Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency

Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 295; no. 20; pp. 6785 - 6797
Main Authors Gordon, Calvin J., Tchesnokov, Egor P., Woolner, Emma, Perry, Jason K., Feng, Joy Y., Porter, Danielle P., Götte, Matthias
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2020
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
AbstractList Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i +3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2′-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position caused termination of RNA synthesis at position +3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Author Tchesnokov, Egor P.
Woolner, Emma
Feng, Joy Y.
Porter, Danielle P.
Perry, Jason K.
Gordon, Calvin J.
Götte, Matthias
Author_xml – sequence: 1
  givenname: Calvin J.
  surname: Gordon
  fullname: Gordon, Calvin J.
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
– sequence: 2
  givenname: Egor P.
  orcidid: 0000-0003-1698-2961
  surname: Tchesnokov
  fullname: Tchesnokov, Egor P.
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
– sequence: 3
  givenname: Emma
  orcidid: 0000-0002-8697-7802
  surname: Woolner
  fullname: Woolner, Emma
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
– sequence: 4
  givenname: Jason K.
  orcidid: 0000-0001-5492-0652
  surname: Perry
  fullname: Perry, Jason K.
  organization: Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
– sequence: 5
  givenname: Joy Y.
  surname: Feng
  fullname: Feng, Joy Y.
  organization: Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
– sequence: 6
  givenname: Danielle P.
  surname: Porter
  fullname: Porter, Danielle P.
  organization: Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
– sequence: 7
  givenname: Matthias
  surname: Götte
  fullname: Götte, Matthias
  email: gotte@ualberta.ca
  organization: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32284326$$D View this record in MEDLINE/PubMed
BookMark eNp9kkGLFDEQhYOsuLOrd0-So5cek3SmO-1BGBZdhUVhUPAW0tXV01m6kzHJjPRP8d9uxtkVFTSXEOq9r6h6uSBnzjsk5DlnS85q-eq2heVmzQVbMl5WdfOILDhTZVGu-NczsmBM8KIRK3VOLmK8ZfnIhj8h56UQSpaiWpAfG5w6jPZgA7WRGtrZgJAKA8m6LTUuHUtmpGkwiVo32NamSDcf10WHO3QdunR80Z0f5wmDiUj74Cca8YABqYF9Qhow7jIl-TDTOLsuC5CCD96ZTN9HKuh3mwY62O2QSQkdzE_J496MEZ_d35fky7u3n6_eFzefrj9crW8KkLJOBUqoV30loDPQI7ZKgZLAObZcQNNC15bYiBplpypQdam4LLnqV5K1TEDFy0vy5sTd7dsJO8gD5Xn1LtjJhFl7Y_WfFWcHvfUHXQspqkZlwMt7QPDf9hiTnmwEHEfj0O-jFqVqqkZy1WTpi997_WrykEcWVCcBBB9jwF6DTSZZf2xtR82ZPgavc_D6Z_D6FHw2sr-MD-z_WF6fLJi3e7AYdASbN4-nL6A7b_9tvgO0m8lZ
CitedBy_id crossref_primary_10_13105_wjma_v11_i1_5
crossref_primary_10_3389_fmolb_2021_604447
crossref_primary_10_3390_ijms21207645
crossref_primary_10_3390_v13040667
crossref_primary_10_1016_j_molstruc_2023_135642
crossref_primary_10_1016_j_jmgm_2020_107769
crossref_primary_10_1016_j_biochi_2022_10_007
crossref_primary_10_1039_D0NJ04578K
crossref_primary_10_1134_S0006297924120149
crossref_primary_10_3390_v14020353
crossref_primary_10_1089_can_2021_0109
crossref_primary_10_17816_clinpract64972
crossref_primary_10_1038_s41579_020_00468_6
crossref_primary_10_1016_j_compbiomed_2020_104054
crossref_primary_10_26508_lsa_202101124
crossref_primary_10_3389_fmolb_2021_637378
crossref_primary_10_1016_j_apsb_2021_03_028
crossref_primary_10_1016_j_csbj_2021_06_005
crossref_primary_10_1007_s40262_024_01453_5
crossref_primary_10_1002_cpt_3337
crossref_primary_10_1080_17460441_2021_1909566
crossref_primary_10_1016_j_bpj_2021_07_026
crossref_primary_10_1016_j_sjbs_2022_103481
crossref_primary_10_5005_jp_journals_10049_2016
crossref_primary_10_3389_fmicb_2022_875164
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1515_med_2023_0867
crossref_primary_10_7717_peerj_14252
crossref_primary_10_3390_vaccines11020332
crossref_primary_10_1007_s00228_021_03270_2
crossref_primary_10_1016_j_metop_2021_100121
crossref_primary_10_3389_fphar_2022_1107198
crossref_primary_10_1002_psp4_12584
crossref_primary_10_3390_ijms231810358
crossref_primary_10_1038_s41598_024_83692_x
crossref_primary_10_1139_gen_2020_0130
crossref_primary_10_21307_PM_2020_59_3_15
crossref_primary_10_1128_AAC_01155_21
crossref_primary_10_3389_fphar_2021_624006
crossref_primary_10_1016_j_cell_2020_05_034
crossref_primary_10_1021_acsomega_4c05469
crossref_primary_10_1172_jci_insight_153165
crossref_primary_10_1016_j_molstruc_2022_134135
crossref_primary_10_1016_j_virusres_2020_198070
crossref_primary_10_1016_j_virusres_2020_198073
crossref_primary_10_1039_D1RA06589K
crossref_primary_10_1039_D3AY01562A
crossref_primary_10_1021_acscentsci_0c01186
crossref_primary_10_1021_acs_jproteome_0c00392
crossref_primary_10_1016_j_lfs_2020_118754
crossref_primary_10_1021_acsomega_4c08640
crossref_primary_10_1007_s10930_020_09901_4
crossref_primary_10_1080_13543776_2021_1880568
crossref_primary_10_3389_fmolb_2022_999291
crossref_primary_10_1002_jbt_22626
crossref_primary_10_3389_fphys_2020_596057
crossref_primary_10_2174_0115748855255004231001182927
crossref_primary_10_2174_0929867327666200721161840
crossref_primary_10_1016_j_isci_2020_101849
crossref_primary_10_2174_1871526521666210301143441
crossref_primary_10_3390_molecules27061894
crossref_primary_10_1021_acsptsci_1c00022
crossref_primary_10_1016_j_psj_2025_105022
crossref_primary_10_2174_1568026623666221226091907
crossref_primary_10_29024_ijsm_64
crossref_primary_10_1111_febs_16587
crossref_primary_10_1016_j_micres_2022_127206
crossref_primary_10_1016_j_comtox_2021_100157
crossref_primary_10_54097_hset_v36i_5674
crossref_primary_10_1007_s40588_024_00229_6
crossref_primary_10_1021_acs_jmedchem_3c00750
crossref_primary_10_1021_acsptsci_3c00121
crossref_primary_10_3390_v17020172
crossref_primary_10_1021_acsmedchemlett_1c00624
crossref_primary_10_3390_v13040651
crossref_primary_10_1016_j_chphi_2021_100011
crossref_primary_10_1080_17460441_2021_1970743
crossref_primary_10_1038_s41467_020_19761_2
crossref_primary_10_1159_000513686
crossref_primary_10_2174_0115734129323940240809053530
crossref_primary_10_3390_cimb45080433
crossref_primary_10_3390_pr8080937
crossref_primary_10_1016_j_bmcl_2021_128067
crossref_primary_10_3390_ijms251910820
crossref_primary_10_1016_j_csbj_2022_08_056
crossref_primary_10_2217_fmb_2021_0019
crossref_primary_10_1017_ice_2021_89
crossref_primary_10_1016_j_cbi_2021_109420
crossref_primary_10_1074_jbc_RA120_015394
crossref_primary_10_2174_1568026623666221130142517
crossref_primary_10_1016_j_jbc_2021_100470
crossref_primary_10_1002_wrna_70000
crossref_primary_10_1128_AAC_01508_20
crossref_primary_10_1172_jci_insight_182704
crossref_primary_10_1016_j_cmi_2021_02_013
crossref_primary_10_1111_bcpt_13600
crossref_primary_10_3390_ijms21186790
crossref_primary_10_3389_fcimb_2021_676451
crossref_primary_10_1007_s40261_022_01187_x
crossref_primary_10_1021_acs_biochem_2c00341
crossref_primary_10_1021_acsinfecdis_0c00343
crossref_primary_10_1038_s41598_023_27636_x
crossref_primary_10_1016_j_talanta_2022_123824
crossref_primary_10_1111_jfbc_14262
crossref_primary_10_14233_ajchem_2020_22891
crossref_primary_10_3390_ijms25020739
crossref_primary_10_1016_j_molliq_2021_117157
crossref_primary_10_5501_wjv_v10_i1_1
crossref_primary_10_1002_cpt_2176
crossref_primary_10_3390_children10050810
crossref_primary_10_1016_j_humimm_2021_05_001
crossref_primary_10_1080_07391102_2020_1835716
crossref_primary_10_1016_j_pce_2022_103350
crossref_primary_10_1055_a_1581_3707
crossref_primary_10_1016_j_cyto_2023_156287
crossref_primary_10_1016_j_isci_2024_110475
crossref_primary_10_3389_fmicb_2022_740382
crossref_primary_10_1126_science_abj5508
crossref_primary_10_1080_03602532_2024_2326415
crossref_primary_10_3390_microorganisms9051094
crossref_primary_10_1007_s40261_023_01304_4
crossref_primary_10_2174_1573406417666210208223924
crossref_primary_10_1038_s42004_021_00476_4
crossref_primary_10_1007_s40265_023_01926_0
crossref_primary_10_1038_s41598_024_56923_4
crossref_primary_10_1093_jac_dkad295
crossref_primary_10_2174_1389201022666210421102513
crossref_primary_10_3390_diseases12030046
crossref_primary_10_1007_s40121_023_00900_3
crossref_primary_10_1016_j_biopha_2024_116180
crossref_primary_10_3390_ijms242216392
crossref_primary_10_1038_s41467_024_47941_x
crossref_primary_10_1063_1674_0068_cjcp2203053
crossref_primary_10_1080_19390211_2021_2006387
crossref_primary_10_3390_microorganisms8101610
crossref_primary_10_1007_s40995_023_01474_y
crossref_primary_10_5582_bst_2020_03345
crossref_primary_10_2174_1871526523666230509110907
crossref_primary_10_1016_j_celrep_2020_107940
crossref_primary_10_1038_s41579_023_01001_1
crossref_primary_10_1016_j_imu_2020_100484
crossref_primary_10_1080_17460794_2024_2350923
crossref_primary_10_3389_fgene_2020_581668
crossref_primary_10_1038_s41467_021_20900_6
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_1038_s41598_023_34287_5
crossref_primary_10_1080_19371918_2020_1859035
crossref_primary_10_1002_cmdc_202200399
crossref_primary_10_1146_annurev_biophys_102620_080956
crossref_primary_10_1016_j_csbj_2023_09_001
crossref_primary_10_1016_j_ejmech_2020_112527
crossref_primary_10_3390_ijerph18030955
crossref_primary_10_1016_j_jbc_2024_107514
crossref_primary_10_1515_revac_2023_0060
crossref_primary_10_3390_v12070705
crossref_primary_10_1016_j_cplett_2022_139638
crossref_primary_10_1016_j_coviro_2022_101279
crossref_primary_10_1186_s43141_022_00368_7
crossref_primary_10_1002_ddr_21762
crossref_primary_10_3389_fmicb_2020_01756
crossref_primary_10_1038_s41467_020_18463_z
crossref_primary_10_3390_jcdd8020018
crossref_primary_10_1038_s41467_021_26602_3
crossref_primary_10_3390_jcm10235473
crossref_primary_10_1038_s42003_022_04058_5
crossref_primary_10_1128_JVI_00665_20
crossref_primary_10_1016_j_jiph_2021_02_006
crossref_primary_10_1038_s41467_020_19055_7
crossref_primary_10_4110_in_2021_21_e7
crossref_primary_10_1016_j_crbiot_2024_100256
crossref_primary_10_3390_v14050961
crossref_primary_10_1016_j_drudis_2021_12_017
crossref_primary_10_2174_1385272827666230111161632
crossref_primary_10_1080_26895293_2020_1835741
crossref_primary_10_3390_ijms21144953
crossref_primary_10_3390_ph17050661
crossref_primary_10_3138_jammi_2022_0030
crossref_primary_10_1080_10837450_2022_2098975
crossref_primary_10_1089_jir_2020_0188
crossref_primary_10_1002_mef2_32
crossref_primary_10_1128_mBio_02707_20
crossref_primary_10_3390_v12050526
crossref_primary_10_1186_s13065_024_01366_1
crossref_primary_10_1021_acs_joc_4c01981
crossref_primary_10_1038_s41401_021_00732_2
crossref_primary_10_1016_j_ijbiomac_2024_134012
crossref_primary_10_1016_j_mito_2021_09_010
crossref_primary_10_3390_jcm10153276
crossref_primary_10_3390_v12101092
crossref_primary_10_5812_apid_138983
crossref_primary_10_1021_acs_joc_2c01897
crossref_primary_10_3389_fphar_2022_971890
crossref_primary_10_3390_v14071413
crossref_primary_10_1002_bio_4274
crossref_primary_10_4167_jbv_2022_52_4_149
crossref_primary_10_1111_bph_16344
crossref_primary_10_1016_j_coviro_2021_05_005
crossref_primary_10_1038_s41418_021_00900_1
crossref_primary_10_1128_AAC_01117_21
crossref_primary_10_1093_gigascience_giae026
crossref_primary_10_2174_1389557521666210629100630
crossref_primary_10_1016_j_repc_2022_02_014
crossref_primary_10_1007_s10875_021_00996_7
crossref_primary_10_1073_pnas_2301775120
crossref_primary_10_1080_17476348_2020_1782199
crossref_primary_10_1136_postgradmedj_2021_140287
crossref_primary_10_1016_j_ymeth_2021_02_017
crossref_primary_10_1038_s41594_022_00734_6
crossref_primary_10_1093_nar_gkab677
crossref_primary_10_3389_fmed_2021_684020
crossref_primary_10_1016_j_biopha_2024_116423
crossref_primary_10_1007_s13205_020_02610_w
crossref_primary_10_1021_acsinfecdis_4c00122
crossref_primary_10_1016_j_cell_2020_07_033
crossref_primary_10_1002_jmv_28246
crossref_primary_10_14233_ajchem_2022_23868
crossref_primary_10_1016_j_ijpharm_2022_122421
crossref_primary_10_31665_JFB_2022_18306
crossref_primary_10_3389_fphar_2020_589044
crossref_primary_10_1016_j_scr_2021_102219
crossref_primary_10_1021_acschemneuro_0c00251
crossref_primary_10_1254_fpj_21058
crossref_primary_10_1093_jac_dkab072
crossref_primary_10_1002_med_21728
crossref_primary_10_1002_mco2_150
crossref_primary_10_3390_molecules28031296
crossref_primary_10_1128_JVI_01819_20
crossref_primary_10_3389_fimmu_2022_830990
crossref_primary_10_29254_2077_4214_2021_3_161_14_26
crossref_primary_10_1080_10286020_2023_2197595
crossref_primary_10_1016_j_scp_2022_100744
crossref_primary_10_1016_j_yjmcc_2020_07_003
crossref_primary_10_1515_jbcpp_2020_0369
crossref_primary_10_2174_26669587_v2_e2204260
crossref_primary_10_1111_cts_12840
crossref_primary_10_1021_acsomega_2c02835
crossref_primary_10_33483_jfpau_963384
crossref_primary_10_51435_turkjac_935765
crossref_primary_10_1074_jbc_AC120_015720
crossref_primary_10_2174_2666796701999201204122819
crossref_primary_10_1016_j_antiviral_2024_106034
crossref_primary_10_1080_07391102_2021_1897679
crossref_primary_10_1021_acsomega_4c00759
crossref_primary_10_1128_aac_00222_22
crossref_primary_10_1136_ejhpharm_2021_002680
crossref_primary_10_3389_fphar_2022_1036093
crossref_primary_10_1007_s00044_024_03244_w
crossref_primary_10_1016_j_drudis_2020_10_018
crossref_primary_10_1038_s41467_020_20542_0
crossref_primary_10_1016_j_amsu_2020_12_051
crossref_primary_10_1016_j_ijbiomac_2021_10_144
crossref_primary_10_2174_0929867329666221004104430
crossref_primary_10_3389_fmedt_2021_705875
crossref_primary_10_3389_fmicb_2020_01796
crossref_primary_10_1038_s42003_022_03101_9
crossref_primary_10_1016_j_antiviral_2023_105716
crossref_primary_10_1097_FJC_0000000000001321
crossref_primary_10_1080_17460441_2022_2153828
crossref_primary_10_13105_wjma_v9_i1_74
crossref_primary_10_1016_j_heliyon_2023_e22138
crossref_primary_10_1016_j_heliyon_2021_e06564
crossref_primary_10_4103_ijciis_ijciis_57_24
crossref_primary_10_1021_acs_jnatprod_0c00968
crossref_primary_10_1016_j_ijbiomac_2021_03_112
crossref_primary_10_1002_wcms_1622
crossref_primary_10_1071_MA21013
crossref_primary_10_1007_s11684_023_1037_3
crossref_primary_10_1080_14787210_2021_1851195
crossref_primary_10_1093_jac_dkac144
crossref_primary_10_3390_v13020173
crossref_primary_10_1074_jbc_REV120_013746
crossref_primary_10_3389_fmicb_2021_691154
crossref_primary_10_2174_2211352520666220922091227
crossref_primary_10_1016_j_ejmech_2021_113862
crossref_primary_10_1002_cpt_2686
crossref_primary_10_1080_1061186X_2021_2013852
crossref_primary_10_1016_j_bcp_2020_114169
crossref_primary_10_3389_fimmu_2023_1116131
crossref_primary_10_1038_s41598_023_42704_y
crossref_primary_10_1155_2022_8807957
crossref_primary_10_3390_v15112175
crossref_primary_10_1073_pnas_2024302118
crossref_primary_10_1007_s00011_020_01422_1
crossref_primary_10_1021_acs_analchem_3c04870
crossref_primary_10_1038_s41598_020_73641_9
crossref_primary_10_1080_17512433_2021_1874348
crossref_primary_10_7554_eLife_70968
crossref_primary_10_1002_med_21919
crossref_primary_10_4155_fmc_2020_0147
crossref_primary_10_1007_s40264_020_00952_1
crossref_primary_10_3389_fchem_2022_963701
crossref_primary_10_1002_iub_2380
crossref_primary_10_3390_v17020150
crossref_primary_10_7759_cureus_68392
crossref_primary_10_1038_s41586_022_05664_3
crossref_primary_10_1128_cmr_00119_23
crossref_primary_10_1016_j_ejmech_2021_113852
crossref_primary_10_1016_j_bmc_2023_117231
crossref_primary_10_1016_j_azn_2024_06_001
crossref_primary_10_1080_03602532_2021_1928686
crossref_primary_10_1016_j_str_2024_08_005
crossref_primary_10_3390_pharmaceutics12121247
crossref_primary_10_1016_j_xphs_2021_03_004
crossref_primary_10_1002_anie_202008835
crossref_primary_10_1016_j_jbc_2024_107361
crossref_primary_10_1146_annurev_pharmtox_061220_093932
crossref_primary_10_1038_s41580_021_00432_z
crossref_primary_10_2174_0115680266296095240529114058
crossref_primary_10_1021_acs_jmedchem_4c01749
crossref_primary_10_1371_journal_ppat_1009929
crossref_primary_10_1126_scitranslmed_adh7668
crossref_primary_10_1542_peds_2023_063775
crossref_primary_10_2174_2666796701999201019154537
crossref_primary_10_1002_jmv_29018
crossref_primary_10_17816_RCF184269_296
crossref_primary_10_2217_fvl_2021_0335
crossref_primary_10_3390_biom12111680
crossref_primary_10_3390_v13060963
crossref_primary_10_3390_molecules25235695
crossref_primary_10_1136_bcr_2021_245289
crossref_primary_10_1152_ajplung_00355_2020
crossref_primary_10_1002_jat_4336
crossref_primary_10_1246_bcsj_20220179
crossref_primary_10_1016_j_taap_2021_115783
crossref_primary_10_1021_acs_jcim_0c01277
crossref_primary_10_1016_j_antiviral_2022_105501
crossref_primary_10_1128_AAC_01814_20
crossref_primary_10_1134_S1019331622040256
crossref_primary_10_1007_s12268_021_1516_6
crossref_primary_10_3390_biom12111673
crossref_primary_10_1038_s41401_021_00851_w
crossref_primary_10_1016_j_ejmech_2021_113633
crossref_primary_10_1021_acs_jcim_2c01002
crossref_primary_10_1016_j_yjmcc_2020_12_009
crossref_primary_10_1002_rmv_2143
crossref_primary_10_1371_journal_pntd_0010220
crossref_primary_10_3390_vaccines10020138
crossref_primary_10_3390_molecules27092723
crossref_primary_10_1002_jmv_70156
crossref_primary_10_1002_cmdc_202400367
crossref_primary_10_1016_j_antiviral_2022_105475
crossref_primary_10_1128_CMR_00103_20
crossref_primary_10_1371_journal_pone_0255622
crossref_primary_10_1002_hep4_1887
crossref_primary_10_1093_jac_dkab135
crossref_primary_10_1021_acs_joc_1c00761
crossref_primary_10_1186_s12575_020_00141_5
crossref_primary_10_7759_cureus_14986
crossref_primary_10_1002_rmv_2133
crossref_primary_10_1016_j_ejphar_2020_173705
crossref_primary_10_1128_mSphere_00711_21
crossref_primary_10_3390_ph14070611
crossref_primary_10_1016_j_coviro_2021_03_010
crossref_primary_10_1016_j_celrep_2021_109882
crossref_primary_10_3390_v14061345
crossref_primary_10_1016_j_virol_2020_07_015
crossref_primary_10_1080_07391102_2022_2163425
crossref_primary_10_1002_cmdc_202100079
crossref_primary_10_1007_s00894_022_05213_9
crossref_primary_10_2147_IJN_S391462
crossref_primary_10_1093_jac_dkad309
crossref_primary_10_1016_j_bioorg_2024_107150
crossref_primary_10_1016_j_isci_2021_102857
crossref_primary_10_1515_hsz_2022_0323
crossref_primary_10_1007_s10930_021_10019_4
crossref_primary_10_15407_visn2020_08_029
crossref_primary_10_3390_molecules27134212
crossref_primary_10_3390_ijms21155559
crossref_primary_10_3390_molecules27020564
crossref_primary_10_3390_molecules28010160
crossref_primary_10_3390_cells10092427
crossref_primary_10_1111_bph_15418
crossref_primary_10_3389_fmicb_2024_1450060
crossref_primary_10_1016_j_apsb_2024_05_026
crossref_primary_10_1038_s41598_022_26559_3
crossref_primary_10_1134_S0026893321040105
crossref_primary_10_1038_s41590_021_01091_0
crossref_primary_10_1073_pnas_2012294117
crossref_primary_10_1128_AAC_02577_20
crossref_primary_10_1016_j_bbrc_2020_11_043
crossref_primary_10_1111_fcp_12589
crossref_primary_10_17352_2455_5363_000038
crossref_primary_10_31436_jop_v1i1_50
crossref_primary_10_1016_j_microc_2021_107101
crossref_primary_10_1128_CMR_00162_20
crossref_primary_10_1016_j_antiviral_2023_105735
crossref_primary_10_3389_fmicb_2023_1291761
crossref_primary_10_1080_17425255_2023_2280750
crossref_primary_10_3390_microorganisms11020312
crossref_primary_10_1021_acsinfecdis_1c00492
crossref_primary_10_1515_znc_2023_0132
crossref_primary_10_1016_j_jacbts_2021_01_002
crossref_primary_10_1080_07391102_2022_2139766
crossref_primary_10_3389_fmicb_2022_826883
crossref_primary_10_3390_molecules28062616
crossref_primary_10_3390_molecules28186696
crossref_primary_10_1080_10826068_2025_2456940
crossref_primary_10_3390_ph15091067
crossref_primary_10_7759_cureus_22328
crossref_primary_10_3390_chemistry4020019
crossref_primary_10_1128_mbio_01060_23
crossref_primary_10_2174_0122133372290992240409084133
crossref_primary_10_5005_jp_journals_10081_1295
crossref_primary_10_1016_j_biopha_2021_111313
crossref_primary_10_1177_13596535221082773
crossref_primary_10_1007_s11481_020_09968_x
crossref_primary_10_1016_j_jmb_2021_166945
crossref_primary_10_1016_j_antiviral_2022_105268
crossref_primary_10_1002_jmv_27683
crossref_primary_10_1016_j_bpc_2021_106652
crossref_primary_10_1080_1062936X_2021_1960601
crossref_primary_10_2217_fvl_2020_0394
crossref_primary_10_1080_07391102_2021_1940281
crossref_primary_10_4110_in_2023_23_e13
crossref_primary_10_1093_infdis_jiad270
crossref_primary_10_1007_s00204_022_03306_1
crossref_primary_10_1093_cid_ciaa1466
crossref_primary_10_1016_j_heliyon_2024_e38479
crossref_primary_10_1016_j_clim_2021_108849
crossref_primary_10_17116_profmed20222508198
crossref_primary_10_1002_adtp_202000172
crossref_primary_10_1039_D1CP03049C
crossref_primary_10_1016_j_cellin_2022_100029
crossref_primary_10_1097_TXD_0000000000001031
crossref_primary_10_30579_mbse_2022_5_2_47
crossref_primary_10_1038_s41594_021_00651_0
crossref_primary_10_3892_mmr_2021_12498
crossref_primary_10_1093_nar_gkab1160
crossref_primary_10_1038_s41579_021_00630_8
crossref_primary_10_3390_jpm12030439
crossref_primary_10_1007_s12275_023_00062_4
crossref_primary_10_3389_fddsv_2022_837587
crossref_primary_10_1016_j_antiviral_2021_105033
crossref_primary_10_1016_j_pbiomolbio_2022_10_001
crossref_primary_10_1128_aac_00856_24
crossref_primary_10_1126_science_abj8430
crossref_primary_10_1002_med_21763
crossref_primary_10_1097_HC9_0000000000000034
crossref_primary_10_1038_s41591_020_0944_y
crossref_primary_10_1016_j_jiph_2023_05_010
crossref_primary_10_3390_ijms232214340
crossref_primary_10_3390_ijms22010386
crossref_primary_10_1172_jci_insight_182376
crossref_primary_10_1016_j_coviro_2021_04_014
crossref_primary_10_1016_j_antiviral_2022_105329
crossref_primary_10_1007_s00702_021_02375_3
crossref_primary_10_1007_s40265_020_01378_w
crossref_primary_10_1038_s41598_021_02266_3
crossref_primary_10_2139_ssrn_4151032
crossref_primary_10_1055_s_0040_1721403
crossref_primary_10_1159_000518440
crossref_primary_10_1093_nar_gkab1279
crossref_primary_10_1371_journal_pone_0276751
crossref_primary_10_3390_microorganisms10101949
crossref_primary_10_1007_s00134_021_06507_x
crossref_primary_10_1177_2040206620976786
crossref_primary_10_1021_acs_jmedchem_0c01140
crossref_primary_10_1042_BCJ20210426
crossref_primary_10_3390_jcm9072084
crossref_primary_10_4103_ajim_ajim_3_21
crossref_primary_10_1002_med_21776
crossref_primary_10_1002_slct_202300132
crossref_primary_10_3390_biomedicines11072055
crossref_primary_10_1016_j_virs_2022_06_008
crossref_primary_10_3390_biom11070919
crossref_primary_10_1126_scitranslmed_abo0718
crossref_primary_10_1002_jmv_26264
crossref_primary_10_1093_nar_gkad1194
crossref_primary_10_1590_0074_02760200254
crossref_primary_10_2174_1573406417666210806154129
crossref_primary_10_1073_pnas_2025866118
crossref_primary_10_1093_ofid_ofab278
crossref_primary_10_1016_j_amjms_2022_01_021
crossref_primary_10_1021_acs_biochem_0c00591
crossref_primary_10_1021_acs_chemrev_0c00967
crossref_primary_10_1371_journal_pone_0278963
crossref_primary_10_1021_acsinfecdis_3c00311
crossref_primary_10_1016_j_bsheal_2022_03_004
crossref_primary_10_3390_life11060565
crossref_primary_10_1016_j_isci_2022_105074
crossref_primary_10_1177_20420986211042517
crossref_primary_10_1038_s41467_021_21903_z
crossref_primary_10_1016_j_ijbiomac_2023_123540
crossref_primary_10_1021_acs_jpclett_2c01314
crossref_primary_10_1542_peds_2020_047803
crossref_primary_10_2174_1570193X19666220420133723
crossref_primary_10_3390_v15051167
crossref_primary_10_1080_01652176_2024_2305731
crossref_primary_10_1111_resp_14106
crossref_primary_10_1080_07391102_2021_1930162
crossref_primary_10_1128_aac_00956_23
crossref_primary_10_1039_D1ME00088H
crossref_primary_10_22207_JPAM_14_SPL1_36
crossref_primary_10_3390_vaccines13010017
crossref_primary_10_1080_0889311X_2025_2458340
crossref_primary_10_1074_jbc_REV120_013930
crossref_primary_10_1080_07391102_2023_2175037
crossref_primary_10_1002_jmv_29783
crossref_primary_10_1016_j_xpro_2021_100357
crossref_primary_10_1016_j_bioorg_2021_105016
crossref_primary_10_1007_s40121_021_00517_4
crossref_primary_10_1042_BCJ20210200
crossref_primary_10_1038_s41467_024_54918_3
crossref_primary_10_1039_D0NJ02656E
crossref_primary_10_3390_scipharm88020029
crossref_primary_10_1080_17460794_2024_2362100
crossref_primary_10_3390_molecules27206962
crossref_primary_10_3390_ph15040445
crossref_primary_10_1002_phar_2429
crossref_primary_10_1016_j_aquaculture_2021_736783
crossref_primary_10_3390_diseases9030050
crossref_primary_10_15252_emmm_202013105
crossref_primary_10_1080_07391102_2023_2235012
crossref_primary_10_1021_acs_jcim_3c00658
crossref_primary_10_1007_s40262_021_00984_5
crossref_primary_10_3390_cryst11050471
crossref_primary_10_1016_j_dnarep_2024_103773
crossref_primary_10_1016_j_jbc_2022_101923
crossref_primary_10_2147_IJGM_S457198
crossref_primary_10_1093_jac_dkaa321
crossref_primary_10_1002_ange_202008835
crossref_primary_10_1016_j_dnarep_2024_103772
crossref_primary_10_1016_j_jbc_2021_101529
crossref_primary_10_1016_j_celrep_2023_113077
crossref_primary_10_1007_s10930_020_09942_9
crossref_primary_10_1080_07391102_2021_1883112
crossref_primary_10_3390_v16040546
crossref_primary_10_1016_j_bcp_2021_114800
crossref_primary_10_3390_vaccines9121499
crossref_primary_10_1002_1873_3468_14337
crossref_primary_10_1073_pnas_2007346117
crossref_primary_10_1002_cphc_202300552
crossref_primary_10_2174_1570180819666220622085659
crossref_primary_10_1002_cpz1_1007
crossref_primary_10_3390_ijms232012649
crossref_primary_10_1021_acs_jmedchem_1c00071
crossref_primary_10_1080_10408347_2021_1923456
crossref_primary_10_1159_000512141
crossref_primary_10_1016_j_drudis_2022_02_016
crossref_primary_10_1021_acs_jmedchem_2c02120
crossref_primary_10_1016_j_molcel_2021_01_035
crossref_primary_10_3390_jcm9072030
crossref_primary_10_1016_j_biopha_2022_114037
crossref_primary_10_1080_08927022_2024_2387797
crossref_primary_10_1016_j_cct_2021_106272
crossref_primary_10_2174_1389200223666211228160314
crossref_primary_10_1080_07391102_2021_1890223
crossref_primary_10_1016_j_imu_2020_100461
crossref_primary_10_1007_s12012_024_09872_3
crossref_primary_10_3390_v13071346
crossref_primary_10_1038_s41594_021_00657_8
crossref_primary_10_3390_microorganisms9050893
crossref_primary_10_1016_j_ijbiomac_2020_12_223
crossref_primary_10_3390_jcm13071837
crossref_primary_10_1016_j_jiph_2021_06_013
crossref_primary_10_1007_s10238_023_01095_0
crossref_primary_10_3389_fmolb_2020_636738
crossref_primary_10_1128_mbio_03347_21
crossref_primary_10_3390_bios12110950
crossref_primary_10_1016_j_xinn_2021_100080
crossref_primary_10_1111_cts_13384
crossref_primary_10_1002_ejoc_202100561
crossref_primary_10_1016_j_gendis_2022_12_019
crossref_primary_10_1016_j_jbc_2021_100770
crossref_primary_10_1186_s12987_022_00357_5
crossref_primary_10_1016_j_bcp_2022_115279
crossref_primary_10_1016_j_drudis_2024_104126
crossref_primary_10_3390_org5020006
crossref_primary_10_1016_j_jaccas_2020_08_025
crossref_primary_10_1016_j_prp_2024_155608
crossref_primary_10_1002_prp2_674
crossref_primary_10_1093_nar_gkae153
crossref_primary_10_1080_08830185_2020_1844195
crossref_primary_10_13105_wjma_v8_i3_173
crossref_primary_10_1128_aac_01238_24
crossref_primary_10_5802_crchim_279
crossref_primary_10_1016_j_bbrc_2020_08_116
crossref_primary_10_1016_j_compbiomed_2021_104965
crossref_primary_10_1016_j_ejphar_2020_173642
crossref_primary_10_1002_slct_202102853
crossref_primary_10_1007_s10930_021_09967_8
crossref_primary_10_1016_j_bj_2021_11_010
crossref_primary_10_1038_s41551_020_00658_w
crossref_primary_10_1016_j_antiviral_2020_104899
crossref_primary_10_1080_07391102_2020_1822209
crossref_primary_10_1080_22221751_2021_1899770
crossref_primary_10_1016_j_jmgm_2021_107851
crossref_primary_10_1016_j_jiph_2020_07_011
crossref_primary_10_2174_1389450121666201020154033
crossref_primary_10_1016_j_bbrc_2020_10_094
crossref_primary_10_1016_j_jaci_2020_05_033
crossref_primary_10_1158_1535_7163_MCT_23_0487
crossref_primary_10_1021_acscentsci_0c00489
crossref_primary_10_1016_j_jsps_2020_08_024
crossref_primary_10_1038_s44298_024_00018_4
crossref_primary_10_1016_j_bbrc_2020_10_091
crossref_primary_10_1016_j_pharmthera_2021_107930
crossref_primary_10_1038_s41573_023_00672_y
crossref_primary_10_1016_j_ejps_2021_106012
crossref_primary_10_1371_journal_ppat_1011231
crossref_primary_10_14218_JERP_2020_00022
crossref_primary_10_1093_jimmun_vkae006
crossref_primary_10_2174_1568026620999200517043137
crossref_primary_10_1021_acsomega_4c02392
crossref_primary_10_1016_j_carres_2021_108326
crossref_primary_10_15252_emmm_202013426
crossref_primary_10_1080_14740338_2021_1962846
crossref_primary_10_3390_v14061137
crossref_primary_10_1128_aac_00341_24
crossref_primary_10_3390_ijms22115434
crossref_primary_10_1128_mBio_01423_21
crossref_primary_10_1016_j_ebiom_2022_104095
crossref_primary_10_1089_aid_2020_0305
crossref_primary_10_1039_D3CP04410F
crossref_primary_10_1021_acs_jpclett_2c00087
crossref_primary_10_1126_scitranslmed_adj4504
crossref_primary_10_3390_ijms23010518
crossref_primary_10_1007_s40121_020_00318_1
crossref_primary_10_1021_acsomega_2c05376
crossref_primary_10_3390_ijms22168498
crossref_primary_10_1016_j_ejphar_2020_173621
crossref_primary_10_1080_20009666_2020_1857510
crossref_primary_10_1016_j_biopha_2020_110668
crossref_primary_10_3390_molecules27092918
crossref_primary_10_1080_07391102_2021_1872419
crossref_primary_10_1080_07391102_2021_1894985
crossref_primary_10_1016_j_molcel_2020_07_027
crossref_primary_10_1021_acsomega_1c03082
crossref_primary_10_3389_fmicb_2022_757418
crossref_primary_10_1016_j_prenap_2025_100191
crossref_primary_10_7759_cureus_33676
crossref_primary_10_1016_j_csbj_2021_04_014
crossref_primary_10_3390_biom11070993
crossref_primary_10_3390_ijms24021431
crossref_primary_10_1038_s41598_021_84882_7
crossref_primary_10_1016_j_cellimm_2020_104240
crossref_primary_10_1016_j_celrep_2021_109479
crossref_primary_10_1021_acsomega_2c04258
crossref_primary_10_1136_bmjopen_2022_068564
crossref_primary_10_1016_j_microc_2022_107580
crossref_primary_10_1016_j_jpha_2021_03_012
crossref_primary_10_1016_j_microc_2024_111178
crossref_primary_10_3390_molecules25215064
crossref_primary_10_1128_jvi_00671_22
crossref_primary_10_1016_j_isci_2020_101992
crossref_primary_10_2217_fvl_2020_0342
crossref_primary_10_1016_j_jbc_2024_107802
crossref_primary_10_3390_pharmaceutics13091400
crossref_primary_10_1016_j_antiviral_2020_104857
crossref_primary_10_1038_s41467_021_26760_4
crossref_primary_10_1021_acs_jpclett_1c00190
crossref_primary_10_1038_s41418_021_00909_6
crossref_primary_10_1039_D0CP05948J
crossref_primary_10_1021_acs_biochem_1c00292
crossref_primary_10_1039_D0RA04743K
crossref_primary_10_1016_j_checat_2022_03_019
crossref_primary_10_1038_s41467_020_18096_2
crossref_primary_10_1002_jmv_26792
crossref_primary_10_1002_jmv_26791
crossref_primary_10_1016_j_xpro_2022_101468
crossref_primary_10_1371_journal_pone_0240524
crossref_primary_10_1002_cbic_202000595
crossref_primary_10_1038_s41467_023_43938_0
crossref_primary_10_1039_D0CP05297C
Cites_doi 10.1073/pnas.1718806115
10.1016/j.antiviral.2019.104541
10.1073/pnas.0508200103
10.1016/j.antiviral.2018.03.003
10.1016/S0140-6736(20)30251-8
10.1038/s41422-020-0282-0
10.1016/S0022-2836(02)00470-9
10.1128/mBio.00221-18
10.1056/NEJMoa1910993
10.1038/82191
10.3390/v11040326
10.1038/srep43395
10.2183/pjab.93.027
10.1021/acs.jmedchem.6b01594
10.1074/jbc.C100349200
10.1038/nbt1036
10.1073/pnas.1007626107
10.1074/jbc.M709563200
10.1007/BF00928361
10.1002/prot.10613
10.1128/AAC.48.2.651-654.2004
10.1038/nature04082
10.1016/j.antiviral.2018.06.013
10.1371/journal.pone.0068347
10.1074/jbc.AC120.013056
10.1073/pnas.1201130109
10.1073/pnas.1323705111
10.1371/journal.pntd.0002804
10.1016/j.coviro.2019.04.002
10.1126/scitranslmed.aau9242
10.1126/scitranslmed.aal3653
10.1002/0471140864.ps0520s51
10.1371/journal.ppat.1006889
10.1126/science.1259210
10.1073/pnas.1922083117
10.1038/s41467-019-13940-6
10.1038/s41598-018-22328-3
10.1038/nature17180
10.1111/liv.12423
10.1016/j.antiviral.2016.10.007
10.1016/j.antiviral.2014.03.018
10.1016/j.virusres.2017.01.023
10.1056/NEJMoa2001017
10.1016/j.antiviral.2011.09.001
10.1074/jbc.M110.178582
10.1016/j.antiviral.2017.10.008
10.1038/s41467-019-10280-3
10.1074/jbc.M806797200
ContentType Journal Article
Copyright 2020 © 2020 Gordon et al.
2020 Gordon et al.
2020 Gordon et al. 2020 Gordon et al.
Copyright_xml – notice: 2020 © 2020 Gordon et al.
– notice: 2020 Gordon et al.
– notice: 2020 Gordon et al. 2020 Gordon et al.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.RA120.013679
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate EDITORS' PICK: SARS-CoV-2 polymerase inhibition with remdesivir
EISSN 1083-351X
EndPage 6797
ExternalDocumentID PMC7242698
32284326
10_1074_jbc_RA120_013679
S0021925817481865
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: 170343
GroupedDBID ---
-DZ
-ET
-~X
0SF
18M
29J
2WC
34G
39C
4.4
53G
5BI
5GY
5RE
5VS
6I.
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
ABDNZ
ABOCM
ABPPZ
ABRJW
ACGFO
ACNCT
ACSFO
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFOSN
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
KQ8
L7B
N9A
OK1
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
VQA
W8F
WH7
WOQ
XSW
YQT
YSK
YWH
YZZ
ZA5
~02
~KM
.55
.7T
.GJ
0R~
186
3O-
41~
6TJ
AALRI
AAYJJ
AAYOK
AAYWO
AAYXX
ABFSI
ACVFH
ACYGS
ADCNI
ADVLN
ADXHL
AEUPX
AFFNX
AFPUW
AI.
AIGII
AITUG
AKBMS
AKRWK
AKYEP
C1A
CITATION
E.L
FA8
H13
J5H
MVM
NHB
OHT
P-O
QZG
UQL
VH1
WHG
X7M
XJT
Y6R
YYP
ZE2
ZGI
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-e4c75f62cdacfeeb88c84c11eb12c9bcdb3e927e4d86c873814318f540b02c613
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:31:27 EDT 2025
Fri Jul 11 07:31:59 EDT 2025
Mon Jul 21 06:07:16 EDT 2025
Tue Jul 01 04:11:53 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Fri Feb 23 02:45:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords replication
ribavirin
drug development
SARS
RNA polymerase
Lassa virus
remdesivir
COVID-19
Ebola virus
sofosbuvir
RNA-dependent RNA polymerase (RdRp)
SARS-CoV-2
drug discovery
drug action
plus-stranded RNA virus
coronavirus (CoV)
MERS
favipiravir
Language English
License This is an open access article under the CC BY license.
2020 Gordon et al.
Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc. This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-e4c75f62cdacfeeb88c84c11eb12c9bcdb3e927e4d86c873814318f540b02c613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Craig E. Cameron
Both authors contributed equally to this work.
ORCID 0000-0001-5492-0652
0000-0002-8697-7802
0000-0003-1698-2961
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7242698
PMID 32284326
PQID 2389694189
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7242698
proquest_miscellaneous_2389694189
pubmed_primary_32284326
crossref_citationtrail_10_1074_jbc_RA120_013679
crossref_primary_10_1074_jbc_RA120_013679
elsevier_sciencedirect_doi_10_1074_jbc_RA120_013679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 11200 Rockville Pike, Suite 302, Rockville, MD 20852-3110, U.S.A
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2020
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Jacobson, Friesner, Xiang, Honig (bib49) 2002; 320
Kumaki, Day, Smee, Morrey, Barnard (bib22) 2011; 92
Lo, Jordan, Arvey, Sudhamsu, Shrivastava-Ranjan, Hotard, Flint, McMullan, Siegel, Clarke, Mackman, Hui, Perron, Ray, Cihlar (bib10) 2017; 7
Lo, Feldmann, Gary, Jordan, Bannister, Cronin, Patel, Klena, Nichol, Cihlar, Zaki, Feldmann, Spiropoulou, de Wit (bib11) 2019; 11
Wang, Cao, Zhang, Yang, Liu, Xu, Shi, Hu, Zhong, Xiao (bib33) 2020; 30
Uebelhoer, Albariño, McMullan, Chakrabarti, Vincent, Nichol, Towner (bib43) 2014; 106
Schinazi, Halfon, Marcellin, Asselah (bib44) 2014; 34
Posthuma, Te Velthuis, Snijder (bib38) 2017; 234
Welch, Scholte, Flint, Chatterjee, Nichol, Bergeron, Spiropoulou (bib21) 2017; 147
Sheahan, Sims, Graham, Menachery, Gralinski, Case, Leist, Pyrc, Feng, Trantcheva, Bannister, Park, Babusis, Clarke, Mackman (bib14) 2017; 9
Kirchdoerfer, Ward (bib19) 2019; 10
Ferron, Subissi, Silveira De Morais, Le, Sevajol, Gluais, Decroly, Vonrhein, Bricogne, Canard, Imbert (bib36) 2018; 115
(bib3) 2020
Bouvet, Imbert, Subissi, Gluais, Canard, Decroly (bib37) 2012; 109
Siegel, Hui, Doerffler, Clarke, Chun, Zhang, Neville, Carra, Lew, Ross, Wang, Wolfe, Jordan, Soloveva, Knox (bib5) 2017; 60
Jin, Smith, Rajwanshi, Kim, Deval (bib28) 2013; 8
Jacobson, Pincus, Rapp, Day, Honig, Shaw, Friesner (bib50) 2004; 55
Appleby, Perry, Murakami, Barauskas, Feng, Cho, Fox, Wetmore, McGrath, Ray, Sofia, Swaminathan, Edwards (bib24) 2015; 347
Tchesnokov, Obikhod, Schinazi, Götte (bib40) 2008; 283
Traut (bib34) 1994; 140
Subissi, Posthuma, Collet, Zevenhoven-Dobbe, Gorbalenya, Decroly, Snijder, Canard, Imbert (bib18) 2014; 111
Tchesnokov, Feng, Porter, Götte (bib9) 2019; 11
Li, Zhou, Zhang, Wang, Zhao, Liu (bib4) 2020
Zamyatkin, Parra, Alonso, Harki, Peterson, Grochulski, Ng (bib32) 2008; 283
Gordon, Tchesnokov, Feng, Porter, Götte (bib17) 2020; 295
Bieniossek, Richmond, Berger (bib47) 2008
Brown, Won, Graham, Dinnon, Sims, Feng, Cihlar, Denison, Baric, Sheahan (bib12) 2019; 169
Sheahan, Sims, Leist, Schäfer, Won, Brown, Montgomery, Hogg, Babusis, Clarke, Spahn, Bauer, Sellers, Porter, Feng (bib15) 2020; 11
Berger, Fitzgerald, Richmond (bib46) 2004; 22
Feld, Hoofnagle (bib45) 2005; 436
Hawman, Haddock, Meade-White, Williamson, Hanley, Rosenke, Komeno, Furuta, Gowen, Feldmann (bib27) 2018; 157
Mulangu, Dodd, Davey, Tshiani Mbaya, Proschan, Mukadi, Lusakibanza Manzo, Nzolo, Tshomba Oloma, Ibanda, Ali, Coulibaly, Levine, Grais, Diaz (bib16) 2019; 381
Lu, Zhao, Li, Niu, Yang, Wu, Wang, Song, Huang, Zhu, Bi, Ma, Zhan, Wang, Hu (bib1) 2020; 395
Furuta, Komeno, Nakamura (bib26) 2017; 93
Minskaia, Hertzig, Gorbalenya, Campanacci, Cambillau, Canard, Ziebuhr (bib39) 2006; 103
Kennedy, Gavegnano, Nguyen, Slater, Lucas, Fromentin, Schinazi, Kim (bib35) 2010; 285
Warren, Jordan, Lo, Ray, Mackman, Soloveva, Siegel, Perron, Bannister, Hui, Larson, Strickley, Wells, Stuthman, Van Tongeren (bib8) 2016; 531
Gong, Peersen (bib31) 2010; 107
Delang, Abdelnabi, Neyts (bib42) 2018; 153
Stuyver, McBrayer, Whitaker, Tharnish, Ramesh, Lostia, Cartee, Shi, Hobbs, Schinazi, Watanabe, Otto (bib20) 2004; 48
Welch, Guerrero, Chakrabarti, McMullan, Flint, Bluemling, Painter, Nichol, Spiropoulou, Albariño (bib23) 2016; 136
de Wit, Feldmann, Cronin, Jordan, Okumura, Thomas, Scott, Cihlar, Feldmann (bib13) 2020; 117
Agostini, Andres, Sims, Graham, Sheahan, Lu, Smith, Case, Feng, Jordan, Ray, Cihlar, Siegel, Mackman, Clarke (bib6) 2018; 9
Tchesnokov, Raeisimakiani, Ngure, Marchant, Götte (bib48) 2018; 8
Maag, Castro, Hong, Cameron (bib29) 2001; 276
Zhu, Zhang, Wang, Li, Yang, Song, Zhao, Huang, Shi, Lu, Niu, Zhan, Ma, Wang, Xu (bib2) 2020; 382
Jordan, Liu, Raynaud, Lo, Spiropoulou, Symons, Beigelman, Deval (bib7) 2018; 14
Crotty, Maag, Arnold, Zhong, Lau, Hong, Andino, Cameron (bib25) 2000; 6
Oestereich, Rieger, Neumann, Bernreuther, Lehmann, Krasemann, Wurr, Emmerich, de Lamballerie, Ölschläger, Günther (bib30) 2014; 8
Pruijssers, Denison (bib41) 2019; 35
Tchesnokov (10.1074/jbc.RA120.013679_bib40) 2008; 283
Feld (10.1074/jbc.RA120.013679_bib45) 2005; 436
Sheahan (10.1074/jbc.RA120.013679_bib14) 2017; 9
Uebelhoer (10.1074/jbc.RA120.013679_bib43) 2014; 106
Lu (10.1074/jbc.RA120.013679_bib1) 2020; 395
Pruijssers (10.1074/jbc.RA120.013679_bib41) 2019; 35
Kumaki (10.1074/jbc.RA120.013679_bib22) 2011; 92
Kennedy (10.1074/jbc.RA120.013679_bib35) 2010; 285
Minskaia (10.1074/jbc.RA120.013679_bib39) 2006; 103
Jacobson (10.1074/jbc.RA120.013679_bib49) 2002; 320
Bouvet (10.1074/jbc.RA120.013679_bib37) 2012; 109
Zhu (10.1074/jbc.RA120.013679_bib2) 2020; 382
Maag (10.1074/jbc.RA120.013679_bib29) 2001; 276
Agostini (10.1074/jbc.RA120.013679_bib6) 2018; 9
Traut (10.1074/jbc.RA120.013679_bib34) 1994; 140
Schinazi (10.1074/jbc.RA120.013679_bib44) 2014; 34
Oestereich (10.1074/jbc.RA120.013679_bib30) 2014; 8
Warren (10.1074/jbc.RA120.013679_bib8) 2016; 531
Zamyatkin (10.1074/jbc.RA120.013679_bib32) 2008; 283
Jordan (10.1074/jbc.RA120.013679_bib7) 2018; 14
Siegel (10.1074/jbc.RA120.013679_bib5) 2017; 60
Tchesnokov (10.1074/jbc.RA120.013679_bib9) 2019; 11
Wang (10.1074/jbc.RA120.013679_bib33) 2020; 30
Delang (10.1074/jbc.RA120.013679_bib42) 2018; 153
Tchesnokov (10.1074/jbc.RA120.013679_bib48) 2018; 8
Jacobson (10.1074/jbc.RA120.013679_bib50) 2004; 55
Kirchdoerfer (10.1074/jbc.RA120.013679_bib19) 2019; 10
Gordon (10.1074/jbc.RA120.013679_bib17) 2020; 295
(10.1074/jbc.RA120.013679_bib3) 2020
Ferron (10.1074/jbc.RA120.013679_bib36) 2018; 115
Posthuma (10.1074/jbc.RA120.013679_bib38) 2017; 234
de Wit (10.1074/jbc.RA120.013679_bib13) 2020; 117
Welch (10.1074/jbc.RA120.013679_bib21) 2017; 147
Sheahan (10.1074/jbc.RA120.013679_bib15) 2020; 11
Furuta (10.1074/jbc.RA120.013679_bib26) 2017; 93
Crotty (10.1074/jbc.RA120.013679_bib25) 2000; 6
Lo (10.1074/jbc.RA120.013679_bib11) 2019; 11
Hawman (10.1074/jbc.RA120.013679_bib27) 2018; 157
Gong (10.1074/jbc.RA120.013679_bib31) 2010; 107
Appleby (10.1074/jbc.RA120.013679_bib24) 2015; 347
Bieniossek (10.1074/jbc.RA120.013679_bib47) 2008
Berger (10.1074/jbc.RA120.013679_bib46) 2004; 22
Li (10.1074/jbc.RA120.013679_bib4) 2020
Stuyver (10.1074/jbc.RA120.013679_bib20) 2004; 48
Brown (10.1074/jbc.RA120.013679_bib12) 2019; 169
Mulangu (10.1074/jbc.RA120.013679_bib16) 2019; 381
Subissi (10.1074/jbc.RA120.013679_bib18) 2014; 111
Jin (10.1074/jbc.RA120.013679_bib28) 2013; 8
Lo (10.1074/jbc.RA120.013679_bib10) 2017; 7
Welch (10.1074/jbc.RA120.013679_bib23) 2016; 136
References_xml – volume: 347
  start-page: 771
  year: 2015
  end-page: 775
  ident: bib24
  article-title: Viral replication: structural basis for RNA replication by the hepatitis C virus polymerase
  publication-title: Science
– volume: 55
  start-page: 351
  year: 2004
  end-page: 367
  ident: bib50
  article-title: A hierarchical approach to all-atom protein loop prediction
  publication-title: Proteins
– volume: 117
  start-page: 6771
  year: 2020
  end-page: 6776
  ident: bib13
  article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 436
  start-page: 967
  year: 2005
  end-page: 972
  ident: bib45
  article-title: Mechanism of action of interferon and ribavirin in treatment of hepatitis C
  publication-title: Nature
– volume: 111
  start-page: E3900
  year: 2014
  end-page: E3909
  ident: bib18
  article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 35
  start-page: 57
  year: 2019
  end-page: 62
  ident: bib41
  article-title: Nucleoside analogues for the treatment of coronavirus infections
  publication-title: Curr. Opin. Virol.
– volume: 320
  start-page: 597
  year: 2002
  end-page: 608
  ident: bib49
  article-title: On the role of the crystal environment in determining protein side-chain conformations
  publication-title: J. Mol. Biol.
– volume: 14
  start-page: e1006889
  year: 2018
  ident: bib7
  article-title: Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase
  publication-title: PLoS Pathog.
– volume: 115
  start-page: E162
  year: 2018
  end-page: E171
  ident: bib36
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 9
  start-page: eaal3653
  year: 2017
  ident: bib14
  article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
  publication-title: Sci. Transl. Med.
– volume: 9
  start-page: e00221
  year: 2018
  end-page: 18
  ident: bib6
  article-title: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease
  publication-title: mBio
– volume: 531
  start-page: 381
  year: 2016
  end-page: 385
  ident: bib8
  article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys
  publication-title: Nature
– volume: 22
  start-page: 1583
  year: 2004
  end-page: 1587
  ident: bib46
  article-title: Baculovirus expression system for heterologous multiprotein complexes
  publication-title: Nat. Biotechnol.
– volume: 60
  start-page: 1648
  year: 2017
  end-page: 1661
  ident: bib5
  article-title: Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses
  publication-title: J. Med. Chem.
– volume: 11
  start-page: 222
  year: 2020
  ident: bib15
  article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon β against MERS-CoV
  publication-title: Nat. Commun.
– volume: 285
  start-page: 39380
  year: 2010
  end-page: 39391
  ident: bib35
  article-title: Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: e68347
  year: 2013
  ident: bib28
  article-title: The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase
  publication-title: PLoS One
– volume: 30
  start-page: 269
  year: 2020
  end-page: 271
  ident: bib33
  article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV)
  publication-title: Cell Res.
– volume: 295
  start-page: 4773
  year: 2020
  end-page: 4779
  ident: bib17
  article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus
  publication-title: J. Biol. Chem.
– volume: 140
  start-page: 1
  year: 1994
  end-page: 22
  ident: bib34
  article-title: Physiological concentrations of purines and pyrimidines
  publication-title: Mol. Cell. Biochem.
– volume: 136
  start-page: 9
  year: 2016
  end-page: 18
  ident: bib23
  article-title: Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems
  publication-title: Antiviral Res.
– volume: 283
  start-page: 34218
  year: 2008
  end-page: 34228
  ident: bib40
  article-title: Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 86
  year: 2014
  end-page: 94
  ident: bib43
  article-title: High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses
  publication-title: Antiviral Res.
– volume: 169
  start-page: 104541
  year: 2019
  ident: bib12
  article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase
  publication-title: Antiviral Res.
– year: 2020
  ident: bib4
  article-title: Updated approaches against SARS-CoV-2
  publication-title: Antimicrob. Agents Chemother.
– volume: 147
  start-page: 91
  year: 2017
  end-page: 99
  ident: bib21
  article-title: Identification of 2′-deoxy-2′-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus
  publication-title: Antiviral Res.
– volume: 109
  start-page: 9372
  year: 2012
  end-page: 9377
  ident: bib37
  article-title: RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 276
  start-page: 46094
  year: 2001
  end-page: 46098
  ident: bib29
  article-title: Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 1375
  year: 2000
  end-page: 1379
  ident: bib25
  article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen
  publication-title: Nat. Med.
– volume: 107
  start-page: 22505
  year: 2010
  end-page: 22510
  ident: bib31
  article-title: Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 153
  start-page: 85
  year: 2018
  end-page: 94
  ident: bib42
  article-title: Favipiravir as a potential countermeasure against neglected and emerging RNA viruses
  publication-title: Antiviral Res.
– volume: 34
  start-page: 69
  year: 2014
  end-page: 78
  ident: bib44
  article-title: HCV direct-acting antiviral agents: the best interferon-free combinations
  publication-title: Liver Int.
– volume: 381
  start-page: 2293
  year: 2019
  end-page: 2303
  ident: bib16
  article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics
  publication-title: The New England journal of medicine
– year: 2020
  ident: bib3
  publication-title: Coronavirus Disease 2019 (COVID-19) Situation Report-50
– year: 2008
  ident: bib47
  article-title: MultiBac: multigene baculovirus-based eukaryotic protein complex production
  publication-title: Curr. Protoc. Protein Sci.
– volume: 283
  start-page: 7705
  year: 2008
  end-page: 7712
  ident: bib32
  article-title: Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 3970
  year: 2018
  ident: bib48
  article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus
  publication-title: Sci. Rep.
– volume: 395
  start-page: 565
  year: 2020
  end-page: 574
  ident: bib1
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
– volume: 157
  start-page: 18
  year: 2018
  end-page: 26
  ident: bib27
  article-title: Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice
  publication-title: Antiviral Res.
– volume: 8
  start-page: e2804
  year: 2014
  ident: bib30
  article-title: Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic fever
  publication-title: PLoS Negl. Trop. Dis.
– volume: 234
  start-page: 58
  year: 2017
  end-page: 73
  ident: bib38
  article-title: Nidovirus RNA polymerases: complex enzymes handling exceptional RNA genomes
  publication-title: Virus Res.
– volume: 11
  start-page: eaau9242
  year: 2019
  ident: bib11
  article-title: Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge
  publication-title: Sci. Transl. Med.
– volume: 93
  start-page: 449
  year: 2017
  end-page: 463
  ident: bib26
  article-title: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
– volume: 10
  start-page: 2342
  year: 2019
  ident: bib19
  article-title: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors
  publication-title: Nat. Commun.
– volume: 11
  start-page: E326
  year: 2019
  ident: bib9
  article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir
  publication-title: Viruses
– volume: 92
  start-page: 329
  year: 2011
  end-page: 340
  ident: bib22
  article-title: and
  publication-title: Antiviral Res.
– volume: 7
  start-page: 43395
  year: 2017
  ident: bib10
  article-title: GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses
  publication-title: Sci. Rep.
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: bib2
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
– volume: 48
  start-page: 651
  year: 2004
  end-page: 654
  ident: bib20
  article-title: Inhibition of the subgenomic hepatitis C virus replicon in huh-7 cells by 2′-deoxy-2′-fluorocytidine
  publication-title: Antimicrob. Agents Chemother.
– volume: 103
  start-page: 5108
  year: 2006
  end-page: 5113
  ident: bib39
  article-title: Discovery of an RNA virus 3′ → 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 115
  start-page: E162
  year: 2018
  ident: 10.1074/jbc.RA120.013679_bib36
  article-title: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1718806115
– volume: 169
  start-page: 104541
  year: 2019
  ident: 10.1074/jbc.RA120.013679_bib12
  article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2019.104541
– volume: 103
  start-page: 5108
  year: 2006
  ident: 10.1074/jbc.RA120.013679_bib39
  article-title: Discovery of an RNA virus 3′ → 5′ exoribonuclease that is critically involved in coronavirus RNA synthesis
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0508200103
– year: 2020
  ident: 10.1074/jbc.RA120.013679_bib3
– volume: 153
  start-page: 85
  year: 2018
  ident: 10.1074/jbc.RA120.013679_bib42
  article-title: Favipiravir as a potential countermeasure against neglected and emerging RNA viruses
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2018.03.003
– volume: 395
  start-page: 565
  year: 2020
  ident: 10.1074/jbc.RA120.013679_bib1
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 30
  start-page: 269
  year: 2020
  ident: 10.1074/jbc.RA120.013679_bib33
  article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-0282-0
– year: 2020
  ident: 10.1074/jbc.RA120.013679_bib4
  article-title: Updated approaches against SARS-CoV-2
  publication-title: Antimicrob. Agents Chemother.
– volume: 320
  start-page: 597
  year: 2002
  ident: 10.1074/jbc.RA120.013679_bib49
  article-title: On the role of the crystal environment in determining protein side-chain conformations
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00470-9
– volume: 9
  start-page: e00221
  year: 2018
  ident: 10.1074/jbc.RA120.013679_bib6
  article-title: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease
  publication-title: mBio
  doi: 10.1128/mBio.00221-18
– volume: 381
  start-page: 2293
  year: 2019
  ident: 10.1074/jbc.RA120.013679_bib16
  article-title: A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics
  publication-title: The New England journal of medicine
  doi: 10.1056/NEJMoa1910993
– volume: 6
  start-page: 1375
  year: 2000
  ident: 10.1074/jbc.RA120.013679_bib25
  article-title: The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen
  publication-title: Nat. Med.
  doi: 10.1038/82191
– volume: 11
  start-page: E326
  year: 2019
  ident: 10.1074/jbc.RA120.013679_bib9
  article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir
  publication-title: Viruses
  doi: 10.3390/v11040326
– volume: 7
  start-page: 43395
  year: 2017
  ident: 10.1074/jbc.RA120.013679_bib10
  article-title: GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses
  publication-title: Sci. Rep.
  doi: 10.1038/srep43395
– volume: 93
  start-page: 449
  year: 2017
  ident: 10.1074/jbc.RA120.013679_bib26
  article-title: Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.93.027
– volume: 60
  start-page: 1648
  year: 2017
  ident: 10.1074/jbc.RA120.013679_bib5
  article-title: Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01594
– volume: 276
  start-page: 46094
  year: 2001
  ident: 10.1074/jbc.RA120.013679_bib29
  article-title: Hepatitis C virus RNA-dependent RNA polymerase (NS5B) as a mediator of the antiviral activity of ribavirin
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C100349200
– volume: 22
  start-page: 1583
  year: 2004
  ident: 10.1074/jbc.RA120.013679_bib46
  article-title: Baculovirus expression system for heterologous multiprotein complexes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1036
– volume: 107
  start-page: 22505
  year: 2010
  ident: 10.1074/jbc.RA120.013679_bib31
  article-title: Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1007626107
– volume: 283
  start-page: 7705
  year: 2008
  ident: 10.1074/jbc.RA120.013679_bib32
  article-title: Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M709563200
– volume: 140
  start-page: 1
  year: 1994
  ident: 10.1074/jbc.RA120.013679_bib34
  article-title: Physiological concentrations of purines and pyrimidines
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF00928361
– volume: 55
  start-page: 351
  year: 2004
  ident: 10.1074/jbc.RA120.013679_bib50
  article-title: A hierarchical approach to all-atom protein loop prediction
  publication-title: Proteins
  doi: 10.1002/prot.10613
– volume: 48
  start-page: 651
  year: 2004
  ident: 10.1074/jbc.RA120.013679_bib20
  article-title: Inhibition of the subgenomic hepatitis C virus replicon in huh-7 cells by 2′-deoxy-2′-fluorocytidine
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.48.2.651-654.2004
– volume: 436
  start-page: 967
  year: 2005
  ident: 10.1074/jbc.RA120.013679_bib45
  article-title: Mechanism of action of interferon and ribavirin in treatment of hepatitis C
  publication-title: Nature
  doi: 10.1038/nature04082
– volume: 157
  start-page: 18
  year: 2018
  ident: 10.1074/jbc.RA120.013679_bib27
  article-title: Favipiravir (T-705) but not ribavirin is effective against two distinct strains of Crimean-Congo hemorrhagic fever virus in mice
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2018.06.013
– volume: 8
  start-page: e68347
  year: 2013
  ident: 10.1074/jbc.RA120.013679_bib28
  article-title: The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-triphosphate towards influenza A virus polymerase
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068347
– volume: 295
  start-page: 4773
  year: 2020
  ident: 10.1074/jbc.RA120.013679_bib17
  article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.AC120.013056
– volume: 109
  start-page: 9372
  year: 2012
  ident: 10.1074/jbc.RA120.013679_bib37
  article-title: RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1201130109
– volume: 111
  start-page: E3900
  year: 2014
  ident: 10.1074/jbc.RA120.013679_bib18
  article-title: One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1323705111
– volume: 8
  start-page: e2804
  year: 2014
  ident: 10.1074/jbc.RA120.013679_bib30
  article-title: Evaluation of antiviral efficacy of ribavirin, arbidol, and T-705 (favipiravir) in a mouse model for Crimean-Congo hemorrhagic fever
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002804
– volume: 35
  start-page: 57
  year: 2019
  ident: 10.1074/jbc.RA120.013679_bib41
  article-title: Nucleoside analogues for the treatment of coronavirus infections
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2019.04.002
– volume: 11
  start-page: eaau9242
  year: 2019
  ident: 10.1074/jbc.RA120.013679_bib11
  article-title: Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aau9242
– volume: 9
  start-page: eaal3653
  year: 2017
  ident: 10.1074/jbc.RA120.013679_bib14
  article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aal3653
– year: 2008
  ident: 10.1074/jbc.RA120.013679_bib47
  article-title: MultiBac: multigene baculovirus-based eukaryotic protein complex production
  publication-title: Curr. Protoc. Protein Sci.
  doi: 10.1002/0471140864.ps0520s51
– volume: 14
  start-page: e1006889
  year: 2018
  ident: 10.1074/jbc.RA120.013679_bib7
  article-title: Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1006889
– volume: 347
  start-page: 771
  year: 2015
  ident: 10.1074/jbc.RA120.013679_bib24
  article-title: Viral replication: structural basis for RNA replication by the hepatitis C virus polymerase
  publication-title: Science
  doi: 10.1126/science.1259210
– volume: 117
  start-page: 6771
  year: 2020
  ident: 10.1074/jbc.RA120.013679_bib13
  article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1922083117
– volume: 11
  start-page: 222
  year: 2020
  ident: 10.1074/jbc.RA120.013679_bib15
  article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon β against MERS-CoV
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13940-6
– volume: 8
  start-page: 3970
  year: 2018
  ident: 10.1074/jbc.RA120.013679_bib48
  article-title: Recombinant RNA-dependent RNA polymerase complex of Ebola virus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22328-3
– volume: 531
  start-page: 381
  year: 2016
  ident: 10.1074/jbc.RA120.013679_bib8
  article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys
  publication-title: Nature
  doi: 10.1038/nature17180
– volume: 34
  start-page: 69
  issue: Suppl. 1
  year: 2014
  ident: 10.1074/jbc.RA120.013679_bib44
  article-title: HCV direct-acting antiviral agents: the best interferon-free combinations
  publication-title: Liver Int.
  doi: 10.1111/liv.12423
– volume: 136
  start-page: 9
  year: 2016
  ident: 10.1074/jbc.RA120.013679_bib23
  article-title: Lassa and Ebola virus inhibitors identified using minigenome and recombinant virus reporter systems
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2016.10.007
– volume: 106
  start-page: 86
  year: 2014
  ident: 10.1074/jbc.RA120.013679_bib43
  article-title: High-throughput, luciferase-based reverse genetics systems for identifying inhibitors of Marburg and Ebola viruses
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2014.03.018
– volume: 234
  start-page: 58
  year: 2017
  ident: 10.1074/jbc.RA120.013679_bib38
  article-title: Nidovirus RNA polymerases: complex enzymes handling exceptional RNA genomes
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2017.01.023
– volume: 382
  start-page: 727
  year: 2020
  ident: 10.1074/jbc.RA120.013679_bib2
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 92
  start-page: 329
  year: 2011
  ident: 10.1074/jbc.RA120.013679_bib22
  article-title: In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2011.09.001
– volume: 285
  start-page: 39380
  year: 2010
  ident: 10.1074/jbc.RA120.013679_bib35
  article-title: Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.178582
– volume: 147
  start-page: 91
  year: 2017
  ident: 10.1074/jbc.RA120.013679_bib21
  article-title: Identification of 2′-deoxy-2′-fluorocytidine as a potent inhibitor of Crimean-Congo hemorrhagic fever virus replication using a recombinant fluorescent reporter virus
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2017.10.008
– volume: 10
  start-page: 2342
  year: 2019
  ident: 10.1074/jbc.RA120.013679_bib19
  article-title: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10280-3
– volume: 283
  start-page: 34218
  year: 2008
  ident: 10.1074/jbc.RA120.013679_bib40
  article-title: Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806797200
SSID ssj0000491
Score 2.7178016
SecondaryResourceType review_article
Snippet Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6785
SubjectTerms Adenosine Monophosphate - analogs & derivatives
Adenosine Monophosphate - pharmacology
Alanine - analogs & derivatives
Alanine - pharmacology
Animals
Antiviral Agents - pharmacology
Betacoronavirus - enzymology
Betacoronavirus - physiology
coronavirus (CoV)
COVID-19
drug action
drug development
drug discovery
Ebola virus
Editors' Picks
favipiravir
Lassa virus
MERS
Models, Molecular
plus-stranded RNA virus
remdesivir
replication
ribavirin
RNA polymerase
RNA-dependent RNA polymerase (RdRp)
RNA-Dependent RNA Polymerase - antagonists & inhibitors
SARS
SARS-CoV-2
Sf9 Cells
sofosbuvir
Spodoptera
Virus Replication - drug effects
Title Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency
URI https://dx.doi.org/10.1074/jbc.RA120.013679
https://www.ncbi.nlm.nih.gov/pubmed/32284326
https://www.proquest.com/docview/2389694189
https://pubmed.ncbi.nlm.nih.gov/PMC7242698
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKkGAvCDY-ypeMhJBQla510iZ5rCbQtIkJqk70LbIdh0a0ydSmlcY_4XfwB7nXjpO0bBPwErWJ41Q9J_a17z33EvKWcd934zh0fJEkjuez2OG4bxWqZDCQYZLEAoXCn86HJxfe6XQwbbV-NaKW1oXoyh_X6kr-B1U4B7iiSvYfkK06hRPwGfCFIyAMx7_CeKwWsVqlm3SJdcl5x8xPDmoVtPQQK0OgAL-YcawEMEsFugnG5yPH1r4t8BtWarjCzamVMnITmC0V-hUkBhEsG854m9-gIzHxAYfe16sOM5u5mPgYekIbfMtVXIvPtNlrsj6ZvCS22FwVBAQr4TIKgM83aVb7rCZY1yvLv-cbPXh_y5e1MO1rns-tbGdRTzOf1dKECJxyrLJ41tzfYNo1bxSeXWXGZLASUXAwbQ7azJTmLNnJeo0xGKbfwbWTA1hLODkI2R2P-qzX1enqwmZTgPdyockC41zguWwnS7eZ98tLd8hdBmsTLJtx9qVOUQ9Lrn7pD4cHHu0-bp_csx3cZAr9udTZjdhtmECTh-RBCSIdGSI-Ii2VHZDDUQbcWFzRd1RHE2s3zQG5f2zBPSQ_a57SdEU53eIprXhKkafU8pRu8RS_0ZqnFHlKDU-p5ilt8JRantIGTymjyFOKPKUlTx-Ti48fJscnTlkSxJGe5xeO8qQ_SIZMxlwmSokgkIEn-32wOJgMhYyFq0LmKy8OhjLwwRwFAzlIYFkiekyC6fqE7GV5pp4RyoewFHHdJOyJxNP69ATWGkOPK86DPo_b5MiiE8kyXz6WbZlHOm7D9yKANtLQRgbaNnlf3XFpcsXc0ta1gEelrWv--wjYestdbyw3IsAQfXs8U_l6FYHlHaImPYA2Tw1Xqt9g-dYm_haLqgaYYn77SpbOdKp5X0vdg-c39vmC7Ncv7UuyVyzX6hWY6YV4rV-L3xX28Yo
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remdesivir+is+a+direct-acting+antiviral+that+inhibits+RNA-dependent+RNA+polymerase+from+severe+acute+respiratory+syndrome+coronavirus+2+with+high+potency&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Gordon%2C+Calvin+J&rft.au=Tchesnokov%2C+Egor+P&rft.au=Woolner%2C+Emma&rft.au=Perry%2C+Jason+K&rft.date=2020-05-15&rft.eissn=1083-351X&rft.volume=295&rft.issue=20&rft.spage=6785&rft_id=info:doi/10.1074%2Fjbc.RA120.013679&rft_id=info%3Apmid%2F32284326&rft.externalDocID=32284326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon