A Selective Review on Information Criteria in Multiple Change Point Detection
Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying pattern...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 26; no. 1; p. 50 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.01.2024
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1099-4300 1099-4300 |
DOI | 10.3390/e26010050 |
Cover
Loading…
Abstract | Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work. |
---|---|
AbstractList | Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work. Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work.Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work. |
Audience | Academic |
Author | Rao, Jing Gao, Zhanzhongyu Mo, Huadong Fang, Yi-Ping Xiao, Xun |
Author_xml | – sequence: 1 givenname: Zhanzhongyu orcidid: 0009-0008-5330-723X surname: Gao fullname: Gao, Zhanzhongyu – sequence: 2 givenname: Xun orcidid: 0000-0002-8780-5471 surname: Xiao fullname: Xiao, Xun – sequence: 3 givenname: Yi-Ping orcidid: 0000-0003-0096-3539 surname: Fang fullname: Fang, Yi-Ping – sequence: 4 givenname: Jing orcidid: 0000-0002-3105-7259 surname: Rao fullname: Rao, Jing – sequence: 5 givenname: Huadong orcidid: 0000-0002-7782-2884 surname: Mo fullname: Mo, Huadong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38248176$$D View this record in MEDLINE/PubMed https://hal.science/hal-04639716$$DView record in HAL |
BookMark | eNpdksmOEzEQhi00iFngwAuglrjAIYPddns5RmGZSBmBWM6W213OOOq2g9sdxNvjngxhkQ8u_fr8V7mqLtFZiAEQek7wNaUKv4GaY4Jxgx-hC4KVWjCK8dlf8Tm6HMcdxjWtCX-CzqmsmSSCX6DbZfUFerDZH6D6DAcPP6oYqnVwMQ0m-xKvks-QvKl8qG6nPvt9D9XqzoQtVJ-iD7l6C3l2iOEpeuxMP8Kzh_sKfXv_7uvqZrH5-GG9Wm4WljGRF9DSmjW2xozUVhHsTEs7psBRDtgqULhpCCFSiRpzSjlrSdM4ZZUE4oRq6RVaH327aHZ6n_xg0k8djdf3QkxbbVL2tgctOmuYA9k6V5IbZqzilFDTKtEZsLZ4vT563Zn-H6ub5UbPGmacKkH4gRT21ZHdp_h9gjHrwY8W-t4EiNOoa0VE00jFm4K-_A_dxSmF0pWZklxRrmbq-khtTanVl67nZGw5HQzelik7X_SlkFgKJu4fvHiwndoBulPBvyf65zs2xXFM4E4IwXreFn3aFvoLSjmsxA |
Cites_doi | 10.1080/00224065.2020.1717398 10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z 10.1214/09-AOAS289 10.1080/01621459.2012.737745 10.1080/01621459.1997.10474026 10.1016/j.jsv.2013.07.005 10.1080/03610926.2019.1589515 10.1080/01621459.2018.1442341 10.1016/j.apenergy.2021.118501 10.1007/s10651-021-00485-5 10.1214/14-AOS1245 10.1016/0005-1098(78)90005-5 10.1080/00224065.2006.11918610 10.5194/wes-5-1375-2020 10.1093/biomet/56.3.495 10.1016/0167-7152(88)90118-6 10.1007/s00184-021-00821-6 10.1016/j.cie.2022.108114 10.1093/biomet/44.1-2.248 10.1111/j.1541-0420.2006.00662.x 10.4310/SII.2019.v12.n2.a2 10.1007/s12517-019-4790-5 10.1080/00949655.2020.1718149 10.1007/s10463-014-0481-x 10.1214/aos/1176346150 10.1109/TAC.1974.1100705 10.1175/2011JCLI4055.1 10.1109/72.329683 10.1111/j.1467-9868.2008.00693.x 10.1016/0009-3084(94)02422-2 10.1016/j.sigpro.2005.01.012 10.1093/biomet/42.3-4.523 10.3390/a13050128 10.1080/00224065.2021.1937409 10.1109/TIT.2021.3130330 10.1080/01621459.1995.10476572 10.1214/12-AOAS539 10.1093/biomet/73.1.91 10.1093/biomet/63.1.117 10.2307/1267787 10.1002/wics.1607 10.1080/01621459.1966.10482198 10.1016/j.jmva.2006.05.009 10.3390/info12070274 10.1093/bioinformatics/btq647 10.1007/s00477-019-01692-0 10.1002/sta4.327 10.1016/j.jeconom.2009.10.020 10.1080/03610918.2018.1554109 10.1214/17-BJPS388 10.1111/1467-9868.00353 10.1109/34.865189 10.1198/016214505000000745 10.1016/j.sigpro.2019.107299 10.1093/biomet/57.1.1 10.1093/biomet/41.1-2.100 10.1007/978-0-8176-4801-5 10.1016/j.jmsy.2014.05.001 10.1007/s11222-016-9687-5 10.1214/14-AOS1210 10.6339/JDS.201501_13(1).0009 10.1038/s41598-018-33819-8 10.1214/aos/1176344136 10.1214/16-STS587 10.2307/1403360 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution - ShareAlike |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution - ShareAlike |
DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 1XC VOOES DOA |
DOI | 10.3390/e26010050 |
DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Physics |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_7dca4fe8bffc44a4ac96313ab97daecc oai_HAL_hal_04639716v1 A780874795 38248176 10_3390_e26010050 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: France 2030 program grantid: ANR-11-IDEX-0003 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PQGLB PMFND 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI 7X8 1XC VOOES PUEGO |
ID | FETCH-LOGICAL-c447t-eb3245c20412c910fab3d49ef36e0c9e90551118972063364b155f9c98e1f79b3 |
IEDL.DBID | 8FG |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:15:08 EDT 2025 Fri May 09 12:19:32 EDT 2025 Fri Jul 11 03:03:58 EDT 2025 Fri Jul 25 11:52:57 EDT 2025 Tue Jun 10 21:06:33 EDT 2025 Mon Jul 21 05:32:16 EDT 2025 Tue Jul 01 01:58:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | model selection Akaike information criterion piecewise constant Bayesian information criterion hypothesis test signal processing |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-eb3245c20412c910fab3d49ef36e0c9e90551118972063364b155f9c98e1f79b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-0096-3539 0000-0002-8780-5471 0009-0008-5330-723X 0000-0002-7782-2884 0000-0002-3105-7259 |
OpenAccessLink | https://www.proquest.com/docview/2918693695?pq-origsite=%requestingapplication% |
PMID | 38248176 |
PQID | 2918693695 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7dca4fe8bffc44a4ac96313ab97daecc hal_primary_oai_HAL_hal_04639716v1 proquest_miscellaneous_2917558965 proquest_journals_2918693695 gale_infotracacademiconefile_A780874795 pubmed_primary_38248176 crossref_primary_10_3390_e26010050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Chen (ref_63) 1997; 92 Truong (ref_21) 2020; 167 Murata (ref_73) 1994; 5 ref_56 ref_11 Worsley (ref_18) 1986; 73 Wang (ref_39) 2009; 71 Zou (ref_15) 2014; 42 Kass (ref_31) 1995; 90 Basalamah (ref_67) 2021; 50 Siegmund (ref_17) 1988; 56 Kolmogorov (ref_42) 1965; 1 Muggeo (ref_40) 2011; 27 Biernacki (ref_75) 2000; 22 Lu (ref_44) 2010; 4 Takeuchi (ref_72) 1976; 153 Xiao (ref_23) 2021; 53 Fryzlewicz (ref_41) 2014; 42 Alin (ref_47) 2019; 12 Page (ref_4) 1955; 42 Hudson (ref_8) 1966; 61 Katz (ref_29) 1981; 23 Padilla (ref_12) 2021; 68 ref_24 Zhang (ref_65) 2022; 54 Zeng (ref_60) 2014; 33 Ganocy (ref_48) 2015; 13 Killick (ref_22) 2012; 107 Zhang (ref_10) 2023; 15 Ratnasingam (ref_66) 2021; 28 Schwarz (ref_25) 1978; 6 Gao (ref_1) 2018; 114 Yao (ref_33) 1988; 6 Noh (ref_70) 2013; 332 Hinkley (ref_6) 1970; 57 Davis (ref_46) 2006; 101 Niu (ref_52) 2012; 6 Rissanen (ref_26) 1978; 14 Anastasiou (ref_51) 2022; 85 Pan (ref_37) 2006; 97 Akaike (ref_27) 1974; 19 Zhang (ref_34) 2007; 63 Arlot (ref_13) 2019; 20 Lavielle (ref_35) 2005; 85 Kim (ref_20) 2009; 19 ref_38 Hinkley (ref_7) 1969; 56 Costa (ref_64) 2016; 9 Wu (ref_61) 2022; 169 Kim (ref_19) 2000; 19 Letzgus (ref_71) 2020; 5 Li (ref_57) 2012; 25 Cabrieto (ref_54) 2018; 8 Wang (ref_55) 2019; 12 Shibata (ref_30) 1976; 63 Cucina (ref_58) 2019; 33 Page (ref_5) 1957; 44 ref_45 Rissanen (ref_43) 1983; 11 Page (ref_3) 1954; 41 Spiegelhalter (ref_74) 2002; 64 Liang (ref_2) 2021; 10 Ninomiya (ref_32) 2015; 67 Ding (ref_59) 2006; 38 Li (ref_50) 2020; 90 Chen (ref_36) 2006; 68 ref_49 Bai (ref_62) 2010; 157 ref_9 Haynes (ref_14) 2017; 27 Niu (ref_16) 2016; 31 Jones (ref_28) 1995; 76 Wang (ref_53) 2020; 49 Ariyarathne (ref_69) 2022; 310 Said (ref_68) 2019; 33 |
References_xml | – volume: 53 start-page: 267 year: 2021 ident: ref_23 article-title: On computing multiple change points for the gamma distribution publication-title: J. Qual. Technol. doi: 10.1080/00224065.2020.1717398 – volume: 19 start-page: 335 year: 2000 ident: ref_19 article-title: Permutation tests for joinpoint regression with applications to cancer rates publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z – volume: 4 start-page: 299 year: 2010 ident: ref_44 article-title: An MDL approach to the climate segmentation problem publication-title: Ann. Appl. Stat. doi: 10.1214/09-AOAS289 – volume: 107 start-page: 1590 year: 2012 ident: ref_22 article-title: Optimal detection of changepoints with a linear computational cost publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2012.737745 – volume: 92 start-page: 739 year: 1997 ident: ref_63 article-title: Testing and locating variance changepoints with application to stock prices publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1997.10474026 – volume: 332 start-page: 6419 year: 2013 ident: ref_70 article-title: Sequential structural damage diagnosis algorithm using a change point detection method publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.07.005 – volume: 49 start-page: 3438 year: 2020 ident: ref_53 article-title: Rank-based multiple change-point detection publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610926.2019.1589515 – volume: 9 start-page: 267 year: 2016 ident: ref_64 article-title: Change-point detection in environmental time series based on the informational approach publication-title: Electron. J. Appl. Stat. Anal. – volume: 114 start-page: 773 year: 2018 ident: ref_1 article-title: Variance change point detection under a smoothly-changing mean trend with application to liver procurement publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2018.1442341 – volume: 310 start-page: 118501 year: 2022 ident: ref_69 article-title: Change point detection-based simulation of nonstationary sub-hourly wind time series publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118501 – volume: 28 start-page: 303 year: 2021 ident: ref_66 article-title: Modified information criterion for regular change point models based on confidence distribution publication-title: Environ. Ecol. Stat. doi: 10.1007/s10651-021-00485-5 – volume: 42 start-page: 2243 year: 2014 ident: ref_41 article-title: Wild binary segmentation for multiple change-point detection publication-title: Ann. Stat. doi: 10.1214/14-AOS1245 – volume: 14 start-page: 465 year: 1978 ident: ref_26 article-title: Modeling by shortest data description publication-title: Automatica doi: 10.1016/0005-1098(78)90005-5 – volume: 20 start-page: 1 year: 2019 ident: ref_13 article-title: A kernel multiple change-point algorithm via model selection publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 199 year: 2006 ident: ref_59 article-title: Phase I analysis for monitoring nonlinear profiles in manufacturing processes publication-title: J. Qual. Technol. doi: 10.1080/00224065.2006.11918610 – volume: 5 start-page: 1375 year: 2020 ident: ref_71 article-title: Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models publication-title: Wind. Energy Sci. doi: 10.5194/wes-5-1375-2020 – volume: 56 start-page: 495 year: 1969 ident: ref_7 article-title: Inference about the intersection in two-phase Regression publication-title: Biometrika doi: 10.1093/biomet/56.3.495 – volume: 6 start-page: 181 year: 1988 ident: ref_33 article-title: Estimating the number of change-points via Schwarz’criterion publication-title: Stat. Probab. Lett. doi: 10.1016/0167-7152(88)90118-6 – volume: 85 start-page: 141 year: 2022 ident: ref_51 article-title: Detecting multiple generalized change-points by isolating single ones publication-title: Metrika doi: 10.1007/s00184-021-00821-6 – volume: 169 start-page: 108114 year: 2022 ident: ref_61 article-title: A synchronous multiple change-point detecting method for manufacturing process publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108114 – ident: ref_56 – volume: 44 start-page: 248 year: 1957 ident: ref_5 article-title: On problems in which a change in a parameter occurs at an unknown point publication-title: Biometrika doi: 10.1093/biomet/44.1-2.248 – volume: 153 start-page: 12 year: 1976 ident: ref_72 article-title: Distribution of information statistics and validity criteria of models publication-title: Math. Sci. – volume: 63 start-page: 22 year: 2007 ident: ref_34 article-title: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00662.x – volume: 12 start-page: 203 year: 2019 ident: ref_47 article-title: Robust change point detection for linear regression models publication-title: Stat. Its Interface doi: 10.4310/SII.2019.v12.n2.a2 – volume: 12 start-page: 1 year: 2019 ident: ref_55 article-title: Regional detection of multiple change points and workable application for precipitation by maximum likelihood approach publication-title: Arab. J. Geosci. doi: 10.1007/s12517-019-4790-5 – volume: 19 start-page: 597 year: 2009 ident: ref_20 article-title: Selecting the number of change-points in segmented line regression publication-title: Stat. Sin. – volume: 90 start-page: 1131 year: 2020 ident: ref_50 article-title: A change-point detection and clustering method in the recurrent-event context publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2020.1718149 – volume: 67 start-page: 943 year: 2015 ident: ref_32 article-title: Change-point model selection via AIC publication-title: Ann. Inst. Stat. Math. doi: 10.1007/s10463-014-0481-x – volume: 11 start-page: 416 year: 1983 ident: ref_43 article-title: A universal prior for integers and estimation by minimum description length publication-title: Ann. Stat. doi: 10.1214/aos/1176346150 – volume: 19 start-page: 716 year: 1974 ident: ref_27 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – ident: ref_38 – volume: 25 start-page: 674 year: 2012 ident: ref_57 article-title: Multiple changepoint detection via genetic Algorithms publication-title: J. Clim. doi: 10.1175/2011JCLI4055.1 – volume: 5 start-page: 865 year: 1994 ident: ref_73 article-title: Network information criterion-determining the number of hidden units for an artificial neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.329683 – volume: 71 start-page: 671 year: 2009 ident: ref_39 article-title: Shrinkage tuning parameter selection with a diverging number of parameters publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/j.1467-9868.2008.00693.x – volume: 76 start-page: 1 year: 1995 ident: ref_28 article-title: Determining one or more change Points publication-title: Chem. Phys. LIPIDS doi: 10.1016/0009-3084(94)02422-2 – volume: 85 start-page: 1501 year: 2005 ident: ref_35 article-title: Using penalized contrasts for the change-point Problem publication-title: Signal Process. doi: 10.1016/j.sigpro.2005.01.012 – volume: 42 start-page: 523 year: 1955 ident: ref_4 article-title: A test for a change in a parameter occurring at an unknown Point publication-title: Biometrika doi: 10.1093/biomet/42.3-4.523 – ident: ref_45 doi: 10.3390/a13050128 – volume: 54 start-page: 453 year: 2022 ident: ref_65 article-title: Change point detection and issue localization based on fleet-wide fault data publication-title: J. Qual. Technol. doi: 10.1080/00224065.2021.1937409 – volume: 68 start-page: 1922 year: 2021 ident: ref_12 article-title: Optimal nonparametric multivariate change point detection and localization publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2021.3130330 – volume: 90 start-page: 773 year: 1995 ident: ref_31 article-title: Bayes factors publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – volume: 6 start-page: 1306 year: 2012 ident: ref_52 article-title: The screening and ranking algorithm to detect DNA copy number variations publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS539 – volume: 73 start-page: 91 year: 1986 ident: ref_18 article-title: Confidence regions and tests for a change-point in a sequence of exponential family random variables publication-title: Biometrika doi: 10.1093/biomet/73.1.91 – ident: ref_24 – volume: 63 start-page: 117 year: 1976 ident: ref_30 article-title: Selection of the order of an autoregressive model by Akaike’s information criterion publication-title: Biometrika doi: 10.1093/biomet/63.1.117 – volume: 23 start-page: 243 year: 1981 ident: ref_29 article-title: On some criteria for estimating the order of a Markov chain publication-title: Technometrics doi: 10.2307/1267787 – volume: 15 start-page: e1607 year: 2023 ident: ref_10 article-title: Information criteria for model selection publication-title: WIREs Comput. Stat. doi: 10.1002/wics.1607 – ident: ref_11 – volume: 61 start-page: 1097 year: 1966 ident: ref_8 article-title: Fitting segmented curves whose join points have to be estimated publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1966.10482198 – volume: 97 start-page: 2221 year: 2006 ident: ref_37 article-title: Application of modified information criterion to multiple change point problems publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2006.05.009 – ident: ref_49 doi: 10.3390/info12070274 – volume: 27 start-page: 161 year: 2011 ident: ref_40 article-title: Efficient change point detection for genomic sequences of continuous measurements publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq647 – volume: 1 start-page: 1 year: 1965 ident: ref_42 article-title: Three approaches to the quantitative definition information publication-title: Probl. Inf. Transm. – volume: 33 start-page: 1137 year: 2019 ident: ref_58 article-title: Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-019-01692-0 – volume: 10 start-page: e327 year: 2021 ident: ref_2 article-title: Gradual variance change point detection with a smoothly changing mean trend publication-title: Stat doi: 10.1002/sta4.327 – volume: 157 start-page: 78 year: 2010 ident: ref_62 article-title: Common breaks in means and variances for panel data publication-title: J. Econom. doi: 10.1016/j.jeconom.2009.10.020 – volume: 50 start-page: 180 year: 2021 ident: ref_67 article-title: Modified information criterion for linear regression change-point model with its applications publication-title: Commun. Stat.-Simul. Comput. doi: 10.1080/03610918.2018.1554109 – volume: 33 start-page: 280 year: 2019 ident: ref_68 article-title: Modified information criterion for testing changes in skew normal model publication-title: Braz. J. Probab. Stat. doi: 10.1214/17-BJPS388 – volume: 64 start-page: 583 year: 2002 ident: ref_74 article-title: Bayesian measures of model complexity and fit publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/1467-9868.00353 – volume: 22 start-page: 719 year: 2000 ident: ref_75 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.865189 – volume: 68 start-page: 252 year: 2006 ident: ref_36 article-title: Information criterion and change point problem for regular models publication-title: Sankhyā Indian J. Stat. – volume: 101 start-page: 223 year: 2006 ident: ref_46 article-title: Structural break estimation for nonstationary time series models publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214505000000745 – volume: 167 start-page: 107299 year: 2020 ident: ref_21 article-title: Selective review of offline change point detection methods publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.107299 – volume: 57 start-page: 1 year: 1970 ident: ref_6 article-title: Inference about the change-point in a sequence of random Variables publication-title: Biometrika doi: 10.1093/biomet/57.1.1 – volume: 41 start-page: 100 year: 1954 ident: ref_3 article-title: Continuous inspection schemes publication-title: Biometrika doi: 10.1093/biomet/41.1-2.100 – ident: ref_9 doi: 10.1007/978-0-8176-4801-5 – volume: 33 start-page: 508 year: 2014 ident: ref_60 article-title: Robust Phase I monitoring of profile data with application in low-E glass manufacturing processes publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2014.05.001 – volume: 27 start-page: 1293 year: 2017 ident: ref_14 article-title: A computationally efficient nonparametric approach for changepoint detection publication-title: Stat. Comput. doi: 10.1007/s11222-016-9687-5 – volume: 42 start-page: 970 year: 2014 ident: ref_15 article-title: Nonparametric maximum likelihood approach to multiple change-point problems publication-title: Ann. Stat. doi: 10.1214/14-AOS1210 – volume: 13 start-page: 157 year: 2015 ident: ref_48 article-title: Heteroscedastic change point analysis and application to footprint data publication-title: J. Data Sci. doi: 10.6339/JDS.201501_13(1).0009 – volume: 8 start-page: 15637 year: 2018 ident: ref_54 article-title: Detecting long-lived autodependency changes in a multivariate system via change point detection and regime switching models publication-title: Sci. Rep. doi: 10.1038/s41598-018-33819-8 – volume: 6 start-page: 461 year: 1978 ident: ref_25 article-title: Estimating the Dimension of a Model publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 31 start-page: 611 year: 2016 ident: ref_16 article-title: Multiple change-point detection: A selective overview publication-title: Stat. Sci. doi: 10.1214/16-STS587 – volume: 56 start-page: 31 year: 1988 ident: ref_17 article-title: Confidence sets in change-point problems publication-title: Int. Stat. Rev. Rev. Int. De Stat. doi: 10.2307/1403360 |
SSID | ssj0023216 |
Score | 2.3368762 |
SecondaryResourceType | review_article |
Snippet | Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and... |
SourceID | doaj hal proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 50 |
SubjectTerms | Akaike information criterion Bayesian analysis Bayesian information criterion Comparative analysis Criteria Data Analysis, Statistics and Probability Data transmission Hypotheses hypothesis test Hypothesis testing Information Theory Mathematics Methodology Methods model selection Physics piecewise constant Ranking and selection (Statistics) signal processing Statistical methods Statistics Time series Wind turbines |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLdGT7sgpm1Q6CYzIXGKaGzHjo_doKqmFU0CJG6W82ILLikqKX__3ovTaD0gLlwdK7bfs9-H_d7vMXamYuGNKX2mpx4yFYWlZGWZQY2yDwpNyZsUbXGtF3fq931x_1-pL4oJS_DAiXAXpgavYiirGEEprzzglsmlr6ypPY5P0hd13taZ6l0tKXKdcIQkOvUXgYCzCOpkR_t0IP2DKN57oEjI18zMTt3MD9h-byfyWZrfJ_YhNJ_ZcsZvuro1KKJ4utXnq4b3KUVEYk6lC2hT8ceGL_tgQZ5SCPjf1WPT8svQduFXzRd2N7-6_bXI-noIGa7ctBn6vUIVIAgiC1DNR1_JWtkQpQ5TsMFO0fxBh8EagYaH1KpCYyFasGXIo7GV_MpGzaoJR4xD7UF66bUAFJW18cqCgMroCF3y7Jj92NLJPSXYC4fuAhHTDcQcs59EwaEDIVV3Dcg_1_PPvcW_MTsn-js6T-3ag-_TAnCehEzlZqaclujz2ALnhCzaGW0x--OojWDPCAvrJR-zyZaDrj-Nz05YKrwlNf3jdPiM54geR3wTVpuujymK0mrsc5g4PwwlS6HK3Ojj91jwCfso0DBK1zgTNmrXm_ANDZu2-t7t4X-3vvXC priority: 102 providerName: Directory of Open Access Journals |
Title | A Selective Review on Information Criteria in Multiple Change Point Detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38248176 https://www.proquest.com/docview/2918693695 https://www.proquest.com/docview/2917558965 https://hal.science/hal-04639716 https://doaj.org/article/7dca4fe8bffc44a4ac96313ab97daecc |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-GCqMoj0K5chMQp6sZ2_DihLXS7QrSqgEp7sxzHLr0kZZvy-5lxvEE9wCUHx4qd8Xg8M575hpD3ItZOKe1KOXe-FJEZTFbmpW9B9vlaYvImRltcytW1-LKu19nhdp_DKrcyMQnqtvfoIz9hBosncWnqj3e_SqwahberuYTGDtmr4KRBDtfL88ng4qySI5oQB9P-JCB8FgKePDqDElT_JJB3fmI85L-UzXToLJ-TZ1lbpItxeffJk9AdkIsF_Z6q14CgoqNvn_YdzYlFSGiKBQyQtehtRy9yyCAdEwnoVX_bDfRzGFIQVveCXC_PfnxalbkqQumFUEMJ1i8TtWcIlOXhsI-u4a0wIXIZ5t4EMwclCMwGoxioH1yKBlSGaLzRoYrKNPwl2e36Lrwm1LfOc8edZB4EZqucMJ75RsnoUwptQd5t6WTvRvALC0YDEtNOxCzIKVJw6oB41amh39zYzP5Wtd6JGHQTI_yFE87Dxq-4a4xqHXBRQT4g_S3uqmHjvMvJATBPxKeyC6XnGiwfU8OcYIkejbZafLXYhuBniIj1uyrI4XYFbd6T9_YvBxXkeHoNuwmvSFwX-ofUR9W1NhL6vBpXfhqKayZ0peSb_3_8LXnKQPEZ3TSHZHfYPIQjUFyGZpa4c0b2Ts8ur77NkvkPz_N19QdF2-4q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacoALKuIVKGAQiFPUxHb8OCC0UJYt3a2QaKXejOPY0EtStmkRf4rfyExeqAe49RpbiTMznoc98w0hL0UsnFLapTJzPhWRGSxW5qmvQPf5QmLxJmZbHMrFsfh0UpxskN9jLQymVY46sVPUVePxjHyXGWyexKUp3p79SLFrFN6uji00erE4CL9-Qsh2_mZ_D_j7irH5h6P3i3ToKpB6IVSbQvTIROEZAk15MJbRlbwSJkQuQ-ZNMBk4EeB2G8XAfHMpSjC50XijQx6VKTm8d5PcEJwbTCHU849TgMdZLnv0IhjMdgPCdSHAyhWb17UGmAzA5nfMv_yXc9sZufk2uT14p3TWi9MdshHqu2Q1o1-6bjmgGGl_l0Cbmg6FTMhYig0TUJTpaU1XQ4oi7QsX6OfmtG7pXmi7pK_6Hjm-FnrdJ1t1U4eHhPrKee64k8yDgq6UE8YzXyoZfVeym5AXI53sWQ-2YSFIQWLaiZgJeYcUnCYgPnb3oFl_s8N2s6ryTsSgyxjhL5xwHhRNzl1pVOVAahPyGulvcRe3a-fdUIwA60Q8LDtTOtMQaZkC1gQsuvK1xWxp8RmCrSEC12WekJ2Rg3bQAef2r8Qm5Pk0DLsXr2RcHZqLbo4qCm0kzHnQc376FNdM6FzJR_9_-TNyc3G0Wtrl_uHBY3KLgdPVHxHtkK12fRGegNPUlk87SaXk63VvjT-mcCWT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELbaIiEuqIgtUMAgEKfoJbbj5YDQg8fjlS6qBJV6M45jQy9JeU2L-Gv8OmayoR7g1mtiZZl97JlvCHkpYuGU0i6VmfOpiMxgszJPfQW2zxcSmzex2uJQro7Fp5PiZIP8HnthsKxytImdoa4aj3vkM2ZweBKXppjFoSziaLF8e_YjxQlSeNI6jtPoRWQv_PoJ6dv5m90F8PoVY8sPX96v0mHCQOqFUG0KmSQThWcIOuXBcUZX8kqYELkMmTfBZBBQQAhuFANXzqUowf1G440OeVSm5PDcTXJDcZ3h9AS9_Dgle5zlskcy4txks4DQXQi2csX_dWMCJmew-R1rMf8V6HYOb7lNbg-RKp33onWHbIT6LjmY08_d5BwwkrQ_V6BNTYemJmQyxeEJKNb0tKYHQ7ki7ZsY6FFzWrd0EdquAKy-R46vhV73yVbd1OEhob5ynjvuJPNgrCvlhPHMl0pG37XvJuTFSCd71gNvWEhYkJh2ImZC3iEFpwWIld1daNbf7KB6VlXeiRh0GSP8hRPOg9HJuSuNqhxIcEJeI_0tanS7dt4NjQnwnYiNZedKZxqyLlPANwGLrrxtNd-3eA2B1xCN6zJPyM7IQTvYg3P7V3oT8ny6DZqMxzOuDs1Ft0YVhTYS1jzoOT-9imsmdK7ko_8__Bm5CUph93cP9x6TWwzir363aIdsteuL8ATip7Z82gkqJV-vWzP-AD-rKcA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Selective+Review+on+Information+Criteria+in+Multiple+Change+Point+Detection&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Gao%2C+Zhanzhongyu&rft.au=Xiao%2C+Xun&rft.au=Fang%2C+Yi-Ping&rft.au=Rao%2C+Jing&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=26&rft.issue=1&rft_id=info:doi/10.3390%2Fe26010050&rft.externalDocID=A780874795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |