Brain amyloid-β oligomers in ageing and Alzheimer’s disease

Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effe...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 136; no. 5; pp. 1383 - 1398
Main Authors Lesné, Sylvain E., Sherman, Mathew A., Grant, Marianne, Kuskowski, Michael, Schneider, Julie A., Bennett, David A., Ashe, Karen H.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer’s disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models—amyloid-β trimers, Aβ*56 and amyloid-β dimers—in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer’s disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer’s disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer’s disease.
AbstractList Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models-amyloid-β trimers, Aβ*56 and amyloid-β dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease.Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models-amyloid-β trimers, Aβ*56 and amyloid-β dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease.
Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid-β in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid-β aggregates are the most characteristic feature of Alzheimer’s disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid-β aggregates, including soluble amyloid-β oligomers. Different soluble amyloid-β oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid-β oligomers previously described in mouse models—amyloid-β trimers, Aβ*56 and amyloid-β dimers—in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer’s disease. As in mouse models, where amyloid-β trimers appear to be the fundamental amyloid-β assembly unit of Aβ*56 and are present in young mice prior to memory decline, amyloid-β trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. Aβ*56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid-β dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between Aβ*56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between Aβ*56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid-β dimers or amyloid-β trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid-β dimers, but the lowest levels of Aβ*56 and amyloid-β trimers, in subjects with probable Alzheimer’s disease. In conclusion, in cognitively normal adults Aβ*56 increased ahead of amyloid-β dimers or amyloid-β trimers, and pathological tau proteins and postsynaptic proteins correlated with Aβ*56, but not amyloid-β dimers or amyloid-β trimers. We propose that Aβ*56 may play a pathogenic role very early in the pathogenesis of Alzheimer’s disease.
Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid- beta aggregates that initiate a cascade of molecular events culminating in widespread neurodegeneration. The microtubule binding protein tau may mediate the effects of amyloid- beta in this cascade. Amyloid plaques comprised of insoluble, fibrillar amyloid- beta aggregates are the most characteristic feature of Alzheimer's disease. However, the correspondence between the distribution of plaques and the pattern of neurodegeneration is tenuous. This discrepancy has stimulated the investigation of other amyloid- beta aggregates, including soluble amyloid- beta oligomers. Different soluble amyloid- beta oligomers have been studied in several mouse models, but not systematically in humans. Here, we measured three amyloid- beta oligomers previously described in mouse models-amyloid- beta trimers, A beta *56 and amyloid- beta dimers-in brain tissue from 75 cognitively intact individuals, ranging from young children to the elderly, and 58 impaired subjects with mild cognitive impairment or probable Alzheimer's disease. As in mouse models, where amyloid- beta trimers appear to be the fundamental amyloid- beta assembly unit of A beta *56 and are present in young mice prior to memory decline, amyloid- beta trimers in humans were present in children and adolescents; their levels rose gradually with age and were significantly above baseline in subjects in their 70s. A beta *56 levels were negligible in children and young adults, rose significantly above baseline in subjects in their 40s and increased steadily thereafter. Amyloid- beta dimers were undetectable until subjects were in their 60s; their levels then increased sharply and correlated with plaque load. Remarkably, in cognitively intact individuals we found strong positive correlations between A beta *56 and two pathological forms of soluble tau (tau-CP13 and tau-Alz50), and negative correlations between A beta *56 and two postsynaptic proteins (drebrin and fyn kinase), but none between amyloid- beta dimers or amyloid- beta trimers and tau or synaptic proteins. Comparing impaired with age-matched unimpaired subjects, we found the highest levels of amyloid- beta dimers, but the lowest levels of A beta *56 and amyloid- beta trimers, in subjects with probable Alzheimer's disease. In conclusion, in cognitively normal adults A beta *56 increased ahead of amyloid- beta dimers or amyloid- beta trimers, and pathological tau proteins and postsynaptic proteins correlated with A beta *56, but not amyloid- beta dimers or amyloid- beta trimers. We propose that A beta *56 may play a pathogenic role very early in the pathogenesis of Alzheimer's disease.
Author Schneider, Julie A.
Lesné, Sylvain E.
Grant, Marianne
Kuskowski, Michael
Bennett, David A.
Sherman, Mathew A.
Ashe, Karen H.
AuthorAffiliation 2 N. Bud Grossman Centre for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA
5 Rush Alzheimer’s Disease Centre, Rush University Medical Centre, Chicago, IL 60612 USA
4 Department of Neurology, University of Minnesota, Minneapolis, MN 55455 USA
3 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA
6 Geriatric Research Education Clinical Centre, VA Medical Centre, Minneapolis, MN 55417 USA
1 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA
AuthorAffiliation_xml – name: 6 Geriatric Research Education Clinical Centre, VA Medical Centre, Minneapolis, MN 55417 USA
– name: 3 Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA
– name: 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA
– name: 4 Department of Neurology, University of Minnesota, Minneapolis, MN 55455 USA
– name: 5 Rush Alzheimer’s Disease Centre, Rush University Medical Centre, Chicago, IL 60612 USA
– name: 2 N. Bud Grossman Centre for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA
Author_xml – sequence: 1
  givenname: Sylvain E.
  surname: Lesné
  fullname: Lesné, Sylvain E.
– sequence: 2
  givenname: Mathew A.
  surname: Sherman
  fullname: Sherman, Mathew A.
– sequence: 3
  givenname: Marianne
  surname: Grant
  fullname: Grant, Marianne
– sequence: 4
  givenname: Michael
  surname: Kuskowski
  fullname: Kuskowski, Michael
– sequence: 5
  givenname: Julie A.
  surname: Schneider
  fullname: Schneider, Julie A.
– sequence: 6
  givenname: David A.
  surname: Bennett
  fullname: Bennett, David A.
– sequence: 7
  givenname: Karen H.
  surname: Ashe
  fullname: Ashe, Karen H.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27302159$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23576130$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1O3DAUhS1EBQPtrusqm0osSLn-ieNskAABrYTEhr1143gGV45N7QwIVrwGr9EH6UP0SZp0hv6JRVdXuvc7R8c-O2QzxGAJeUvhA4WGH7QJXTjAuwEk2yAzKiSUjFZyk8wAQJaqqWCb7OT8GYAKzuQW2Wa8qiXlMCOHx5O8wP7eR9eV374W0btF7G3KxbRfWBcWBYauOPIP19aNh--PT7noXLaY7Wvyao4-2zfruUuuzk6vTj6WF5fnn06OLkojRD2UloPkzCqUyGkFIFQNDCjlrKtVZaXpkLaGKioMmyIib1FZ1bQVxboTfJccrmxvlm1vO2PDkNDrm-R6TPc6otN_X4K71ot4q7nkgjZqNNhbG6T4ZWnzoHuXjfUeg43LrCmvGGu4Yuw_UCGruhEURvTdn7F-5Xn-3hF4vwYwG_TzhMG4_JurOYxVNSPHVpxJMedk59q4AQcXp9c4rynoqWv9s2u96noU7f8jevZ9Ef8BDpStYw
CitedBy_id crossref_primary_10_1016_j_phrs_2019_04_014
crossref_primary_10_1021_acscentsci_3c00592
crossref_primary_10_3389_fnins_2022_822420
crossref_primary_10_18632_oncotarget_4118
crossref_primary_10_1242_jcs_255752
crossref_primary_10_3389_fnagi_2024_1400544
crossref_primary_10_1159_000446283
crossref_primary_10_1002_qua_26344
crossref_primary_10_1038_nrneurol_2017_162
crossref_primary_10_3389_fnins_2019_00659
crossref_primary_10_1101_cshperspect_a024083
crossref_primary_10_3233_JAD_190458
crossref_primary_10_1007_s12035_020_01957_8
crossref_primary_10_1007_s00401_015_1489_x
crossref_primary_10_1186_s40478_014_0101_2
crossref_primary_10_1016_j_expneurol_2019_05_001
crossref_primary_10_1021_acs_nanolett_2c00149
crossref_primary_10_1021_acschemneuro_6b00108
crossref_primary_10_3389_fncel_2015_00191
crossref_primary_10_1016_j_redox_2025_103611
crossref_primary_10_1523_JNEUROSCI_1899_16_2016
crossref_primary_10_1002_med_21563
crossref_primary_10_3389_fncel_2020_00200
crossref_primary_10_3390_ijms19082415
crossref_primary_10_1038_mp_2016_62
crossref_primary_10_1186_s13195_020_00588_4
crossref_primary_10_1111_cns_12476
crossref_primary_10_1186_s13024_020_00393_5
crossref_primary_10_3389_fchem_2024_1367793
crossref_primary_10_1016_j_bbapap_2019_140264
crossref_primary_10_1002_jnr_23778
crossref_primary_10_1021_jacs_0c12729
crossref_primary_10_3389_fnins_2017_00254
crossref_primary_10_3389_fnagi_2019_00369
crossref_primary_10_3390_ijms22147366
crossref_primary_10_1016_j_cca_2015_01_035
crossref_primary_10_1111_jnc_13128
crossref_primary_10_1016_j_ajpath_2017_11_011
crossref_primary_10_1021_acschemneuro_8b00076
crossref_primary_10_1038_srep21101
crossref_primary_10_1007_s10571_020_01021_y
crossref_primary_10_1016_j_nbd_2014_04_018
crossref_primary_10_1523_JNEUROSCI_1967_16_2016
crossref_primary_10_3389_fphar_2018_01484
crossref_primary_10_1002_ana_25410
crossref_primary_10_18632_oncotarget_9821
crossref_primary_10_1186_alzrt226
crossref_primary_10_3390_ijms21124477
crossref_primary_10_1007_s11248_019_00166_x
crossref_primary_10_3892_mmr_2016_5618
crossref_primary_10_1136_jnnp_2021_327370
crossref_primary_10_1002_pro_3387
crossref_primary_10_1111_febs_14058
crossref_primary_10_1007_s00401_015_1449_5
crossref_primary_10_1093_brain_awx132
crossref_primary_10_1016_j_exger_2015_11_016
crossref_primary_10_1016_j_mcn_2018_02_011
crossref_primary_10_1021_acschemneuro_0c00535
crossref_primary_10_1038_s41598_021_98644_y
crossref_primary_10_1523_JNEUROSCI_4081_14_2015
crossref_primary_10_1016_S1353_8020_13_70021_X
crossref_primary_10_1038_s41467_019_10217_w
crossref_primary_10_3389_fneur_2021_585189
crossref_primary_10_1007_s11164_019_03974_2
crossref_primary_10_1089_rej_2017_2049
crossref_primary_10_1016_j_neulet_2016_12_060
crossref_primary_10_7554_eLife_28401
crossref_primary_10_3390_molecules23020283
crossref_primary_10_1007_s00018_020_03464_4
crossref_primary_10_1038_aps_2017_28
crossref_primary_10_1080_1028415X_2016_1199114
crossref_primary_10_1007_s00401_014_1375_y
crossref_primary_10_1016_j_bbrep_2018_12_005
crossref_primary_10_1016_j_neuint_2019_03_014
crossref_primary_10_1021_acsnano_7b05434
crossref_primary_10_1007_s12640_017_9765_2
crossref_primary_10_1111_acel_12978
crossref_primary_10_18632_aging_203634
crossref_primary_10_1111_jnc_14118
crossref_primary_10_1136_bmj_o2041
crossref_primary_10_1371_journal_pone_0111898
crossref_primary_10_1016_j_molmed_2022_11_008
crossref_primary_10_1021_acschemneuro_6b00438
crossref_primary_10_1371_journal_pone_0111899
crossref_primary_10_1186_1742_2094_11_54
crossref_primary_10_1186_s13195_022_01104_6
crossref_primary_10_1371_journal_pone_0185102
crossref_primary_10_1016_j_physbeh_2016_03_016
crossref_primary_10_1038_nrneurol_2013_223
crossref_primary_10_1021_acssensors_3c02167
crossref_primary_10_1016_j_tins_2017_04_002
crossref_primary_10_1159_000509626
crossref_primary_10_3233_JAD_150926
crossref_primary_10_1038_s41570_021_00254_9
crossref_primary_10_3233_JAD_215497
crossref_primary_10_1016_j_neurobiolaging_2014_05_023
crossref_primary_10_1016_j_ajpath_2019_04_010
crossref_primary_10_1016_j_biopha_2022_113769
crossref_primary_10_1523_JNEUROSCI_2080_16_2016
crossref_primary_10_3233_ADR_210035
crossref_primary_10_1007_s12035_019_01819_y
crossref_primary_10_1038_s41598_018_22979_2
crossref_primary_10_1074_jbc_RA119_012386
crossref_primary_10_1002_acn3_446
crossref_primary_10_3233_ADR_220068
crossref_primary_10_1038_s41467_018_03509_0
crossref_primary_10_3233_JAD_210226
crossref_primary_10_3389_fchem_2015_00017
crossref_primary_10_1186_2193_1801_3_161
crossref_primary_10_3390_biomedicines10071743
crossref_primary_10_3390_ijms21228651
crossref_primary_10_1007_s12035_015_9143_0
crossref_primary_10_1021_acs_jpcb_1c00036
crossref_primary_10_3233_JAD_191346
crossref_primary_10_1016_j_brainres_2017_09_026
crossref_primary_10_1016_j_expneurol_2016_06_006
crossref_primary_10_1039_C9NJ00820A
crossref_primary_10_3233_JAD_240212
crossref_primary_10_1021_acs_analchem_2c03825
crossref_primary_10_1001_jamaneurol_2019_0834
crossref_primary_10_1016_j_bbamem_2014_04_011
crossref_primary_10_1038_srep13489
crossref_primary_10_19163_2307_9266_2019_7_4_198_207
crossref_primary_10_1093_brain_awv006
crossref_primary_10_1093_brain_awv127
crossref_primary_10_1111_jnc_15466
crossref_primary_10_1021_bi500894q
crossref_primary_10_1016_j_phrs_2023_106743
crossref_primary_10_1186_s13195_017_0293_3
crossref_primary_10_1002_psc_3312
crossref_primary_10_1016_j_bbapap_2019_07_010
crossref_primary_10_1002_dad2_70064
crossref_primary_10_1016_j_neurobiolaging_2015_03_005
crossref_primary_10_3389_fnagi_2021_650930
crossref_primary_10_1021_acs_jmedchem_4c00252
crossref_primary_10_1371_journal_pone_0126317
crossref_primary_10_1038_srep38187
crossref_primary_10_1016_j_bcp_2014_01_037
crossref_primary_10_1186_s40478_018_0527_z
crossref_primary_10_3389_fnagi_2019_00059
crossref_primary_10_1007_s12035_023_03846_2
crossref_primary_10_1021_acschemneuro_8b00185
crossref_primary_10_1038_s41380_021_01249_0
crossref_primary_10_1177_1073858414529828
crossref_primary_10_3233_JAD_215399
crossref_primary_10_3389_fnagi_2019_00174
crossref_primary_10_1007_s13361_018_1975_1
crossref_primary_10_1038_s41598_018_35004_3
crossref_primary_10_1038_s41598_019_40438_4
crossref_primary_10_1186_1750_1326_9_2
crossref_primary_10_1016_j_isci_2024_109239
crossref_primary_10_1111_jnc_13507
crossref_primary_10_1002_1873_3468_13919
crossref_primary_10_1021_acschemneuro_9b00602
crossref_primary_10_3390_cells10030649
crossref_primary_10_3390_ijms252313049
crossref_primary_10_1016_j_isci_2019_01_018
crossref_primary_10_1021_la502777h
crossref_primary_10_1016_j_neurobiolaging_2015_07_001
crossref_primary_10_1093_brain_awz066
crossref_primary_10_1002_prot_26212
crossref_primary_10_1021_jacs_6b01332
crossref_primary_10_1155_2013_950783
crossref_primary_10_4103_1673_5374_238606
crossref_primary_10_1002_alz_12084
crossref_primary_10_1111_jnc_14278
crossref_primary_10_1096_fj_201900322R
crossref_primary_10_1016_j_neurobiolaging_2014_09_004
crossref_primary_10_1021_cn500242z
crossref_primary_10_1021_acschemneuro_9b00337
crossref_primary_10_1186_s12974_021_02099_x
crossref_primary_10_1073_pnas_2219216120
crossref_primary_10_1038_s41598_019_46306_5
crossref_primary_10_1016_j_cbi_2023_110623
crossref_primary_10_1038_srep22728
crossref_primary_10_1016_j_neuroscience_2015_08_039
crossref_primary_10_1073_pnas_1704698114
crossref_primary_10_1080_01616412_2018_1548747
crossref_primary_10_1111_jnc_13072
crossref_primary_10_1007_s00018_019_03178_2
crossref_primary_10_1039_C7CP05959K
crossref_primary_10_1002_jcb_30141
crossref_primary_10_1016_j_freeradbiomed_2020_02_022
crossref_primary_10_1038_emm_2013_125
crossref_primary_10_1016_j_neurobiolaging_2017_04_027
crossref_primary_10_1111_jnc_13873
crossref_primary_10_1002_adma_202413614
crossref_primary_10_1016_j_neuroscience_2019_04_007
crossref_primary_10_3389_fnagi_2014_00075
crossref_primary_10_1016_j_neuint_2017_08_010
crossref_primary_10_1111_bpa_12226
crossref_primary_10_1016_j_jtemb_2013_07_003
crossref_primary_10_1038_s41598_019_38749_7
crossref_primary_10_1021_acs_bioconjchem_8b00387
crossref_primary_10_2174_1567205016666190321163438
crossref_primary_10_1038_s41582_018_0116_6
crossref_primary_10_3389_fnagi_2020_00092
crossref_primary_10_1002_pro_4639
crossref_primary_10_1038_nrn_2016_141
crossref_primary_10_1103_PhysRevE_105_024405
crossref_primary_10_1186_s13024_016_0136_x
crossref_primary_10_1073_pnas_1820585116
crossref_primary_10_1126_scisignal_aal2021
crossref_primary_10_3233_JAD_150741
crossref_primary_10_1016_j_phanu_2015_07_001
crossref_primary_10_1016_j_nbd_2015_07_016
crossref_primary_10_2174_1567205016666190827123222
crossref_primary_10_1186_s13024_016_0099_y
crossref_primary_10_1371_journal_pone_0180905
crossref_primary_10_3390_s20061760
crossref_primary_10_1007_s40520_017_0741_8
crossref_primary_10_1016_j_nbd_2015_08_024
crossref_primary_10_1007_s00401_016_1546_0
crossref_primary_10_1111_jnc_13772
crossref_primary_10_1155_2015_918573
crossref_primary_10_1016_j_neulet_2021_136114
crossref_primary_10_3233_JAD_179939
crossref_primary_10_3389_fneur_2019_01140
crossref_primary_10_1093_cercor_bhaa184
crossref_primary_10_1016_j_neurobiolaging_2018_03_033
crossref_primary_10_1007_s00401_016_1632_3
crossref_primary_10_3233_JAD_190711
crossref_primary_10_1021_acs_biochem_7b00831
crossref_primary_10_1093_eurheartj_ehae655
crossref_primary_10_1155_2014_813672
crossref_primary_10_3233_JAD_161191
crossref_primary_10_1016_j_heliyon_2018_e00511
crossref_primary_10_1074_jbc_M113_519355
crossref_primary_10_1186_s40478_015_0258_3
crossref_primary_10_3390_ani12121535
crossref_primary_10_1016_j_ijbiomac_2019_02_148
crossref_primary_10_1080_19336896_2015_1123371
crossref_primary_10_1016_j_jmgm_2022_108207
crossref_primary_10_1016_j_neurobiolaging_2017_11_007
crossref_primary_10_4103_1673_5374_259604
crossref_primary_10_3390_ijms17020152
crossref_primary_10_3934_biophy_2019_1_1
crossref_primary_10_1080_10408363_2019_1678011
crossref_primary_10_1038_s41380_018_0266_3
crossref_primary_10_3233_JAD_179941
crossref_primary_10_1016_j_fmre_2024_04_013
crossref_primary_10_1093_brain_awu255
crossref_primary_10_1021_acschemneuro_0c00360
crossref_primary_10_1007_s00401_015_1419_y
crossref_primary_10_3389_fphys_2016_00134
crossref_primary_10_1016_j_ebiom_2016_03_035
crossref_primary_10_1021_acs_jpcb_2c04797
crossref_primary_10_1002_cmdc_202100428
crossref_primary_10_1039_D3AN01773G
crossref_primary_10_1080_1028415X_2020_1806190
crossref_primary_10_1007_s12272_013_0238_8
crossref_primary_10_1074_jbc_M116_744730
crossref_primary_10_1186_s13024_015_0057_0
crossref_primary_10_1074_jbc_M114_557231
crossref_primary_10_1016_j_bbi_2018_03_007
crossref_primary_10_1038_mp_2016_37
crossref_primary_10_1038_nn_4018
crossref_primary_10_2174_1568026620666200916123000
crossref_primary_10_2174_1567205017666200522210957
crossref_primary_10_1371_journal_pone_0232266
crossref_primary_10_1002_pro_4728
crossref_primary_10_1111_cns_12260
crossref_primary_10_3233_JAD_150514
crossref_primary_10_1016_j_cbi_2014_12_006
crossref_primary_10_1038_s41598_025_93230_y
crossref_primary_10_1002_bit_26059
crossref_primary_10_1007_s11011_014_9527_2
crossref_primary_10_1074_jbc_M116_744722
crossref_primary_10_2174_0115672050277001231213073043
crossref_primary_10_3390_cells12111477
crossref_primary_10_1021_acs_accounts_7b00554
crossref_primary_10_3233_JAD_171110
crossref_primary_10_1016_j_nbd_2017_08_012
crossref_primary_10_3390_ijms22031102
crossref_primary_10_1039_C8CC01380B
crossref_primary_10_1016_j_jep_2020_113640
crossref_primary_10_1016_j_neurobiolaging_2016_03_019
crossref_primary_10_1007_s00018_023_04785_w
crossref_primary_10_1002_dad2_12193
crossref_primary_10_3390_biophysica2020010
crossref_primary_10_1016_j_bbamem_2019_183061
crossref_primary_10_15252_emmm_202113952
crossref_primary_10_1016_j_celrep_2015_05_021
crossref_primary_10_1002_pep2_24083
crossref_primary_10_1016_j_cub_2020_02_083
crossref_primary_10_1021_jacs_6b11748
crossref_primary_10_1038_s41598_021_90680_y
crossref_primary_10_1074_jbc_M115_641738
crossref_primary_10_1111_jnc_13443
crossref_primary_10_1016_j_tibtech_2017_06_002
crossref_primary_10_1007_s00018_014_1769_y
crossref_primary_10_1016_j_neuropharm_2017_03_036
crossref_primary_10_7554_eLife_53995
crossref_primary_10_1002_hbm_22782
crossref_primary_10_1371_journal_pone_0248027
crossref_primary_10_1016_j_advms_2022_08_003
crossref_primary_10_3390_cells9051215
crossref_primary_10_1371_journal_pone_0114041
crossref_primary_10_1016_j_jalz_2014_04_009
crossref_primary_10_1016_j_toxrep_2024_101879
crossref_primary_10_3390_ijms241914488
crossref_primary_10_1080_14737175_2018_1531706
crossref_primary_10_21307_ane_2020_021
crossref_primary_10_1093_brain_awt375
crossref_primary_10_3389_fneur_2015_00186
crossref_primary_10_3390_cells12081204
crossref_primary_10_1186_s13195_017_0324_0
crossref_primary_10_1080_23746149_2020_1770627
crossref_primary_10_1080_07391102_2025_2475221
crossref_primary_10_1371_journal_pone_0169509
crossref_primary_10_3389_fnagi_2014_00176
crossref_primary_10_1016_j_jalz_2016_03_011
crossref_primary_10_1021_acschemneuro_7b00469
crossref_primary_10_1021_cr500638n
crossref_primary_10_1016_j_neuron_2017_12_001
crossref_primary_10_1021_acsnano_9b08572
crossref_primary_10_1177_0271678X16654920
crossref_primary_10_1038_ncomms9897
crossref_primary_10_3389_fnmol_2019_00176
crossref_primary_10_1016_j_ajpath_2015_09_018
crossref_primary_10_1016_j_bioorg_2020_104382
crossref_primary_10_12779_dnd_2018_17_2_41
crossref_primary_10_3390_membranes10090226
crossref_primary_10_1016_j_omtn_2017_05_004
crossref_primary_10_1111_jnc_15762
crossref_primary_10_1002_mds_26624
crossref_primary_10_2174_1570159X19666210121163224
crossref_primary_10_1016_j_bbadis_2019_04_019
crossref_primary_10_1016_j_expneurol_2023_114344
crossref_primary_10_1177_0271678X211005877
crossref_primary_10_1016_j_sbi_2014_12_004
crossref_primary_10_1016_j_neuron_2015_03_017
crossref_primary_10_1021_acs_jpca_8b11251
crossref_primary_10_1016_j_neurobiolaging_2018_06_025
crossref_primary_10_1111_jnc_14554
crossref_primary_10_1016_j_jalz_2015_01_005
crossref_primary_10_1186_s40478_014_0175_x
Cites_doi 10.1016/j.cell.2010.06.036
10.1212/01.WNL.0000152982.47274.9E
10.1001/jamaneurol.2013.48
10.1073/pnas.090106797
10.3233/JAD-2011-101995
10.1523/JNEUROSCI.5543-03.2004
10.1111/j.1471-4159.2011.07478.x
10.1212/01.WNL.0000063311.58879.01
10.1038/6374
10.1523/JNEUROSCI.0172-12.2012
10.1016/j.neurobiolaging.2009.11.007
10.1007/BF00308809
10.1126/science.1079469
10.1016/j.jalz.2010.11.002
10.1126/science.3083509
10.1016/S1474-4422(09)70299-6
10.1126/science.274.5284.99
10.1073/pnas.0409336102
10.1523/JNEUROSCI.5161-07.2008
10.1016/j.neuron.2010.04.031
10.1016/j.neuron.2010.11.030
10.1093/brain/awq065
10.1002/ana.21509
10.1523/JNEUROSCI.3432-04.2004
10.1212/01.WNL.0000042478.08543.F7
10.1001/archneur.61.3.378
10.1016/j.tins.2010.05.004
10.1038/nn.3028
10.1074/jbc.M808591200
10.1002/ana.410410106
10.1016/j.neuroscience.2007.10.054
10.1111/j.1742-4658.2010.07719.x
10.1073/pnas.2635903100
10.1038/nm1782
10.1016/j.jalz.2011.03.003
10.1080/01688639308402570
10.1212/01.wnl.0000228244.10416.20
10.1074/jbc.M701078200
10.1196/annals.1379.012
10.1074/jbc.M608485200
10.1126/science.1141736
10.2174/156720512801322573
10.1126/science.1113694
10.1038/nature04533
10.1523/JNEUROSCI.20-11-04050.2000
10.1074/jbc.M109.000208
10.1073/pnas.092136199
10.1007/978-1-60761-744-0_4
10.1016/j.neurobiolaging.2011.05.003
10.1126/science.1566067
10.1523/JNEUROSCI.5180-09.2010
10.1001/archneurol.2009.59
10.1159/000096129
10.1016/j.neuron.2011.01.002
10.1002/ana.22052
10.1056/NEJMoa1202753
ContentType Journal Article
Copyright 2014 INIST-CNRS
The Author (2013). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: The Author (2013). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1093/brain/awt062
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE - Academic

Neurosciences Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 1398
ExternalDocumentID PMC3634198
23576130
27302159
10_1093_brain_awt062
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30AG10161
– fundername: NIA NIH HHS
  grantid: K99AG031293
– fundername: NIA NIH HHS
  grantid: R01 AG015819
– fundername: NINDS NIH HHS
  grantid: R01 NS033249
– fundername: NINDS NIH HHS
  grantid: R01NS33249
– fundername: NIA NIH HHS
  grantid: R01AG15819
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZCG
ZKX
~91
.55
.GJ
1CY
354
3O-
AAGKA
AAPGJ
AAQQT
AAWDT
AAYJJ
ABDPE
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACBNA
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFNX
AFFQV
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
CXTWN
DFGAJ
EIHJH
ELUNK
FEDTE
H13
HVGLF
IQODW
MBLQV
MBTAY
MVM
N4W
NTWIH
OBFPC
OHT
O~Y
PB-
QBD
RIG
RNI
RZF
TCN
TMA
VH1
X7M
XJT
XOL
YQJ
ZGI
ZKB
ZXP
6.Y
ABQTQ
ABSAR
ADJQC
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
M49
NPM
VXZ
7X8
7TK
5PM
ID FETCH-LOGICAL-c447t-e30632e8a6a315004870201132d785e6cda1bc1814c24326a3ba8e89b51a7d43
ISSN 0006-8950
1460-2156
IngestDate Thu Aug 21 14:10:11 EDT 2025
Fri Jul 11 08:37:20 EDT 2025
Fri Jul 11 06:19:04 EDT 2025
Wed Feb 19 02:26:37 EST 2025
Mon Jul 21 09:13:32 EDT 2025
Tue Jul 01 00:46:05 EDT 2025
Thu Apr 24 23:07:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 56
Nervous system diseases
Alzheimer disease
trimer
Ageing
Central nervous system
dimer
amyloid-β
oligomer
Alzheimer
Cerebral disorder
Encephalon

Central nervous system disease
Degenerative disease
Amyloid
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-e30632e8a6a315004870201132d785e6cda1bc1814c24326a3ba8e89b51a7d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/brain/article-pdf/136/5/1383/13796412/awt062.pdf
PMID 23576130
PQID 1346579410
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3634198
proquest_miscellaneous_1352293822
proquest_miscellaneous_1346579410
pubmed_primary_23576130
pascalfrancis_primary_27302159
crossref_citationtrail_10_1093_brain_awt062
crossref_primary_10_1093_brain_awt062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Bennett (2024110407435006800_awt062-B8) 2005; 64
Sherman (2024110407435006800_awt062-B49) 2011; 670
Zahs (2024110407435006800_awt062-B55) 2010; 33
Klyubin (2024110407435006800_awt062-B56) 2008; 28
Reed (2024110407435006800_awt062-B43) 2011; 32
Bennett (2024110407435006800_awt062-B10) 2003; 60
Santacruz (2024110407435006800_awt062-B47) 2005; 309
Hoover (2024110407435006800_awt062-B25) 2010; 68
Cheng (2024110407435006800_awt062-B15) 2007; 282
Youngjohn (2024110407435006800_awt062-B54) 1993; 15
Handoko (2024110407435006800_awt062-B22) 2013
Sperling (2024110407435006800_awt062-B51) 2011; 7
Wolozin (2024110407435006800_awt062-B53) 1986; 232
Bao (2024110407435006800_awt062-B3) 2012; 33
Bateman (2024110407435006800_awt062-B4) 2012; 367
Mucke (2024110407435006800_awt062-B37) 2000; 20
Reiman (2024110407435006800_awt062-B44) 2004; 101
Hsiao (2024110407435006800_awt062-B26) 1996; 274
Boyle (2024110407435006800_awt062-B11) 2006; 67
Giannakopoulos (2024110407435006800_awt062-B19) 2003; 60
Bennett (2024110407435006800_awt062-B7) 2012; 9
Ittner (2024110407435006800_awt062-B27) 2010; 142
Jack (2024110407435006800_awt062-B28) 2010; 9
Braak (2024110407435006800_awt062-B12) 1991; 82
Rapoport (2024110407435006800_awt062-B42) 2002; 99
Pham (2024110407435006800_awt062-B41) 2010; 277
Golde (2024110407435006800_awt062-B20) 2011; 69
Bennett (2024110407435006800_awt062-B6) 2006; 27
Oddo (2024110407435006800_awt062-B39) 2006; 281
Larson (2024110407435006800_awt062-B33) 2012; 120
Noguchi (2024110407435006800_awt062-B38) 2009; 284
Georganopoulou (2024110407435006800_awt062-B18) 2005; 102
Villemagne (2024110407435006800_awt062-B52) 2010; 30
Gandy (2024110407435006800_awt062-B17) 2010; 68
Kayed (2024110407435006800_awt062-B30) 2003; 300
Chapman (2024110407435006800_awt062-B14) 1999; 2
Rocca (2024110407435006800_awt062-B46) 2011; 7
Ashe (2024110407435006800_awt062-B2) 2010; 66
Petrie (2024110407435006800_awt062-B40) 2009; 66
Kawarabayashi (2024110407435006800_awt062-B29) 2004; 24
Kayed (2024110407435006800_awt062-B31) 2009; 284
Hensley (2024110407435006800_awt062-B24) 2011; 24
Shankar (2024110407435006800_awt062-B48) 2008; 14
Chabrier (2024110407435006800_awt062-B13) 2012; 32
de Leon (2024110407435006800_awt062-B16) 2007; 1097
Lesne (2024110407435006800_awt062-B34) 2006; 440
Hardy (2024110407435006800_awt062-B23) 1992; 256
Mc Donald (2024110407435006800_awt062-B36) 2010; 133
Lacor (2024110407435006800_awt062-B32) 2004; 24
Roberson (2024110407435006800_awt062-B45) 2007; 316
Small (2024110407435006800_awt062-B50) 2000; 97
Benilova (2024110407435006800_awt062-B5) 2012; 15
Lesne (2024110407435006800_awt062-B35) 2008; 151
Amieva (2024110407435006800_awt062-B1) 2008; 64
Bennett (2024110407435006800_awt062-B9) 2004; 61
Gomez-Isla (2024110407435006800_awt062-B21) 1997; 41
35552385 - Brain. 2022 May 13
References_xml – volume: 142
  start-page: 387
  year: 2010
  ident: 2024110407435006800_awt062-B27
  article-title: Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.036
– volume: 64
  start-page: 834
  year: 2005
  ident: 2024110407435006800_awt062-B8
  article-title: Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000152982.47274.9E
– year: 2013
  ident: 2024110407435006800_awt062-B22
  article-title: Specific amyloid-β oligomers, but not amyloid-β(1-42), correlate with tau in cerebrospinal fluid from cognitively normal older adults
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2013.48
– volume: 97
  start-page: 6037
  year: 2000
  ident: 2024110407435006800_awt062-B50
  article-title: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.090106797
– volume: 24
  start-page: 767
  year: 2011
  ident: 2024110407435006800_awt062-B24
  article-title: Analysis of postmortem ventricular cerebrospinal fluid from patients with and without dementia indicates association of vitamin E with neuritic plaques and specific measures of cognitive performance
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2011-101995
– volume: 24
  start-page: 3801
  year: 2004
  ident: 2024110407435006800_awt062-B29
  article-title: Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5543-03.2004
– volume: 120
  start-page: 125
  year: 2012
  ident: 2024110407435006800_awt062-B33
  article-title: Soluble Abeta oligomer production and toxicity
  publication-title: J Neurochem
  doi: 10.1111/j.1471-4159.2011.07478.x
– volume: 60
  start-page: 1495
  year: 2003
  ident: 2024110407435006800_awt062-B19
  article-title: Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000063311.58879.01
– volume: 2
  start-page: 271
  year: 1999
  ident: 2024110407435006800_awt062-B14
  article-title: Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice
  publication-title: Nat Neurosci
  doi: 10.1038/6374
– volume: 32
  start-page: 17345
  year: 2012
  ident: 2024110407435006800_awt062-B13
  article-title: Soluble abeta promotes wild-type tau pathology in vivo
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0172-12.2012
– volume: 32
  start-page: 1784
  year: 2011
  ident: 2024110407435006800_awt062-B43
  article-title: Cognitive effects of cell-derived and synthetically derived Abeta oligomers
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.11.007
– volume: 82
  start-page: 239
  year: 1991
  ident: 2024110407435006800_awt062-B12
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00308809
– volume: 300
  start-page: 486
  year: 2003
  ident: 2024110407435006800_awt062-B30
  article-title: Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis
  publication-title: Science
  doi: 10.1126/science.1079469
– volume: 7
  start-page: 80
  year: 2011
  ident: 2024110407435006800_awt062-B46
  article-title: Trends in the incidence and prevalence of Alzheimer's disease, dementia, and cognitive impairment in the United States
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2010.11.002
– volume: 232
  start-page: 648
  year: 1986
  ident: 2024110407435006800_awt062-B53
  article-title: A neuronal antigen in the brains of Alzheimer patients
  publication-title: Science
  doi: 10.1126/science.3083509
– volume: 9
  start-page: 119
  year: 2010
  ident: 2024110407435006800_awt062-B28
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 274
  start-page: 99
  year: 1996
  ident: 2024110407435006800_awt062-B26
  article-title: Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice
  publication-title: Science
  doi: 10.1126/science.274.5284.99
– volume: 102
  start-page: 2273
  year: 2005
  ident: 2024110407435006800_awt062-B18
  article-title: Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0409336102
– volume: 28
  start-page: 4231
  year: 2008
  ident: 2024110407435006800_awt062-B56
  article-title: Amyloid β protein dimer-containing human CSF disrupts plasticity: prevention by systemic passive immunization
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.5161-07.2008
– volume: 66
  start-page: 631
  year: 2010
  ident: 2024110407435006800_awt062-B2
  article-title: Probing the biology of Alzheimer's disease in mice
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.04.031
– volume: 68
  start-page: 1067
  year: 2010
  ident: 2024110407435006800_awt062-B25
  article-title: Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.11.030
– volume: 133
  start-page: 1328
  year: 2010
  ident: 2024110407435006800_awt062-B36
  article-title: The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia
  publication-title: Brain
  doi: 10.1093/brain/awq065
– volume: 64
  start-page: 492
  year: 2008
  ident: 2024110407435006800_awt062-B1
  article-title: Prodromal Alzheimer's disease: successive emergence of the clinical symptoms
  publication-title: Ann Neurol
  doi: 10.1002/ana.21509
– volume: 24
  start-page: 10191
  year: 2004
  ident: 2024110407435006800_awt062-B32
  article-title: Synaptic targeting by Alzheimer's-related amyloid beta oligomers
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3432-04.2004
– volume: 60
  start-page: 246
  year: 2003
  ident: 2024110407435006800_awt062-B10
  article-title: Apolipoprotein E epsilon4 allele, AD pathology, and the clinical expression of Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000042478.08543.F7
– volume: 61
  start-page: 378
  year: 2004
  ident: 2024110407435006800_awt062-B9
  article-title: Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function
  publication-title: Arch Neurol
  doi: 10.1001/archneur.61.3.378
– volume: 33
  start-page: 381
  year: 2010
  ident: 2024110407435006800_awt062-B55
  article-title: ‘Too much good news'—are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer's disease?
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2010.05.004
– volume: 15
  start-page: 349
  year: 2012
  ident: 2024110407435006800_awt062-B5
  article-title: The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes
  publication-title: Nat Neurosci
  doi: 10.1038/nn.3028
– volume: 284
  start-page: 4230
  year: 2009
  ident: 2024110407435006800_awt062-B31
  article-title: Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M808591200
– volume: 41
  start-page: 17
  year: 1997
  ident: 2024110407435006800_awt062-B21
  article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.410410106
– volume: 151
  start-page: 745
  year: 2008
  ident: 2024110407435006800_awt062-B35
  article-title: Plaque-bearing mice with reduced levels of oligomeric amyloid-beta assemblies have intact memory function
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2007.10.054
– volume: 277
  start-page: 3051
  year: 2010
  ident: 2024110407435006800_awt062-B41
  article-title: Progressive accumulation of amyloid-beta oligomers in Alzheimer's disease and in amyloid precursor protein transgenic mice is accompanied by selective alterations in synaptic scaffold proteins
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2010.07719.x
– volume: 101
  start-page: 284
  year: 2004
  ident: 2024110407435006800_awt062-B44
  article-title: Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2635903100
– volume: 14
  start-page: 837
  year: 2008
  ident: 2024110407435006800_awt062-B48
  article-title: Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory
  publication-title: Nat Med
  doi: 10.1038/nm1782
– volume: 7
  start-page: 280
  year: 2011
  ident: 2024110407435006800_awt062-B51
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.003
– volume: 15
  start-page: 447
  year: 1993
  ident: 2024110407435006800_awt062-B54
  article-title: Learning, forgetting, and retrieval of everyday material across the adult life span
  publication-title: J Clin Exp Neuropsychol
  doi: 10.1080/01688639308402570
– volume: 67
  start-page: 441
  year: 2006
  ident: 2024110407435006800_awt062-B11
  article-title: Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000228244.10416.20
– volume: 282
  start-page: 23818
  year: 2007
  ident: 2024110407435006800_awt062-B15
  article-title: Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M701078200
– volume: 1097
  start-page: 114
  year: 2007
  ident: 2024110407435006800_awt062-B16
  article-title: Imaging and CSF studies in the preclinical diagnosis of Alzheimer's disease
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1379.012
– volume: 281
  start-page: 39413
  year: 2006
  ident: 2024110407435006800_awt062-B39
  article-title: Reduction of soluble Abeta and tau, but not soluble Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M608485200
– volume: 316
  start-page: 750
  year: 2007
  ident: 2024110407435006800_awt062-B45
  article-title: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model
  publication-title: Science
  doi: 10.1126/science.1141736
– volume: 9
  start-page: 628
  year: 2012
  ident: 2024110407435006800_awt062-B7
  article-title: Overview and findings from the religious orders study
  publication-title: Curr Alzheimer Res
  doi: 10.2174/156720512801322573
– volume: 309
  start-page: 476
  year: 2005
  ident: 2024110407435006800_awt062-B47
  article-title: Tau suppression in a neurodegenerative mouse model improves memory function
  publication-title: Science
  doi: 10.1126/science.1113694
– volume: 440
  start-page: 352
  year: 2006
  ident: 2024110407435006800_awt062-B34
  article-title: A specific amyloid-beta protein assembly in the brain impairs memory
  publication-title: Nature
  doi: 10.1038/nature04533
– volume: 20
  start-page: 4050
  year: 2000
  ident: 2024110407435006800_awt062-B37
  article-title: High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-11-04050.2000
– volume: 284
  start-page: 32895
  year: 2009
  ident: 2024110407435006800_awt062-B38
  article-title: Isolation and characterization of patient-derived, toxic, high mass amyloid beta-protein (Abeta) assembly from Alzheimer disease brains
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.000208
– volume: 99
  start-page: 6364
  year: 2002
  ident: 2024110407435006800_awt062-B42
  article-title: Tau is essential to beta-amyloid-induced neurotoxicity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.092136199
– volume: 670
  start-page: 45
  year: 2011
  ident: 2024110407435006800_awt062-B49
  article-title: Detecting abeta*56 oligomers in brain tissues
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-60761-744-0_4
– volume: 33
  start-page: 825 e1
  year: 2012
  ident: 2024110407435006800_awt062-B3
  article-title: Different beta-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.05.003
– volume: 256
  start-page: 184
  year: 1992
  ident: 2024110407435006800_awt062-B23
  article-title: Alzheimer's disease: the amyloid cascade hypothesis
  publication-title: Science
  doi: 10.1126/science.1566067
– volume: 30
  start-page: 6315
  year: 2010
  ident: 2024110407435006800_awt062-B52
  article-title: Blood-borne amyloid-beta dimer correlates with clinical markers of Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5180-09.2010
– volume: 66
  start-page: 632
  year: 2009
  ident: 2024110407435006800_awt062-B40
  article-title: Preclinical evidence of Alzheimer changes: convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography findings
  publication-title: Arch Neurol
  doi: 10.1001/archneurol.2009.59
– volume: 27
  start-page: 169
  year: 2006
  ident: 2024110407435006800_awt062-B6
  article-title: Decision rules guiding the clinical diagnosis of Alzheimer's disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study
  publication-title: Neuroepidemiology
  doi: 10.1159/000096129
– volume: 69
  start-page: 203
  year: 2011
  ident: 2024110407435006800_awt062-B20
  article-title: Anti-abeta therapeutics in Alzheimer's disease: the need for a paradigm shift
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.01.002
– volume: 68
  start-page: 220
  year: 2010
  ident: 2024110407435006800_awt062-B17
  article-title: Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers
  publication-title: Ann Neurol
  doi: 10.1002/ana.22052
– volume: 367
  start-page: 795
  year: 2012
  ident: 2024110407435006800_awt062-B4
  article-title: Clinical and biomarker changes in dominantly inherited Alzheimer's disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1202753
– reference: 35552385 - Brain. 2022 May 13;:
SSID ssj0014326
Score 2.5702786
Snippet Alzheimer’s disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that...
Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid-β aggregates that...
Alzheimer's disease begins about two decades before the onset of symptoms or neuron death, and is believed to be caused by pathogenic amyloid- beta aggregates...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1383
SubjectTerms Adolescence
Adolescent
Adult
Aged
Aged, 80 and over
Aging - metabolism
Aging - pathology
Aging - physiology
Alzheimer Disease - etiology
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Amyloid beta-Peptides - chemistry
Amyloid beta-Peptides - metabolism
Biological and medical sciences
Brain Chemistry - physiology
Child
Child, Preschool
Cognition - physiology
Cohort Studies
Cross-Sectional Studies
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Female
Follow-Up Studies
Humans
Infant
Male
Medical sciences
Middle Aged
Neurology
Original
Plaque, Amyloid - etiology
Plaque, Amyloid - metabolism
Plaque, Amyloid - pathology
Protein Multimerization
Young Adult
Title Brain amyloid-β oligomers in ageing and Alzheimer’s disease
URI https://www.ncbi.nlm.nih.gov/pubmed/23576130
https://www.proquest.com/docview/1346579410
https://www.proquest.com/docview/1352293822
https://pubmed.ncbi.nlm.nih.gov/PMC3634198
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKkBDShPhf-ZmCRK-qdEnsJM4NUld1DEYRF0XaXWQnLi10abW0VOyK1-A19iA8BE_C8U_dBJUJdhNViROrPp-Pv3N8fA5CLwMshGABd5MkjMFAyYTLSR64AgN7ZTHhI5VMZ_A-Ov5I3p6Gp43GZSVqabngnexi67mS60gV7oFc5SnZ_5Cs_SjcgN8gX7iChOH6TzI-lPUd2uwMjO5J7rZ6_dZh0J5NJ59m0hstXRmgLdanELvTi7GYyGIpJr4hKWvbM5-r39xW6EN7D2hMK96Dd6Is9F67cqN-m36Vb_c71nEzlppfxwtLrrlqd-2z17BMrs8LAUg3-_sny_LLbGUKalfj-o13wq_EAl516rGmkSOXJjr5bEdoJUwizwUqEtW0tM6TYuAYVnSuj3UpHLN-A6WlW9cGnTeLnyuPyxFbLTy9DlSAMj9TSJEpgKRdtVkjbeTih0EPRzIHHr2BbgZgmigz_s2J3bkiWJX4s__LHLaAzg9U1we6Y5mE2vRSY0S7c1bC5BzpqirbzJ4_o3crdGh4F90xdozT1aC8hxqiuI9uDUykxgP0SuHIWWPz56VjcenI-wqXDqDKsbj89f1H6RhEPkTDo_6wd-yaWh1uRki8gLkNXDcQlEUMg40B60LsSW6JgzymoYiynPk8AzpJskAOEcOcUUETHvoszgl-hHaKWSH2kOONCMk8JjzQEiQWIw4kOOdxTjHjlAividrr4Uozk8dellOZpjqeAqdqnFM9zk3Usq3nOn_LX9rt10beNgZ6L2lx0kQv1qJIQQPLbTVWiNmyTH1MohCWNd-7qg3YOQkGNt5Ej7X4Nj0YHDRRXBOsbSAzwNefFJOxygRvoPjk2m8-Rbc3s_YZ2lmcL8VzYNkLvq9g_RuIzNN4
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+amyloid-%CE%B2+oligomers+in+ageing+and+Alzheimer%E2%80%99s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Lesn%C3%A9%2C+Sylvain+E.&rft.au=Sherman%2C+Mathew+A.&rft.au=Grant%2C+Marianne&rft.au=Kuskowski%2C+Michael&rft.date=2013-05-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=136&rft.issue=5&rft.spage=1383&rft.epage=1398&rft_id=info:doi/10.1093%2Fbrain%2Fawt062&rft_id=info%3Apmid%2F23576130&rft.externalDocID=PMC3634198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon