Brain amyloid-β oligomers in ageing and Alzheimer’s disease
Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effe...
Saved in:
Published in | Brain (London, England : 1878) Vol. 136; no. 5; pp. 1383 - 1398 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer’s disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models—amyloid-β trimers, Aβ*56 and amyloid-β dimers—in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer’s disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer’s disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer’s disease. |
---|---|
AbstractList | Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models-amyloid-β trimers, Aβ*56 and amyloid-β dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease.Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models-amyloid-β trimers, Aβ*56 and amyloid-β dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease. Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer’s disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models—amyloid-β trimers, Aβ*56 and amyloid-β dimers—in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer’s disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer’s disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer’s disease. Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid- beta aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid- beta in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid- beta aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid- beta aggregates, including soluble amyloid- beta oligomers. Different soluble amyloid- beta oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid- beta oligomers previously described in mouse models-amyloid- beta trimers, A beta *56 and amyloid- beta dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid- beta trimers appear to be the fundamental amyloid- beta assembly unit of A beta *56 and are present in young mice prior to memory decline, amyloid- beta trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. A beta *56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid- beta dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between A beta *56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between A beta *56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid- beta dimers or amyloid- beta trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid- beta dimers, but the lowest levels of A beta *56 and amyloid- beta trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults A beta *56 increased ahead of amyloid- beta dimers or amyloid- beta trimers, and pathological tau proteins and postsynaptic proteins correlated with A beta *56, but not amyloid- beta dimers or amyloid- beta trimers. We propose that A beta *56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease. |
Author | Schneider, Julie A. Lesné, Sylvain E. Grant, Marianne Kuskowski, Michael Bennett, David A. Sherman, Mathew A. Ashe, Karen H. |
AuthorAffiliation | 2 N. Bud Grossman Centre for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA 5 Rush Alzheimer’s Disease Centre, Rush University Medical Centre, Chicago, IL 60612 USA 4 Department of Neurology, University of Minnesota, Minneapolis, MN 55455 USA 3 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA 6 Geriatric Research Education Clinical Centre, VA Medical Centre, Minneapolis, MN 55417 USA 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA |
AuthorAffiliation_xml | – name: 6 Geriatric Research Education Clinical Centre, VA Medical Centre, Minneapolis, MN 55417 USA – name: 3 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA – name: 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA – name: 4 Department of Neurology, University of Minnesota, Minneapolis, MN 55455 USA – name: 5 Rush Alzheimer’s Disease Centre, Rush University Medical Centre, Chicago, IL 60612 USA – name: 2 N. Bud Grossman Centre for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA |
Author_xml | – sequence: 1 givenname: Sylvain E. surname: Lesné fullname: Lesné, Sylvain E. – sequence: 2 givenname: Mathew A. surname: Sherman fullname: Sherman, Mathew A. – sequence: 3 givenname: Marianne surname: Grant fullname: Grant, Marianne – sequence: 4 givenname: Michael surname: Kuskowski fullname: Kuskowski, Michael – sequence: 5 givenname: Julie A. surname: Schneider fullname: Schneider, Julie A. – sequence: 6 givenname: David A. surname: Bennett fullname: Bennett, David A. – sequence: 7 givenname: Karen H. surname: Ashe fullname: Ashe, Karen H. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27302159$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23576130$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1O3DAUhS1EBQPtrusqm0osSLn-ieNskAABrYTEhr1143gGV45N7QwIVrwGr9EH6UP0SZp0hv6JRVdXuvc7R8c-O2QzxGAJeUvhA4WGH7QJXTjAuwEk2yAzKiSUjFZyk8wAQJaqqWCb7OT8GYAKzuQW2Wa8qiXlMCOHx5O8wP7eR9eV374W0btF7G3KxbRfWBcWBYauOPIP19aNh--PT7noXLaY7Wvyao4-2zfruUuuzk6vTj6WF5fnn06OLkojRD2UloPkzCqUyGkFIFQNDCjlrKtVZaXpkLaGKioMmyIib1FZ1bQVxboTfJccrmxvlm1vO2PDkNDrm-R6TPc6otN_X4K71ot4q7nkgjZqNNhbG6T4ZWnzoHuXjfUeg43LrCmvGGu4Yuw_UCGruhEURvTdn7F-5Xn-3hF4vwYwG_TzhMG4_JurOYxVNSPHVpxJMedk59q4AQcXp9c4rynoqWv9s2u96noU7f8jevZ9Ef8BDpStYw |
CitedBy_id | crossref_primary_10_1016_j_phrs_2019_04_014 crossref_primary_10_1021_acscentsci_3c00592 crossref_primary_10_3389_fnins_2022_822420 crossref_primary_10_18632_oncotarget_4118 crossref_primary_10_1242_jcs_255752 crossref_primary_10_3389_fnagi_2024_1400544 crossref_primary_10_1159_000446283 crossref_primary_10_1002_qua_26344 crossref_primary_10_1038_nrneurol_2017_162 crossref_primary_10_3389_fnins_2019_00659 crossref_primary_10_1101_cshperspect_a024083 crossref_primary_10_3233_JAD_190458 crossref_primary_10_1007_s12035_020_01957_8 crossref_primary_10_1007_s00401_015_1489_x crossref_primary_10_1186_s40478_014_0101_2 crossref_primary_10_1016_j_expneurol_2019_05_001 crossref_primary_10_1021_acs_nanolett_2c00149 crossref_primary_10_1021_acschemneuro_6b00108 crossref_primary_10_3389_fncel_2015_00191 crossref_primary_10_1016_j_redox_2025_103611 crossref_primary_10_1523_JNEUROSCI_1899_16_2016 crossref_primary_10_1002_med_21563 crossref_primary_10_3389_fncel_2020_00200 crossref_primary_10_3390_ijms19082415 crossref_primary_10_1038_mp_2016_62 crossref_primary_10_1186_s13195_020_00588_4 crossref_primary_10_1111_cns_12476 crossref_primary_10_1186_s13024_020_00393_5 crossref_primary_10_3389_fchem_2024_1367793 crossref_primary_10_1016_j_bbapap_2019_140264 crossref_primary_10_1002_jnr_23778 crossref_primary_10_1021_jacs_0c12729 crossref_primary_10_3389_fnins_2017_00254 crossref_primary_10_3389_fnagi_2019_00369 crossref_primary_10_3390_ijms22147366 crossref_primary_10_1016_j_cca_2015_01_035 crossref_primary_10_1111_jnc_13128 crossref_primary_10_1016_j_ajpath_2017_11_011 crossref_primary_10_1021_acschemneuro_8b00076 crossref_primary_10_1038_srep21101 crossref_primary_10_1007_s10571_020_01021_y crossref_primary_10_1016_j_nbd_2014_04_018 crossref_primary_10_1523_JNEUROSCI_1967_16_2016 crossref_primary_10_3389_fphar_2018_01484 crossref_primary_10_1002_ana_25410 crossref_primary_10_18632_oncotarget_9821 crossref_primary_10_1186_alzrt226 crossref_primary_10_3390_ijms21124477 crossref_primary_10_1007_s11248_019_00166_x crossref_primary_10_3892_mmr_2016_5618 crossref_primary_10_1136_jnnp_2021_327370 crossref_primary_10_1002_pro_3387 crossref_primary_10_1111_febs_14058 crossref_primary_10_1007_s00401_015_1449_5 crossref_primary_10_1093_brain_awx132 crossref_primary_10_1016_j_exger_2015_11_016 crossref_primary_10_1016_j_mcn_2018_02_011 crossref_primary_10_1021_acschemneuro_0c00535 crossref_primary_10_1038_s41598_021_98644_y crossref_primary_10_1523_JNEUROSCI_4081_14_2015 crossref_primary_10_1016_S1353_8020_13_70021_X crossref_primary_10_1038_s41467_019_10217_w crossref_primary_10_3389_fneur_2021_585189 crossref_primary_10_1007_s11164_019_03974_2 crossref_primary_10_1089_rej_2017_2049 crossref_primary_10_1016_j_neulet_2016_12_060 crossref_primary_10_7554_eLife_28401 crossref_primary_10_3390_molecules23020283 crossref_primary_10_1007_s00018_020_03464_4 crossref_primary_10_1038_aps_2017_28 crossref_primary_10_1080_1028415X_2016_1199114 crossref_primary_10_1007_s00401_014_1375_y crossref_primary_10_1016_j_bbrep_2018_12_005 crossref_primary_10_1016_j_neuint_2019_03_014 crossref_primary_10_1021_acsnano_7b05434 crossref_primary_10_1007_s12640_017_9765_2 crossref_primary_10_1111_acel_12978 crossref_primary_10_18632_aging_203634 crossref_primary_10_1111_jnc_14118 crossref_primary_10_1136_bmj_o2041 crossref_primary_10_1371_journal_pone_0111898 crossref_primary_10_1016_j_molmed_2022_11_008 crossref_primary_10_1021_acschemneuro_6b00438 crossref_primary_10_1371_journal_pone_0111899 crossref_primary_10_1186_1742_2094_11_54 crossref_primary_10_1186_s13195_022_01104_6 crossref_primary_10_1371_journal_pone_0185102 crossref_primary_10_1016_j_physbeh_2016_03_016 crossref_primary_10_1038_nrneurol_2013_223 crossref_primary_10_1021_acssensors_3c02167 crossref_primary_10_1016_j_tins_2017_04_002 crossref_primary_10_1159_000509626 crossref_primary_10_3233_JAD_150926 crossref_primary_10_1038_s41570_021_00254_9 crossref_primary_10_3233_JAD_215497 crossref_primary_10_1016_j_neurobiolaging_2014_05_023 crossref_primary_10_1016_j_ajpath_2019_04_010 crossref_primary_10_1016_j_biopha_2022_113769 crossref_primary_10_1523_JNEUROSCI_2080_16_2016 crossref_primary_10_3233_ADR_210035 crossref_primary_10_1007_s12035_019_01819_y crossref_primary_10_1038_s41598_018_22979_2 crossref_primary_10_1074_jbc_RA119_012386 crossref_primary_10_1002_acn3_446 crossref_primary_10_3233_ADR_220068 crossref_primary_10_1038_s41467_018_03509_0 crossref_primary_10_3233_JAD_210226 crossref_primary_10_3389_fchem_2015_00017 crossref_primary_10_1186_2193_1801_3_161 crossref_primary_10_3390_biomedicines10071743 crossref_primary_10_3390_ijms21228651 crossref_primary_10_1007_s12035_015_9143_0 crossref_primary_10_1021_acs_jpcb_1c00036 crossref_primary_10_3233_JAD_191346 crossref_primary_10_1016_j_brainres_2017_09_026 crossref_primary_10_1016_j_expneurol_2016_06_006 crossref_primary_10_1039_C9NJ00820A crossref_primary_10_3233_JAD_240212 crossref_primary_10_1021_acs_analchem_2c03825 crossref_primary_10_1001_jamaneurol_2019_0834 crossref_primary_10_1016_j_bbamem_2014_04_011 crossref_primary_10_1038_srep13489 crossref_primary_10_19163_2307_9266_2019_7_4_198_207 crossref_primary_10_1093_brain_awv006 crossref_primary_10_1093_brain_awv127 crossref_primary_10_1111_jnc_15466 crossref_primary_10_1021_bi500894q crossref_primary_10_1016_j_phrs_2023_106743 crossref_primary_10_1186_s13195_017_0293_3 crossref_primary_10_1002_psc_3312 crossref_primary_10_1016_j_bbapap_2019_07_010 crossref_primary_10_1002_dad2_70064 crossref_primary_10_1016_j_neurobiolaging_2015_03_005 crossref_primary_10_3389_fnagi_2021_650930 crossref_primary_10_1021_acs_jmedchem_4c00252 crossref_primary_10_1371_journal_pone_0126317 crossref_primary_10_1038_srep38187 crossref_primary_10_1016_j_bcp_2014_01_037 crossref_primary_10_1186_s40478_018_0527_z crossref_primary_10_3389_fnagi_2019_00059 crossref_primary_10_1007_s12035_023_03846_2 crossref_primary_10_1021_acschemneuro_8b00185 crossref_primary_10_1038_s41380_021_01249_0 crossref_primary_10_1177_1073858414529828 crossref_primary_10_3233_JAD_215399 crossref_primary_10_3389_fnagi_2019_00174 crossref_primary_10_1007_s13361_018_1975_1 crossref_primary_10_1038_s41598_018_35004_3 crossref_primary_10_1038_s41598_019_40438_4 crossref_primary_10_1186_1750_1326_9_2 crossref_primary_10_1016_j_isci_2024_109239 crossref_primary_10_1111_jnc_13507 crossref_primary_10_1002_1873_3468_13919 crossref_primary_10_1021_acschemneuro_9b00602 crossref_primary_10_3390_cells10030649 crossref_primary_10_3390_ijms252313049 crossref_primary_10_1016_j_isci_2019_01_018 crossref_primary_10_1021_la502777h crossref_primary_10_1016_j_neurobiolaging_2015_07_001 crossref_primary_10_1093_brain_awz066 crossref_primary_10_1002_prot_26212 crossref_primary_10_1021_jacs_6b01332 crossref_primary_10_1155_2013_950783 crossref_primary_10_4103_1673_5374_238606 crossref_primary_10_1002_alz_12084 crossref_primary_10_1111_jnc_14278 crossref_primary_10_1096_fj_201900322R crossref_primary_10_1016_j_neurobiolaging_2014_09_004 crossref_primary_10_1021_cn500242z crossref_primary_10_1021_acschemneuro_9b00337 crossref_primary_10_1186_s12974_021_02099_x crossref_primary_10_1073_pnas_2219216120 crossref_primary_10_1038_s41598_019_46306_5 crossref_primary_10_1016_j_cbi_2023_110623 crossref_primary_10_1038_srep22728 crossref_primary_10_1016_j_neuroscience_2015_08_039 crossref_primary_10_1073_pnas_1704698114 crossref_primary_10_1080_01616412_2018_1548747 crossref_primary_10_1111_jnc_13072 crossref_primary_10_1007_s00018_019_03178_2 crossref_primary_10_1039_C7CP05959K crossref_primary_10_1002_jcb_30141 crossref_primary_10_1016_j_freeradbiomed_2020_02_022 crossref_primary_10_1038_emm_2013_125 crossref_primary_10_1016_j_neurobiolaging_2017_04_027 crossref_primary_10_1111_jnc_13873 crossref_primary_10_1002_adma_202413614 crossref_primary_10_1016_j_neuroscience_2019_04_007 crossref_primary_10_3389_fnagi_2014_00075 crossref_primary_10_1016_j_neuint_2017_08_010 crossref_primary_10_1111_bpa_12226 crossref_primary_10_1016_j_jtemb_2013_07_003 crossref_primary_10_1038_s41598_019_38749_7 crossref_primary_10_1021_acs_bioconjchem_8b00387 crossref_primary_10_2174_1567205016666190321163438 crossref_primary_10_1038_s41582_018_0116_6 crossref_primary_10_3389_fnagi_2020_00092 crossref_primary_10_1002_pro_4639 crossref_primary_10_1038_nrn_2016_141 crossref_primary_10_1103_PhysRevE_105_024405 crossref_primary_10_1186_s13024_016_0136_x crossref_primary_10_1073_pnas_1820585116 crossref_primary_10_1126_scisignal_aal2021 crossref_primary_10_3233_JAD_150741 crossref_primary_10_1016_j_phanu_2015_07_001 crossref_primary_10_1016_j_nbd_2015_07_016 crossref_primary_10_2174_1567205016666190827123222 crossref_primary_10_1186_s13024_016_0099_y crossref_primary_10_1371_journal_pone_0180905 crossref_primary_10_3390_s20061760 crossref_primary_10_1007_s40520_017_0741_8 crossref_primary_10_1016_j_nbd_2015_08_024 crossref_primary_10_1007_s00401_016_1546_0 crossref_primary_10_1111_jnc_13772 crossref_primary_10_1155_2015_918573 crossref_primary_10_1016_j_neulet_2021_136114 crossref_primary_10_3233_JAD_179939 crossref_primary_10_3389_fneur_2019_01140 crossref_primary_10_1093_cercor_bhaa184 crossref_primary_10_1016_j_neurobiolaging_2018_03_033 crossref_primary_10_1007_s00401_016_1632_3 crossref_primary_10_3233_JAD_190711 crossref_primary_10_1021_acs_biochem_7b00831 crossref_primary_10_1093_eurheartj_ehae655 crossref_primary_10_1155_2014_813672 crossref_primary_10_3233_JAD_161191 crossref_primary_10_1016_j_heliyon_2018_e00511 crossref_primary_10_1074_jbc_M113_519355 crossref_primary_10_1186_s40478_015_0258_3 crossref_primary_10_3390_ani12121535 crossref_primary_10_1016_j_ijbiomac_2019_02_148 crossref_primary_10_1080_19336896_2015_1123371 crossref_primary_10_1016_j_jmgm_2022_108207 crossref_primary_10_1016_j_neurobiolaging_2017_11_007 crossref_primary_10_4103_1673_5374_259604 crossref_primary_10_3390_ijms17020152 crossref_primary_10_3934_biophy_2019_1_1 crossref_primary_10_1080_10408363_2019_1678011 crossref_primary_10_1038_s41380_018_0266_3 crossref_primary_10_3233_JAD_179941 crossref_primary_10_1016_j_fmre_2024_04_013 crossref_primary_10_1093_brain_awu255 crossref_primary_10_1021_acschemneuro_0c00360 crossref_primary_10_1007_s00401_015_1419_y crossref_primary_10_3389_fphys_2016_00134 crossref_primary_10_1016_j_ebiom_2016_03_035 crossref_primary_10_1021_acs_jpcb_2c04797 crossref_primary_10_1002_cmdc_202100428 crossref_primary_10_1039_D3AN01773G crossref_primary_10_1080_1028415X_2020_1806190 crossref_primary_10_1007_s12272_013_0238_8 crossref_primary_10_1074_jbc_M116_744730 crossref_primary_10_1186_s13024_015_0057_0 crossref_primary_10_1074_jbc_M114_557231 crossref_primary_10_1016_j_bbi_2018_03_007 crossref_primary_10_1038_mp_2016_37 crossref_primary_10_1038_nn_4018 crossref_primary_10_2174_1568026620666200916123000 crossref_primary_10_2174_1567205017666200522210957 crossref_primary_10_1371_journal_pone_0232266 crossref_primary_10_1002_pro_4728 crossref_primary_10_1111_cns_12260 crossref_primary_10_3233_JAD_150514 crossref_primary_10_1016_j_cbi_2014_12_006 crossref_primary_10_1038_s41598_025_93230_y crossref_primary_10_1002_bit_26059 crossref_primary_10_1007_s11011_014_9527_2 crossref_primary_10_1074_jbc_M116_744722 crossref_primary_10_2174_0115672050277001231213073043 crossref_primary_10_3390_cells12111477 crossref_primary_10_1021_acs_accounts_7b00554 crossref_primary_10_3233_JAD_171110 crossref_primary_10_1016_j_nbd_2017_08_012 crossref_primary_10_3390_ijms22031102 crossref_primary_10_1039_C8CC01380B crossref_primary_10_1016_j_jep_2020_113640 crossref_primary_10_1016_j_neurobiolaging_2016_03_019 crossref_primary_10_1007_s00018_023_04785_w crossref_primary_10_1002_dad2_12193 crossref_primary_10_3390_biophysica2020010 crossref_primary_10_1016_j_bbamem_2019_183061 crossref_primary_10_15252_emmm_202113952 crossref_primary_10_1016_j_celrep_2015_05_021 crossref_primary_10_1002_pep2_24083 crossref_primary_10_1016_j_cub_2020_02_083 crossref_primary_10_1021_jacs_6b11748 crossref_primary_10_1038_s41598_021_90680_y crossref_primary_10_1074_jbc_M115_641738 crossref_primary_10_1111_jnc_13443 crossref_primary_10_1016_j_tibtech_2017_06_002 crossref_primary_10_1007_s00018_014_1769_y crossref_primary_10_1016_j_neuropharm_2017_03_036 crossref_primary_10_7554_eLife_53995 crossref_primary_10_1002_hbm_22782 crossref_primary_10_1371_journal_pone_0248027 crossref_primary_10_1016_j_advms_2022_08_003 crossref_primary_10_3390_cells9051215 crossref_primary_10_1371_journal_pone_0114041 crossref_primary_10_1016_j_jalz_2014_04_009 crossref_primary_10_1016_j_toxrep_2024_101879 crossref_primary_10_3390_ijms241914488 crossref_primary_10_1080_14737175_2018_1531706 crossref_primary_10_21307_ane_2020_021 crossref_primary_10_1093_brain_awt375 crossref_primary_10_3389_fneur_2015_00186 crossref_primary_10_3390_cells12081204 crossref_primary_10_1186_s13195_017_0324_0 crossref_primary_10_1080_23746149_2020_1770627 crossref_primary_10_1080_07391102_2025_2475221 crossref_primary_10_1371_journal_pone_0169509 crossref_primary_10_3389_fnagi_2014_00176 crossref_primary_10_1016_j_jalz_2016_03_011 crossref_primary_10_1021_acschemneuro_7b00469 crossref_primary_10_1021_cr500638n crossref_primary_10_1016_j_neuron_2017_12_001 crossref_primary_10_1021_acsnano_9b08572 crossref_primary_10_1177_0271678X16654920 crossref_primary_10_1038_ncomms9897 crossref_primary_10_3389_fnmol_2019_00176 crossref_primary_10_1016_j_ajpath_2015_09_018 crossref_primary_10_1016_j_bioorg_2020_104382 crossref_primary_10_12779_dnd_2018_17_2_41 crossref_primary_10_3390_membranes10090226 crossref_primary_10_1016_j_omtn_2017_05_004 crossref_primary_10_1111_jnc_15762 crossref_primary_10_1002_mds_26624 crossref_primary_10_2174_1570159X19666210121163224 crossref_primary_10_1016_j_bbadis_2019_04_019 crossref_primary_10_1016_j_expneurol_2023_114344 crossref_primary_10_1177_0271678X211005877 crossref_primary_10_1016_j_sbi_2014_12_004 crossref_primary_10_1016_j_neuron_2015_03_017 crossref_primary_10_1021_acs_jpca_8b11251 crossref_primary_10_1016_j_neurobiolaging_2018_06_025 crossref_primary_10_1111_jnc_14554 crossref_primary_10_1016_j_jalz_2015_01_005 crossref_primary_10_1186_s40478_014_0175_x |
Cites_doi | 10.1016/j.cell.2010.06.036 10.1212/01.WNL.0000152982.47274.9E 10.1001/jamaneurol.2013.48 10.1073/pnas.090106797 10.3233/JAD-2011-101995 10.1523/JNEUROSCI.5543-03.2004 10.1111/j.1471-4159.2011.07478.x 10.1212/01.WNL.0000063311.58879.01 10.1038/6374 10.1523/JNEUROSCI.0172-12.2012 10.1016/j.neurobiolaging.2009.11.007 10.1007/BF00308809 10.1126/science.1079469 10.1016/j.jalz.2010.11.002 10.1126/science.3083509 10.1016/S1474-4422(09)70299-6 10.1126/science.274.5284.99 10.1073/pnas.0409336102 10.1523/JNEUROSCI.5161-07.2008 10.1016/j.neuron.2010.04.031 10.1016/j.neuron.2010.11.030 10.1093/brain/awq065 10.1002/ana.21509 10.1523/JNEUROSCI.3432-04.2004 10.1212/01.WNL.0000042478.08543.F7 10.1001/archneur.61.3.378 10.1016/j.tins.2010.05.004 10.1038/nn.3028 10.1074/jbc.M808591200 10.1002/ana.410410106 10.1016/j.neuroscience.2007.10.054 10.1111/j.1742-4658.2010.07719.x 10.1073/pnas.2635903100 10.1038/nm1782 10.1016/j.jalz.2011.03.003 10.1080/01688639308402570 10.1212/01.wnl.0000228244.10416.20 10.1074/jbc.M701078200 10.1196/annals.1379.012 10.1074/jbc.M608485200 10.1126/science.1141736 10.2174/156720512801322573 10.1126/science.1113694 10.1038/nature04533 10.1523/JNEUROSCI.20-11-04050.2000 10.1074/jbc.M109.000208 10.1073/pnas.092136199 10.1007/978-1-60761-744-0_4 10.1016/j.neurobiolaging.2011.05.003 10.1126/science.1566067 10.1523/JNEUROSCI.5180-09.2010 10.1001/archneurol.2009.59 10.1159/000096129 10.1016/j.neuron.2011.01.002 10.1002/ana.22052 10.1056/NEJMoa1202753 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS The Author (2013). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: The Author (2013). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1093/brain/awt062 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 1398 |
ExternalDocumentID | PMC3634198 23576130 27302159 10_1093_brain_awt062 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30AG10161 – fundername: NIA NIH HHS grantid: K99AG031293 – fundername: NIA NIH HHS grantid: R01 AG015819 – fundername: NINDS NIH HHS grantid: R01 NS033249 – fundername: NINDS NIH HHS grantid: R01NS33249 – fundername: NIA NIH HHS grantid: R01AG15819 |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O0~ O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO RZO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZCG ZKX ~91 .55 .GJ 1CY 354 3O- AAGKA AAPGJ AAQQT AAWDT AAYJJ ABDPE ABIME ABNGD ABPIB ABSMQ ABZEO ACBNA ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO AEHUL AEKPW AFFNX AFFQV AFSHK AFYAG AGKRT AGMDO AGQPQ AHGBF AI. AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVNTJ AVWKF AZFZN BZKNY C1A CAG CXTWN DFGAJ EIHJH ELUNK FEDTE H13 HVGLF IQODW MBLQV MBTAY MVM N4W NTWIH OBFPC OHT O~Y PB- QBD RIG RNI RZF TCN TMA VH1 X7M XJT XOL YQJ ZGI ZKB ZXP 6.Y ABQTQ ABSAR ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF M49 NPM VXZ 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c447t-e30632e8a6a315004870201132d785e6cda1bc1814c24326a3ba8e89b51a7d43 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Thu Aug 21 14:10:11 EDT 2025 Fri Jul 11 08:37:20 EDT 2025 Fri Jul 11 06:19:04 EDT 2025 Wed Feb 19 02:26:37 EST 2025 Mon Jul 21 09:13:32 EDT 2025 Tue Jul 01 00:46:05 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 56 Nervous system diseases Alzheimer disease trimer Ageing Central nervous system dimer amyloid-β oligomer Alzheimer Cerebral disorder Encephalon Aβ Central nervous system disease Degenerative disease Amyloid |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-e30632e8a6a315004870201132d785e6cda1bc1814c24326a3ba8e89b51a7d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/136/5/1383/13796412/awt062.pdf |
PMID | 23576130 |
PQID | 1346579410 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3634198 proquest_miscellaneous_1352293822 proquest_miscellaneous_1346579410 pubmed_primary_23576130 pascalfrancis_primary_27302159 crossref_citationtrail_10_1093_brain_awt062 crossref_primary_10_1093_brain_awt062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2013 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Bennett (2024110407435006800_awt062-B8) 2005; 64 Sherman (2024110407435006800_awt062-B49) 2011; 670 Zahs (2024110407435006800_awt062-B55) 2010; 33 Klyubin (2024110407435006800_awt062-B56) 2008; 28 Reed (2024110407435006800_awt062-B43) 2011; 32 Bennett (2024110407435006800_awt062-B10) 2003; 60 Santacruz (2024110407435006800_awt062-B47) 2005; 309 Hoover (2024110407435006800_awt062-B25) 2010; 68 Cheng (2024110407435006800_awt062-B15) 2007; 282 Youngjohn (2024110407435006800_awt062-B54) 1993; 15 Handoko (2024110407435006800_awt062-B22) 2013 Sperling (2024110407435006800_awt062-B51) 2011; 7 Wolozin (2024110407435006800_awt062-B53) 1986; 232 Bao (2024110407435006800_awt062-B3) 2012; 33 Bateman (2024110407435006800_awt062-B4) 2012; 367 Mucke (2024110407435006800_awt062-B37) 2000; 20 Reiman (2024110407435006800_awt062-B44) 2004; 101 Hsiao (2024110407435006800_awt062-B26) 1996; 274 Boyle (2024110407435006800_awt062-B11) 2006; 67 Giannakopoulos (2024110407435006800_awt062-B19) 2003; 60 Bennett (2024110407435006800_awt062-B7) 2012; 9 Ittner (2024110407435006800_awt062-B27) 2010; 142 Jack (2024110407435006800_awt062-B28) 2010; 9 Braak (2024110407435006800_awt062-B12) 1991; 82 Rapoport (2024110407435006800_awt062-B42) 2002; 99 Pham (2024110407435006800_awt062-B41) 2010; 277 Golde (2024110407435006800_awt062-B20) 2011; 69 Bennett (2024110407435006800_awt062-B6) 2006; 27 Oddo (2024110407435006800_awt062-B39) 2006; 281 Larson (2024110407435006800_awt062-B33) 2012; 120 Noguchi (2024110407435006800_awt062-B38) 2009; 284 Georganopoulou (2024110407435006800_awt062-B18) 2005; 102 Villemagne (2024110407435006800_awt062-B52) 2010; 30 Gandy (2024110407435006800_awt062-B17) 2010; 68 Kayed (2024110407435006800_awt062-B30) 2003; 300 Chapman (2024110407435006800_awt062-B14) 1999; 2 Rocca (2024110407435006800_awt062-B46) 2011; 7 Ashe (2024110407435006800_awt062-B2) 2010; 66 Petrie (2024110407435006800_awt062-B40) 2009; 66 Kawarabayashi (2024110407435006800_awt062-B29) 2004; 24 Kayed (2024110407435006800_awt062-B31) 2009; 284 Hensley (2024110407435006800_awt062-B24) 2011; 24 Shankar (2024110407435006800_awt062-B48) 2008; 14 Chabrier (2024110407435006800_awt062-B13) 2012; 32 de Leon (2024110407435006800_awt062-B16) 2007; 1097 Lesne (2024110407435006800_awt062-B34) 2006; 440 Hardy (2024110407435006800_awt062-B23) 1992; 256 Mc Donald (2024110407435006800_awt062-B36) 2010; 133 Lacor (2024110407435006800_awt062-B32) 2004; 24 Roberson (2024110407435006800_awt062-B45) 2007; 316 Small (2024110407435006800_awt062-B50) 2000; 97 Benilova (2024110407435006800_awt062-B5) 2012; 15 Lesne (2024110407435006800_awt062-B35) 2008; 151 Amieva (2024110407435006800_awt062-B1) 2008; 64 Bennett (2024110407435006800_awt062-B9) 2004; 61 Gomez-Isla (2024110407435006800_awt062-B21) 1997; 41 35552385 - Brain. 2022 May 13 |
References_xml | – volume: 142 start-page: 387 year: 2010 ident: 2024110407435006800_awt062-B27 article-title: Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models publication-title: Cell doi: 10.1016/j.cell.2010.06.036 – volume: 64 start-page: 834 year: 2005 ident: 2024110407435006800_awt062-B8 article-title: Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions publication-title: Neurology doi: 10.1212/01.WNL.0000152982.47274.9E – year: 2013 ident: 2024110407435006800_awt062-B22 article-title: Specific amyloid-β oligomers, but not amyloid-β(1-42), correlate with tau in cerebrospinal fluid from cognitively normal older adults publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2013.48 – volume: 97 start-page: 6037 year: 2000 ident: 2024110407435006800_awt062-B50 article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.090106797 – volume: 24 start-page: 767 year: 2011 ident: 2024110407435006800_awt062-B24 article-title: Analysis of postmortem ventricular cerebrospinal fluid from patients with and without dementia indicates association of vitamin E with neuritic plaques and specific measures of cognitive performance publication-title: J Alzheimers Dis doi: 10.3233/JAD-2011-101995 – volume: 24 start-page: 3801 year: 2004 ident: 2024110407435006800_awt062-B29 article-title: Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5543-03.2004 – volume: 120 start-page: 125 year: 2012 ident: 2024110407435006800_awt062-B33 article-title: Soluble Abeta oligomer production and toxicity publication-title: J Neurochem doi: 10.1111/j.1471-4159.2011.07478.x – volume: 60 start-page: 1495 year: 2003 ident: 2024110407435006800_awt062-B19 article-title: Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease publication-title: Neurology doi: 10.1212/01.WNL.0000063311.58879.01 – volume: 2 start-page: 271 year: 1999 ident: 2024110407435006800_awt062-B14 article-title: Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice publication-title: Nat Neurosci doi: 10.1038/6374 – volume: 32 start-page: 17345 year: 2012 ident: 2024110407435006800_awt062-B13 article-title: Soluble abeta promotes wild-type tau pathology in vivo publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0172-12.2012 – volume: 32 start-page: 1784 year: 2011 ident: 2024110407435006800_awt062-B43 article-title: Cognitive effects of cell-derived and synthetically derived Abeta oligomers publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.11.007 – volume: 82 start-page: 239 year: 1991 ident: 2024110407435006800_awt062-B12 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 300 start-page: 486 year: 2003 ident: 2024110407435006800_awt062-B30 article-title: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis publication-title: Science doi: 10.1126/science.1079469 – volume: 7 start-page: 80 year: 2011 ident: 2024110407435006800_awt062-B46 article-title: Trends in the incidence and prevalence of Alzheimer's disease, dementia, and cognitive impairment in the United States publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2010.11.002 – volume: 232 start-page: 648 year: 1986 ident: 2024110407435006800_awt062-B53 article-title: A neuronal antigen in the brains of Alzheimer patients publication-title: Science doi: 10.1126/science.3083509 – volume: 9 start-page: 119 year: 2010 ident: 2024110407435006800_awt062-B28 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70299-6 – volume: 274 start-page: 99 year: 1996 ident: 2024110407435006800_awt062-B26 article-title: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice publication-title: Science doi: 10.1126/science.274.5284.99 – volume: 102 start-page: 2273 year: 2005 ident: 2024110407435006800_awt062-B18 article-title: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0409336102 – volume: 28 start-page: 4231 year: 2008 ident: 2024110407435006800_awt062-B56 article-title: Amyloid β protein dimer-containing human CSF disrupts plasticity: prevention by systemic passive immunization publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5161-07.2008 – volume: 66 start-page: 631 year: 2010 ident: 2024110407435006800_awt062-B2 article-title: Probing the biology of Alzheimer's disease in mice publication-title: Neuron doi: 10.1016/j.neuron.2010.04.031 – volume: 68 start-page: 1067 year: 2010 ident: 2024110407435006800_awt062-B25 article-title: Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2010.11.030 – volume: 133 start-page: 1328 year: 2010 ident: 2024110407435006800_awt062-B36 article-title: The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia publication-title: Brain doi: 10.1093/brain/awq065 – volume: 64 start-page: 492 year: 2008 ident: 2024110407435006800_awt062-B1 article-title: Prodromal Alzheimer's disease: successive emergence of the clinical symptoms publication-title: Ann Neurol doi: 10.1002/ana.21509 – volume: 24 start-page: 10191 year: 2004 ident: 2024110407435006800_awt062-B32 article-title: Synaptic targeting by Alzheimer's-related amyloid beta oligomers publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3432-04.2004 – volume: 60 start-page: 246 year: 2003 ident: 2024110407435006800_awt062-B10 article-title: Apolipoprotein E epsilon4 allele, AD pathology, and the clinical expression of Alzheimer's disease publication-title: Neurology doi: 10.1212/01.WNL.0000042478.08543.F7 – volume: 61 start-page: 378 year: 2004 ident: 2024110407435006800_awt062-B9 article-title: Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function publication-title: Arch Neurol doi: 10.1001/archneur.61.3.378 – volume: 33 start-page: 381 year: 2010 ident: 2024110407435006800_awt062-B55 article-title: ‘Too much good news'—are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer's disease? publication-title: Trends Neurosci doi: 10.1016/j.tins.2010.05.004 – volume: 15 start-page: 349 year: 2012 ident: 2024110407435006800_awt062-B5 article-title: The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes publication-title: Nat Neurosci doi: 10.1038/nn.3028 – volume: 284 start-page: 4230 year: 2009 ident: 2024110407435006800_awt062-B31 article-title: Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer publication-title: J Biol Chem doi: 10.1074/jbc.M808591200 – volume: 41 start-page: 17 year: 1997 ident: 2024110407435006800_awt062-B21 article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease publication-title: Ann Neurol doi: 10.1002/ana.410410106 – volume: 151 start-page: 745 year: 2008 ident: 2024110407435006800_awt062-B35 article-title: Plaque-bearing mice with reduced levels of oligomeric amyloid-beta assemblies have intact memory function publication-title: Neuroscience doi: 10.1016/j.neuroscience.2007.10.054 – volume: 277 start-page: 3051 year: 2010 ident: 2024110407435006800_awt062-B41 article-title: Progressive accumulation of amyloid-beta oligomers in Alzheimer's disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins publication-title: FEBS J doi: 10.1111/j.1742-4658.2010.07719.x – volume: 101 start-page: 284 year: 2004 ident: 2024110407435006800_awt062-B44 article-title: Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2635903100 – volume: 14 start-page: 837 year: 2008 ident: 2024110407435006800_awt062-B48 article-title: Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory publication-title: Nat Med doi: 10.1038/nm1782 – volume: 7 start-page: 280 year: 2011 ident: 2024110407435006800_awt062-B51 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.003 – volume: 15 start-page: 447 year: 1993 ident: 2024110407435006800_awt062-B54 article-title: Learning, forgetting, and retrieval of everyday material across the adult life span publication-title: J Clin Exp Neuropsychol doi: 10.1080/01688639308402570 – volume: 67 start-page: 441 year: 2006 ident: 2024110407435006800_awt062-B11 article-title: Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline publication-title: Neurology doi: 10.1212/01.wnl.0000228244.10416.20 – volume: 282 start-page: 23818 year: 2007 ident: 2024110407435006800_awt062-B15 article-title: Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models publication-title: J Biol Chem doi: 10.1074/jbc.M701078200 – volume: 1097 start-page: 114 year: 2007 ident: 2024110407435006800_awt062-B16 article-title: Imaging and CSF studies in the preclinical diagnosis of Alzheimer's disease publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1379.012 – volume: 281 start-page: 39413 year: 2006 ident: 2024110407435006800_awt062-B39 article-title: Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles publication-title: J Biol Chem doi: 10.1074/jbc.M608485200 – volume: 316 start-page: 750 year: 2007 ident: 2024110407435006800_awt062-B45 article-title: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model publication-title: Science doi: 10.1126/science.1141736 – volume: 9 start-page: 628 year: 2012 ident: 2024110407435006800_awt062-B7 article-title: Overview and findings from the religious orders study publication-title: Curr Alzheimer Res doi: 10.2174/156720512801322573 – volume: 309 start-page: 476 year: 2005 ident: 2024110407435006800_awt062-B47 article-title: Tau suppression in a neurodegenerative mouse model improves memory function publication-title: Science doi: 10.1126/science.1113694 – volume: 440 start-page: 352 year: 2006 ident: 2024110407435006800_awt062-B34 article-title: A specific amyloid-beta protein assembly in the brain impairs memory publication-title: Nature doi: 10.1038/nature04533 – volume: 20 start-page: 4050 year: 2000 ident: 2024110407435006800_awt062-B37 article-title: High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-11-04050.2000 – volume: 284 start-page: 32895 year: 2009 ident: 2024110407435006800_awt062-B38 article-title: Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains publication-title: J Biol Chem doi: 10.1074/jbc.M109.000208 – volume: 99 start-page: 6364 year: 2002 ident: 2024110407435006800_awt062-B42 article-title: Tau is essential to beta-amyloid-induced neurotoxicity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.092136199 – volume: 670 start-page: 45 year: 2011 ident: 2024110407435006800_awt062-B49 article-title: Detecting abeta*56 oligomers in brain tissues publication-title: Methods Mol Biol doi: 10.1007/978-1-60761-744-0_4 – volume: 33 start-page: 825 e1 year: 2012 ident: 2024110407435006800_awt062-B3 article-title: Different beta-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2011.05.003 – volume: 256 start-page: 184 year: 1992 ident: 2024110407435006800_awt062-B23 article-title: Alzheimer's disease: the amyloid cascade hypothesis publication-title: Science doi: 10.1126/science.1566067 – volume: 30 start-page: 6315 year: 2010 ident: 2024110407435006800_awt062-B52 article-title: Blood-borne amyloid-beta dimer correlates with clinical markers of Alzheimer's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5180-09.2010 – volume: 66 start-page: 632 year: 2009 ident: 2024110407435006800_awt062-B40 article-title: Preclinical evidence of Alzheimer changes: convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography findings publication-title: Arch Neurol doi: 10.1001/archneurol.2009.59 – volume: 27 start-page: 169 year: 2006 ident: 2024110407435006800_awt062-B6 article-title: Decision rules guiding the clinical diagnosis of Alzheimer's disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study publication-title: Neuroepidemiology doi: 10.1159/000096129 – volume: 69 start-page: 203 year: 2011 ident: 2024110407435006800_awt062-B20 article-title: Anti-abeta therapeutics in Alzheimer's disease: the need for a paradigm shift publication-title: Neuron doi: 10.1016/j.neuron.2011.01.002 – volume: 68 start-page: 220 year: 2010 ident: 2024110407435006800_awt062-B17 article-title: Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers publication-title: Ann Neurol doi: 10.1002/ana.22052 – volume: 367 start-page: 795 year: 2012 ident: 2024110407435006800_awt062-B4 article-title: Clinical and biomarker changes in dominantly inherited Alzheimer's disease publication-title: N Engl J Med doi: 10.1056/NEJMoa1202753 – reference: 35552385 - Brain. 2022 May 13;: |
SSID | ssj0014326 |
Score | 2.5702786 |
Snippet | Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that... Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that... Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid- beta aggregates... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1383 |
SubjectTerms | Adolescence Adolescent Adult Aged Aged, 80 and over Aging - metabolism Aging - pathology Aging - physiology Alzheimer Disease - etiology Alzheimer Disease - metabolism Alzheimer Disease - pathology Amyloid beta-Peptides - chemistry Amyloid beta-Peptides - metabolism Biological and medical sciences Brain Chemistry - physiology Child Child, Preschool Cognition - physiology Cohort Studies Cross-Sectional Studies Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Female Follow-Up Studies Humans Infant Male Medical sciences Middle Aged Neurology Original Plaque, Amyloid - etiology Plaque, Amyloid - metabolism Plaque, Amyloid - pathology Protein Multimerization Young Adult |
Title | Brain amyloid-β oligomers in ageing and Alzheimer’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23576130 https://www.proquest.com/docview/1346579410 https://www.proquest.com/docview/1352293822 https://pubmed.ncbi.nlm.nih.gov/PMC3634198 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKkBDShPhf-ZmCRK-qdEnsJM4NUld1DEYRF0XaXWQnLi10abW0VOyK1-A19iA8BE_C8U_dBJUJdhNViROrPp-Pv3N8fA5CLwMshGABd5MkjMFAyYTLSR64AgN7ZTHhI5VMZ_A-Ov5I3p6Gp43GZSVqabngnexi67mS60gV7oFc5SnZ_5Cs_SjcgN8gX7iChOH6TzI-lPUd2uwMjO5J7rZ6_dZh0J5NJ59m0hstXRmgLdanELvTi7GYyGIpJr4hKWvbM5-r39xW6EN7D2hMK96Dd6Is9F67cqN-m36Vb_c71nEzlppfxwtLrrlqd-2z17BMrs8LAUg3-_sny_LLbGUKalfj-o13wq_EAl516rGmkSOXJjr5bEdoJUwizwUqEtW0tM6TYuAYVnSuj3UpHLN-A6WlW9cGnTeLnyuPyxFbLTy9DlSAMj9TSJEpgKRdtVkjbeTih0EPRzIHHr2BbgZgmigz_s2J3bkiWJX4s__LHLaAzg9U1we6Y5mE2vRSY0S7c1bC5BzpqirbzJ4_o3crdGh4F90xdozT1aC8hxqiuI9uDUykxgP0SuHIWWPz56VjcenI-wqXDqDKsbj89f1H6RhEPkTDo_6wd-yaWh1uRki8gLkNXDcQlEUMg40B60LsSW6JgzymoYiynPk8AzpJskAOEcOcUUETHvoszgl-hHaKWSH2kOONCMk8JjzQEiQWIw4kOOdxTjHjlAividrr4Uozk8dellOZpjqeAqdqnFM9zk3Usq3nOn_LX9rt10beNgZ6L2lx0kQv1qJIQQPLbTVWiNmyTH1MohCWNd-7qg3YOQkGNt5Ej7X4Nj0YHDRRXBOsbSAzwNefFJOxygRvoPjk2m8-Rbc3s_YZ2lmcL8VzYNkLvq9g_RuIzNN4 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+amyloid-%CE%B2+oligomers+in+ageing+and+Alzheimer%E2%80%99s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Lesn%C3%A9%2C+Sylvain+E.&rft.au=Sherman%2C+Mathew+A.&rft.au=Grant%2C+Marianne&rft.au=Kuskowski%2C+Michael&rft.date=2013-05-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=136&rft.issue=5&rft.spage=1383&rft.epage=1398&rft_id=info:doi/10.1093%2Fbrain%2Fawt062&rft_id=info%3Apmid%2F23576130&rft.externalDocID=PMC3634198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |