Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of...
Saved in:
Published in | The Journal of biological chemistry Vol. 295; no. 20; pp. 6785 - 6797 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2020
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral. |
---|---|
AbstractList | Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position
i
caused termination of RNA synthesis at position
i
+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral. Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral. Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral. Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position caused termination of RNA synthesis at position +3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral. |
Author | Tchesnokov, Egor P. Woolner, Emma Feng, Joy Y. Porter, Danielle P. Perry, Jason K. Gordon, Calvin J. Götte, Matthias |
Author_xml | – sequence: 1 givenname: Calvin J. surname: Gordon fullname: Gordon, Calvin J. organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada – sequence: 2 givenname: Egor P. orcidid: 0000-0003-1698-2961 surname: Tchesnokov fullname: Tchesnokov, Egor P. organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada – sequence: 3 givenname: Emma orcidid: 0000-0002-8697-7802 surname: Woolner fullname: Woolner, Emma organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada – sequence: 4 givenname: Jason K. orcidid: 0000-0001-5492-0652 surname: Perry fullname: Perry, Jason K. organization: Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada – sequence: 5 givenname: Joy Y. surname: Feng fullname: Feng, Joy Y. organization: Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada – sequence: 6 givenname: Danielle P. surname: Porter fullname: Porter, Danielle P. organization: Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada – sequence: 7 givenname: Matthias surname: Götte fullname: Götte, Matthias email: gotte@ualberta.ca organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32284326$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkGLFDEQhYOsuLOrd0-So5cek3SmO-1BGBZdhUVhUPAW0tXV01m6kzHJjPRP8d9uxtkVFTSXEOq9r6h6uSBnzjsk5DlnS85q-eq2heVmzQVbMl5WdfOILDhTZVGu-NczsmBM8KIRK3VOLmK8ZfnIhj8h56UQSpaiWpAfG5w6jPZgA7WRGtrZgJAKA8m6LTUuHUtmpGkwiVo32NamSDcf10WHO3QdunR80Z0f5wmDiUj74Cca8YABqYF9Qhow7jIl-TDTOLsuC5CCD96ZTN9HKuh3mwY62O2QSQkdzE_J496MEZ_d35fky7u3n6_eFzefrj9crW8KkLJOBUqoV30loDPQI7ZKgZLAObZcQNNC15bYiBplpypQdam4LLnqV5K1TEDFy0vy5sTd7dsJO8gD5Xn1LtjJhFl7Y_WfFWcHvfUHXQspqkZlwMt7QPDf9hiTnmwEHEfj0O-jFqVqqkZy1WTpi997_WrykEcWVCcBBB9jwF6DTSZZf2xtR82ZPgavc_D6Z_D6FHw2sr-MD-z_WF6fLJi3e7AYdASbN4-nL6A7b_9tvgO0m8lZ |
CitedBy_id | crossref_primary_10_13105_wjma_v11_i1_5 crossref_primary_10_3389_fmolb_2021_604447 crossref_primary_10_3390_ijms21207645 crossref_primary_10_3390_v13040667 crossref_primary_10_1016_j_molstruc_2023_135642 crossref_primary_10_1016_j_jmgm_2020_107769 crossref_primary_10_1016_j_biochi_2022_10_007 crossref_primary_10_1039_D0NJ04578K crossref_primary_10_1134_S0006297924120149 crossref_primary_10_3390_v14020353 crossref_primary_10_1089_can_2021_0109 crossref_primary_10_17816_clinpract64972 crossref_primary_10_1038_s41579_020_00468_6 crossref_primary_10_1016_j_compbiomed_2020_104054 crossref_primary_10_26508_lsa_202101124 crossref_primary_10_3389_fmolb_2021_637378 crossref_primary_10_1016_j_apsb_2021_03_028 crossref_primary_10_1016_j_csbj_2021_06_005 crossref_primary_10_1007_s40262_024_01453_5 crossref_primary_10_1002_cpt_3337 crossref_primary_10_1080_17460441_2021_1909566 crossref_primary_10_1016_j_bpj_2021_07_026 crossref_primary_10_1016_j_sjbs_2022_103481 crossref_primary_10_5005_jp_journals_10049_2016 crossref_primary_10_3389_fmicb_2022_875164 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1515_med_2023_0867 crossref_primary_10_7717_peerj_14252 crossref_primary_10_3390_vaccines11020332 crossref_primary_10_1007_s00228_021_03270_2 crossref_primary_10_1016_j_metop_2021_100121 crossref_primary_10_3389_fphar_2022_1107198 crossref_primary_10_1002_psp4_12584 crossref_primary_10_3390_ijms231810358 crossref_primary_10_1038_s41598_024_83692_x crossref_primary_10_1139_gen_2020_0130 crossref_primary_10_21307_PM_2020_59_3_15 crossref_primary_10_1128_AAC_01155_21 crossref_primary_10_3389_fphar_2021_624006 crossref_primary_10_1016_j_cell_2020_05_034 crossref_primary_10_1021_acsomega_4c05469 crossref_primary_10_1172_jci_insight_153165 crossref_primary_10_1016_j_molstruc_2022_134135 crossref_primary_10_1016_j_virusres_2020_198070 crossref_primary_10_1016_j_virusres_2020_198073 crossref_primary_10_1039_D1RA06589K crossref_primary_10_1039_D3AY01562A crossref_primary_10_1021_acscentsci_0c01186 crossref_primary_10_1021_acs_jproteome_0c00392 crossref_primary_10_1016_j_lfs_2020_118754 crossref_primary_10_1021_acsomega_4c08640 crossref_primary_10_1007_s10930_020_09901_4 crossref_primary_10_1080_13543776_2021_1880568 crossref_primary_10_3389_fmolb_2022_999291 crossref_primary_10_1002_jbt_22626 crossref_primary_10_3389_fphys_2020_596057 crossref_primary_10_2174_0115748855255004231001182927 crossref_primary_10_2174_0929867327666200721161840 crossref_primary_10_1016_j_isci_2020_101849 crossref_primary_10_2174_1871526521666210301143441 crossref_primary_10_3390_molecules27061894 crossref_primary_10_1021_acsptsci_1c00022 crossref_primary_10_1016_j_psj_2025_105022 crossref_primary_10_2174_1568026623666221226091907 crossref_primary_10_29024_ijsm_64 crossref_primary_10_1111_febs_16587 crossref_primary_10_1016_j_micres_2022_127206 crossref_primary_10_1016_j_comtox_2021_100157 crossref_primary_10_54097_hset_v36i_5674 crossref_primary_10_1007_s40588_024_00229_6 crossref_primary_10_1021_acs_jmedchem_3c00750 crossref_primary_10_1021_acsptsci_3c00121 crossref_primary_10_3390_v17020172 crossref_primary_10_1021_acsmedchemlett_1c00624 crossref_primary_10_3390_v13040651 crossref_primary_10_1016_j_chphi_2021_100011 crossref_primary_10_1080_17460441_2021_1970743 crossref_primary_10_1038_s41467_020_19761_2 crossref_primary_10_1159_000513686 crossref_primary_10_2174_0115734129323940240809053530 crossref_primary_10_3390_cimb45080433 crossref_primary_10_3390_pr8080937 crossref_primary_10_1016_j_bmcl_2021_128067 crossref_primary_10_3390_ijms251910820 crossref_primary_10_1016_j_csbj_2022_08_056 crossref_primary_10_2217_fmb_2021_0019 crossref_primary_10_1017_ice_2021_89 crossref_primary_10_1016_j_cbi_2021_109420 crossref_primary_10_1074_jbc_RA120_015394 crossref_primary_10_2174_1568026623666221130142517 crossref_primary_10_1016_j_jbc_2021_100470 crossref_primary_10_1002_wrna_70000 crossref_primary_10_1128_AAC_01508_20 crossref_primary_10_1172_jci_insight_182704 crossref_primary_10_1016_j_cmi_2021_02_013 crossref_primary_10_1111_bcpt_13600 crossref_primary_10_3390_ijms21186790 crossref_primary_10_3389_fcimb_2021_676451 crossref_primary_10_1007_s40261_022_01187_x crossref_primary_10_1021_acs_biochem_2c00341 crossref_primary_10_1021_acsinfecdis_0c00343 crossref_primary_10_1038_s41598_023_27636_x crossref_primary_10_1016_j_talanta_2022_123824 crossref_primary_10_1111_jfbc_14262 crossref_primary_10_14233_ajchem_2020_22891 crossref_primary_10_3390_ijms25020739 crossref_primary_10_1016_j_molliq_2021_117157 crossref_primary_10_5501_wjv_v10_i1_1 crossref_primary_10_1002_cpt_2176 crossref_primary_10_3390_children10050810 crossref_primary_10_1016_j_humimm_2021_05_001 crossref_primary_10_1080_07391102_2020_1835716 crossref_primary_10_1016_j_pce_2022_103350 crossref_primary_10_1055_a_1581_3707 crossref_primary_10_1016_j_cyto_2023_156287 crossref_primary_10_1016_j_isci_2024_110475 crossref_primary_10_3389_fmicb_2022_740382 crossref_primary_10_1126_science_abj5508 crossref_primary_10_1080_03602532_2024_2326415 crossref_primary_10_3390_microorganisms9051094 crossref_primary_10_1007_s40261_023_01304_4 crossref_primary_10_2174_1573406417666210208223924 crossref_primary_10_1038_s42004_021_00476_4 crossref_primary_10_1007_s40265_023_01926_0 crossref_primary_10_1038_s41598_024_56923_4 crossref_primary_10_1093_jac_dkad295 crossref_primary_10_2174_1389201022666210421102513 crossref_primary_10_3390_diseases12030046 crossref_primary_10_1007_s40121_023_00900_3 crossref_primary_10_1016_j_biopha_2024_116180 crossref_primary_10_3390_ijms242216392 crossref_primary_10_1038_s41467_024_47941_x crossref_primary_10_1063_1674_0068_cjcp2203053 crossref_primary_10_1080_19390211_2021_2006387 crossref_primary_10_3390_microorganisms8101610 crossref_primary_10_1007_s40995_023_01474_y crossref_primary_10_5582_bst_2020_03345 crossref_primary_10_2174_1871526523666230509110907 crossref_primary_10_1016_j_celrep_2020_107940 crossref_primary_10_1038_s41579_023_01001_1 crossref_primary_10_1016_j_imu_2020_100484 crossref_primary_10_1080_17460794_2024_2350923 crossref_primary_10_3389_fgene_2020_581668 crossref_primary_10_1038_s41467_021_20900_6 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_1038_s41598_023_34287_5 crossref_primary_10_1080_19371918_2020_1859035 crossref_primary_10_1002_cmdc_202200399 crossref_primary_10_1146_annurev_biophys_102620_080956 crossref_primary_10_1016_j_csbj_2023_09_001 crossref_primary_10_1016_j_ejmech_2020_112527 crossref_primary_10_3390_ijerph18030955 crossref_primary_10_1016_j_jbc_2024_107514 crossref_primary_10_1515_revac_2023_0060 crossref_primary_10_3390_v12070705 crossref_primary_10_1016_j_cplett_2022_139638 crossref_primary_10_1016_j_coviro_2022_101279 crossref_primary_10_1186_s43141_022_00368_7 crossref_primary_10_1002_ddr_21762 crossref_primary_10_3389_fmicb_2020_01756 crossref_primary_10_1038_s41467_020_18463_z crossref_primary_10_3390_jcdd8020018 crossref_primary_10_1038_s41467_021_26602_3 crossref_primary_10_3390_jcm10235473 crossref_primary_10_1038_s42003_022_04058_5 crossref_primary_10_1128_JVI_00665_20 crossref_primary_10_1016_j_jiph_2021_02_006 crossref_primary_10_1038_s41467_020_19055_7 crossref_primary_10_4110_in_2021_21_e7 crossref_primary_10_1016_j_crbiot_2024_100256 crossref_primary_10_3390_v14050961 crossref_primary_10_1016_j_drudis_2021_12_017 crossref_primary_10_2174_1385272827666230111161632 crossref_primary_10_1080_26895293_2020_1835741 crossref_primary_10_3390_ijms21144953 crossref_primary_10_3390_ph17050661 crossref_primary_10_3138_jammi_2022_0030 crossref_primary_10_1080_10837450_2022_2098975 crossref_primary_10_1089_jir_2020_0188 crossref_primary_10_1002_mef2_32 crossref_primary_10_1128_mBio_02707_20 crossref_primary_10_3390_v12050526 crossref_primary_10_1186_s13065_024_01366_1 crossref_primary_10_1021_acs_joc_4c01981 crossref_primary_10_1038_s41401_021_00732_2 crossref_primary_10_1016_j_ijbiomac_2024_134012 crossref_primary_10_1016_j_mito_2021_09_010 crossref_primary_10_3390_jcm10153276 crossref_primary_10_3390_v12101092 crossref_primary_10_5812_apid_138983 crossref_primary_10_1021_acs_joc_2c01897 crossref_primary_10_3389_fphar_2022_971890 crossref_primary_10_3390_v14071413 crossref_primary_10_1002_bio_4274 crossref_primary_10_4167_jbv_2022_52_4_149 crossref_primary_10_1111_bph_16344 crossref_primary_10_1016_j_coviro_2021_05_005 crossref_primary_10_1038_s41418_021_00900_1 crossref_primary_10_1128_AAC_01117_21 crossref_primary_10_1093_gigascience_giae026 crossref_primary_10_2174_1389557521666210629100630 crossref_primary_10_1016_j_repc_2022_02_014 crossref_primary_10_1007_s10875_021_00996_7 crossref_primary_10_1073_pnas_2301775120 crossref_primary_10_1080_17476348_2020_1782199 crossref_primary_10_1136_postgradmedj_2021_140287 crossref_primary_10_1016_j_ymeth_2021_02_017 crossref_primary_10_1038_s41594_022_00734_6 crossref_primary_10_1093_nar_gkab677 crossref_primary_10_3389_fmed_2021_684020 crossref_primary_10_1016_j_biopha_2024_116423 crossref_primary_10_1007_s13205_020_02610_w crossref_primary_10_1021_acsinfecdis_4c00122 crossref_primary_10_1016_j_cell_2020_07_033 crossref_primary_10_1002_jmv_28246 crossref_primary_10_14233_ajchem_2022_23868 crossref_primary_10_1016_j_ijpharm_2022_122421 crossref_primary_10_31665_JFB_2022_18306 crossref_primary_10_3389_fphar_2020_589044 crossref_primary_10_1016_j_scr_2021_102219 crossref_primary_10_1021_acschemneuro_0c00251 crossref_primary_10_1254_fpj_21058 crossref_primary_10_1093_jac_dkab072 crossref_primary_10_1002_med_21728 crossref_primary_10_1002_mco2_150 crossref_primary_10_3390_molecules28031296 crossref_primary_10_1128_JVI_01819_20 crossref_primary_10_3389_fimmu_2022_830990 crossref_primary_10_29254_2077_4214_2021_3_161_14_26 crossref_primary_10_1080_10286020_2023_2197595 crossref_primary_10_1016_j_scp_2022_100744 crossref_primary_10_1016_j_yjmcc_2020_07_003 crossref_primary_10_1515_jbcpp_2020_0369 crossref_primary_10_2174_26669587_v2_e2204260 crossref_primary_10_1111_cts_12840 crossref_primary_10_1021_acsomega_2c02835 crossref_primary_10_33483_jfpau_963384 crossref_primary_10_51435_turkjac_935765 crossref_primary_10_1074_jbc_AC120_015720 crossref_primary_10_2174_2666796701999201204122819 crossref_primary_10_1016_j_antiviral_2024_106034 crossref_primary_10_1080_07391102_2021_1897679 crossref_primary_10_1021_acsomega_4c00759 crossref_primary_10_1128_aac_00222_22 crossref_primary_10_1136_ejhpharm_2021_002680 crossref_primary_10_3389_fphar_2022_1036093 crossref_primary_10_1007_s00044_024_03244_w crossref_primary_10_1016_j_drudis_2020_10_018 crossref_primary_10_1038_s41467_020_20542_0 crossref_primary_10_1016_j_amsu_2020_12_051 crossref_primary_10_1016_j_ijbiomac_2021_10_144 crossref_primary_10_2174_0929867329666221004104430 crossref_primary_10_3389_fmedt_2021_705875 crossref_primary_10_3389_fmicb_2020_01796 crossref_primary_10_1038_s42003_022_03101_9 crossref_primary_10_1016_j_antiviral_2023_105716 crossref_primary_10_1097_FJC_0000000000001321 crossref_primary_10_1080_17460441_2022_2153828 crossref_primary_10_13105_wjma_v9_i1_74 crossref_primary_10_1016_j_heliyon_2023_e22138 crossref_primary_10_1016_j_heliyon_2021_e06564 crossref_primary_10_4103_ijciis_ijciis_57_24 crossref_primary_10_1021_acs_jnatprod_0c00968 crossref_primary_10_1016_j_ijbiomac_2021_03_112 crossref_primary_10_1002_wcms_1622 crossref_primary_10_1071_MA21013 crossref_primary_10_1007_s11684_023_1037_3 crossref_primary_10_1080_14787210_2021_1851195 crossref_primary_10_1093_jac_dkac144 crossref_primary_10_3390_v13020173 crossref_primary_10_1074_jbc_REV120_013746 crossref_primary_10_3389_fmicb_2021_691154 crossref_primary_10_2174_2211352520666220922091227 crossref_primary_10_1016_j_ejmech_2021_113862 crossref_primary_10_1002_cpt_2686 crossref_primary_10_1080_1061186X_2021_2013852 crossref_primary_10_1016_j_bcp_2020_114169 crossref_primary_10_3389_fimmu_2023_1116131 crossref_primary_10_1038_s41598_023_42704_y crossref_primary_10_1155_2022_8807957 crossref_primary_10_3390_v15112175 crossref_primary_10_1073_pnas_2024302118 crossref_primary_10_1007_s00011_020_01422_1 crossref_primary_10_1021_acs_analchem_3c04870 crossref_primary_10_1038_s41598_020_73641_9 crossref_primary_10_1080_17512433_2021_1874348 crossref_primary_10_7554_eLife_70968 crossref_primary_10_1002_med_21919 crossref_primary_10_4155_fmc_2020_0147 crossref_primary_10_1007_s40264_020_00952_1 crossref_primary_10_3389_fchem_2022_963701 crossref_primary_10_1002_iub_2380 crossref_primary_10_3390_v17020150 crossref_primary_10_7759_cureus_68392 crossref_primary_10_1038_s41586_022_05664_3 crossref_primary_10_1128_cmr_00119_23 crossref_primary_10_1016_j_ejmech_2021_113852 crossref_primary_10_1016_j_bmc_2023_117231 crossref_primary_10_1016_j_azn_2024_06_001 crossref_primary_10_1080_03602532_2021_1928686 crossref_primary_10_1016_j_str_2024_08_005 crossref_primary_10_3390_pharmaceutics12121247 crossref_primary_10_1016_j_xphs_2021_03_004 crossref_primary_10_1002_anie_202008835 crossref_primary_10_1016_j_jbc_2024_107361 crossref_primary_10_1146_annurev_pharmtox_061220_093932 crossref_primary_10_1038_s41580_021_00432_z crossref_primary_10_2174_0115680266296095240529114058 crossref_primary_10_1021_acs_jmedchem_4c01749 crossref_primary_10_1371_journal_ppat_1009929 crossref_primary_10_1126_scitranslmed_adh7668 crossref_primary_10_1542_peds_2023_063775 crossref_primary_10_2174_2666796701999201019154537 crossref_primary_10_1002_jmv_29018 crossref_primary_10_17816_RCF184269_296 crossref_primary_10_2217_fvl_2021_0335 crossref_primary_10_3390_biom12111680 crossref_primary_10_3390_v13060963 crossref_primary_10_3390_molecules25235695 crossref_primary_10_1136_bcr_2021_245289 crossref_primary_10_1152_ajplung_00355_2020 crossref_primary_10_1002_jat_4336 crossref_primary_10_1246_bcsj_20220179 crossref_primary_10_1016_j_taap_2021_115783 crossref_primary_10_1021_acs_jcim_0c01277 crossref_primary_10_1016_j_antiviral_2022_105501 crossref_primary_10_1128_AAC_01814_20 crossref_primary_10_1134_S1019331622040256 crossref_primary_10_1007_s12268_021_1516_6 crossref_primary_10_3390_biom12111673 crossref_primary_10_1038_s41401_021_00851_w crossref_primary_10_1016_j_ejmech_2021_113633 crossref_primary_10_1021_acs_jcim_2c01002 crossref_primary_10_1016_j_yjmcc_2020_12_009 crossref_primary_10_1002_rmv_2143 crossref_primary_10_1371_journal_pntd_0010220 crossref_primary_10_3390_vaccines10020138 crossref_primary_10_3390_molecules27092723 crossref_primary_10_1002_jmv_70156 crossref_primary_10_1002_cmdc_202400367 crossref_primary_10_1016_j_antiviral_2022_105475 crossref_primary_10_1128_CMR_00103_20 crossref_primary_10_1371_journal_pone_0255622 crossref_primary_10_1002_hep4_1887 crossref_primary_10_1093_jac_dkab135 crossref_primary_10_1021_acs_joc_1c00761 crossref_primary_10_1186_s12575_020_00141_5 crossref_primary_10_7759_cureus_14986 crossref_primary_10_1002_rmv_2133 crossref_primary_10_1016_j_ejphar_2020_173705 crossref_primary_10_1128_mSphere_00711_21 crossref_primary_10_3390_ph14070611 crossref_primary_10_1016_j_coviro_2021_03_010 crossref_primary_10_1016_j_celrep_2021_109882 crossref_primary_10_3390_v14061345 crossref_primary_10_1016_j_virol_2020_07_015 crossref_primary_10_1080_07391102_2022_2163425 crossref_primary_10_1002_cmdc_202100079 crossref_primary_10_1007_s00894_022_05213_9 crossref_primary_10_2147_IJN_S391462 crossref_primary_10_1093_jac_dkad309 crossref_primary_10_1016_j_bioorg_2024_107150 crossref_primary_10_1016_j_isci_2021_102857 crossref_primary_10_1515_hsz_2022_0323 crossref_primary_10_1007_s10930_021_10019_4 crossref_primary_10_15407_visn2020_08_029 crossref_primary_10_3390_molecules27134212 crossref_primary_10_3390_ijms21155559 crossref_primary_10_3390_molecules27020564 crossref_primary_10_3390_molecules28010160 crossref_primary_10_3390_cells10092427 crossref_primary_10_1111_bph_15418 crossref_primary_10_3389_fmicb_2024_1450060 crossref_primary_10_1016_j_apsb_2024_05_026 crossref_primary_10_1038_s41598_022_26559_3 crossref_primary_10_1134_S0026893321040105 crossref_primary_10_1038_s41590_021_01091_0 crossref_primary_10_1073_pnas_2012294117 crossref_primary_10_1128_AAC_02577_20 crossref_primary_10_1016_j_bbrc_2020_11_043 crossref_primary_10_1111_fcp_12589 crossref_primary_10_17352_2455_5363_000038 crossref_primary_10_31436_jop_v1i1_50 crossref_primary_10_1016_j_microc_2021_107101 crossref_primary_10_1128_CMR_00162_20 crossref_primary_10_1016_j_antiviral_2023_105735 crossref_primary_10_3389_fmicb_2023_1291761 crossref_primary_10_1080_17425255_2023_2280750 crossref_primary_10_3390_microorganisms11020312 crossref_primary_10_1021_acsinfecdis_1c00492 crossref_primary_10_1515_znc_2023_0132 crossref_primary_10_1016_j_jacbts_2021_01_002 crossref_primary_10_1080_07391102_2022_2139766 crossref_primary_10_3389_fmicb_2022_826883 crossref_primary_10_3390_molecules28062616 crossref_primary_10_3390_molecules28186696 crossref_primary_10_1080_10826068_2025_2456940 crossref_primary_10_3390_ph15091067 crossref_primary_10_7759_cureus_22328 crossref_primary_10_3390_chemistry4020019 crossref_primary_10_1128_mbio_01060_23 crossref_primary_10_2174_0122133372290992240409084133 crossref_primary_10_5005_jp_journals_10081_1295 crossref_primary_10_1016_j_biopha_2021_111313 crossref_primary_10_1177_13596535221082773 crossref_primary_10_1007_s11481_020_09968_x crossref_primary_10_1016_j_jmb_2021_166945 crossref_primary_10_1016_j_antiviral_2022_105268 crossref_primary_10_1002_jmv_27683 crossref_primary_10_1016_j_bpc_2021_106652 crossref_primary_10_1080_1062936X_2021_1960601 crossref_primary_10_2217_fvl_2020_0394 crossref_primary_10_1080_07391102_2021_1940281 crossref_primary_10_4110_in_2023_23_e13 crossref_primary_10_1093_infdis_jiad270 crossref_primary_10_1007_s00204_022_03306_1 crossref_primary_10_1093_cid_ciaa1466 crossref_primary_10_1016_j_heliyon_2024_e38479 crossref_primary_10_1016_j_clim_2021_108849 crossref_primary_10_17116_profmed20222508198 crossref_primary_10_1002_adtp_202000172 crossref_primary_10_1039_D1CP03049C crossref_primary_10_1016_j_cellin_2022_100029 crossref_primary_10_1097_TXD_0000000000001031 crossref_primary_10_30579_mbse_2022_5_2_47 crossref_primary_10_1038_s41594_021_00651_0 crossref_primary_10_3892_mmr_2021_12498 crossref_primary_10_1093_nar_gkab1160 crossref_primary_10_1038_s41579_021_00630_8 crossref_primary_10_3390_jpm12030439 crossref_primary_10_1007_s12275_023_00062_4 crossref_primary_10_3389_fddsv_2022_837587 crossref_primary_10_1016_j_antiviral_2021_105033 crossref_primary_10_1016_j_pbiomolbio_2022_10_001 crossref_primary_10_1128_aac_00856_24 crossref_primary_10_1126_science_abj8430 crossref_primary_10_1002_med_21763 crossref_primary_10_1097_HC9_0000000000000034 crossref_primary_10_1038_s41591_020_0944_y crossref_primary_10_1016_j_jiph_2023_05_010 crossref_primary_10_3390_ijms232214340 crossref_primary_10_3390_ijms22010386 crossref_primary_10_1172_jci_insight_182376 crossref_primary_10_1016_j_coviro_2021_04_014 crossref_primary_10_1016_j_antiviral_2022_105329 crossref_primary_10_1007_s00702_021_02375_3 crossref_primary_10_1007_s40265_020_01378_w crossref_primary_10_1038_s41598_021_02266_3 crossref_primary_10_2139_ssrn_4151032 crossref_primary_10_1055_s_0040_1721403 crossref_primary_10_1159_000518440 crossref_primary_10_1093_nar_gkab1279 crossref_primary_10_1371_journal_pone_0276751 crossref_primary_10_3390_microorganisms10101949 crossref_primary_10_1007_s00134_021_06507_x crossref_primary_10_1177_2040206620976786 crossref_primary_10_1021_acs_jmedchem_0c01140 crossref_primary_10_1042_BCJ20210426 crossref_primary_10_3390_jcm9072084 crossref_primary_10_4103_ajim_ajim_3_21 crossref_primary_10_1002_med_21776 crossref_primary_10_1002_slct_202300132 crossref_primary_10_3390_biomedicines11072055 crossref_primary_10_1016_j_virs_2022_06_008 crossref_primary_10_3390_biom11070919 crossref_primary_10_1126_scitranslmed_abo0718 crossref_primary_10_1002_jmv_26264 crossref_primary_10_1093_nar_gkad1194 crossref_primary_10_1590_0074_02760200254 crossref_primary_10_2174_1573406417666210806154129 crossref_primary_10_1073_pnas_2025866118 crossref_primary_10_1093_ofid_ofab278 crossref_primary_10_1016_j_amjms_2022_01_021 crossref_primary_10_1021_acs_biochem_0c00591 crossref_primary_10_1021_acs_chemrev_0c00967 crossref_primary_10_1371_journal_pone_0278963 crossref_primary_10_1021_acsinfecdis_3c00311 crossref_primary_10_1016_j_bsheal_2022_03_004 crossref_primary_10_3390_life11060565 crossref_primary_10_1016_j_isci_2022_105074 crossref_primary_10_1177_20420986211042517 crossref_primary_10_1038_s41467_021_21903_z crossref_primary_10_1016_j_ijbiomac_2023_123540 crossref_primary_10_1021_acs_jpclett_2c01314 crossref_primary_10_1542_peds_2020_047803 crossref_primary_10_2174_1570193X19666220420133723 crossref_primary_10_3390_v15051167 crossref_primary_10_1080_01652176_2024_2305731 crossref_primary_10_1111_resp_14106 crossref_primary_10_1080_07391102_2021_1930162 crossref_primary_10_1128_aac_00956_23 crossref_primary_10_1039_D1ME00088H crossref_primary_10_22207_JPAM_14_SPL1_36 crossref_primary_10_3390_vaccines13010017 crossref_primary_10_1080_0889311X_2025_2458340 crossref_primary_10_1074_jbc_REV120_013930 crossref_primary_10_1080_07391102_2023_2175037 crossref_primary_10_1002_jmv_29783 crossref_primary_10_1016_j_xpro_2021_100357 crossref_primary_10_1016_j_bioorg_2021_105016 crossref_primary_10_1007_s40121_021_00517_4 crossref_primary_10_1042_BCJ20210200 crossref_primary_10_1038_s41467_024_54918_3 crossref_primary_10_1039_D0NJ02656E crossref_primary_10_3390_scipharm88020029 crossref_primary_10_1080_17460794_2024_2362100 crossref_primary_10_3390_molecules27206962 crossref_primary_10_3390_ph15040445 crossref_primary_10_1002_phar_2429 crossref_primary_10_1016_j_aquaculture_2021_736783 crossref_primary_10_3390_diseases9030050 crossref_primary_10_15252_emmm_202013105 crossref_primary_10_1080_07391102_2023_2235012 crossref_primary_10_1021_acs_jcim_3c00658 crossref_primary_10_1007_s40262_021_00984_5 crossref_primary_10_3390_cryst11050471 crossref_primary_10_1016_j_dnarep_2024_103773 crossref_primary_10_1016_j_jbc_2022_101923 crossref_primary_10_2147_IJGM_S457198 crossref_primary_10_1093_jac_dkaa321 crossref_primary_10_1002_ange_202008835 crossref_primary_10_1016_j_dnarep_2024_103772 crossref_primary_10_1016_j_jbc_2021_101529 crossref_primary_10_1016_j_celrep_2023_113077 crossref_primary_10_1007_s10930_020_09942_9 crossref_primary_10_1080_07391102_2021_1883112 crossref_primary_10_3390_v16040546 crossref_primary_10_1016_j_bcp_2021_114800 crossref_primary_10_3390_vaccines9121499 crossref_primary_10_1002_1873_3468_14337 crossref_primary_10_1073_pnas_2007346117 crossref_primary_10_1002_cphc_202300552 crossref_primary_10_2174_1570180819666220622085659 crossref_primary_10_1002_cpz1_1007 crossref_primary_10_3390_ijms232012649 crossref_primary_10_1021_acs_jmedchem_1c00071 crossref_primary_10_1080_10408347_2021_1923456 crossref_primary_10_1159_000512141 crossref_primary_10_1016_j_drudis_2022_02_016 crossref_primary_10_1021_acs_jmedchem_2c02120 crossref_primary_10_1016_j_molcel_2021_01_035 crossref_primary_10_3390_jcm9072030 crossref_primary_10_1016_j_biopha_2022_114037 crossref_primary_10_1080_08927022_2024_2387797 crossref_primary_10_1016_j_cct_2021_106272 crossref_primary_10_2174_1389200223666211228160314 crossref_primary_10_1080_07391102_2021_1890223 crossref_primary_10_1016_j_imu_2020_100461 crossref_primary_10_1007_s12012_024_09872_3 crossref_primary_10_3390_v13071346 crossref_primary_10_1038_s41594_021_00657_8 crossref_primary_10_3390_microorganisms9050893 crossref_primary_10_1016_j_ijbiomac_2020_12_223 crossref_primary_10_3390_jcm13071837 crossref_primary_10_1016_j_jiph_2021_06_013 crossref_primary_10_1007_s10238_023_01095_0 crossref_primary_10_3389_fmolb_2020_636738 crossref_primary_10_1128_mbio_03347_21 crossref_primary_10_3390_bios12110950 crossref_primary_10_1016_j_xinn_2021_100080 crossref_primary_10_1111_cts_13384 crossref_primary_10_1002_ejoc_202100561 crossref_primary_10_1016_j_gendis_2022_12_019 crossref_primary_10_1016_j_jbc_2021_100770 crossref_primary_10_1186_s12987_022_00357_5 crossref_primary_10_1016_j_bcp_2022_115279 crossref_primary_10_1016_j_drudis_2024_104126 crossref_primary_10_3390_org5020006 crossref_primary_10_1016_j_jaccas_2020_08_025 crossref_primary_10_1016_j_prp_2024_155608 crossref_primary_10_1002_prp2_674 crossref_primary_10_1093_nar_gkae153 crossref_primary_10_1080_08830185_2020_1844195 crossref_primary_10_13105_wjma_v8_i3_173 crossref_primary_10_1128_aac_01238_24 crossref_primary_10_5802_crchim_279 crossref_primary_10_1016_j_bbrc_2020_08_116 crossref_primary_10_1016_j_compbiomed_2021_104965 crossref_primary_10_1016_j_ejphar_2020_173642 crossref_primary_10_1002_slct_202102853 crossref_primary_10_1007_s10930_021_09967_8 crossref_primary_10_1016_j_bj_2021_11_010 crossref_primary_10_1038_s41551_020_00658_w crossref_primary_10_1016_j_antiviral_2020_104899 crossref_primary_10_1080_07391102_2020_1822209 crossref_primary_10_1080_22221751_2021_1899770 crossref_primary_10_1016_j_jmgm_2021_107851 crossref_primary_10_1016_j_jiph_2020_07_011 crossref_primary_10_2174_1389450121666201020154033 crossref_primary_10_1016_j_bbrc_2020_10_094 crossref_primary_10_1016_j_jaci_2020_05_033 crossref_primary_10_1158_1535_7163_MCT_23_0487 crossref_primary_10_1021_acscentsci_0c00489 crossref_primary_10_1016_j_jsps_2020_08_024 crossref_primary_10_1038_s44298_024_00018_4 crossref_primary_10_1016_j_bbrc_2020_10_091 crossref_primary_10_1016_j_pharmthera_2021_107930 crossref_primary_10_1038_s41573_023_00672_y crossref_primary_10_1016_j_ejps_2021_106012 crossref_primary_10_1371_journal_ppat_1011231 crossref_primary_10_14218_JERP_2020_00022 crossref_primary_10_1093_jimmun_vkae006 crossref_primary_10_2174_1568026620999200517043137 crossref_primary_10_1021_acsomega_4c02392 crossref_primary_10_1016_j_carres_2021_108326 crossref_primary_10_15252_emmm_202013426 crossref_primary_10_1080_14740338_2021_1962846 crossref_primary_10_3390_v14061137 crossref_primary_10_1128_aac_00341_24 crossref_primary_10_3390_ijms22115434 crossref_primary_10_1128_mBio_01423_21 crossref_primary_10_1016_j_ebiom_2022_104095 crossref_primary_10_1089_aid_2020_0305 crossref_primary_10_1039_D3CP04410F crossref_primary_10_1021_acs_jpclett_2c00087 crossref_primary_10_1126_scitranslmed_adj4504 crossref_primary_10_3390_ijms23010518 crossref_primary_10_1007_s40121_020_00318_1 crossref_primary_10_1021_acsomega_2c05376 crossref_primary_10_3390_ijms22168498 crossref_primary_10_1016_j_ejphar_2020_173621 crossref_primary_10_1080_20009666_2020_1857510 crossref_primary_10_1016_j_biopha_2020_110668 crossref_primary_10_3390_molecules27092918 crossref_primary_10_1080_07391102_2021_1872419 crossref_primary_10_1080_07391102_2021_1894985 crossref_primary_10_1016_j_molcel_2020_07_027 crossref_primary_10_1021_acsomega_1c03082 crossref_primary_10_3389_fmicb_2022_757418 crossref_primary_10_1016_j_prenap_2025_100191 crossref_primary_10_7759_cureus_33676 crossref_primary_10_1016_j_csbj_2021_04_014 crossref_primary_10_3390_biom11070993 crossref_primary_10_3390_ijms24021431 crossref_primary_10_1038_s41598_021_84882_7 crossref_primary_10_1016_j_cellimm_2020_104240 crossref_primary_10_1016_j_celrep_2021_109479 crossref_primary_10_1021_acsomega_2c04258 crossref_primary_10_1136_bmjopen_2022_068564 crossref_primary_10_1016_j_microc_2022_107580 crossref_primary_10_1016_j_jpha_2021_03_012 crossref_primary_10_1016_j_microc_2024_111178 crossref_primary_10_3390_molecules25215064 crossref_primary_10_1128_jvi_00671_22 crossref_primary_10_1016_j_isci_2020_101992 crossref_primary_10_2217_fvl_2020_0342 crossref_primary_10_1016_j_jbc_2024_107802 crossref_primary_10_3390_pharmaceutics13091400 crossref_primary_10_1016_j_antiviral_2020_104857 crossref_primary_10_1038_s41467_021_26760_4 crossref_primary_10_1021_acs_jpclett_1c00190 crossref_primary_10_1038_s41418_021_00909_6 crossref_primary_10_1039_D0CP05948J crossref_primary_10_1021_acs_biochem_1c00292 crossref_primary_10_1039_D0RA04743K crossref_primary_10_1016_j_checat_2022_03_019 crossref_primary_10_1038_s41467_020_18096_2 crossref_primary_10_1002_jmv_26792 crossref_primary_10_1002_jmv_26791 crossref_primary_10_1016_j_xpro_2022_101468 crossref_primary_10_1371_journal_pone_0240524 crossref_primary_10_1002_cbic_202000595 crossref_primary_10_1038_s41467_023_43938_0 crossref_primary_10_1039_D0CP05297C |
Cites_doi | 10.1073/pnas.1718806115 10.1016/j.antiviral.2019.104541 10.1073/pnas.0508200103 10.1016/j.antiviral.2018.03.003 10.1016/S0140-6736(20)30251-8 10.1038/s41422-020-0282-0 10.1016/S0022-2836(02)00470-9 10.1128/mBio.00221-18 10.1056/NEJMoa1910993 10.1038/82191 10.3390/v11040326 10.1038/srep43395 10.2183/pjab.93.027 10.1021/acs.jmedchem.6b01594 10.1074/jbc.C100349200 10.1038/nbt1036 10.1073/pnas.1007626107 10.1074/jbc.M709563200 10.1007/BF00928361 10.1002/prot.10613 10.1128/AAC.48.2.651-654.2004 10.1038/nature04082 10.1016/j.antiviral.2018.06.013 10.1371/journal.pone.0068347 10.1074/jbc.AC120.013056 10.1073/pnas.1201130109 10.1073/pnas.1323705111 10.1371/journal.pntd.0002804 10.1016/j.coviro.2019.04.002 10.1126/scitranslmed.aau9242 10.1126/scitranslmed.aal3653 10.1002/0471140864.ps0520s51 10.1371/journal.ppat.1006889 10.1126/science.1259210 10.1073/pnas.1922083117 10.1038/s41467-019-13940-6 10.1038/s41598-018-22328-3 10.1038/nature17180 10.1111/liv.12423 10.1016/j.antiviral.2016.10.007 10.1016/j.antiviral.2014.03.018 10.1016/j.virusres.2017.01.023 10.1056/NEJMoa2001017 10.1016/j.antiviral.2011.09.001 10.1074/jbc.M110.178582 10.1016/j.antiviral.2017.10.008 10.1038/s41467-019-10280-3 10.1074/jbc.M806797200 |
ContentType | Journal Article |
Copyright | 2020 © 2020 Gordon et al. 2020 Gordon et al. 2020 Gordon et al. 2020 Gordon et al. |
Copyright_xml | – notice: 2020 © 2020 Gordon et al. – notice: 2020 Gordon et al. – notice: 2020 Gordon et al. 2020 Gordon et al. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.RA120.013679 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | EDITORS' PICK: SARS-CoV-2 polymerase inhibition with remdesivir |
EISSN | 1083-351X |
EndPage | 6797 |
ExternalDocumentID | PMC7242698 32284326 10_1074_jbc_RA120_013679 S0021925817481865 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: 170343 |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ACSFO ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFFNX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP C1A CITATION E.L FA8 H13 J5H MVM NHB OHT P-O QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-e4c75f62cdacfeeb88c84c11eb12c9bcdb3e927e4d86c873814318f540b02c613 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:31:27 EDT 2025 Fri Jul 11 07:31:59 EDT 2025 Mon Jul 21 06:07:16 EDT 2025 Tue Jul 01 04:11:53 EDT 2025 Thu Apr 24 23:04:24 EDT 2025 Fri Feb 23 02:45:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | replication ribavirin drug development SARS RNA polymerase Lassa virus remdesivir COVID-19 Ebola virus sofosbuvir RNA-dependent RNA polymerase (RdRp) SARS-CoV-2 drug discovery drug action plus-stranded RNA virus coronavirus (CoV) MERS favipiravir |
Language | English |
License | This is an open access article under the CC BY license. 2020 Gordon et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc. This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-e4c75f62cdacfeeb88c84c11eb12c9bcdb3e927e4d86c873814318f540b02c613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Craig E. Cameron Both authors contributed equally to this work. |
ORCID | 0000-0001-5492-0652 0000-0002-8697-7802 0000-0003-1698-2961 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7242698 |
PMID | 32284326 |
PQID | 2389694189 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242698 proquest_miscellaneous_2389694189 pubmed_primary_32284326 crossref_citationtrail_10_1074_jbc_RA120_013679 crossref_primary_10_1074_jbc_RA120_013679 elsevier_sciencedirect_doi_10_1074_jbc_RA120_013679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-15 |
PublicationDateYYYYMMDD | 2020-05-15 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2020 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Jacobson, Friesner, Xiang, Honig (bib49) 2002; 320 Kumaki, Day, Smee, Morrey, Barnard (bib22) 2011; 92 Lo, Jordan, Arvey, Sudhamsu, Shrivastava-Ranjan, Hotard, Flint, McMullan, Siegel, Clarke, Mackman, Hui, Perron, Ray, Cihlar (bib10) 2017; 7 Lo, Feldmann, Gary, Jordan, Bannister, Cronin, Patel, Klena, Nichol, Cihlar, Zaki, Feldmann, Spiropoulou, de Wit (bib11) 2019; 11 Wang, Cao, Zhang, Yang, Liu, Xu, Shi, Hu, Zhong, Xiao (bib33) 2020; 30 Uebelhoer, Albariño, McMullan, Chakrabarti, Vincent, Nichol, Towner (bib43) 2014; 106 Schinazi, Halfon, Marcellin, Asselah (bib44) 2014; 34 Posthuma, Te Velthuis, Snijder (bib38) 2017; 234 Welch, Scholte, Flint, Chatterjee, Nichol, Bergeron, Spiropoulou (bib21) 2017; 147 Sheahan, Sims, Graham, Menachery, Gralinski, Case, Leist, Pyrc, Feng, Trantcheva, Bannister, Park, Babusis, Clarke, Mackman (bib14) 2017; 9 Kirchdoerfer, Ward (bib19) 2019; 10 Ferron, Subissi, Silveira De Morais, Le, Sevajol, Gluais, Decroly, Vonrhein, Bricogne, Canard, Imbert (bib36) 2018; 115 (bib3) 2020 Bouvet, Imbert, Subissi, Gluais, Canard, Decroly (bib37) 2012; 109 Siegel, Hui, Doerffler, Clarke, Chun, Zhang, Neville, Carra, Lew, Ross, Wang, Wolfe, Jordan, Soloveva, Knox (bib5) 2017; 60 Jin, Smith, Rajwanshi, Kim, Deval (bib28) 2013; 8 Jacobson, Pincus, Rapp, Day, Honig, Shaw, Friesner (bib50) 2004; 55 Appleby, Perry, Murakami, Barauskas, Feng, Cho, Fox, Wetmore, McGrath, Ray, Sofia, Swaminathan, Edwards (bib24) 2015; 347 Tchesnokov, Obikhod, Schinazi, Götte (bib40) 2008; 283 Traut (bib34) 1994; 140 Subissi, Posthuma, Collet, Zevenhoven-Dobbe, Gorbalenya, Decroly, Snijder, Canard, Imbert (bib18) 2014; 111 Tchesnokov, Feng, Porter, Götte (bib9) 2019; 11 Li, Zhou, Zhang, Wang, Zhao, Liu (bib4) 2020 Zamyatkin, Parra, Alonso, Harki, Peterson, Grochulski, Ng (bib32) 2008; 283 Gordon, Tchesnokov, Feng, Porter, Götte (bib17) 2020; 295 Bieniossek, Richmond, Berger (bib47) 2008 Brown, Won, Graham, Dinnon, Sims, Feng, Cihlar, Denison, Baric, Sheahan (bib12) 2019; 169 Sheahan, Sims, Leist, Schäfer, Won, Brown, Montgomery, Hogg, Babusis, Clarke, Spahn, Bauer, Sellers, Porter, Feng (bib15) 2020; 11 Berger, Fitzgerald, Richmond (bib46) 2004; 22 Feld, Hoofnagle (bib45) 2005; 436 Hawman, Haddock, Meade-White, Williamson, Hanley, Rosenke, Komeno, Furuta, Gowen, Feldmann (bib27) 2018; 157 Mulangu, Dodd, Davey, Tshiani Mbaya, Proschan, Mukadi, Lusakibanza Manzo, Nzolo, Tshomba Oloma, Ibanda, Ali, Coulibaly, Levine, Grais, Diaz (bib16) 2019; 381 Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu, Bi, Ma, Zhan, Wang, Hu (bib1) 2020; 395 Furuta, Komeno, Nakamura (bib26) 2017; 93 Minskaia, Hertzig, Gorbalenya, Campanacci, Cambillau, Canard, Ziebuhr (bib39) 2006; 103 Kennedy, Gavegnano, Nguyen, Slater, Lucas, Fromentin, Schinazi, Kim (bib35) 2010; 285 Warren, Jordan, Lo, Ray, Mackman, Soloveva, Siegel, Perron, Bannister, Hui, Larson, Strickley, Wells, Stuthman, Van Tongeren (bib8) 2016; 531 Gong, Peersen (bib31) 2010; 107 Delang, Abdelnabi, Neyts (bib42) 2018; 153 Stuyver, McBrayer, Whitaker, Tharnish, Ramesh, Lostia, Cartee, Shi, Hobbs, Schinazi, Watanabe, Otto (bib20) 2004; 48 Welch, Guerrero, Chakrabarti, McMullan, Flint, Bluemling, Painter, Nichol, Spiropoulou, Albariño (bib23) 2016; 136 de Wit, Feldmann, Cronin, Jordan, Okumura, Thomas, Scott, Cihlar, Feldmann (bib13) 2020; 117 Agostini, Andres, Sims, Graham, Sheahan, Lu, Smith, Case, Feng, Jordan, Ray, Cihlar, Siegel, Mackman, Clarke (bib6) 2018; 9 Tchesnokov, Raeisimakiani, Ngure, Marchant, Götte (bib48) 2018; 8 Maag, Castro, Hong, Cameron (bib29) 2001; 276 Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu (bib2) 2020; 382 Jordan, Liu, Raynaud, Lo, Spiropoulou, Symons, Beigelman, Deval (bib7) 2018; 14 Crotty, Maag, Arnold, Zhong, Lau, Hong, Andino, Cameron (bib25) 2000; 6 Oestereich, Rieger, Neumann, Bernreuther, Lehmann, Krasemann, Wurr, Emmerich, de Lamballerie, Ölschläger, Günther (bib30) 2014; 8 Pruijssers, Denison (bib41) 2019; 35 Tchesnokov (10.1074/jbc.RA120.013679_bib40) 2008; 283 Feld (10.1074/jbc.RA120.013679_bib45) 2005; 436 Sheahan (10.1074/jbc.RA120.013679_bib14) 2017; 9 Uebelhoer (10.1074/jbc.RA120.013679_bib43) 2014; 106 Lu (10.1074/jbc.RA120.013679_bib1) 2020; 395 Pruijssers (10.1074/jbc.RA120.013679_bib41) 2019; 35 Kumaki (10.1074/jbc.RA120.013679_bib22) 2011; 92 Kennedy (10.1074/jbc.RA120.013679_bib35) 2010; 285 Minskaia (10.1074/jbc.RA120.013679_bib39) 2006; 103 Jacobson (10.1074/jbc.RA120.013679_bib49) 2002; 320 Bouvet (10.1074/jbc.RA120.013679_bib37) 2012; 109 Zhu (10.1074/jbc.RA120.013679_bib2) 2020; 382 Maag (10.1074/jbc.RA120.013679_bib29) 2001; 276 Agostini (10.1074/jbc.RA120.013679_bib6) 2018; 9 Traut (10.1074/jbc.RA120.013679_bib34) 1994; 140 Schinazi (10.1074/jbc.RA120.013679_bib44) 2014; 34 Oestereich (10.1074/jbc.RA120.013679_bib30) 2014; 8 Warren (10.1074/jbc.RA120.013679_bib8) 2016; 531 Zamyatkin (10.1074/jbc.RA120.013679_bib32) 2008; 283 Jordan (10.1074/jbc.RA120.013679_bib7) 2018; 14 Siegel (10.1074/jbc.RA120.013679_bib5) 2017; 60 Tchesnokov (10.1074/jbc.RA120.013679_bib9) 2019; 11 Wang (10.1074/jbc.RA120.013679_bib33) 2020; 30 Delang (10.1074/jbc.RA120.013679_bib42) 2018; 153 Tchesnokov (10.1074/jbc.RA120.013679_bib48) 2018; 8 Jacobson (10.1074/jbc.RA120.013679_bib50) 2004; 55 Kirchdoerfer (10.1074/jbc.RA120.013679_bib19) 2019; 10 Gordon (10.1074/jbc.RA120.013679_bib17) 2020; 295 (10.1074/jbc.RA120.013679_bib3) 2020 Ferron (10.1074/jbc.RA120.013679_bib36) 2018; 115 Posthuma (10.1074/jbc.RA120.013679_bib38) 2017; 234 de Wit (10.1074/jbc.RA120.013679_bib13) 2020; 117 Welch (10.1074/jbc.RA120.013679_bib21) 2017; 147 Sheahan (10.1074/jbc.RA120.013679_bib15) 2020; 11 Furuta (10.1074/jbc.RA120.013679_bib26) 2017; 93 Crotty (10.1074/jbc.RA120.013679_bib25) 2000; 6 Lo (10.1074/jbc.RA120.013679_bib11) 2019; 11 Hawman (10.1074/jbc.RA120.013679_bib27) 2018; 157 Gong (10.1074/jbc.RA120.013679_bib31) 2010; 107 Appleby (10.1074/jbc.RA120.013679_bib24) 2015; 347 Bieniossek (10.1074/jbc.RA120.013679_bib47) 2008 Berger (10.1074/jbc.RA120.013679_bib46) 2004; 22 Li (10.1074/jbc.RA120.013679_bib4) 2020 Stuyver (10.1074/jbc.RA120.013679_bib20) 2004; 48 Brown (10.1074/jbc.RA120.013679_bib12) 2019; 169 Mulangu (10.1074/jbc.RA120.013679_bib16) 2019; 381 Subissi (10.1074/jbc.RA120.013679_bib18) 2014; 111 Jin (10.1074/jbc.RA120.013679_bib28) 2013; 8 Lo (10.1074/jbc.RA120.013679_bib10) 2017; 7 Welch (10.1074/jbc.RA120.013679_bib23) 2016; 136 |
References_xml | – volume: 347 start-page: 771 year: 2015 end-page: 775 ident: bib24 article-title: Viral replication: structural basis for RNA replication by the hepatitis C virus polymerase publication-title: Science – volume: 55 start-page: 351 year: 2004 end-page: 367 ident: bib50 article-title: A hierarchical approach to all-atom protein loop prediction publication-title: Proteins – volume: 117 start-page: 6771 year: 2020 end-page: 6776 ident: bib13 article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 436 start-page: 967 year: 2005 end-page: 972 ident: bib45 article-title: Mechanism of action of interferon and ribavirin in treatment of hepatitis C publication-title: Nature – volume: 111 start-page: E3900 year: 2014 end-page: E3909 ident: bib18 article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 35 start-page: 57 year: 2019 end-page: 62 ident: bib41 article-title: Nucleoside analogues for the treatment of coronavirus infections publication-title: Curr. Opin. Virol. – volume: 320 start-page: 597 year: 2002 end-page: 608 ident: bib49 article-title: On the role of the crystal environment in determining protein side-chain conformations publication-title: J. Mol. Biol. – volume: 14 start-page: e1006889 year: 2018 ident: bib7 article-title: Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase publication-title: PLoS Pathog. – volume: 115 start-page: E162 year: 2018 end-page: E171 ident: bib36 article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: eaal3653 year: 2017 ident: bib14 article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses publication-title: Sci. Transl. Med. – volume: 9 start-page: e00221 year: 2018 end-page: 18 ident: bib6 article-title: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease publication-title: mBio – volume: 531 start-page: 381 year: 2016 end-page: 385 ident: bib8 article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys publication-title: Nature – volume: 22 start-page: 1583 year: 2004 end-page: 1587 ident: bib46 article-title: Baculovirus expression system for heterologous multiprotein complexes publication-title: Nat. Biotechnol. – volume: 60 start-page: 1648 year: 2017 end-page: 1661 ident: bib5 article-title: Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses publication-title: J. Med. Chem. – volume: 11 start-page: 222 year: 2020 ident: bib15 article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon β against MERS-CoV publication-title: Nat. Commun. – volume: 285 start-page: 39380 year: 2010 end-page: 39391 ident: bib35 article-title: Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages publication-title: J. Biol. Chem. – volume: 8 start-page: e68347 year: 2013 ident: bib28 article-title: The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase publication-title: PLoS One – volume: 30 start-page: 269 year: 2020 end-page: 271 ident: bib33 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) publication-title: Cell Res. – volume: 295 start-page: 4773 year: 2020 end-page: 4779 ident: bib17 article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus publication-title: J. Biol. Chem. – volume: 140 start-page: 1 year: 1994 end-page: 22 ident: bib34 article-title: Physiological concentrations of purines and pyrimidines publication-title: Mol. Cell. Biochem. – volume: 136 start-page: 9 year: 2016 end-page: 18 ident: bib23 article-title: Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems publication-title: Antiviral Res. – volume: 283 start-page: 34218 year: 2008 end-page: 34228 ident: bib40 article-title: Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase publication-title: J. Biol. Chem. – volume: 106 start-page: 86 year: 2014 end-page: 94 ident: bib43 article-title: High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses publication-title: Antiviral Res. – volume: 169 start-page: 104541 year: 2019 ident: bib12 article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase publication-title: Antiviral Res. – year: 2020 ident: bib4 article-title: Updated approaches against SARS-CoV-2 publication-title: Antimicrob. Agents Chemother. – volume: 147 start-page: 91 year: 2017 end-page: 99 ident: bib21 article-title: Identification of 2′-deoxy-2′-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus publication-title: Antiviral Res. – volume: 109 start-page: 9372 year: 2012 end-page: 9377 ident: bib37 article-title: RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 276 start-page: 46094 year: 2001 end-page: 46098 ident: bib29 article-title: Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin publication-title: J. Biol. Chem. – volume: 6 start-page: 1375 year: 2000 end-page: 1379 ident: bib25 article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen publication-title: Nat. Med. – volume: 107 start-page: 22505 year: 2010 end-page: 22510 ident: bib31 article-title: Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 153 start-page: 85 year: 2018 end-page: 94 ident: bib42 article-title: Favipiravir as a potential countermeasure against neglected and emerging RNA viruses publication-title: Antiviral Res. – volume: 34 start-page: 69 year: 2014 end-page: 78 ident: bib44 article-title: HCV direct-acting antiviral agents: the best interferon-free combinations publication-title: Liver Int. – volume: 381 start-page: 2293 year: 2019 end-page: 2303 ident: bib16 article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics publication-title: The New England journal of medicine – year: 2020 ident: bib3 publication-title: Coronavirus Disease 2019 (COVID-19) Situation Report-50 – year: 2008 ident: bib47 article-title: MultiBac: multigene baculovirus-based eukaryotic protein complex production publication-title: Curr. Protoc. Protein Sci. – volume: 283 start-page: 7705 year: 2008 end-page: 7712 ident: bib32 article-title: Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase publication-title: J. Biol. Chem. – volume: 8 start-page: 3970 year: 2018 ident: bib48 article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus publication-title: Sci. Rep. – volume: 395 start-page: 565 year: 2020 end-page: 574 ident: bib1 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet – volume: 157 start-page: 18 year: 2018 end-page: 26 ident: bib27 article-title: Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice publication-title: Antiviral Res. – volume: 8 start-page: e2804 year: 2014 ident: bib30 article-title: Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic fever publication-title: PLoS Negl. Trop. Dis. – volume: 234 start-page: 58 year: 2017 end-page: 73 ident: bib38 article-title: Nidovirus RNA polymerases: complex enzymes handling exceptional RNA genomes publication-title: Virus Res. – volume: 11 start-page: eaau9242 year: 2019 ident: bib11 article-title: Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge publication-title: Sci. Transl. Med. – volume: 93 start-page: 449 year: 2017 end-page: 463 ident: bib26 article-title: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. – volume: 10 start-page: 2342 year: 2019 ident: bib19 article-title: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors publication-title: Nat. Commun. – volume: 11 start-page: E326 year: 2019 ident: bib9 article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir publication-title: Viruses – volume: 92 start-page: 329 year: 2011 end-page: 340 ident: bib22 article-title: and publication-title: Antiviral Res. – volume: 7 start-page: 43395 year: 2017 ident: bib10 article-title: GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses publication-title: Sci. Rep. – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: bib2 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. – volume: 48 start-page: 651 year: 2004 end-page: 654 ident: bib20 article-title: Inhibition of the subgenomic hepatitis C virus replicon in huh-7 cells by 2′-deoxy-2′-fluorocytidine publication-title: Antimicrob. Agents Chemother. – volume: 103 start-page: 5108 year: 2006 end-page: 5113 ident: bib39 article-title: Discovery of an RNA virus 3′ → 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 115 start-page: E162 year: 2018 ident: 10.1074/jbc.RA120.013679_bib36 article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1718806115 – volume: 169 start-page: 104541 year: 2019 ident: 10.1074/jbc.RA120.013679_bib12 article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2019.104541 – volume: 103 start-page: 5108 year: 2006 ident: 10.1074/jbc.RA120.013679_bib39 article-title: Discovery of an RNA virus 3′ → 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0508200103 – year: 2020 ident: 10.1074/jbc.RA120.013679_bib3 – volume: 153 start-page: 85 year: 2018 ident: 10.1074/jbc.RA120.013679_bib42 article-title: Favipiravir as a potential countermeasure against neglected and emerging RNA viruses publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2018.03.003 – volume: 395 start-page: 565 year: 2020 ident: 10.1074/jbc.RA120.013679_bib1 article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding publication-title: Lancet doi: 10.1016/S0140-6736(20)30251-8 – volume: 30 start-page: 269 year: 2020 ident: 10.1074/jbc.RA120.013679_bib33 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res. doi: 10.1038/s41422-020-0282-0 – year: 2020 ident: 10.1074/jbc.RA120.013679_bib4 article-title: Updated approaches against SARS-CoV-2 publication-title: Antimicrob. Agents Chemother. – volume: 320 start-page: 597 year: 2002 ident: 10.1074/jbc.RA120.013679_bib49 article-title: On the role of the crystal environment in determining protein side-chain conformations publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00470-9 – volume: 9 start-page: e00221 year: 2018 ident: 10.1074/jbc.RA120.013679_bib6 article-title: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease publication-title: mBio doi: 10.1128/mBio.00221-18 – volume: 381 start-page: 2293 year: 2019 ident: 10.1074/jbc.RA120.013679_bib16 article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics publication-title: The New England journal of medicine doi: 10.1056/NEJMoa1910993 – volume: 6 start-page: 1375 year: 2000 ident: 10.1074/jbc.RA120.013679_bib25 article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen publication-title: Nat. Med. doi: 10.1038/82191 – volume: 11 start-page: E326 year: 2019 ident: 10.1074/jbc.RA120.013679_bib9 article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir publication-title: Viruses doi: 10.3390/v11040326 – volume: 7 start-page: 43395 year: 2017 ident: 10.1074/jbc.RA120.013679_bib10 article-title: GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses publication-title: Sci. Rep. doi: 10.1038/srep43395 – volume: 93 start-page: 449 year: 2017 ident: 10.1074/jbc.RA120.013679_bib26 article-title: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.93.027 – volume: 60 start-page: 1648 year: 2017 ident: 10.1074/jbc.RA120.013679_bib5 article-title: Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01594 – volume: 276 start-page: 46094 year: 2001 ident: 10.1074/jbc.RA120.013679_bib29 article-title: Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin publication-title: J. Biol. Chem. doi: 10.1074/jbc.C100349200 – volume: 22 start-page: 1583 year: 2004 ident: 10.1074/jbc.RA120.013679_bib46 article-title: Baculovirus expression system for heterologous multiprotein complexes publication-title: Nat. Biotechnol. doi: 10.1038/nbt1036 – volume: 107 start-page: 22505 year: 2010 ident: 10.1074/jbc.RA120.013679_bib31 article-title: Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1007626107 – volume: 283 start-page: 7705 year: 2008 ident: 10.1074/jbc.RA120.013679_bib32 article-title: Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M709563200 – volume: 140 start-page: 1 year: 1994 ident: 10.1074/jbc.RA120.013679_bib34 article-title: Physiological concentrations of purines and pyrimidines publication-title: Mol. Cell. Biochem. doi: 10.1007/BF00928361 – volume: 55 start-page: 351 year: 2004 ident: 10.1074/jbc.RA120.013679_bib50 article-title: A hierarchical approach to all-atom protein loop prediction publication-title: Proteins doi: 10.1002/prot.10613 – volume: 48 start-page: 651 year: 2004 ident: 10.1074/jbc.RA120.013679_bib20 article-title: Inhibition of the subgenomic hepatitis C virus replicon in huh-7 cells by 2′-deoxy-2′-fluorocytidine publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.48.2.651-654.2004 – volume: 436 start-page: 967 year: 2005 ident: 10.1074/jbc.RA120.013679_bib45 article-title: Mechanism of action of interferon and ribavirin in treatment of hepatitis C publication-title: Nature doi: 10.1038/nature04082 – volume: 157 start-page: 18 year: 2018 ident: 10.1074/jbc.RA120.013679_bib27 article-title: Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2018.06.013 – volume: 8 start-page: e68347 year: 2013 ident: 10.1074/jbc.RA120.013679_bib28 article-title: The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase publication-title: PLoS One doi: 10.1371/journal.pone.0068347 – volume: 295 start-page: 4773 year: 2020 ident: 10.1074/jbc.RA120.013679_bib17 article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC120.013056 – volume: 109 start-page: 9372 year: 2012 ident: 10.1074/jbc.RA120.013679_bib37 article-title: RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1201130109 – volume: 111 start-page: E3900 year: 2014 ident: 10.1074/jbc.RA120.013679_bib18 article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1323705111 – volume: 8 start-page: e2804 year: 2014 ident: 10.1074/jbc.RA120.013679_bib30 article-title: Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic fever publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002804 – volume: 35 start-page: 57 year: 2019 ident: 10.1074/jbc.RA120.013679_bib41 article-title: Nucleoside analogues for the treatment of coronavirus infections publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2019.04.002 – volume: 11 start-page: eaau9242 year: 2019 ident: 10.1074/jbc.RA120.013679_bib11 article-title: Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aau9242 – volume: 9 start-page: eaal3653 year: 2017 ident: 10.1074/jbc.RA120.013679_bib14 article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aal3653 – year: 2008 ident: 10.1074/jbc.RA120.013679_bib47 article-title: MultiBac: multigene baculovirus-based eukaryotic protein complex production publication-title: Curr. Protoc. Protein Sci. doi: 10.1002/0471140864.ps0520s51 – volume: 14 start-page: e1006889 year: 2018 ident: 10.1074/jbc.RA120.013679_bib7 article-title: Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006889 – volume: 347 start-page: 771 year: 2015 ident: 10.1074/jbc.RA120.013679_bib24 article-title: Viral replication: structural basis for RNA replication by the hepatitis C virus polymerase publication-title: Science doi: 10.1126/science.1259210 – volume: 117 start-page: 6771 year: 2020 ident: 10.1074/jbc.RA120.013679_bib13 article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1922083117 – volume: 11 start-page: 222 year: 2020 ident: 10.1074/jbc.RA120.013679_bib15 article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon β against MERS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-019-13940-6 – volume: 8 start-page: 3970 year: 2018 ident: 10.1074/jbc.RA120.013679_bib48 article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus publication-title: Sci. Rep. doi: 10.1038/s41598-018-22328-3 – volume: 531 start-page: 381 year: 2016 ident: 10.1074/jbc.RA120.013679_bib8 article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys publication-title: Nature doi: 10.1038/nature17180 – volume: 34 start-page: 69 issue: Suppl. 1 year: 2014 ident: 10.1074/jbc.RA120.013679_bib44 article-title: HCV direct-acting antiviral agents: the best interferon-free combinations publication-title: Liver Int. doi: 10.1111/liv.12423 – volume: 136 start-page: 9 year: 2016 ident: 10.1074/jbc.RA120.013679_bib23 article-title: Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2016.10.007 – volume: 106 start-page: 86 year: 2014 ident: 10.1074/jbc.RA120.013679_bib43 article-title: High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2014.03.018 – volume: 234 start-page: 58 year: 2017 ident: 10.1074/jbc.RA120.013679_bib38 article-title: Nidovirus RNA polymerases: complex enzymes handling exceptional RNA genomes publication-title: Virus Res. doi: 10.1016/j.virusres.2017.01.023 – volume: 382 start-page: 727 year: 2020 ident: 10.1074/jbc.RA120.013679_bib2 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 92 start-page: 329 year: 2011 ident: 10.1074/jbc.RA120.013679_bib22 article-title: In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2011.09.001 – volume: 285 start-page: 39380 year: 2010 ident: 10.1074/jbc.RA120.013679_bib35 article-title: Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.178582 – volume: 147 start-page: 91 year: 2017 ident: 10.1074/jbc.RA120.013679_bib21 article-title: Identification of 2′-deoxy-2′-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2017.10.008 – volume: 10 start-page: 2342 year: 2019 ident: 10.1074/jbc.RA120.013679_bib19 article-title: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors publication-title: Nat. Commun. doi: 10.1038/s41467-019-10280-3 – volume: 283 start-page: 34218 year: 2008 ident: 10.1074/jbc.RA120.013679_bib40 article-title: Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806797200 |
SSID | ssj0000491 |
Score | 2.7178016 |
SecondaryResourceType | review_article |
Snippet | Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6785 |
SubjectTerms | Adenosine Monophosphate - analogs & derivatives Adenosine Monophosphate - pharmacology Alanine - analogs & derivatives Alanine - pharmacology Animals Antiviral Agents - pharmacology Betacoronavirus - enzymology Betacoronavirus - physiology coronavirus (CoV) COVID-19 drug action drug development drug discovery Ebola virus Editors' Picks favipiravir Lassa virus MERS Models, Molecular plus-stranded RNA virus remdesivir replication ribavirin RNA polymerase RNA-dependent RNA polymerase (RdRp) RNA-Dependent RNA Polymerase - antagonists & inhibitors SARS SARS-CoV-2 Sf9 Cells sofosbuvir Spodoptera Virus Replication - drug effects |
Title | Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency |
URI | https://dx.doi.org/10.1074/jbc.RA120.013679 https://www.ncbi.nlm.nih.gov/pubmed/32284326 https://www.proquest.com/docview/2389694189 https://pubmed.ncbi.nlm.nih.gov/PMC7242698 |
Volume | 295 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkGAvCDY-ypeMhJBQla510iZ5rCbQtIkJqk70LbIdh0a0ydSmlcY_4XfwB7nXjpO0bBPwErWJ41Q9J_a17z33EvKWcd934zh0fJEkjuez2OG4bxWqZDCQYZLEAoXCn86HJxfe6XQwbbV-NaKW1oXoyh_X6kr-B1U4B7iiSvYfkK06hRPwGfCFIyAMx7_CeKwWsVqlm3SJdcl5x8xPDmoVtPQQK0OgAL-YcawEMEsFugnG5yPH1r4t8BtWarjCzamVMnITmC0V-hUkBhEsG854m9-gIzHxAYfe16sOM5u5mPgYekIbfMtVXIvPtNlrsj6ZvCS22FwVBAQr4TIKgM83aVb7rCZY1yvLv-cbPXh_y5e1MO1rns-tbGdRTzOf1dKECJxyrLJ41tzfYNo1bxSeXWXGZLASUXAwbQ7azJTmLNnJeo0xGKbfwbWTA1hLODkI2R2P-qzX1enqwmZTgPdyockC41zguWwnS7eZ98tLd8hdBmsTLJtx9qVOUQ9Lrn7pD4cHHu0-bp_csx3cZAr9udTZjdhtmECTh-RBCSIdGSI-Ii2VHZDDUQbcWFzRd1RHE2s3zQG5f2zBPSQ_a57SdEU53eIprXhKkafU8pRu8RS_0ZqnFHlKDU-p5ilt8JRantIGTymjyFOKPKUlTx-Ti48fJscnTlkSxJGe5xeO8qQ_SIZMxlwmSokgkIEn-32wOJgMhYyFq0LmKy8OhjLwwRwFAzlIYFkiekyC6fqE7GV5pp4RyoewFHHdJOyJxNP69ATWGkOPK86DPo_b5MiiE8kyXz6WbZlHOm7D9yKANtLQRgbaNnlf3XFpcsXc0ta1gEelrWv--wjYestdbyw3IsAQfXs8U_l6FYHlHaImPYA2Tw1Xqt9g-dYm_haLqgaYYn77SpbOdKp5X0vdg-c39vmC7Ncv7UuyVyzX6hWY6YV4rV-L3xX28Yo |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remdesivir+is+a+direct-acting+antiviral+that+inhibits+RNA-dependent+RNA+polymerase+from+severe+acute+respiratory+syndrome+coronavirus+2+with+high+potency&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Gordon%2C+Calvin+J&rft.au=Tchesnokov%2C+Egor+P&rft.au=Woolner%2C+Emma&rft.au=Perry%2C+Jason+K&rft.date=2020-05-15&rft.eissn=1083-351X&rft.volume=295&rft.issue=20&rft.spage=6785&rft_id=info:doi/10.1074%2Fjbc.RA120.013679&rft_id=info%3Apmid%2F32284326&rft.externalDocID=32284326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |