Learning to Disentangle Inter-Subject Anatomical Variations in Electrocardiographic Data

Objective: This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data. Methods: Since ground truth anatomical factors are generally not known in clinical ECG for assessing the disentangling ability of t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 69; no. 2; pp. 860 - 870
Main Authors Gyawali, Prashnna K., Murkute, Jaideep Vitthal, Toloubidokhti, Maryam, Jiang, Xiajun, Horacek, B. Milan, Sapp, John L., Wang, Linwei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data. Methods: Since ground truth anatomical factors are generally not known in clinical ECG for assessing the disentangling ability of the models, the presented work first proposes the SimECG data set, a 12-lead ECG data set procedurally generated with a controlled set of anatomical generative factors. Second, to perform such disentanglement, the presented method evaluates and compares deep generative models with latent density modeled by nonparametric Indian Buffet Process to account for the complex generative process of ECG data. Results: In the simulated data, the experiments demonstrate, for the first time, concrete evidence of the possibility to disentangle key generative anatomical factors within ECG data in separation from task-relevant generative factors. We achieve a disentanglement score of 92.1% while disentangling five anatomical generative factors and the task-relevant generative factor. In both simulated and real-data experiments, this work further provides quantitative evidence for the benefit of disentanglement learning on the downstream clinical task of localizing the origin of ventricular activation. Overall, the presented method achieves an improvement of around 18.5%, and 11.3% for the simulated dataset, and around 7.2%, and 3.6% for the real dataset, over baseline CNN, and standard generative model, respectively. Conclusion: These results demonstrate the importance as well as the feasibility of the disentangled representation learning of inter-subject anatomical variations within ECG data. Significance: This work suggests the important research direction to deal with the well-known challenge posed by the presence of significant inter-subject variations during an automated analysis of ECG data.
AbstractList Objective: This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data. Methods: Since ground truth anatomical factors are generally not known in clinical ECG for assessing the disentangling ability of the models, the presented work first proposes the SimECG data set, a 12-lead ECG data set procedurally generated with a controlled set of anatomical generative factors. Second, to perform such disentanglement, the presented method evaluates and compares deep generative models with latent density modeled by nonparametric Indian Buffet Process to account for the complex generative process of ECG data. Results: In the simulated data, the experiments demonstrate, for the first time, concrete evidence of the possibility to disentangle key generative anatomical factors within ECG data in separation from task-relevant generative factors. We achieve a disentanglement score of 92.1% while disentangling five anatomical generative factors and the task-relevant generative factor. In both simulated and real-data experiments, this work further provides quantitative evidence for the benefit of disentanglement learning on the downstream clinical task of localizing the origin of ventricular activation. Overall, the presented method achieves an improvement of around 18.5%, and 11.3% for the simulated dataset, and around 7.2%, and 3.6% for the real dataset, over baseline CNN, and standard generative model, respectively. Conclusion: These results demonstrate the importance as well as the feasibility of the disentangled representation learning of inter-subject anatomical variations within ECG data. Significance: This work suggests the important research direction to deal with the well-known challenge posed by the presence of significant inter-subject variations during an automated analysis of ECG data.
This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data. Since ground truth anatomical factors are generally not known in clinical ECG for assessing the disentangling ability of the models, the presented work first proposes the SimECG data set, a 12-lead ECG data set procedurally generated with a controlled set of anatomical generative factors. Second, to perform such disentanglement, the presented method evaluates and compares deep generative models with latent density modeled by nonparametric Indian Buffet Process to account for the complex generative process of ECG data. In the simulated data, the experiments demonstrate, for the first time, concrete evidence of the possibility to disentangle key generative anatomical factors within ECG data in separation from task-relevant generative factors. We achieve a disentanglement score of 92.1% while disentangling five anatomical generative factors and the task-relevant generative factor. In both simulated and real-data experiments, this work further provides quantitative evidence for the benefit of disentanglement learning on the downstream clinical task of localizing the origin of ventricular activation. Overall, the presented method achieves an improvement of around 18.5%, and 11.3% for the simulated dataset, and around 7.2%, and 3.6% for the real dataset, over baseline CNN, and standard generative model, respectively. These results demonstrate the importance as well as the feasibility of the disentangled representation learning of inter-subject anatomical variations within ECG data. This work suggests the important research direction to deal with the well-known challenge posed by the presence of significant inter-subject variations during an automated analysis of ECG data.
This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data.OBJECTIVEThis work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data.Since ground truth anatomical factors are generally not known in clinical ECG for assessing the disentangling ability of the models, the presented work first proposes the SimECG data set, a 12-lead ECG data set procedurally generated with a controlled set of anatomical generative factors. Second, to perform such disentanglement, the presented method evaluates and compares deep generative models with latent density modeled by nonparametric Indian Buffet Process to account for the complex generative process of ECG data.METHODSSince ground truth anatomical factors are generally not known in clinical ECG for assessing the disentangling ability of the models, the presented work first proposes the SimECG data set, a 12-lead ECG data set procedurally generated with a controlled set of anatomical generative factors. Second, to perform such disentanglement, the presented method evaluates and compares deep generative models with latent density modeled by nonparametric Indian Buffet Process to account for the complex generative process of ECG data.In the simulated data, the experiments demonstrate, for the first time, concrete evidence of the possibility to disentangle key generative anatomical factors within ECG data in separation from task-relevant generative factors. We achieve a disentanglement score of 92.1% while disentangling five anatomical generative factors and the task-relevant generative factor. In both simulated and real-data experiments, this work further provides quantitative evidence for the benefit of disentanglement learning on the downstream clinical task of localizing the origin of ventricular activation. Overall, the presented method achieves an improvement of around 18.5%, and 11.3% for the simulated dataset, and around 7.2%, and 3.6% for the real dataset, over baseline CNN, and standard generative model, respectively.RESULTSIn the simulated data, the experiments demonstrate, for the first time, concrete evidence of the possibility to disentangle key generative anatomical factors within ECG data in separation from task-relevant generative factors. We achieve a disentanglement score of 92.1% while disentangling five anatomical generative factors and the task-relevant generative factor. In both simulated and real-data experiments, this work further provides quantitative evidence for the benefit of disentanglement learning on the downstream clinical task of localizing the origin of ventricular activation. Overall, the presented method achieves an improvement of around 18.5%, and 11.3% for the simulated dataset, and around 7.2%, and 3.6% for the real dataset, over baseline CNN, and standard generative model, respectively.These results demonstrate the importance as well as the feasibility of the disentangled representation learning of inter-subject anatomical variations within ECG data.CONCLUSIONThese results demonstrate the importance as well as the feasibility of the disentangled representation learning of inter-subject anatomical variations within ECG data.This work suggests the important research direction to deal with the well-known challenge posed by the presence of significant inter-subject variations during an automated analysis of ECG data.SIGNIFICANCEThis work suggests the important research direction to deal with the well-known challenge posed by the presence of significant inter-subject variations during an automated analysis of ECG data.
Author Toloubidokhti, Maryam
Murkute, Jaideep Vitthal
Sapp, John L.
Gyawali, Prashnna K.
Jiang, Xiajun
Wang, Linwei
Horacek, B. Milan
Author_xml – sequence: 1
  givenname: Prashnna K.
  orcidid: 0000-0003-1201-6993
  surname: Gyawali
  fullname: Gyawali, Prashnna K.
  email: pkg2182@rit.edu
  organization: Rochester Institute of Technology, Stanford, CA, USA
– sequence: 2
  givenname: Jaideep Vitthal
  surname: Murkute
  fullname: Murkute, Jaideep Vitthal
  organization: Rochester Institute of Technology, USA
– sequence: 3
  givenname: Maryam
  surname: Toloubidokhti
  fullname: Toloubidokhti, Maryam
  organization: Rochester Institute of Technology, USA
– sequence: 4
  givenname: Xiajun
  surname: Jiang
  fullname: Jiang, Xiajun
  organization: Rochester Institute of Technology, USA
– sequence: 5
  givenname: B. Milan
  orcidid: 0000-0001-6902-7787
  surname: Horacek
  fullname: Horacek, B. Milan
  organization: School of Biomedical Engineering, Dalhousie University, Canada
– sequence: 6
  givenname: John L.
  orcidid: 0000-0002-9602-2751
  surname: Sapp
  fullname: Sapp, John L.
  organization: School of Biomedical Engineering, Dalhousie University, Canada
– sequence: 7
  givenname: Linwei
  surname: Wang
  fullname: Wang, Linwei
  organization: Rochester Institute of Technology, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34460360$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCAyAkNBIbNhP8b88GqbQBKgWxoCB2lsdzkzqa2MH2IPH2OCStoAtWlnW_c3TPPWfoJMQACD0neE4I7t7cvPu0mFNMyZwRrInkj9CMCKFbKhg5QTOMiW472vFTdJbzpn655vIJOmWcS8wknqHvS7Ap-LBuSmyufIZQbFiP0FyHAqn9MvUbcKW5CLbErXd2bL7Z5G3xMeTGh2Yx1nGKzqbBx3Wyu1vvmitb7FP0eGXHDM-O7zn6-n5xc_mxXX7-cH15sWwd56q0AJph1zHNhBQgpXK4l-CwGsgKczHoHqxe1XAELNa9VtZyNxAykM4JZQd2jt4efHdTv4XB1QDJjmaX_NamXyZab_6dBH9r1vGn0Vpo0Ylq8PpokOKPCXIxW58djKMNEKdsqJCq04IJXdFXD9BNnFKo8QyVlKiOK04r9fLvje5XuTt6BdQBcCnmnGBlnC9_TloX9KMh2OzrNft6zb5ec6y3KskD5Z35_zQvDhoPAPd8J6igirHf_4Kw4g
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109201
crossref_primary_10_1109_RBME_2024_3486439
crossref_primary_10_1016_j_compbiomed_2024_109422
crossref_primary_10_1038_s41551_023_01056_8
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_3389_fphys_2022_840011
crossref_primary_10_1016_j_artmed_2023_102619
Cites_doi 10.1529/biophysj.104.043299
10.1007/s10439-011-0391-5
10.22489/CinC.2017.178-245
10.3156/jsoft.29.5_177_2
10.22489/CinC.2017.041-280
10.1109/ISBI.2017.7950596
10.1109/ICDM.2019.00127
10.1109/5.726791
10.1016/j.hrthm.2011.10.014
10.1007/s11517-013-1115-9
10.1109/TMI.2019.2933425
10.1002/047134608x.w1403
10.1007/s10479-011-0841-3
10.1109/TKDE.2009.191
10.1007/978-3-030-32226-7_85
10.1093/europace/euaa165
10.1016/j.jelectrocard.2016.07.026
10.1023/B:STCO.0000035301.49549.88
10.1016/j.jelectrocard.2015.08.008
10.1016/0960-0779(95)00089-5
10.1109/TBME.2009.2024531
10.1038/jhh.2015.58
10.1109/TKDE.2019.2946162
10.1109/TPAMI.2013.50
10.1007/978-3-030-32245-8_29
10.1088/0031-9155/51/23/014
10.1038/s41591-018-0268-3
10.1109/TBME.2019.2939138
10.1109/WACV.2019.00095
10.22489/CinC.2017.354-425
10.1007/978-3-030-00919-9_17
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2021.3108164
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 870
ExternalDocumentID PMC8858595
34460360
10_1109_TBME_2021_3108164
9525273
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Health
– fundername: National Heart, Lung, and Blood Institute
  grantid: R15HL140500; R01HL145590
  funderid: 10.13039/100000050
– fundername: NHLBI NIH HHS
  grantid: R01 HL145590
– fundername: NHLBI NIH HHS
  grantid: R15 HL140500
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-ee830c9383565e667c0b6ec07d1f045d8bea8f0811ea08b87aa4cd11d19c57ad3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:38:13 EDT 2025
Thu Jul 10 21:48:52 EDT 2025
Mon Jun 30 08:43:12 EDT 2025
Mon Jul 21 05:59:01 EDT 2025
Thu Apr 24 22:55:49 EDT 2025
Tue Jul 01 03:28:35 EDT 2025
Wed Aug 27 03:02:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-ee830c9383565e667c0b6ec07d1f045d8bea8f0811ea08b87aa4cd11d19c57ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6902-7787
0000-0002-9602-2751
0000-0003-1201-6993
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8858595
PMID 34460360
PQID 2621794742
PQPubID 85474
PageCount 11
ParticipantIDs pubmed_primary_34460360
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8858595
crossref_citationtrail_10_1109_TBME_2021_3108164
crossref_primary_10_1109_TBME_2021_3108164
proquest_journals_2621794742
ieee_primary_9525273
proquest_miscellaneous_2567985358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Rezende (ref27) 2014
ref35
Chen (ref5) 2018
Higgins (ref25) 2018
ref34
ref15
ref14
ref31
Kim (ref36) 2018
ref11
ref33
ref32
ref1
Oord (ref2) 2018
Chen (ref37) 2016
ref17
ref39
ref16
ref38
ref19
ref18
Grimm (ref9) 2019
Higgins (ref28) 2016
Burgess (ref20) 2018
ref24
ref46
ref23
ref45
ref48
ref47
Kingma (ref26) 2014
ref42
ref41
ref22
ref44
ref21
Locatello (ref3) 2020; 21
Higgins (ref8) 2017
Matthey (ref12) 2017
Griffiths (ref30) 2011; 12
ref29
Redko (ref43) 2019
Achille (ref10) 2018
ref7
ref4
ref40
Kingma (ref6) 2014
References_xml – volume-title: Domain Adaptation Theory: Available Theoretical Results
  year: 2019
  ident: ref43
– year: 2019
  ident: ref9
  article-title: Disentangled cumulants help successor representations transfer to new tasks
– ident: ref45
  doi: 10.1529/biophysj.104.043299
– ident: ref24
  doi: 10.1007/s10439-011-0391-5
– ident: ref17
  doi: 10.22489/CinC.2017.178-245
– ident: ref39
  doi: 10.3156/jsoft.29.5_177_2
– volume: 12
  start-page: 1185
  year: 2011
  ident: ref30
  article-title: The indian buffet process: An introduction and review
  publication-title: J. Mach. Learn. Res.
– ident: ref41
  doi: 10.22489/CinC.2017.041-280
– ident: ref4
  doi: 10.1109/ISBI.2017.7950596
– start-page: 1480
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  year: 2017
  ident: ref8
  article-title: Darla: Improving zero-shot transfer in reinforcement learning
– ident: ref29
  doi: 10.1109/ICDM.2019.00127
– ident: ref11
  doi: 10.1109/5.726791
– year: 2018
  ident: ref2
  article-title: Representation learning with contrastive predictive coding
– ident: ref34
  doi: 10.1016/j.hrthm.2011.10.014
– start-page: 2649
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref36
  article-title: Disentangling by factorising
– volume-title: Proc. 2nd Int. Conf. Learn. Representations
  year: 2014
  ident: ref26
  article-title: Auto-encoding variational Bayes
– ident: ref35
  doi: 10.1007/s11517-013-1115-9
– ident: ref13
  doi: 10.1109/TMI.2019.2933425
– start-page: 3581
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2014
  ident: ref6
  article-title: Semi-supervised learning with deep generative models
– year: 2016
  ident: ref28
  article-title: Beta-Vae: Learning basic visual concepts with a constrained variational framework
– ident: ref15
  doi: 10.1002/047134608x.w1403
– ident: ref33
  doi: 10.1007/s10479-011-0841-3
– ident: ref42
  doi: 10.1109/TKDE.2009.191
– ident: ref7
  doi: 10.1007/978-3-030-32226-7_85
– volume: 21
  start-page: 1
  issue: 209
  year: 2020
  ident: ref3
  article-title: A sober look at the unsupervised learning of disentangled representations and their evaluation
  publication-title: J. Mach. Learn. Res.
– ident: ref31
  doi: 10.1093/europace/euaa165
– ident: ref48
  doi: 10.1016/j.jelectrocard.2016.07.026
– year: 2018
  ident: ref20
  article-title: 3D shapes dataset
– ident: ref32
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref21
  doi: 10.1016/j.jelectrocard.2015.08.008
– ident: ref22
  doi: 10.1016/0960-0779(95)00089-5
– ident: ref23
  doi: 10.1109/TBME.2009.2024531
– start-page: 1278
  volume-title: Proc. 31th Int. Conf. Mach. Learn.
  year: 2014
  ident: ref27
  article-title: Stochastic backpropagation and approximate inference in deep generative models
– ident: ref47
  doi: 10.1038/jhh.2015.58
– year: 2018
  ident: ref25
  article-title: Towards a definition of disentangled representations
– start-page: 2610
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref5
  article-title: Isolating sources of disentanglement in variational autoencoders
– year: 2017
  ident: ref12
  article-title: Dsprites: Disentanglement testing sprites dataset
– ident: ref40
  doi: 10.1109/TKDE.2019.2946162
– ident: ref1
  doi: 10.1109/TPAMI.2013.50
– ident: ref14
  doi: 10.1007/978-3-030-32245-8_29
– ident: ref46
  doi: 10.1088/0031-9155/51/23/014
– start-page: 9873
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref10
  article-title: Life-long disentangled representation learning with cross-domain latent homologies
– ident: ref16
  doi: 10.1038/s41591-018-0268-3
– ident: ref19
  doi: 10.1109/TBME.2019.2939138
– ident: ref38
  doi: 10.1109/WACV.2019.00095
– ident: ref18
  doi: 10.22489/CinC.2017.354-425
– ident: ref44
  doi: 10.1007/978-3-030-00919-9_17
– start-page: 2172
  volume-title: Proc. Adv. neural Inf. Process. Syst.
  year: 2016
  ident: ref37
  article-title: Infogan: Interpretable representation learning by information maximizing generative adversarial nets
SSID ssj0014846
Score 2.3980844
Snippet Objective: This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic...
This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG) data....
This work investigates the possibility of disentangled representation learning of inter-subject anatomical variations within electrocardiographic (ECG)...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 860
SubjectTerms Data models
Datasets
Disentangled representation learning
EKG
electrocardiograms
Electrocardiography
generative models
Geometry
Heart
Heart Ventricles
India Buffet process
Learning
Machine Learning
Representations
Simulation
Solid modeling
Task analysis
Torso
Variation
variational autoencoder
Ventricle
Title Learning to Disentangle Inter-Subject Anatomical Variations in Electrocardiographic Data
URI https://ieeexplore.ieee.org/document/9525273
https://www.ncbi.nlm.nih.gov/pubmed/34460360
https://www.proquest.com/docview/2621794742
https://www.proquest.com/docview/2567985358
https://pubmed.ncbi.nlm.nih.gov/PMC8858595
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4FGiBBgoyEidEtrbjxPGx0K0qpOXUor1Fjj3brqiyCLIXfj1jxxt1qwpxi2QnSjIPz_MbgA_FwmqprM1biVWuDDrSg2TIoWy1MoVXIoYuZt-qiyv1dV7Od-DT2AuDiLH4DCfhMuby_cqtQ6jsxJQy4IXtwi45bkOv1pgxUPXQlMMFCbA0KmUwBTcnl59nU_IEpSAHNcyZCLN4CnKDSHnzreMozld5yNS8XzF55wg6fwqzzcsPlSc_Juu-nbg_93Ad__frnsF-skXZ6cA8z2EHuwN4cgeh8AAezVLu_RDmCYr1mvUrdraMTUvd9S2yGFTMSQOFkA477ciNjxgE7Dv54UNAkC07Nh0G7rhYABtxspeOndnevoCr8-nll4s8zWXInVK6zxHrgjtDvi1Zg1hV2vG2Qse1FwuyEH3doq0X9KcFWl63tbZWOS-EF8aV2vriJex1qw6PgLWuUlho5XSA4W85GUe-VIXnduGQLMkM-IY8jUug5WF2xm0TnRdumkDcJhC3ScTN4ON4y88BseNfmw8DIcaNiQYZHG94oEky_buRlQzaSyuZwftxmaQxpFhsh6s17SlDVqssyjqDVwPLjM_esFwGeouZxg0B6Xt7pVveRMTvOmRvTfn64bd9A49laMqIteTHsNf_WuNbMpX69l2Ukb89Lw5z
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgE98Gh5pBQwEidEtrbjxMmx0K0WaHraor1FjjNbVlRZBNlLf33HjjfqVhXiFslOlGQenuc3AB-SudFSGRPXErNYFWhJD5Ihh7LWqkgaJXzoojzLJufq2yydbcGnoRcGEX3xGY7cpc_lN0u7cqGywyKVDi_sHtyncz8VfbfWkDNQed-WwwWJsCxUyGEKXhxOP5dj8gWlIBfVTZpw03gScoRIffONA8lPWLnL2LxdM3njEDp5AuX69fvak1-jVVeP7NUtZMf__b6n8DhYo-yoZ59nsIXtLuzcwCjchQdlyL7vwSyAsV6wbsmOF75tqb24RObDijHpIBfUYUctOfIehYD9IE-8DwmyRcvG_cgd60tgPVL2wrJj05nncH4ynn6ZxGEyQ2yV0l2MmCfcFuTdkj2IWaYtrzO0XDdiTjZik9do8jn9aYGG53WujVG2EaIRhU21aZIXsN0uW3wFrLaZwkQrqx0Qf83JPGpSlTTczC2SLRkBX5OnsgG23E3PuKy8-8KLyhG3csStAnEj-Djc8rvH7PjX5j1HiGFjoEEEB2seqIJU_61kJp3-0kpG8H5YJnl0SRbT4nJFe1KX10qTNI_gZc8yw7PXLBeB3mCmYYPD-t5caRc_PeZ37vK3Rbp_99u-g4eTaXlanX49-_4aHknXouEryw9gu_uzwjdkOHX1Wy8v13ZREbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Disentangle+Inter-Subject+Anatomical+Variations+in+Electrocardiographic+Data&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Gyawali%2C+Prashnna+K.&rft.au=Murkute%2C+Jaideep+Vitthal&rft.au=Toloubidokhti%2C+Maryam&rft.au=Jiang%2C+Xiajun&rft.date=2022-02-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=69&rft.issue=2&rft.spage=860&rft.epage=870&rft_id=info:doi/10.1109%2FTBME.2021.3108164&rft_id=info%3Apmid%2F34460360&rft.externalDocID=9525273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon