A Selective Review on Information Criteria in Multiple Change Point Detection

Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying pattern...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 26; no. 1; p. 50
Main Authors Gao, Zhanzhongyu, Xiao, Xun, Fang, Yi-Ping, Rao, Jing, Mo, Huadong
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.01.2024
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e26010050

Cover

Loading…
Abstract Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work.
AbstractList Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work.
Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work.Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and effectively are essential for us to understand the underlying data-generating mechanism in modern data streams with versatile parameter-varying patterns. However, it becomes a highly challenging problem to locate multiple change points in the noisy data. Although the Bayesian information criterion has been proven to be an effective way of selecting multiple change points in an asymptotical sense, its finite sample performance could be deficient. In this article, we have reviewed a list of information criterion-based methods for multiple change point detection, including Akaike information criterion, Bayesian information criterion, minimum description length, and their variants, with the emphasis on their practical applications. Simulation studies are conducted to investigate the actual performance of different information criteria in detecting multiple change points with possible model mis-specification for the practitioners. A case study on the SCADA signals of wind turbines is conducted to demonstrate the actual change point detection power of different information criteria. Finally, some key challenges in the development and application of multiple change point detection are presented for future research work.
Audience Academic
Author Rao, Jing
Gao, Zhanzhongyu
Mo, Huadong
Fang, Yi-Ping
Xiao, Xun
Author_xml – sequence: 1
  givenname: Zhanzhongyu
  orcidid: 0009-0008-5330-723X
  surname: Gao
  fullname: Gao, Zhanzhongyu
– sequence: 2
  givenname: Xun
  orcidid: 0000-0002-8780-5471
  surname: Xiao
  fullname: Xiao, Xun
– sequence: 3
  givenname: Yi-Ping
  orcidid: 0000-0003-0096-3539
  surname: Fang
  fullname: Fang, Yi-Ping
– sequence: 4
  givenname: Jing
  orcidid: 0000-0002-3105-7259
  surname: Rao
  fullname: Rao, Jing
– sequence: 5
  givenname: Huadong
  orcidid: 0000-0002-7782-2884
  surname: Mo
  fullname: Mo, Huadong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38248176$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04639716$$DView record in HAL
BookMark eNpdksmOEzEQhi00iFngwAuglrjAIYPddns5RmGZSBmBWM6W213OOOq2g9sdxNvjngxhkQ8u_fr8V7mqLtFZiAEQek7wNaUKv4GaY4Jxgx-hC4KVWjCK8dlf8Tm6HMcdxjWtCX-CzqmsmSSCX6DbZfUFerDZH6D6DAcPP6oYqnVwMQ0m-xKvks-QvKl8qG6nPvt9D9XqzoQtVJ-iD7l6C3l2iOEpeuxMP8Kzh_sKfXv_7uvqZrH5-GG9Wm4WljGRF9DSmjW2xozUVhHsTEs7psBRDtgqULhpCCFSiRpzSjlrSdM4ZZUE4oRq6RVaH327aHZ6n_xg0k8djdf3QkxbbVL2tgctOmuYA9k6V5IbZqzilFDTKtEZsLZ4vT563Zn-H6ub5UbPGmacKkH4gRT21ZHdp_h9gjHrwY8W-t4EiNOoa0VE00jFm4K-_A_dxSmF0pWZklxRrmbq-khtTanVl67nZGw5HQzelik7X_SlkFgKJu4fvHiwndoBulPBvyf65zs2xXFM4E4IwXreFn3aFvoLSjmsxA
Cites_doi 10.1080/00224065.2020.1717398
10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z
10.1214/09-AOAS289
10.1080/01621459.2012.737745
10.1080/01621459.1997.10474026
10.1016/j.jsv.2013.07.005
10.1080/03610926.2019.1589515
10.1080/01621459.2018.1442341
10.1016/j.apenergy.2021.118501
10.1007/s10651-021-00485-5
10.1214/14-AOS1245
10.1016/0005-1098(78)90005-5
10.1080/00224065.2006.11918610
10.5194/wes-5-1375-2020
10.1093/biomet/56.3.495
10.1016/0167-7152(88)90118-6
10.1007/s00184-021-00821-6
10.1016/j.cie.2022.108114
10.1093/biomet/44.1-2.248
10.1111/j.1541-0420.2006.00662.x
10.4310/SII.2019.v12.n2.a2
10.1007/s12517-019-4790-5
10.1080/00949655.2020.1718149
10.1007/s10463-014-0481-x
10.1214/aos/1176346150
10.1109/TAC.1974.1100705
10.1175/2011JCLI4055.1
10.1109/72.329683
10.1111/j.1467-9868.2008.00693.x
10.1016/0009-3084(94)02422-2
10.1016/j.sigpro.2005.01.012
10.1093/biomet/42.3-4.523
10.3390/a13050128
10.1080/00224065.2021.1937409
10.1109/TIT.2021.3130330
10.1080/01621459.1995.10476572
10.1214/12-AOAS539
10.1093/biomet/73.1.91
10.1093/biomet/63.1.117
10.2307/1267787
10.1002/wics.1607
10.1080/01621459.1966.10482198
10.1016/j.jmva.2006.05.009
10.3390/info12070274
10.1093/bioinformatics/btq647
10.1007/s00477-019-01692-0
10.1002/sta4.327
10.1016/j.jeconom.2009.10.020
10.1080/03610918.2018.1554109
10.1214/17-BJPS388
10.1111/1467-9868.00353
10.1109/34.865189
10.1198/016214505000000745
10.1016/j.sigpro.2019.107299
10.1093/biomet/57.1.1
10.1093/biomet/41.1-2.100
10.1007/978-0-8176-4801-5
10.1016/j.jmsy.2014.05.001
10.1007/s11222-016-9687-5
10.1214/14-AOS1210
10.6339/JDS.201501_13(1).0009
10.1038/s41598-018-33819-8
10.1214/aos/1176344136
10.1214/16-STS587
10.2307/1403360
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution - ShareAlike
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution - ShareAlike
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
1XC
VOOES
DOA
DOI 10.3390/e26010050
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Physics
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_7dca4fe8bffc44a4ac96313ab97daecc
oai_HAL_hal_04639716v1
A780874795
38248176
10_3390_e26010050
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: France 2030 program
  grantid: ANR-11-IDEX-0003
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
PMFND
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
7X8
1XC
VOOES
PUEGO
ID FETCH-LOGICAL-c447t-eb3245c20412c910fab3d49ef36e0c9e90551118972063364b155f9c98e1f79b3
IEDL.DBID 8FG
ISSN 1099-4300
IngestDate Wed Aug 27 01:15:08 EDT 2025
Fri May 09 12:19:32 EDT 2025
Fri Jul 11 03:03:58 EDT 2025
Fri Jul 25 11:52:57 EDT 2025
Tue Jun 10 21:06:33 EDT 2025
Mon Jul 21 05:32:16 EDT 2025
Tue Jul 01 01:58:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords model selection
Akaike information criterion
piecewise constant
Bayesian information criterion
hypothesis test
signal processing
Language English
License https://creativecommons.org/licenses/by/4.0
Attribution - ShareAlike: http://creativecommons.org/licenses/by-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-eb3245c20412c910fab3d49ef36e0c9e90551118972063364b155f9c98e1f79b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0096-3539
0000-0002-8780-5471
0009-0008-5330-723X
0000-0002-7782-2884
0000-0002-3105-7259
OpenAccessLink https://www.proquest.com/docview/2918693695?pq-origsite=%requestingapplication%
PMID 38248176
PQID 2918693695
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_7dca4fe8bffc44a4ac96313ab97daecc
hal_primary_oai_HAL_hal_04639716v1
proquest_miscellaneous_2917558965
proquest_journals_2918693695
gale_infotracacademiconefile_A780874795
pubmed_primary_38248176
crossref_primary_10_3390_e26010050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_63) 1997; 92
Truong (ref_21) 2020; 167
Murata (ref_73) 1994; 5
ref_56
ref_11
Worsley (ref_18) 1986; 73
Wang (ref_39) 2009; 71
Zou (ref_15) 2014; 42
Kass (ref_31) 1995; 90
Basalamah (ref_67) 2021; 50
Siegmund (ref_17) 1988; 56
Kolmogorov (ref_42) 1965; 1
Muggeo (ref_40) 2011; 27
Biernacki (ref_75) 2000; 22
Lu (ref_44) 2010; 4
Takeuchi (ref_72) 1976; 153
Xiao (ref_23) 2021; 53
Fryzlewicz (ref_41) 2014; 42
Alin (ref_47) 2019; 12
Page (ref_4) 1955; 42
Hudson (ref_8) 1966; 61
Katz (ref_29) 1981; 23
Padilla (ref_12) 2021; 68
ref_24
Zhang (ref_65) 2022; 54
Zeng (ref_60) 2014; 33
Ganocy (ref_48) 2015; 13
Killick (ref_22) 2012; 107
Zhang (ref_10) 2023; 15
Ratnasingam (ref_66) 2021; 28
Schwarz (ref_25) 1978; 6
Gao (ref_1) 2018; 114
Yao (ref_33) 1988; 6
Noh (ref_70) 2013; 332
Hinkley (ref_6) 1970; 57
Davis (ref_46) 2006; 101
Niu (ref_52) 2012; 6
Rissanen (ref_26) 1978; 14
Anastasiou (ref_51) 2022; 85
Pan (ref_37) 2006; 97
Akaike (ref_27) 1974; 19
Zhang (ref_34) 2007; 63
Arlot (ref_13) 2019; 20
Lavielle (ref_35) 2005; 85
Kim (ref_20) 2009; 19
ref_38
Hinkley (ref_7) 1969; 56
Costa (ref_64) 2016; 9
Wu (ref_61) 2022; 169
Kim (ref_19) 2000; 19
Letzgus (ref_71) 2020; 5
Li (ref_57) 2012; 25
Cabrieto (ref_54) 2018; 8
Wang (ref_55) 2019; 12
Shibata (ref_30) 1976; 63
Cucina (ref_58) 2019; 33
Page (ref_5) 1957; 44
ref_45
Rissanen (ref_43) 1983; 11
Page (ref_3) 1954; 41
Spiegelhalter (ref_74) 2002; 64
Liang (ref_2) 2021; 10
Ninomiya (ref_32) 2015; 67
Ding (ref_59) 2006; 38
Li (ref_50) 2020; 90
Chen (ref_36) 2006; 68
ref_49
Bai (ref_62) 2010; 157
ref_9
Haynes (ref_14) 2017; 27
Niu (ref_16) 2016; 31
Jones (ref_28) 1995; 76
Wang (ref_53) 2020; 49
Ariyarathne (ref_69) 2022; 310
Said (ref_68) 2019; 33
References_xml – volume: 53
  start-page: 267
  year: 2021
  ident: ref_23
  article-title: On computing multiple change points for the gamma distribution
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2020.1717398
– volume: 19
  start-page: 335
  year: 2000
  ident: ref_19
  article-title: Permutation tests for joinpoint regression with applications to cancer rates
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(20000215)19:3<335::AID-SIM336>3.0.CO;2-Z
– volume: 4
  start-page: 299
  year: 2010
  ident: ref_44
  article-title: An MDL approach to the climate segmentation problem
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/09-AOAS289
– volume: 107
  start-page: 1590
  year: 2012
  ident: ref_22
  article-title: Optimal detection of changepoints with a linear computational cost
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2012.737745
– volume: 92
  start-page: 739
  year: 1997
  ident: ref_63
  article-title: Testing and locating variance changepoints with application to stock prices
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1997.10474026
– volume: 332
  start-page: 6419
  year: 2013
  ident: ref_70
  article-title: Sequential structural damage diagnosis algorithm using a change point detection method
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.07.005
– volume: 49
  start-page: 3438
  year: 2020
  ident: ref_53
  article-title: Rank-based multiple change-point detection
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610926.2019.1589515
– volume: 9
  start-page: 267
  year: 2016
  ident: ref_64
  article-title: Change-point detection in environmental time series based on the informational approach
  publication-title: Electron. J. Appl. Stat. Anal.
– volume: 114
  start-page: 773
  year: 2018
  ident: ref_1
  article-title: Variance change point detection under a smoothly-changing mean trend with application to liver procurement
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2018.1442341
– volume: 310
  start-page: 118501
  year: 2022
  ident: ref_69
  article-title: Change point detection-based simulation of nonstationary sub-hourly wind time series
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118501
– volume: 28
  start-page: 303
  year: 2021
  ident: ref_66
  article-title: Modified information criterion for regular change point models based on confidence distribution
  publication-title: Environ. Ecol. Stat.
  doi: 10.1007/s10651-021-00485-5
– volume: 42
  start-page: 2243
  year: 2014
  ident: ref_41
  article-title: Wild binary segmentation for multiple change-point detection
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1245
– volume: 14
  start-page: 465
  year: 1978
  ident: ref_26
  article-title: Modeling by shortest data description
  publication-title: Automatica
  doi: 10.1016/0005-1098(78)90005-5
– volume: 20
  start-page: 1
  year: 2019
  ident: ref_13
  article-title: A kernel multiple change-point algorithm via model selection
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 199
  year: 2006
  ident: ref_59
  article-title: Phase I analysis for monitoring nonlinear profiles in manufacturing processes
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2006.11918610
– volume: 5
  start-page: 1375
  year: 2020
  ident: ref_71
  article-title: Change-point detection in wind turbine SCADA data for robust condition monitoring with normal behaviour models
  publication-title: Wind. Energy Sci.
  doi: 10.5194/wes-5-1375-2020
– volume: 56
  start-page: 495
  year: 1969
  ident: ref_7
  article-title: Inference about the intersection in two-phase Regression
  publication-title: Biometrika
  doi: 10.1093/biomet/56.3.495
– volume: 6
  start-page: 181
  year: 1988
  ident: ref_33
  article-title: Estimating the number of change-points via Schwarz’criterion
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/0167-7152(88)90118-6
– volume: 85
  start-page: 141
  year: 2022
  ident: ref_51
  article-title: Detecting multiple generalized change-points by isolating single ones
  publication-title: Metrika
  doi: 10.1007/s00184-021-00821-6
– volume: 169
  start-page: 108114
  year: 2022
  ident: ref_61
  article-title: A synchronous multiple change-point detecting method for manufacturing process
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108114
– ident: ref_56
– volume: 44
  start-page: 248
  year: 1957
  ident: ref_5
  article-title: On problems in which a change in a parameter occurs at an unknown point
  publication-title: Biometrika
  doi: 10.1093/biomet/44.1-2.248
– volume: 153
  start-page: 12
  year: 1976
  ident: ref_72
  article-title: Distribution of information statistics and validity criteria of models
  publication-title: Math. Sci.
– volume: 63
  start-page: 22
  year: 2007
  ident: ref_34
  article-title: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00662.x
– volume: 12
  start-page: 203
  year: 2019
  ident: ref_47
  article-title: Robust change point detection for linear regression models
  publication-title: Stat. Its Interface
  doi: 10.4310/SII.2019.v12.n2.a2
– volume: 12
  start-page: 1
  year: 2019
  ident: ref_55
  article-title: Regional detection of multiple change points and workable application for precipitation by maximum likelihood approach
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-019-4790-5
– volume: 19
  start-page: 597
  year: 2009
  ident: ref_20
  article-title: Selecting the number of change-points in segmented line regression
  publication-title: Stat. Sin.
– volume: 90
  start-page: 1131
  year: 2020
  ident: ref_50
  article-title: A change-point detection and clustering method in the recurrent-event context
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2020.1718149
– volume: 67
  start-page: 943
  year: 2015
  ident: ref_32
  article-title: Change-point model selection via AIC
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/s10463-014-0481-x
– volume: 11
  start-page: 416
  year: 1983
  ident: ref_43
  article-title: A universal prior for integers and estimation by minimum description length
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346150
– volume: 19
  start-page: 716
  year: 1974
  ident: ref_27
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– ident: ref_38
– volume: 25
  start-page: 674
  year: 2012
  ident: ref_57
  article-title: Multiple changepoint detection via genetic Algorithms
  publication-title: J. Clim.
  doi: 10.1175/2011JCLI4055.1
– volume: 5
  start-page: 865
  year: 1994
  ident: ref_73
  article-title: Network information criterion-determining the number of hidden units for an artificial neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.329683
– volume: 71
  start-page: 671
  year: 2009
  ident: ref_39
  article-title: Shrinkage tuning parameter selection with a diverging number of parameters
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2008.00693.x
– volume: 76
  start-page: 1
  year: 1995
  ident: ref_28
  article-title: Determining one or more change Points
  publication-title: Chem. Phys. LIPIDS
  doi: 10.1016/0009-3084(94)02422-2
– volume: 85
  start-page: 1501
  year: 2005
  ident: ref_35
  article-title: Using penalized contrasts for the change-point Problem
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2005.01.012
– volume: 42
  start-page: 523
  year: 1955
  ident: ref_4
  article-title: A test for a change in a parameter occurring at an unknown Point
  publication-title: Biometrika
  doi: 10.1093/biomet/42.3-4.523
– ident: ref_45
  doi: 10.3390/a13050128
– volume: 54
  start-page: 453
  year: 2022
  ident: ref_65
  article-title: Change point detection and issue localization based on fleet-wide fault data
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2021.1937409
– volume: 68
  start-page: 1922
  year: 2021
  ident: ref_12
  article-title: Optimal nonparametric multivariate change point detection and localization
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2021.3130330
– volume: 90
  start-page: 773
  year: 1995
  ident: ref_31
  article-title: Bayes factors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 6
  start-page: 1306
  year: 2012
  ident: ref_52
  article-title: The screening and ranking algorithm to detect DNA copy number variations
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS539
– volume: 73
  start-page: 91
  year: 1986
  ident: ref_18
  article-title: Confidence regions and tests for a change-point in a sequence of exponential family random variables
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.91
– ident: ref_24
– volume: 63
  start-page: 117
  year: 1976
  ident: ref_30
  article-title: Selection of the order of an autoregressive model by Akaike’s information criterion
  publication-title: Biometrika
  doi: 10.1093/biomet/63.1.117
– volume: 23
  start-page: 243
  year: 1981
  ident: ref_29
  article-title: On some criteria for estimating the order of a Markov chain
  publication-title: Technometrics
  doi: 10.2307/1267787
– volume: 15
  start-page: e1607
  year: 2023
  ident: ref_10
  article-title: Information criteria for model selection
  publication-title: WIREs Comput. Stat.
  doi: 10.1002/wics.1607
– ident: ref_11
– volume: 61
  start-page: 1097
  year: 1966
  ident: ref_8
  article-title: Fitting segmented curves whose join points have to be estimated
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1966.10482198
– volume: 97
  start-page: 2221
  year: 2006
  ident: ref_37
  article-title: Application of modified information criterion to multiple change point problems
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2006.05.009
– ident: ref_49
  doi: 10.3390/info12070274
– volume: 27
  start-page: 161
  year: 2011
  ident: ref_40
  article-title: Efficient change point detection for genomic sequences of continuous measurements
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq647
– volume: 1
  start-page: 1
  year: 1965
  ident: ref_42
  article-title: Three approaches to the quantitative definition information
  publication-title: Probl. Inf. Transm.
– volume: 33
  start-page: 1137
  year: 2019
  ident: ref_58
  article-title: Multiple changepoint detection for periodic autoregressive models with an application to river flow analysis
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-019-01692-0
– volume: 10
  start-page: e327
  year: 2021
  ident: ref_2
  article-title: Gradual variance change point detection with a smoothly changing mean trend
  publication-title: Stat
  doi: 10.1002/sta4.327
– volume: 157
  start-page: 78
  year: 2010
  ident: ref_62
  article-title: Common breaks in means and variances for panel data
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2009.10.020
– volume: 50
  start-page: 180
  year: 2021
  ident: ref_67
  article-title: Modified information criterion for linear regression change-point model with its applications
  publication-title: Commun. Stat.-Simul. Comput.
  doi: 10.1080/03610918.2018.1554109
– volume: 33
  start-page: 280
  year: 2019
  ident: ref_68
  article-title: Modified information criterion for testing changes in skew normal model
  publication-title: Braz. J. Probab. Stat.
  doi: 10.1214/17-BJPS388
– volume: 64
  start-page: 583
  year: 2002
  ident: ref_74
  article-title: Bayesian measures of model complexity and fit
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/1467-9868.00353
– volume: 22
  start-page: 719
  year: 2000
  ident: ref_75
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.865189
– volume: 68
  start-page: 252
  year: 2006
  ident: ref_36
  article-title: Information criterion and change point problem for regular models
  publication-title: Sankhyā Indian J. Stat.
– volume: 101
  start-page: 223
  year: 2006
  ident: ref_46
  article-title: Structural break estimation for nonstationary time series models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214505000000745
– volume: 167
  start-page: 107299
  year: 2020
  ident: ref_21
  article-title: Selective review of offline change point detection methods
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.107299
– volume: 57
  start-page: 1
  year: 1970
  ident: ref_6
  article-title: Inference about the change-point in a sequence of random Variables
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.1
– volume: 41
  start-page: 100
  year: 1954
  ident: ref_3
  article-title: Continuous inspection schemes
  publication-title: Biometrika
  doi: 10.1093/biomet/41.1-2.100
– ident: ref_9
  doi: 10.1007/978-0-8176-4801-5
– volume: 33
  start-page: 508
  year: 2014
  ident: ref_60
  article-title: Robust Phase I monitoring of profile data with application in low-E glass manufacturing processes
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2014.05.001
– volume: 27
  start-page: 1293
  year: 2017
  ident: ref_14
  article-title: A computationally efficient nonparametric approach for changepoint detection
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9687-5
– volume: 42
  start-page: 970
  year: 2014
  ident: ref_15
  article-title: Nonparametric maximum likelihood approach to multiple change-point problems
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1210
– volume: 13
  start-page: 157
  year: 2015
  ident: ref_48
  article-title: Heteroscedastic change point analysis and application to footprint data
  publication-title: J. Data Sci.
  doi: 10.6339/JDS.201501_13(1).0009
– volume: 8
  start-page: 15637
  year: 2018
  ident: ref_54
  article-title: Detecting long-lived autodependency changes in a multivariate system via change point detection and regime switching models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-33819-8
– volume: 6
  start-page: 461
  year: 1978
  ident: ref_25
  article-title: Estimating the Dimension of a Model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 31
  start-page: 611
  year: 2016
  ident: ref_16
  article-title: Multiple change-point detection: A selective overview
  publication-title: Stat. Sci.
  doi: 10.1214/16-STS587
– volume: 56
  start-page: 31
  year: 1988
  ident: ref_17
  article-title: Confidence sets in change-point problems
  publication-title: Int. Stat. Rev. Rev. Int. De Stat.
  doi: 10.2307/1403360
SSID ssj0023216
Score 2.3368762
SecondaryResourceType review_article
Snippet Change points indicate significant shifts in the statistical properties in data streams at some time points. Detecting change points efficiently and...
SourceID doaj
hal
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 50
SubjectTerms Akaike information criterion
Bayesian analysis
Bayesian information criterion
Comparative analysis
Criteria
Data Analysis, Statistics and Probability
Data transmission
Hypotheses
hypothesis test
Hypothesis testing
Information Theory
Mathematics
Methodology
Methods
model selection
Physics
piecewise constant
Ranking and selection (Statistics)
signal processing
Statistical methods
Statistics
Time series
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLdGT7sgpm1Q6CYzIXGKaGzHjo_doKqmFU0CJG6W82ILLikqKX__3ovTaD0gLlwdK7bfs9-H_d7vMXamYuGNKX2mpx4yFYWlZGWZQY2yDwpNyZsUbXGtF3fq931x_1-pL4oJS_DAiXAXpgavYiirGEEprzzglsmlr6ypPY5P0hd13taZ6l0tKXKdcIQkOvUXgYCzCOpkR_t0IP2DKN57oEjI18zMTt3MD9h-byfyWZrfJ_YhNJ_ZcsZvuro1KKJ4utXnq4b3KUVEYk6lC2hT8ceGL_tgQZ5SCPjf1WPT8svQduFXzRd2N7-6_bXI-noIGa7ctBn6vUIVIAgiC1DNR1_JWtkQpQ5TsMFO0fxBh8EagYaH1KpCYyFasGXIo7GV_MpGzaoJR4xD7UF66bUAFJW18cqCgMroCF3y7Jj92NLJPSXYC4fuAhHTDcQcs59EwaEDIVV3Dcg_1_PPvcW_MTsn-js6T-3ag-_TAnCehEzlZqaclujz2ALnhCzaGW0x--OojWDPCAvrJR-zyZaDrj-Nz05YKrwlNf3jdPiM54geR3wTVpuujymK0mrsc5g4PwwlS6HK3Ojj91jwCfso0DBK1zgTNmrXm_ANDZu2-t7t4X-3vvXC
  priority: 102
  providerName: Directory of Open Access Journals
Title A Selective Review on Information Criteria in Multiple Change Point Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/38248176
https://www.proquest.com/docview/2918693695
https://www.proquest.com/docview/2917558965
https://hal.science/hal-04639716
https://doaj.org/article/7dca4fe8bffc44a4ac96313ab97daecc
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoe-GCqMoj0K5chMQp6sZ2_DihLXS7QrSqgEp7sxzHLr0kZZvy-5lxvEE9wCUHx4qd8Xg8M575hpD3ItZOKe1KOXe-FJEZTFbmpW9B9vlaYvImRltcytW1-LKu19nhdp_DKrcyMQnqtvfoIz9hBosncWnqj3e_SqwahberuYTGDtmr4KRBDtfL88ng4qySI5oQB9P-JCB8FgKePDqDElT_JJB3fmI85L-UzXToLJ-TZ1lbpItxeffJk9AdkIsF_Z6q14CgoqNvn_YdzYlFSGiKBQyQtehtRy9yyCAdEwnoVX_bDfRzGFIQVveCXC_PfnxalbkqQumFUEMJ1i8TtWcIlOXhsI-u4a0wIXIZ5t4EMwclCMwGoxioH1yKBlSGaLzRoYrKNPwl2e36Lrwm1LfOc8edZB4EZqucMJ75RsnoUwptQd5t6WTvRvALC0YDEtNOxCzIKVJw6oB41amh39zYzP5Wtd6JGHQTI_yFE87Dxq-4a4xqHXBRQT4g_S3uqmHjvMvJATBPxKeyC6XnGiwfU8OcYIkejbZafLXYhuBniIj1uyrI4XYFbd6T9_YvBxXkeHoNuwmvSFwX-ofUR9W1NhL6vBpXfhqKayZ0peSb_3_8LXnKQPEZ3TSHZHfYPIQjUFyGZpa4c0b2Ts8ur77NkvkPz_N19QdF2-4q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbacoALKuIVKGAQiFPUxHb8OCC0UJYt3a2QaKXejOPY0EtStmkRf4rfyExeqAe49RpbiTMznoc98w0hL0UsnFLapTJzPhWRGSxW5qmvQPf5QmLxJmZbHMrFsfh0UpxskN9jLQymVY46sVPUVePxjHyXGWyexKUp3p79SLFrFN6uji00erE4CL9-Qsh2_mZ_D_j7irH5h6P3i3ToKpB6IVSbQvTIROEZAk15MJbRlbwSJkQuQ-ZNMBk4EeB2G8XAfHMpSjC50XijQx6VKTm8d5PcEJwbTCHU849TgMdZLnv0IhjMdgPCdSHAyhWb17UGmAzA5nfMv_yXc9sZufk2uT14p3TWi9MdshHqu2Q1o1-6bjmgGGl_l0Cbmg6FTMhYig0TUJTpaU1XQ4oi7QsX6OfmtG7pXmi7pK_6Hjm-FnrdJ1t1U4eHhPrKee64k8yDgq6UE8YzXyoZfVeym5AXI53sWQ-2YSFIQWLaiZgJeYcUnCYgPnb3oFl_s8N2s6ryTsSgyxjhL5xwHhRNzl1pVOVAahPyGulvcRe3a-fdUIwA60Q8LDtTOtMQaZkC1gQsuvK1xWxp8RmCrSEC12WekJ2Rg3bQAef2r8Qm5Pk0DLsXr2RcHZqLbo4qCm0kzHnQc376FNdM6FzJR_9_-TNyc3G0Wtrl_uHBY3KLgdPVHxHtkK12fRGegNPUlk87SaXk63VvjT-mcCWT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwELbaIiEuqIgtUMAgEKfoJbbj5YDQg8fjlS6qBJV6M45jQy9JeU2L-Gv8OmayoR7g1mtiZZl97JlvCHkpYuGU0i6VmfOpiMxgszJPfQW2zxcSmzex2uJQro7Fp5PiZIP8HnthsKxytImdoa4aj3vkM2ZweBKXppjFoSziaLF8e_YjxQlSeNI6jtPoRWQv_PoJ6dv5m90F8PoVY8sPX96v0mHCQOqFUG0KmSQThWcIOuXBcUZX8kqYELkMmTfBZBBQQAhuFANXzqUowf1G440OeVSm5PDcTXJDcZ3h9AS9_Dgle5zlskcy4txks4DQXQi2csX_dWMCJmew-R1rMf8V6HYOb7lNbg-RKp33onWHbIT6LjmY08_d5BwwkrQ_V6BNTYemJmQyxeEJKNb0tKYHQ7ki7ZsY6FFzWrd0EdquAKy-R46vhV73yVbd1OEhob5ynjvuJPNgrCvlhPHMl0pG37XvJuTFSCd71gNvWEhYkJh2ImZC3iEFpwWIld1daNbf7KB6VlXeiRh0GSP8hRPOg9HJuSuNqhxIcEJeI_0tanS7dt4NjQnwnYiNZedKZxqyLlPANwGLrrxtNd-3eA2B1xCN6zJPyM7IQTvYg3P7V3oT8ny6DZqMxzOuDs1Ft0YVhTYS1jzoOT-9imsmdK7ko_8__Bm5CUph93cP9x6TWwzir363aIdsteuL8ATip7Z82gkqJV-vWzP-AD-rKcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Selective+Review+on+Information+Criteria+in+Multiple+Change+Point+Detection&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Gao%2C+Zhanzhongyu&rft.au=Xiao%2C+Xun&rft.au=Fang%2C+Yi-Ping&rft.au=Rao%2C+Jing&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=26&rft.issue=1&rft_id=info:doi/10.3390%2Fe26010050&rft.externalDocID=A780874795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon