J. Phys. Chem. B – volume: 56 start-page: 54 year: 2014 end-page: 62 ident: b0020 article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles publication-title: Micron – volume: 55 start-page: 139 year: 2000 end-page: 149 ident: b0115 article-title: Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: from powders to membranes publication-title: Catal. Today – volume: 6 start-page: 183 year: 2007 end-page: 191 ident: b0125 article-title: The rise of graphene publication-title: Nat. Mater. – volume: 46 start-page: 6099 year: 2010 end-page: 6101 ident: b0015 article-title: Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation publication-title: Chem. Commun. – volume: 314 start-page: 128 year: 2006 end-page: 133 ident: b0105 article-title: Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO publication-title: Appl. Catal. A – volume: 27 start-page: 1261 year: 2016 end-page: 1269 ident: b0110 article-title: Synthesis, characterization and photocatalytic activity of PdO/TiO publication-title: J. Mater. Sci. Mater. Electron. – volume: 1 start-page: 1853 year: 2010 end-page: 1860 ident: b0150 article-title: Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic electrical, and raman properties publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 1558 year: 2007 end-page: 1565 ident: b0195 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon – volume: 297 start-page: 2243 year: 2002 end-page: 2245 ident: b0070 article-title: Efficient photochemical water splitting by a chemically modified n-TiO publication-title: Science – volume: 48 start-page: 7752 year: 2009 end-page: 7777 ident: b0120 article-title: Graphene: the new two-dimensional nanomaterial publication-title: Angew. Chem. Int. Ed. – volume: 76 start-page: 193 year: 2014 end-page: 202 ident: b0180 article-title: A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids publication-title: Carbon – volume: 1 start-page: 520 year: 2010 end-page: 527 ident: b0140 article-title: Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support publication-title: Phys. Chem. Lett. – volume: 33 start-page: 277 year: 2008 end-page: 281 ident: b0060 article-title: Visible light-active nitrogen-doped TiO publication-title: Renewable Energy – volume: 4 start-page: 3944 year: 2012 end-page: 3950 ident: b0185 article-title: Comparing graphene-TiO publication-title: ACS Appl. Mater. Interfaces. – volume: 3 start-page: 839 year: 2013 end-page: 845 ident: b0155 article-title: One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation publication-title: ACS Catal. – volume: 27 start-page: 3599 year: 2016 end-page: 3607 ident: b0035 article-title: Synthesis, characterization and photocatalytic properties of nickel-doped TiO publication-title: J. Mater. Sci. Mater. Electron. – volume: 201 start-page: 171 year: 2010 end-page: 176 ident: b0050 article-title: Photocatalytic degradation of methylene blue with TiO publication-title: Powder Technol. – volume: 6 start-page: 78043 year: 2016 end-page: 78052 ident: b0165 article-title: Preparation and characterization of Fe publication-title: RSC Adv. – volume: 5 start-page: 546 year: 2013 end-page: 552 ident: b0145 article-title: Synthesis of graphene films by rapid heating and quenching at ambient pressures and their electrochemical characterization publication-title: ACS Appl. Mater. Interfaces. – volume: 80 year: 1958 ident: b0175 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1356 year: 2012 end-page: 1363 ident: b0200 article-title: Synthesis of WO publication-title: RSC Adv. – volume: 18 start-page: 1082 year: 2011 end-page: 1090 ident: b0010 article-title: Sonochemical synthesis of TiO publication-title: Ultrason. Sonochem. – volume: 06 year: 2015 ident: b0135 article-title: A simple approach to stepwise synthesis of graphene oxide nanomaterial publication-title: J. Nanomed. Nanotech. – volume: 3 start-page: 1235 year: 2013 end-page: 1242 ident: b0170 article-title: Facile one-pot preparation of [small alpha]-SnWO publication-title: RSC Adv. – volume: 297 start-page: 2243 issue: 5590 year: 2002 ident: 10.1016/j.jcis.2017.03.078_b0070 article-title: Efficient photochemical water splitting by a chemically modified n-TiO2 publication-title: Science doi: 10.1126/science.1075035 – volume: 314 start-page: 128 issue: 1 year: 2006 ident: 10.1016/j.jcis.2017.03.078_b0105 article-title: Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported Pd catalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2006.08.024 – volume: 6 start-page: 183 issue: 3 year: 2007 ident: 10.1016/j.jcis.2017.03.078_b0125 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 46 start-page: 6099 issue: 33 year: 2010 ident: 10.1016/j.jcis.2017.03.078_b0015 article-title: Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation publication-title: Chem. Commun. doi: 10.1039/c0cc01259a – volume: 76 start-page: 193 year: 2014 ident: 10.1016/j.jcis.2017.03.078_b0180 article-title: A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids publication-title: Carbon doi: 10.1016/j.carbon.2014.04.067 – volume: 39 start-page: 2376 issue: 7 year: 2005 ident: 10.1016/j.jcis.2017.03.078_b0005 article-title: Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination publication-title: Environ. Sci. Technol. doi: 10.1021/es0492788 – volume: 18 start-page: 1082 issue: 5 year: 2011 ident: 10.1016/j.jcis.2017.03.078_b0010 article-title: Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2011.03.021 – volume: 33 start-page: 277 issue: 2 year: 2008 ident: 10.1016/j.jcis.2017.03.078_b0060 article-title: Visible light-active nitrogen-doped TiO2 thin films prepared by DC magnetron sputtering used as a photocatalyst publication-title: Renewable Energy doi: 10.1016/j.renene.2007.05.018 – volume: 26 start-page: 32 year: 2012 ident: 10.1016/j.jcis.2017.03.078_b0025 article-title: Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2012.04.003 – volume: 5 start-page: 181 issue: 3 year: 2003 ident: 10.1016/j.jcis.2017.03.078_b0100 article-title: Broader societal issues of nanotechnology publication-title: J. Nanopart. Res. doi: 10.1023/A:1025548512438 – volume: 3 start-page: 839 issue: 5 year: 2013 ident: 10.1016/j.jcis.2017.03.078_b0155 article-title: One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation publication-title: ACS Catal. doi: 10.1021/cs400077r – volume: 2 start-page: 1356 issue: 4 year: 2012 ident: 10.1016/j.jcis.2017.03.078_b0200 article-title: Synthesis of WO3@Graphene composite for enhanced photocatalytic oxygen evolution from water publication-title: RSC Adv. doi: 10.1039/C1RA00621E – volume: 27 start-page: 1261 issue: 2 year: 2016 ident: 10.1016/j.jcis.2017.03.078_b0110 article-title: Synthesis, characterization and photocatalytic activity of PdO/TiO2 and Pd/TiO2 nanocomposites publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-3884-4 – volume: 42 start-page: 403 issue: 4 year: 2003 ident: 10.1016/j.jcis.2017.03.078_b0065 article-title: Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping publication-title: Appl. Catal. B doi: 10.1016/S0926-3373(02)00269-2 – volume: 25 start-page: 92 year: 2012 ident: 10.1016/j.jcis.2017.03.078_b0055 article-title: Deposition of diamond-like carbon thin films containing photocatalytic titanium dioxide nanoparticles publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2012.02.016 – volume: 106 start-page: 5029 issue: 19 year: 2002 ident: 10.1016/j.jcis.2017.03.078_b0080 article-title: Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium publication-title: J. Phys. Chem. B doi: 10.1021/jp0255482 – volume: 3 start-page: 1235 issue: 4 year: 2013 ident: 10.1016/j.jcis.2017.03.078_b0170 article-title: Facile one-pot preparation of [small alpha]-SnWO4/reduced graphene oxide (RGO) nanocomposite with improved visible light photocatalytic activity and anode performance for Li-ion batteries publication-title: RSC Adv. doi: 10.1039/C2RA22054G – volume: 1 start-page: 520 issue: 2 year: 2010 ident: 10.1016/j.jcis.2017.03.078_b0140 article-title: Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support publication-title: Phys. Chem. Lett. doi: 10.1021/jz900265j – volume: 109 start-page: 207 year: 2013 ident: 10.1016/j.jcis.2017.03.078_b0130 article-title: Mass production of graphene oxide from expanded graphite publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.07.072 – volume: 48 start-page: 7752 issue: 42 year: 2009 ident: 10.1016/j.jcis.2017.03.078_b0120 article-title: Graphene: the new two-dimensional nanomaterial publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901678 – volume: 135 start-page: 10286 issue: 28 year: 2013 ident: 10.1016/j.jcis.2017.03.078_b0160 article-title: Solar hydrogen generation by nanoscale p–n Junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404851s – volume: 60 start-page: 129 issue: 1 year: 2006 ident: 10.1016/j.jcis.2017.03.078_b0075 article-title: Synthesis and characterization of chromium doped SrTiO3 photocatalyst publication-title: Mater. Lett. doi: 10.1016/j.matlet.2005.08.005 – volume: 116 start-page: 1535 issue: 1 year: 2012 ident: 10.1016/j.jcis.2017.03.078_b0030 article-title: Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet publication-title: J. Phys. Chem. C doi: 10.1021/jp209035e – volume: 106 start-page: 9122 issue: 35 year: 2002 ident: 10.1016/j.jcis.2017.03.078_b0090 article-title: Electron- and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy publication-title: J. Phys. Chem. B doi: 10.1021/jp025993x – volume: 55 start-page: 139 issue: 1–2 year: 2000 ident: 10.1016/j.jcis.2017.03.078_b0115 article-title: Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: from powders to membranes publication-title: Catal. Today doi: 10.1016/S0920-5861(99)00233-3 – volume: 201 start-page: 171 issue: 2 year: 2010 ident: 10.1016/j.jcis.2017.03.078_b0050 article-title: Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.03.034 – volume: 38 start-page: 52 year: 2013 ident: 10.1016/j.jcis.2017.03.078_b0040 article-title: Preparation and blood compatibility of carbon/TiO2 nanocomposite publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2013.06.011 – volume: 92 start-page: 41 issue: 1 year: 2004 ident: 10.1016/j.jcis.2017.03.078_b0085 article-title: Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution publication-title: Catal. Lett. doi: 10.1023/B:CATL.0000011084.43007.80 – volume: 4 start-page: 380 issue: 1 year: 2010 ident: 10.1016/j.jcis.2017.03.078_b0190 article-title: P25-Graphene composite as a high performance photocatalyst publication-title: ACS Nano doi: 10.1021/nn901221k – volume: 27 start-page: 3599 issue: 4 year: 2016 ident: 10.1016/j.jcis.2017.03.078_b0035 article-title: Synthesis, characterization and photocatalytic properties of nickel-doped TiO2 and nickel titanate nanoparticles publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-015-4197-3 – volume: 1 start-page: 1853 issue: 12 year: 2010 ident: 10.1016/j.jcis.2017.03.078_b0150 article-title: Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic electrical, and raman properties publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100580x – volume: 4 start-page: 3944 issue: 8 year: 2012 ident: 10.1016/j.jcis.2017.03.078_b0185 article-title: Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am300772t – volume: 45 start-page: 1558 issue: 7 year: 2007 ident: 10.1016/j.jcis.2017.03.078_b0195 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 5 start-page: 546 issue: 3 year: 2013 ident: 10.1016/j.jcis.2017.03.078_b0145 article-title: Synthesis of graphene films by rapid heating and quenching at ambient pressures and their electrochemical characterization publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am301782h – volume: 138 start-page: 507 issue: 3 year: 2006 ident: 10.1016/j.jcis.2017.03.078_b0045 article-title: Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.05.075 – volume: 78 start-page: 8821 issue: 17 year: 2013 ident: 10.1016/j.jcis.2017.03.078_b0095 article-title: Oxidative heck reaction of glycals and aryl hydrazines: a palladium-catalyzed C-glycosylation publication-title: Org. Chem. doi: 10.1021/jo401032r – volume: 80 issue: 6 year: 1958 ident: 10.1016/j.jcis.2017.03.078_b0175 article-title: Preparation of graphitic oxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 06 issue: 01 year: 2015 ident: 10.1016/j.jcis.2017.03.078_b0135 article-title: A simple approach to stepwise synthesis of graphene oxide nanomaterial publication-title: J. Nanomed. Nanotech. doi: 10.4172/2157-7439.1000253 – volume: 56 start-page: 54 year: 2014 ident: 10.1016/j.jcis.2017.03.078_b0020 article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles publication-title: Micron doi: 10.1016/j.micron.2013.10.006 – volume: 6 start-page: 78043 issue: 81 year: 2016 ident: 10.1016/j.jcis.2017.03.078_b0165 article-title: Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@SiO2@TiO2@Pd-Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation publication-title: RSC Adv. doi: 10.1039/C6RA13613C |
SSID | ssj0011559 |
Score | 2.6265876 |
Snippet | [Display omitted]
In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs... In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 423 |
SubjectTerms | dyes energy-dispersive X-ray analysis Fourier transform infrared spectroscopy Graphene irradiation nanocomposites nanoparticles Nanostructures nanowires Palladium Photocatalysis photocatalysts powders reducing agents rhodamines scanning electron microscopy semiconductors surface area texture thermogravimetry TiO2 titanium dioxide transmission electron microscopy ultraviolet radiation X-ray diffraction |
Title | Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles |
URI | https://dx.doi.org/10.1016/j.jcis.2017.03.078 https://www.proquest.com/docview/1881772206 https://www.proquest.com/docview/2116874482 |
Volume | 498 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPQCHikIRUIqMxA2la8fOixtagbZFPA5biZvlp9gVSlZk90AP_e3M5LG0VeHAMSNbiTzjGTvzzTeEHFuewq6BS05huIxkEZsI7CaLUsFskjorhMYC56vrdPRT_rhL7lbIsK-FQVhl5_tbn954604y6FZzMJtMsMYXdltWYBoZeevQD0uZoZV_-72EeXBMu7UwDx7h6K5wpsV4Te0EKbt51hCdYqu1_wenf9x0E3suNsnH7tBIz9rv-kRWfLlF1oZ9r7YtsvEHreA2-XVe3jeJfTq7r-ZV84fmCaZSh8wQbRMlWgXqnnxNEcJJG9pq8HqDWzcYT25iWuqyQrQ5Qrp8fUqXQqQ2riliORb1i3TW4-s-k_HF-Xg4iroeC5GFxZpHPjAf26Dh4KaLID0zwUPQNzaXcFNiljmjNSi0kC6TKXO5E0L6kHsBQmbEDlktq9LvEsqczHSc5CIkQdrMaCGMRe6fAinXWNgjvF9bZTv-cWyD8aB6oNlUoT4U6kMxoUAfe-RkOWfWsm-8OTrpVab-siEF4eHNeUe9fhXoDTMmuvTVolY8zzlcP2KWvj4GbtAp9hDI4_13vv8LWccn_GPMkwOyOn9c-K9w1Jmbw8aWD8mHs--Xo-tngV__UA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELVCOAQOCAKIAAEjwQk14623SDmgkGhCFjgMUm6WV2Ui1D2iZ4SGAx_FF6aql2ER5ICUq7vdS5Vd5bJfvSLkpeMZzBoIckrLVaJKYRMYN3mSSebSzDspDSY4n5xm40_q_Vl6tkZ-DLkwCKvsbX9n01tr3beMemmOZtMp5vjCbMtLPEZG3jrRIyuPwvIrxG3N7uE7UPIrIQ72J3vjpC8tkDil8nkSIgvCRQPrFVNGFZiNAXyddYWCAIE55q0x8B-l8rnKmC-8lCrEIkhoZFbCY2-QmwqsBVZNePN9BSvheMzXwUp4gl_XJ-p0mLILN0WKcJ63xKpY2u3vzvAPt9D6uoO75E6_SKVvOzncI2uh2iQbe0NtuE1y-xcaw_vk23513gIJ6Oy8ntftjtASulKPTBRd0SZaR-qXoaEIGaUtTTZY2dFHP5pMPwhamapGdDtCyEKzQ1eNSKXcUMSOLJqfrbMBz_eATK5D8A_JelVX4RGhzKvciLSQMY3K5dZIaR1yDZVI8cbiFuGDbLXr-c6x7MZnPQDbLjTqQ6M-NJMa9LFFXq_6zDq2jyvvTgeV6d_GrAZ3dGW_F4N-NegNT2hMFepFo3lRcAh3BMv-fQ9E7BnWLCjE4_98_3OyMZ6cHOvjw9OjJ-QWXsHdap4-JevzL4uwDcusuX3WjmtK9DXPo0sLazun |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+photocatalytic+degradation+of+dyes+over+graphene%2FPd%2FTiO2+nanocomposites%3A+TiO2+nanowires+versus+TiO2+nanoparticles&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Safajou%2C+Hamed&rft.au=Khojasteh%2C+Hossein&rft.au=Salavati-Niasari%2C+Masoud&rft.au=Mortazavi-Derazkola%2C+Sobhan&rft.date=2017-07-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=498&rft.spage=423&rft.epage=432&rft_id=info:doi/10.1016%2Fj.jcis.2017.03.078&rft.externalDocID=S0021979717303442 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |