Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles

[Display omitted] In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized usin...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 498; pp. 423 - 432
Main Authors Safajou, Hamed, Khojasteh, Hossein, Salavati-Niasari, Masoud, Mortazavi-Derazkola, Sobhan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts.
AbstractList In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts.
In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts.In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts.
[Display omitted] In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized by a combination of hydrothermal and photodeposition methods. The properties of as prepared products were characterized using XRD, FT-IR, SEM, DRS, TEM, ICP-OES, EDS and TGA analysis. SEM results confirmed nanodimension structure for all samples. Also the band gap values obtained using DRS technique suggests that all the samples have semiconductor behavior. Using TGA analysis, the amount of graphene loaded onto the powders was confirmed. Photocatalytic degradation of rhodamine B by TiO2-NWs, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs nanocomposites was compared under ultraviolet light irradiation. Results confirmed that the Gr/Pd/TiO2-NWs composite show the highest photocatalytic activity due to much higher available surface area of TiO2 substrate in nanowire structure. It is expected that the synthesis of the high surface area TiO2 nanowires, facile photodeposition of palladium into its texture, and simple conversion of GO to graphene during hydrothermal process without using strong reducing agents, could be a suitable rote for preparing different types of carbon based TiO2 nanocomposite photocatalysts.
Author Khojasteh, Hossein
Salavati-Niasari, Masoud
Safajou, Hamed
Mortazavi-Derazkola, Sobhan
Author_xml – sequence: 1
  givenname: Hamed
  surname: Safajou
  fullname: Safajou, Hamed
– sequence: 2
  givenname: Hossein
  surname: Khojasteh
  fullname: Khojasteh, Hossein
– sequence: 3
  givenname: Masoud
  surname: Salavati-Niasari
  fullname: Salavati-Niasari, Masoud
  email: salavati@kashanu.ac.ir
– sequence: 4
  givenname: Sobhan
  surname: Mortazavi-Derazkola
  fullname: Mortazavi-Derazkola, Sobhan
BookMark eNqFkUFvEzEQhS1UJNLSP8Bpj1x2M7PrrL2IC6raglSpHHK3HHu2cbSxF9spCr8ehyCQOJTTSE_vm8P7LtmFD54Ye4fQIGC_3DU741LTAooGugaEfMUWCMOqFgjdBVsAtFgPYhBv2GVKOwDE1WpYsB-3fqu9IVvN25CD0VlPx-xMZekpaquzC74KY2WPlKrwTLEq8bwlT8uvdrl2j23ltQ8m7OeQXKb0ofoTfnexQIVJh_Q3nXUs_ydKb9nrUU-Jrn_fK7a-u13ffK4fHu-_3Hx6qA3nItc0ArVm1CsOehg5wWYklLgxkiNyMGA3WhvsB24F78FK23WcRkldCWHTXbH357dzDN8OlLLau2RomrSncEiqReyl4Fy2_62ilChE20JfqvJcNTGkFGlUxuVfa-Wo3aQQ1EmM2qmTGHUSo6BTRUxB23_QObq9jseXoY9niMpSz46iSsbRSVwZ2WRlg3sJ_wlcIqu_
CitedBy_id crossref_primary_10_1007_s10854_018_9237_3
crossref_primary_10_1016_j_jtice_2021_11_018
crossref_primary_10_1016_j_ijbiomac_2018_12_213
crossref_primary_10_1016_j_apsusc_2019_144037
crossref_primary_10_1016_j_matlet_2019_02_109
crossref_primary_10_1016_j_jwpe_2021_102372
crossref_primary_10_1039_C9RA06045F
crossref_primary_10_1039_D3NA01071F
crossref_primary_10_1016_j_jpcs_2018_01_043
crossref_primary_10_1016_j_mtla_2022_101619
crossref_primary_10_1007_s10854_017_7644_5
crossref_primary_10_1016_j_envres_2021_110752
crossref_primary_10_1016_j_spmi_2020_106760
crossref_primary_10_1007_s10854_018_9881_7
crossref_primary_10_1039_D2NJ01308H
crossref_primary_10_1016_j_diamond_2019_107551
crossref_primary_10_1016_j_matchemphys_2019_05_085
crossref_primary_10_1016_j_solener_2020_03_057
crossref_primary_10_1016_j_seppur_2022_122846
crossref_primary_10_1039_D2MA00276K
crossref_primary_10_1002_slct_202400017
crossref_primary_10_1021_acs_iecr_9b04625
crossref_primary_10_1016_j_jallcom_2019_152837
crossref_primary_10_1002_zaac_201800315
crossref_primary_10_1016_j_ijhydene_2019_05_001
crossref_primary_10_2139_ssrn_4194524
crossref_primary_10_3390_foods10081786
crossref_primary_10_1016_j_ceramint_2022_10_118
crossref_primary_10_3390_su152115384
crossref_primary_10_1002_admi_202101467
crossref_primary_10_1016_j_apsusc_2020_148087
crossref_primary_10_1016_j_jcis_2019_01_011
crossref_primary_10_1016_j_rinp_2019_01_046
crossref_primary_10_1007_s10854_023_11685_z
crossref_primary_10_1007_s11356_022_19606_z
crossref_primary_10_1007_s41061_022_00397_3
crossref_primary_10_1177_00405175211026534
crossref_primary_10_1039_D1CY00307K
crossref_primary_10_1039_D3EN00820G
crossref_primary_10_1016_j_conbuildmat_2020_119439
crossref_primary_10_1021_acs_iecr_3c01302
crossref_primary_10_1021_acssuschemeng_8b05426
crossref_primary_10_1016_j_jallcom_2019_03_312
crossref_primary_10_1039_D0RA01880E
crossref_primary_10_1007_s11270_024_07111_7
crossref_primary_10_1016_j_arabjc_2023_105545
crossref_primary_10_1016_j_physb_2019_07_047
crossref_primary_10_1080_09593330_2019_1663939
crossref_primary_10_1016_j_mtcomm_2020_101560
crossref_primary_10_1007_s41127_021_00041_9
crossref_primary_10_1016_j_jece_2020_104856
crossref_primary_10_1016_j_jelechem_2020_114724
crossref_primary_10_1021_acsabm_1c00379
crossref_primary_10_1016_j_ijbiomac_2023_127400
crossref_primary_10_1016_j_jmrt_2019_09_071
crossref_primary_10_1016_j_totert_2022_100005
crossref_primary_10_1002_app_54361
crossref_primary_10_1016_j_optmat_2018_10_045
crossref_primary_10_1039_C7DT03878J
crossref_primary_10_1007_s12034_019_2026_7
crossref_primary_10_1016_j_jcis_2020_04_103
crossref_primary_10_1016_j_cej_2022_136063
crossref_primary_10_1016_j_mseb_2024_117255
crossref_primary_10_1016_j_ceramint_2021_06_199
crossref_primary_10_1007_s10854_019_01147_w
crossref_primary_10_1002_crat_201800257
crossref_primary_10_1007_s10854_019_02612_2
crossref_primary_10_1016_j_ijhydene_2024_08_363
crossref_primary_10_1016_j_mseb_2022_116118
crossref_primary_10_1016_j_jmrt_2019_09_078
crossref_primary_10_1080_00958972_2020_1849641
crossref_primary_10_1080_09593330_2019_1672794
crossref_primary_10_1016_j_apsusc_2019_144353
crossref_primary_10_1088_2053_1591_aaedd1
crossref_primary_10_1016_j_micromeso_2018_05_045
crossref_primary_10_1016_j_nanoso_2018_01_014
crossref_primary_10_1002_jccs_201900076
crossref_primary_10_1016_j_porgcoat_2023_107664
crossref_primary_10_1016_j_polymertesting_2017_11_018
crossref_primary_10_1016_j_jtice_2019_08_016
crossref_primary_10_1016_j_jcis_2019_03_055
crossref_primary_10_1016_j_jcis_2023_09_143
crossref_primary_10_1016_j_jallcom_2019_152873
crossref_primary_10_1007_s10904_025_03700_z
crossref_primary_10_1039_D0CS00278J
crossref_primary_10_1016_j_envres_2023_116145
crossref_primary_10_1016_j_cattod_2018_12_014
crossref_primary_10_1016_j_ijbiomac_2024_130134
crossref_primary_10_1007_s10854_018_0287_3
crossref_primary_10_1016_j_matchemphys_2019_121769
crossref_primary_10_1007_s10311_020_01092_9
crossref_primary_10_1016_j_conbuildmat_2019_07_114
crossref_primary_10_1016_j_ceramint_2019_08_191
crossref_primary_10_1016_j_surfin_2020_100469
crossref_primary_10_3390_ijms251910253
crossref_primary_10_1007_s10854_019_01623_3
crossref_primary_10_1016_j_jphotochem_2020_112423
crossref_primary_10_1016_j_jmrt_2018_11_019
crossref_primary_10_1016_j_psep_2019_01_018
crossref_primary_10_1039_D1DT03715C
crossref_primary_10_3390_nano10112317
crossref_primary_10_1016_j_inoche_2022_109936
crossref_primary_10_1557_s43578_021_00309_z
crossref_primary_10_1002_aoc_5830
crossref_primary_10_1016_j_jallcom_2019_05_167
crossref_primary_10_1016_j_ccr_2023_215286
crossref_primary_10_1016_j_cclet_2018_10_017
crossref_primary_10_1016_j_ijhydene_2022_01_240
crossref_primary_10_1016_j_apsusc_2018_11_084
crossref_primary_10_3390_ma17020417
crossref_primary_10_1021_acs_jpcc_3c01968
crossref_primary_10_1016_j_ijhydene_2020_03_153
crossref_primary_10_1016_j_jcis_2020_01_079
crossref_primary_10_3934_matersci_2023003
crossref_primary_10_1007_s10098_024_02785_3
crossref_primary_10_1134_S1560090423701075
crossref_primary_10_1016_j_jmrt_2022_04_092
crossref_primary_10_1002_slct_201800982
crossref_primary_10_1109_TNB_2022_3186941
crossref_primary_10_1016_j_compositesb_2018_10_042
crossref_primary_10_1016_j_nanoso_2019_100258
crossref_primary_10_1002_slct_201700775
crossref_primary_10_1016_j_psep_2020_08_042
crossref_primary_10_1016_j_vacuum_2020_109766
crossref_primary_10_1016_j_ijbiomac_2020_07_321
crossref_primary_10_1021_acsanm_3c02360
crossref_primary_10_1016_j_jclepro_2019_04_350
crossref_primary_10_1016_j_apsusc_2018_06_288
crossref_primary_10_1016_j_compositesb_2018_12_100
crossref_primary_10_1021_acsanm_4c05284
crossref_primary_10_1016_j_matlet_2019_01_021
crossref_primary_10_1016_j_jmrt_2020_05_103
crossref_primary_10_1111_php_12937
crossref_primary_10_3390_catal12060618
crossref_primary_10_1016_j_jiec_2019_10_008
crossref_primary_10_1016_j_seppur_2018_01_010
crossref_primary_10_1016_j_ceramint_2020_05_297
crossref_primary_10_1002_tcr_201700022
crossref_primary_10_1007_s11270_024_06969_x
crossref_primary_10_1016_j_apsusc_2022_152867
crossref_primary_10_1016_j_colsurfa_2019_124011
crossref_primary_10_1016_j_electacta_2020_135972
crossref_primary_10_1021_acs_iecr_2c03460
crossref_primary_10_1002_slct_201701132
crossref_primary_10_1016_j_jallcom_2022_167723
crossref_primary_10_1007_s13762_018_2048_5
crossref_primary_10_1016_j_apcata_2017_09_028
crossref_primary_10_1002_slct_202100215
crossref_primary_10_1021_acs_langmuir_4c02106
crossref_primary_10_1007_s10854_019_02173_4
crossref_primary_10_1016_j_rechem_2022_100488
crossref_primary_10_1007_s11356_021_17568_2
crossref_primary_10_1016_j_apsusc_2019_143911
crossref_primary_10_1038_s41598_020_70512_1
crossref_primary_10_1016_j_molliq_2021_115734
crossref_primary_10_1016_j_surfcoat_2018_12_052
crossref_primary_10_1021_acs_iecr_9b04468
crossref_primary_10_1021_acsomega_0c02325
crossref_primary_10_1007_s11696_020_01243_w
crossref_primary_10_3390_catal8110491
crossref_primary_10_1007_s10854_017_7762_0
crossref_primary_10_1007_s12034_018_1678_z
crossref_primary_10_1016_j_ecoenv_2023_115285
crossref_primary_10_1016_j_jwpe_2022_103360
crossref_primary_10_1016_j_jallcom_2019_152347
crossref_primary_10_1016_j_jallcom_2021_162886
crossref_primary_10_1016_j_msec_2019_04_012
crossref_primary_10_1007_s10854_024_11957_2
crossref_primary_10_1016_j_mseb_2019_04_011
crossref_primary_10_1080_00405000_2020_1848113
crossref_primary_10_1016_j_apsusc_2017_08_194
crossref_primary_10_1007_s10895_024_04014_y
crossref_primary_10_1007_s12274_017_1776_z
crossref_primary_10_1016_j_synthmet_2020_116432
crossref_primary_10_1007_s10854_017_7286_7
crossref_primary_10_1016_j_jphotochem_2020_112530
crossref_primary_10_1021_acs_iecr_8b03016
crossref_primary_10_1016_j_apsusc_2019_05_091
crossref_primary_10_1007_s11164_024_05383_6
crossref_primary_10_1016_j_cej_2023_144782
crossref_primary_10_3390_nano11123195
crossref_primary_10_1007_s10854_019_01214_2
crossref_primary_10_1016_j_biopha_2020_110443
crossref_primary_10_1016_j_gee_2019_04_002
crossref_primary_10_1016_j_microc_2020_105150
crossref_primary_10_1016_j_synthmet_2021_116957
crossref_primary_10_1038_s41598_025_89742_2
crossref_primary_10_1177_09540083211053742
crossref_primary_10_1016_j_tet_2021_132083
crossref_primary_10_1016_j_ceramint_2019_09_044
crossref_primary_10_1021_acsomega_0c04889
crossref_primary_10_1016_j_molliq_2018_11_064
crossref_primary_10_1016_j_jpcs_2023_111677
crossref_primary_10_1021_acsomega_0c03312
crossref_primary_10_1016_j_colsurfa_2022_129632
crossref_primary_10_1016_j_jcis_2019_05_105
crossref_primary_10_1016_j_diamond_2024_111357
crossref_primary_10_1016_j_molliq_2021_116461
crossref_primary_10_1002_wer_1177
crossref_primary_10_1080_24701556_2024_2356046
crossref_primary_10_2139_ssrn_4154130
crossref_primary_10_1007_s10854_018_00568_3
crossref_primary_10_1016_j_ceramint_2024_12_187
crossref_primary_10_1088_1361_6528_ab8084
crossref_primary_10_1016_S1872_2067_20_63560_4
crossref_primary_10_1016_j_nanoso_2019_100405
crossref_primary_10_1016_j_chemosphere_2021_131263
crossref_primary_10_1016_j_chemosphere_2024_143773
crossref_primary_10_1007_s10854_017_7354_z
crossref_primary_10_1016_j_jiec_2020_08_022
crossref_primary_10_1002_sia_6761
crossref_primary_10_1016_j_mseb_2019_03_017
crossref_primary_10_20964_2020_02_05
crossref_primary_10_1002_aoc_4698
crossref_primary_10_1016_j_apcatb_2020_119574
crossref_primary_10_1007_s11051_022_05636_8
crossref_primary_10_1007_s10854_020_04054_7
crossref_primary_10_1016_j_apcata_2023_119158
crossref_primary_10_1016_j_diamond_2018_09_019
crossref_primary_10_1021_acsomega_9b02040
crossref_primary_10_1016_j_jhazmat_2021_125330
crossref_primary_10_1016_j_jece_2020_104901
crossref_primary_10_1016_j_mtcomm_2020_101194
crossref_primary_10_1016_j_reactfunctpolym_2022_105208
crossref_primary_10_1038_s41370_020_0241_3
crossref_primary_10_1016_j_jmrt_2019_09_011
crossref_primary_10_3390_catal10080921
crossref_primary_10_1016_j_ijbiomac_2020_10_084
crossref_primary_10_3390_molecules30010099
crossref_primary_10_1016_j_ijhydene_2019_06_083
crossref_primary_10_1002_cssc_201801642
crossref_primary_10_1016_j_jallcom_2019_07_179
crossref_primary_10_1007_s12613_020_2124_y
crossref_primary_10_1021_acsomega_8b02817
crossref_primary_10_3390_ma16041742
crossref_primary_10_1007_s41779_018_0246_8
crossref_primary_10_1016_j_ijbiomac_2019_07_098
crossref_primary_10_1007_s10934_019_00767_1
crossref_primary_10_1016_j_heliyon_2024_e31351
crossref_primary_10_1080_01932691_2022_2151456
crossref_primary_10_1016_j_jcis_2018_05_087
crossref_primary_10_1016_j_ijhydene_2017_05_028
crossref_primary_10_3390_catal14120940
crossref_primary_10_1007_s11356_020_12066_3
crossref_primary_10_1007_s10854_018_9701_0
crossref_primary_10_1016_j_mssp_2025_109333
crossref_primary_10_1016_j_coco_2025_102359
crossref_primary_10_1007_s40042_025_01314_9
crossref_primary_10_3390_pr6090137
crossref_primary_10_1002_slct_201803620
crossref_primary_10_1016_j_susmat_2019_e00128
crossref_primary_10_1016_j_inoche_2023_111333
crossref_primary_10_1021_acsomega_1c03189
crossref_primary_10_1016_j_nanoso_2019_100412
crossref_primary_10_1007_s10904_018_0817_8
crossref_primary_10_1016_j_mtcomm_2024_110753
crossref_primary_10_1016_j_apsusc_2019_02_136
crossref_primary_10_1016_j_jhazmat_2019_121016
crossref_primary_10_1021_acs_iecr_8b05586
crossref_primary_10_1016_j_jsamd_2019_08_004
crossref_primary_10_1016_j_jece_2020_104921
Cites_doi 10.1126/science.1075035
10.1016/j.apcata.2006.08.024
10.1038/nmat1849
10.1039/c0cc01259a
10.1016/j.carbon.2014.04.067
10.1021/es0492788
10.1016/j.ultsonch.2011.03.021
10.1016/j.renene.2007.05.018
10.1016/j.diamond.2012.04.003
10.1023/A:1025548512438
10.1021/cs400077r
10.1039/C1RA00621E
10.1007/s10854-015-3884-4
10.1016/S0926-3373(02)00269-2
10.1016/j.diamond.2012.02.016
10.1021/jp0255482
10.1039/C2RA22054G
10.1021/jz900265j
10.1016/j.matlet.2013.07.072
10.1002/anie.200901678
10.1021/ja404851s
10.1016/j.matlet.2005.08.005
10.1021/jp209035e
10.1021/jp025993x
10.1016/S0920-5861(99)00233-3
10.1016/j.powtec.2010.03.034
10.1016/j.diamond.2013.06.011
10.1023/B:CATL.0000011084.43007.80
10.1021/nn901221k
10.1007/s10854-015-4197-3
10.1021/jz100580x
10.1021/am300772t
10.1016/j.carbon.2007.02.034
10.1021/am301782h
10.1016/j.jhazmat.2006.05.075
10.1021/jo401032r
10.1021/ja01539a017
10.4172/2157-7439.1000253
10.1016/j.micron.2013.10.006
10.1039/C6RA13613C
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2017.03.078
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 432
ExternalDocumentID 10_1016_j_jcis_2017_03_078
S0021979717303442
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c447t-ef0e2cfa540a9f4e0bfe181bc841140c0dbaac1694d7460d8d334ef8e3c160b3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 12:24:16 EDT 2025
Sun Aug 24 04:03:49 EDT 2025
Tue Jul 01 01:18:22 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Fri Feb 23 02:24:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DRS
Photocatalysis
GO
Palladium
Gr
TNBT
Nanostructures
TGA
EDS
Graphene
Gr/Pd/TiO2-NW
SEM
Gr/Pd/TiO2-NP
ICP-OES
TiO2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-ef0e2cfa540a9f4e0bfe181bc841140c0dbaac1694d7460d8d334ef8e3c160b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0021979717303442?via%3Dihub
PQID 1881772206
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2116874482
proquest_miscellaneous_1881772206
crossref_citationtrail_10_1016_j_jcis_2017_03_078
crossref_primary_10_1016_j_jcis_2017_03_078
elsevier_sciencedirect_doi_10_1016_j_jcis_2017_03_078
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-15
PublicationDateYYYYMMDD 2017-07-15
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of colloid and interface science
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Khojasteh, Salavati-Niasari, Mortazavi-Derazkola (b0035) 2016; 27
Chen, Luo, Huang, Chen, Chen, Chen (b0040) 2013; 38
Bai, Kim, Liao, Liu (b0095) 2013; 78
Kato, Kudo (b0080) 2002; 106
Rao, Sood, Subrahmanyam, Govindaraj (b0120) 2009; 48
Arthi G, Bd (b0135) 2015; 06
Strukul, Gavagnin, Pinna, Modaferri, Perathoner, Centi, Marella, Tomaselli (b0115) 2000; 55
Kim, Moon, Monllor-Satoca, Park, Choi (b0030) 2012; 116
Ihara, Miyoshi, Iriyama, Matsumoto, Sugihara (b0065) 2003; 42
Khan, Al-Shahry, Ingler (b0070) 2002; 297
Yamakata, Ishibashi, Onishi (b0090) 2002; 106
Xiong, Zhang, Ma, Zhao (b0015) 2010; 46
Chin, Park, Kim, Jurng (b0050) 2010; 201
Chang, Shen (b0075) 2006; 60
Sun, Fugetsu (b0130) 2013; 109
Khojasteh, Salavati-Niasari, Mazhari, Hamadanian (b0165) 2016; 6
Khojasteh, Salavati-Niasari, Abbasi, Azizi, Enhessari (b0110) 2016; 27
Tran, Kabiri, Losic (b0180) 2014; 76
Huang, Ge, Lin, Guo, Yuan, Fu, Li (b0170) 2013; 3
Jasuja, Linn, Melton, Berry (b0150) 2010; 1
Prabakar, Takahashi, Nezuka, Takahashi, Nakashima, Kubota, Fujishima (b0060) 2008; 33
Li, Liu, Huang, Yang, Xia, Li (b0155) 2013; 3
Guo, Zhu, Chen, Li, Yu, Liu, Li, Feng, Zhang (b0010) 2011; 18
Roco (b0100) 2003; 5
Kamat (b0140) 2010; 1
David, Bhandavat, Kulkarni, Pahwa, Zhong, Singh (b0145) 2013; 5
Vidhu, Philip (b0020) 2014; 56
Guo, Li, Zhu, Chen, Liu, Zhang, Moon, Song (b0200) 2012; 2
Meng, Li, Cushing, Zhi, Wu (b0160) 2013; 135
Panpranot, Kontapakdee, Praserthdam (b0105) 2006; 314
Orlov, Jefferson, Macleod, Lambert (b0085) 2004; 92
Kyung, Lee, Choi (b0005) 2005; 39
Oller, Gernjak, Maldonado, Pérez-Estrada, Sánchez-Pérez, Malato (b0045) 2006; 138
Zhang, Lv, Li, Wang, Li (b0190) 2010; 4
Pan, Zhao, Liu, Korzeniewski, Wang, Fan (b0185) 2012; 4
Min, Zhang, Chen, Chen, Zhang (b0025) 2012; 26
Hummers, Offeman (b0175) 1958; 80
Geim, Novoselov (b0125) 2007; 6
Stankovich, Dikin, Piner, Kohlhaas, Kleinhammes, Jia, Wu, Nguyen, Ruoff (b0195) 2007; 45
Ban, Hasegawa (b0055) 2012; 25
Sun (10.1016/j.jcis.2017.03.078_b0130) 2013; 109
Pan (10.1016/j.jcis.2017.03.078_b0185) 2012; 4
Kyung (10.1016/j.jcis.2017.03.078_b0005) 2005; 39
Orlov (10.1016/j.jcis.2017.03.078_b0085) 2004; 92
Khojasteh (10.1016/j.jcis.2017.03.078_b0110) 2016; 27
Zhang (10.1016/j.jcis.2017.03.078_b0190) 2010; 4
Guo (10.1016/j.jcis.2017.03.078_b0010) 2011; 18
Ihara (10.1016/j.jcis.2017.03.078_b0065) 2003; 42
Min (10.1016/j.jcis.2017.03.078_b0025) 2012; 26
Roco (10.1016/j.jcis.2017.03.078_b0100) 2003; 5
Khojasteh (10.1016/j.jcis.2017.03.078_b0165) 2016; 6
Chen (10.1016/j.jcis.2017.03.078_b0040) 2013; 38
Kim (10.1016/j.jcis.2017.03.078_b0030) 2012; 116
Jasuja (10.1016/j.jcis.2017.03.078_b0150) 2010; 1
Guo (10.1016/j.jcis.2017.03.078_b0200) 2012; 2
Vidhu (10.1016/j.jcis.2017.03.078_b0020) 2014; 56
Kato (10.1016/j.jcis.2017.03.078_b0080) 2002; 106
Arthi G (10.1016/j.jcis.2017.03.078_b0135) 2015; 06
Khojasteh (10.1016/j.jcis.2017.03.078_b0035) 2016; 27
Prabakar (10.1016/j.jcis.2017.03.078_b0060) 2008; 33
Khan (10.1016/j.jcis.2017.03.078_b0070) 2002; 297
Oller (10.1016/j.jcis.2017.03.078_b0045) 2006; 138
Kamat (10.1016/j.jcis.2017.03.078_b0140) 2010; 1
Chang (10.1016/j.jcis.2017.03.078_b0075) 2006; 60
Stankovich (10.1016/j.jcis.2017.03.078_b0195) 2007; 45
Bai (10.1016/j.jcis.2017.03.078_b0095) 2013; 78
David (10.1016/j.jcis.2017.03.078_b0145) 2013; 5
Meng (10.1016/j.jcis.2017.03.078_b0160) 2013; 135
Huang (10.1016/j.jcis.2017.03.078_b0170) 2013; 3
Geim (10.1016/j.jcis.2017.03.078_b0125) 2007; 6
Xiong (10.1016/j.jcis.2017.03.078_b0015) 2010; 46
Strukul (10.1016/j.jcis.2017.03.078_b0115) 2000; 55
Tran (10.1016/j.jcis.2017.03.078_b0180) 2014; 76
Rao (10.1016/j.jcis.2017.03.078_b0120) 2009; 48
Ban (10.1016/j.jcis.2017.03.078_b0055) 2012; 25
Chin (10.1016/j.jcis.2017.03.078_b0050) 2010; 201
Yamakata (10.1016/j.jcis.2017.03.078_b0090) 2002; 106
Hummers (10.1016/j.jcis.2017.03.078_b0175) 1958; 80
Li (10.1016/j.jcis.2017.03.078_b0155) 2013; 3
Panpranot (10.1016/j.jcis.2017.03.078_b0105) 2006; 314
References_xml – volume: 135
  start-page: 10286
  year: 2013
  end-page: 10289
  ident: b0160
  article-title: Solar hydrogen generation by nanoscale p–n Junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 380
  year: 2010
  end-page: 386
  ident: b0190
  article-title: P25-Graphene composite as a high performance photocatalyst
  publication-title: ACS Nano
– volume: 38
  start-page: 52
  year: 2013
  end-page: 58
  ident: b0040
  article-title: Preparation and blood compatibility of carbon/TiO
  publication-title: Diam. Relat. Mater.
– volume: 116
  start-page: 1535
  year: 2012
  end-page: 1543
  ident: b0030
  article-title: Solar photoconversion using graphene/TiO
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 181
  year: 2003
  end-page: 189
  ident: b0100
  article-title: Broader societal issues of nanotechnology
  publication-title: J. Nanopart. Res.
– volume: 25
  start-page: 92
  year: 2012
  end-page: 97
  ident: b0055
  article-title: Deposition of diamond-like carbon thin films containing photocatalytic titanium dioxide nanoparticles
  publication-title: Diam. Relat. Mater.
– volume: 60
  start-page: 129
  year: 2006
  end-page: 132
  ident: b0075
  article-title: Synthesis and characterization of chromium doped SrTiO
  publication-title: Mater. Lett.
– volume: 39
  start-page: 2376
  year: 2005
  end-page: 2382
  ident: b0005
  article-title: Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO
  publication-title: Environ. Sci. Technol.
– volume: 106
  start-page: 5029
  year: 2002
  end-page: 5034
  ident: b0080
  article-title: Visible-light-response and photocatalytic activities of TiO
  publication-title: J. Phys. Chem. B
– volume: 78
  start-page: 8821
  year: 2013
  end-page: 8825
  ident: b0095
  article-title: Oxidative heck reaction of glycals and aryl hydrazines: a palladium-catalyzed C-glycosylation
  publication-title: Org. Chem.
– volume: 26
  start-page: 32
  year: 2012
  end-page: 38
  ident: b0025
  article-title: Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties
  publication-title: Diam. Relat. Mater.
– volume: 42
  start-page: 403
  year: 2003
  end-page: 409
  ident: b0065
  article-title: Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping
  publication-title: Appl. Catal. B
– volume: 138
  start-page: 507
  year: 2006
  end-page: 517
  ident: b0045
  article-title: Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale
  publication-title: J. Hazard. Mater.
– volume: 109
  start-page: 207
  year: 2013
  end-page: 210
  ident: b0130
  article-title: Mass production of graphene oxide from expanded graphite
  publication-title: Mater. Lett.
– volume: 92
  start-page: 41
  year: 2004
  end-page: 47
  ident: b0085
  article-title: Photocatalytic properties of TiO
  publication-title: Catal. Lett.
– volume: 106
  start-page: 9122
  year: 2002
  end-page: 9125
  ident: b0090
  article-title: Electron- and hole-capture reactions on Pt/TiO
  publication-title: J. Phys. Chem. B
– volume: 56
  start-page: 54
  year: 2014
  end-page: 62
  ident: b0020
  article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles
  publication-title: Micron
– volume: 55
  start-page: 139
  year: 2000
  end-page: 149
  ident: b0115
  article-title: Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: from powders to membranes
  publication-title: Catal. Today
– volume: 6
  start-page: 183
  year: 2007
  end-page: 191
  ident: b0125
  article-title: The rise of graphene
  publication-title: Nat. Mater.
– volume: 46
  start-page: 6099
  year: 2010
  end-page: 6101
  ident: b0015
  article-title: Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation
  publication-title: Chem. Commun.
– volume: 314
  start-page: 128
  year: 2006
  end-page: 133
  ident: b0105
  article-title: Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO
  publication-title: Appl. Catal. A
– volume: 27
  start-page: 1261
  year: 2016
  end-page: 1269
  ident: b0110
  article-title: Synthesis, characterization and photocatalytic activity of PdO/TiO
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 1
  start-page: 1853
  year: 2010
  end-page: 1860
  ident: b0150
  article-title: Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic electrical, and raman properties
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 1558
  year: 2007
  end-page: 1565
  ident: b0195
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
– volume: 297
  start-page: 2243
  year: 2002
  end-page: 2245
  ident: b0070
  article-title: Efficient photochemical water splitting by a chemically modified n-TiO
  publication-title: Science
– volume: 48
  start-page: 7752
  year: 2009
  end-page: 7777
  ident: b0120
  article-title: Graphene: the new two-dimensional nanomaterial
  publication-title: Angew. Chem. Int. Ed.
– volume: 76
  start-page: 193
  year: 2014
  end-page: 202
  ident: b0180
  article-title: A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids
  publication-title: Carbon
– volume: 1
  start-page: 520
  year: 2010
  end-page: 527
  ident: b0140
  article-title: Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support
  publication-title: Phys. Chem. Lett.
– volume: 33
  start-page: 277
  year: 2008
  end-page: 281
  ident: b0060
  article-title: Visible light-active nitrogen-doped TiO
  publication-title: Renewable Energy
– volume: 4
  start-page: 3944
  year: 2012
  end-page: 3950
  ident: b0185
  article-title: Comparing graphene-TiO
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 3
  start-page: 839
  year: 2013
  end-page: 845
  ident: b0155
  article-title: One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation
  publication-title: ACS Catal.
– volume: 27
  start-page: 3599
  year: 2016
  end-page: 3607
  ident: b0035
  article-title: Synthesis, characterization and photocatalytic properties of nickel-doped TiO
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 201
  start-page: 171
  year: 2010
  end-page: 176
  ident: b0050
  article-title: Photocatalytic degradation of methylene blue with TiO
  publication-title: Powder Technol.
– volume: 6
  start-page: 78043
  year: 2016
  end-page: 78052
  ident: b0165
  article-title: Preparation and characterization of Fe
  publication-title: RSC Adv.
– volume: 5
  start-page: 546
  year: 2013
  end-page: 552
  ident: b0145
  article-title: Synthesis of graphene films by rapid heating and quenching at ambient pressures and their electrochemical characterization
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 80
  year: 1958
  ident: b0175
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1356
  year: 2012
  end-page: 1363
  ident: b0200
  article-title: Synthesis of WO
  publication-title: RSC Adv.
– volume: 18
  start-page: 1082
  year: 2011
  end-page: 1090
  ident: b0010
  article-title: Sonochemical synthesis of TiO
  publication-title: Ultrason. Sonochem.
– volume: 06
  year: 2015
  ident: b0135
  article-title: A simple approach to stepwise synthesis of graphene oxide nanomaterial
  publication-title: J. Nanomed. Nanotech.
– volume: 3
  start-page: 1235
  year: 2013
  end-page: 1242
  ident: b0170
  article-title: Facile one-pot preparation of [small alpha]-SnWO
  publication-title: RSC Adv.
– volume: 297
  start-page: 2243
  issue: 5590
  year: 2002
  ident: 10.1016/j.jcis.2017.03.078_b0070
  article-title: Efficient photochemical water splitting by a chemically modified n-TiO2
  publication-title: Science
  doi: 10.1126/science.1075035
– volume: 314
  start-page: 128
  issue: 1
  year: 2006
  ident: 10.1016/j.jcis.2017.03.078_b0105
  article-title: Selective hydrogenation of acetylene in excess ethylene on micron-sized and nanocrystalline TiO2 supported Pd catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2006.08.024
– volume: 6
  start-page: 183
  issue: 3
  year: 2007
  ident: 10.1016/j.jcis.2017.03.078_b0125
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 46
  start-page: 6099
  issue: 33
  year: 2010
  ident: 10.1016/j.jcis.2017.03.078_b0015
  article-title: Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01259a
– volume: 76
  start-page: 193
  year: 2014
  ident: 10.1016/j.jcis.2017.03.078_b0180
  article-title: A green approach for the reduction of graphene oxide nanosheets using non-aromatic amino acids
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.04.067
– volume: 39
  start-page: 2376
  issue: 7
  year: 2005
  ident: 10.1016/j.jcis.2017.03.078_b0005
  article-title: Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0492788
– volume: 18
  start-page: 1082
  issue: 5
  year: 2011
  ident: 10.1016/j.jcis.2017.03.078_b0010
  article-title: Sonochemical synthesis of TiO2 nanoparticles on graphene for use as photocatalyst
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2011.03.021
– volume: 33
  start-page: 277
  issue: 2
  year: 2008
  ident: 10.1016/j.jcis.2017.03.078_b0060
  article-title: Visible light-active nitrogen-doped TiO2 thin films prepared by DC magnetron sputtering used as a photocatalyst
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2007.05.018
– volume: 26
  start-page: 32
  year: 2012
  ident: 10.1016/j.jcis.2017.03.078_b0025
  article-title: Ionic liquid assisting synthesis of ZnO/graphene heterostructure photocatalysts with tunable photoresponse properties
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2012.04.003
– volume: 5
  start-page: 181
  issue: 3
  year: 2003
  ident: 10.1016/j.jcis.2017.03.078_b0100
  article-title: Broader societal issues of nanotechnology
  publication-title: J. Nanopart. Res.
  doi: 10.1023/A:1025548512438
– volume: 3
  start-page: 839
  issue: 5
  year: 2013
  ident: 10.1016/j.jcis.2017.03.078_b0155
  article-title: One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation
  publication-title: ACS Catal.
  doi: 10.1021/cs400077r
– volume: 2
  start-page: 1356
  issue: 4
  year: 2012
  ident: 10.1016/j.jcis.2017.03.078_b0200
  article-title: Synthesis of WO3@Graphene composite for enhanced photocatalytic oxygen evolution from water
  publication-title: RSC Adv.
  doi: 10.1039/C1RA00621E
– volume: 27
  start-page: 1261
  issue: 2
  year: 2016
  ident: 10.1016/j.jcis.2017.03.078_b0110
  article-title: Synthesis, characterization and photocatalytic activity of PdO/TiO2 and Pd/TiO2 nanocomposites
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-015-3884-4
– volume: 42
  start-page: 403
  issue: 4
  year: 2003
  ident: 10.1016/j.jcis.2017.03.078_b0065
  article-title: Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping
  publication-title: Appl. Catal. B
  doi: 10.1016/S0926-3373(02)00269-2
– volume: 25
  start-page: 92
  year: 2012
  ident: 10.1016/j.jcis.2017.03.078_b0055
  article-title: Deposition of diamond-like carbon thin films containing photocatalytic titanium dioxide nanoparticles
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2012.02.016
– volume: 106
  start-page: 5029
  issue: 19
  year: 2002
  ident: 10.1016/j.jcis.2017.03.078_b0080
  article-title: Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0255482
– volume: 3
  start-page: 1235
  issue: 4
  year: 2013
  ident: 10.1016/j.jcis.2017.03.078_b0170
  article-title: Facile one-pot preparation of [small alpha]-SnWO4/reduced graphene oxide (RGO) nanocomposite with improved visible light photocatalytic activity and anode performance for Li-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C2RA22054G
– volume: 1
  start-page: 520
  issue: 2
  year: 2010
  ident: 10.1016/j.jcis.2017.03.078_b0140
  article-title: Graphene-based nanoarchitectures anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support
  publication-title: Phys. Chem. Lett.
  doi: 10.1021/jz900265j
– volume: 109
  start-page: 207
  year: 2013
  ident: 10.1016/j.jcis.2017.03.078_b0130
  article-title: Mass production of graphene oxide from expanded graphite
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.07.072
– volume: 48
  start-page: 7752
  issue: 42
  year: 2009
  ident: 10.1016/j.jcis.2017.03.078_b0120
  article-title: Graphene: the new two-dimensional nanomaterial
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200901678
– volume: 135
  start-page: 10286
  issue: 28
  year: 2013
  ident: 10.1016/j.jcis.2017.03.078_b0160
  article-title: Solar hydrogen generation by nanoscale p–n Junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404851s
– volume: 60
  start-page: 129
  issue: 1
  year: 2006
  ident: 10.1016/j.jcis.2017.03.078_b0075
  article-title: Synthesis and characterization of chromium doped SrTiO3 photocatalyst
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.08.005
– volume: 116
  start-page: 1535
  issue: 1
  year: 2012
  ident: 10.1016/j.jcis.2017.03.078_b0030
  article-title: Solar photoconversion using graphene/TiO2 composites: nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp209035e
– volume: 106
  start-page: 9122
  issue: 35
  year: 2002
  ident: 10.1016/j.jcis.2017.03.078_b0090
  article-title: Electron- and hole-capture reactions on Pt/TiO2 photocatalyst exposed to methanol vapor studied with time-resolved infrared absorption spectroscopy
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp025993x
– volume: 55
  start-page: 139
  issue: 1–2
  year: 2000
  ident: 10.1016/j.jcis.2017.03.078_b0115
  article-title: Use of palladium based catalysts in the hydrogenation of nitrates in drinking water: from powders to membranes
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(99)00233-3
– volume: 201
  start-page: 171
  issue: 2
  year: 2010
  ident: 10.1016/j.jcis.2017.03.078_b0050
  article-title: Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.03.034
– volume: 38
  start-page: 52
  year: 2013
  ident: 10.1016/j.jcis.2017.03.078_b0040
  article-title: Preparation and blood compatibility of carbon/TiO2 nanocomposite
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2013.06.011
– volume: 92
  start-page: 41
  issue: 1
  year: 2004
  ident: 10.1016/j.jcis.2017.03.078_b0085
  article-title: Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution
  publication-title: Catal. Lett.
  doi: 10.1023/B:CATL.0000011084.43007.80
– volume: 4
  start-page: 380
  issue: 1
  year: 2010
  ident: 10.1016/j.jcis.2017.03.078_b0190
  article-title: P25-Graphene composite as a high performance photocatalyst
  publication-title: ACS Nano
  doi: 10.1021/nn901221k
– volume: 27
  start-page: 3599
  issue: 4
  year: 2016
  ident: 10.1016/j.jcis.2017.03.078_b0035
  article-title: Synthesis, characterization and photocatalytic properties of nickel-doped TiO2 and nickel titanate nanoparticles
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-015-4197-3
– volume: 1
  start-page: 1853
  issue: 12
  year: 2010
  ident: 10.1016/j.jcis.2017.03.078_b0150
  article-title: Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic electrical, and raman properties
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100580x
– volume: 4
  start-page: 3944
  issue: 8
  year: 2012
  ident: 10.1016/j.jcis.2017.03.078_b0185
  article-title: Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am300772t
– volume: 45
  start-page: 1558
  issue: 7
  year: 2007
  ident: 10.1016/j.jcis.2017.03.078_b0195
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 5
  start-page: 546
  issue: 3
  year: 2013
  ident: 10.1016/j.jcis.2017.03.078_b0145
  article-title: Synthesis of graphene films by rapid heating and quenching at ambient pressures and their electrochemical characterization
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am301782h
– volume: 138
  start-page: 507
  issue: 3
  year: 2006
  ident: 10.1016/j.jcis.2017.03.078_b0045
  article-title: Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.05.075
– volume: 78
  start-page: 8821
  issue: 17
  year: 2013
  ident: 10.1016/j.jcis.2017.03.078_b0095
  article-title: Oxidative heck reaction of glycals and aryl hydrazines: a palladium-catalyzed C-glycosylation
  publication-title: Org. Chem.
  doi: 10.1021/jo401032r
– volume: 80
  issue: 6
  year: 1958
  ident: 10.1016/j.jcis.2017.03.078_b0175
  article-title: Preparation of graphitic oxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
– volume: 06
  issue: 01
  year: 2015
  ident: 10.1016/j.jcis.2017.03.078_b0135
  article-title: A simple approach to stepwise synthesis of graphene oxide nanomaterial
  publication-title: J. Nanomed. Nanotech.
  doi: 10.4172/2157-7439.1000253
– volume: 56
  start-page: 54
  year: 2014
  ident: 10.1016/j.jcis.2017.03.078_b0020
  article-title: Catalytic degradation of organic dyes using biosynthesized silver nanoparticles
  publication-title: Micron
  doi: 10.1016/j.micron.2013.10.006
– volume: 6
  start-page: 78043
  issue: 81
  year: 2016
  ident: 10.1016/j.jcis.2017.03.078_b0165
  article-title: Preparation and characterization of Fe3O4@SiO2@TiO2@Pd and Fe3O4@SiO2@TiO2@Pd-Ag nanocomposites and their utilization in enhanced degradation systems and rapid magnetic separation
  publication-title: RSC Adv.
  doi: 10.1039/C6RA13613C
SSID ssj0011559
Score 2.6265876
Snippet [Display omitted] In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs...
In this study, at first, TiO2 nanowire was prepared by an alkaline hydrothermal process. In the following, Gr/Pd/TiO2-NPs and Gr/Pd/TiO2-NWs were synthesized...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 423
SubjectTerms dyes
energy-dispersive X-ray analysis
Fourier transform infrared spectroscopy
Graphene
irradiation
nanocomposites
nanoparticles
Nanostructures
nanowires
Palladium
Photocatalysis
photocatalysts
powders
reducing agents
rhodamines
scanning electron microscopy
semiconductors
surface area
texture
thermogravimetry
TiO2
titanium dioxide
transmission electron microscopy
ultraviolet radiation
X-ray diffraction
Title Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles
URI https://dx.doi.org/10.1016/j.jcis.2017.03.078
https://www.proquest.com/docview/1881772206
https://www.proquest.com/docview/2116874482
Volume 498
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQPQCHikIRUIqMxA2la8fOixtagbZFPA5biZvlp9gVSlZk90AP_e3M5LG0VeHAMSNbiTzjGTvzzTeEHFuewq6BS05huIxkEZsI7CaLUsFskjorhMYC56vrdPRT_rhL7lbIsK-FQVhl5_tbn954604y6FZzMJtMsMYXdltWYBoZeevQD0uZoZV_-72EeXBMu7UwDx7h6K5wpsV4Te0EKbt51hCdYqu1_wenf9x0E3suNsnH7tBIz9rv-kRWfLlF1oZ9r7YtsvEHreA2-XVe3jeJfTq7r-ZV84fmCaZSh8wQbRMlWgXqnnxNEcJJG9pq8HqDWzcYT25iWuqyQrQ5Qrp8fUqXQqQ2riliORb1i3TW4-s-k_HF-Xg4iroeC5GFxZpHPjAf26Dh4KaLID0zwUPQNzaXcFNiljmjNSi0kC6TKXO5E0L6kHsBQmbEDlktq9LvEsqczHSc5CIkQdrMaCGMRe6fAinXWNgjvF9bZTv-cWyD8aB6oNlUoT4U6kMxoUAfe-RkOWfWsm-8OTrpVab-siEF4eHNeUe9fhXoDTMmuvTVolY8zzlcP2KWvj4GbtAp9hDI4_13vv8LWccn_GPMkwOyOn9c-K9w1Jmbw8aWD8mHs--Xo-tngV__UA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxELVCOAQOCAKIAAEjwQk14623SDmgkGhCFjgMUm6WV2Ui1D2iZ4SGAx_FF6aql2ER5ICUq7vdS5Vd5bJfvSLkpeMZzBoIckrLVaJKYRMYN3mSSebSzDspDSY4n5xm40_q_Vl6tkZ-DLkwCKvsbX9n01tr3beMemmOZtMp5vjCbMtLPEZG3jrRIyuPwvIrxG3N7uE7UPIrIQ72J3vjpC8tkDil8nkSIgvCRQPrFVNGFZiNAXyddYWCAIE55q0x8B-l8rnKmC-8lCrEIkhoZFbCY2-QmwqsBVZNePN9BSvheMzXwUp4gl_XJ-p0mLILN0WKcJ63xKpY2u3vzvAPt9D6uoO75E6_SKVvOzncI2uh2iQbe0NtuE1y-xcaw_vk23513gIJ6Oy8ntftjtASulKPTBRd0SZaR-qXoaEIGaUtTTZY2dFHP5pMPwhamapGdDtCyEKzQ1eNSKXcUMSOLJqfrbMBz_eATK5D8A_JelVX4RGhzKvciLSQMY3K5dZIaR1yDZVI8cbiFuGDbLXr-c6x7MZnPQDbLjTqQ6M-NJMa9LFFXq_6zDq2jyvvTgeV6d_GrAZ3dGW_F4N-NegNT2hMFepFo3lRcAh3BMv-fQ9E7BnWLCjE4_98_3OyMZ6cHOvjw9OjJ-QWXsHdap4-JevzL4uwDcusuX3WjmtK9DXPo0sLazun
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+photocatalytic+degradation+of+dyes+over+graphene%2FPd%2FTiO2+nanocomposites%3A+TiO2+nanowires+versus+TiO2+nanoparticles&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Safajou%2C+Hamed&rft.au=Khojasteh%2C+Hossein&rft.au=Salavati-Niasari%2C+Masoud&rft.au=Mortazavi-Derazkola%2C+Sobhan&rft.date=2017-07-15&rft.pub=Elsevier+Inc&rft.issn=0021-9797&rft.eissn=1095-7103&rft.volume=498&rft.spage=423&rft.epage=432&rft_id=info:doi/10.1016%2Fj.jcis.2017.03.078&rft.externalDocID=S0021979717303442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon