Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil
Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nit...
Saved in:
Published in | The Science of the total environment Vol. 747; p. 141340 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2020.141340 |
Cover
Loading…
Abstract | Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg−1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations.
[Display omitted]
•How NH4+-N input affects soil pH and nitrification in tea plantations is unclear.•We determined pH, net nitrification rate, and NOx fluxes under NH4+-N input.•NH4+-based N addition affected net nitrification rates by changing soil pH.•Nitrification inhibitor should be co-applied with urea and NH4HCO3. |
---|---|
AbstractList | Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5-6.0, and prefer ammonium (NH4+) over nitrate (NO3-); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg-1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations.Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5-6.0, and prefer ammonium (NH4+) over nitrate (NO3-); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg-1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations. Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg−1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations. [Display omitted] •How NH4+-N input affects soil pH and nitrification in tea plantations is unclear.•We determined pH, net nitrification rate, and NOx fluxes under NH4+-N input.•NH4+-based N addition affected net nitrification rates by changing soil pH.•Nitrification inhibitor should be co-applied with urea and NH4HCO3. Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH₄⁺) over nitrate (NO₃⁻); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH₄⁺-based fertilizers can enhance nitrification and produce H⁺ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH₄⁺-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH₄⁺-based fertilizers on pH, net nitrification rates, and N₂O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg⁻¹ soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH₄⁺-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N₂O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations. |
ArticleNumber | 141340 |
Author | Cheng, Yi Chen, Jinlin Zhang, Huimin Cui, Jingya Tu, Xiaoshun Ni, Kang Wang, Jing Zhang, Jinbo Chang, Scott X. |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0001-8415-6296 surname: Wang fullname: Wang, Jing organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China – sequence: 2 givenname: Xiaoshun surname: Tu fullname: Tu, Xiaoshun organization: School of Geography, Nanjing Normal University, Nanjing 210023, China – sequence: 3 givenname: Huimin surname: Zhang fullname: Zhang, Huimin organization: School of Geography, Nanjing Normal University, Nanjing 210023, China – sequence: 4 givenname: Jingya surname: Cui fullname: Cui, Jingya organization: School of Geography, Nanjing Normal University, Nanjing 210023, China – sequence: 5 givenname: Kang surname: Ni fullname: Ni, Kang organization: Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China – sequence: 6 givenname: Jinlin surname: Chen fullname: Chen, Jinlin organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China – sequence: 7 givenname: Yi orcidid: 0000-0002-3989-0704 surname: Cheng fullname: Cheng, Yi organization: School of Geography, Nanjing Normal University, Nanjing 210023, China – sequence: 8 givenname: Jinbo surname: Zhang fullname: Zhang, Jinbo organization: School of Geography, Nanjing Normal University, Nanjing 210023, China – sequence: 9 givenname: Scott X. surname: Chang fullname: Chang, Scott X. email: scott.chang@ualberta.ca organization: Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton T6G 2E3, Canada |
BookMark | eNqNUU1r3DAQFSWFbNL-hurYizf6sGX50EMIaRMI5JKehVYabbXYkitpA-2v6U-tvA6l9NIIoYGZ955m5l2gsxADIPSBki0lVFwdttn4EguE5y0jrGZbylvyBm2o7IeGEibO0IaQVjaDGPpzdJHzgdTTS7pBv26dA1Myjg7raYrBH6dmpzNYHHxJcQ8Ba2t98THgenP046ninTf6lNXhL-xeZwyTz7lWMrYwQ61WkINU_Oh_Qmp8sEdT9c03HfaQsQ94vltejQtoPI86lFV5-ewdeuv0mOH9S7xEXz_fPt3cNQ-PX-5vrh8a07Z9aSxYa2XL-CAdoc7uRLujhgqgomNEaipZzxwl0Au-Y2SAXkvOekO14F3dDb9EH1fdOcXvR8hF1SkMjLUbiMes2CA7QbtOvALa8toTJx2v0E8r1KSYcwKnqlen4UrSflSUqMVEdVB_TFSLiWo1sfL7f_hz8pNOP17BvF6ZUJf27CEtOAh18T5Vw5WN_r8avwHPBcEk |
CitedBy_id | crossref_primary_10_3390_plants14050707 crossref_primary_10_1016_j_agee_2024_109278 crossref_primary_10_1016_j_scitotenv_2024_171006 crossref_primary_10_1016_j_envres_2023_116217 crossref_primary_10_1007_s00374_023_01776_8 crossref_primary_10_3390_agronomy12102521 crossref_primary_10_3390_agronomy13051303 crossref_primary_10_3390_f16030481 crossref_primary_10_1016_j_agwat_2021_107351 crossref_primary_10_3390_agronomy11112232 crossref_primary_10_1007_s11356_022_20636_w crossref_primary_10_1016_j_chemosphere_2024_141657 crossref_primary_10_1016_j_apsoil_2025_105890 crossref_primary_10_1007_s12665_022_10573_9 crossref_primary_10_1007_s42729_023_01217_3 crossref_primary_10_1080_03650340_2022_2104452 crossref_primary_10_1016_j_indcrop_2024_120436 crossref_primary_10_1016_j_scitotenv_2022_160315 crossref_primary_10_1016_j_jenvman_2022_115583 crossref_primary_10_1016_j_jenvman_2023_119045 crossref_primary_10_1007_s11356_024_32221_4 crossref_primary_10_1016_j_plaphy_2023_107934 crossref_primary_10_1029_2020JG006211 crossref_primary_10_1080_01904167_2024_2410821 crossref_primary_10_3390_ijms26062606 crossref_primary_10_3390_soilsystems8010016 crossref_primary_10_1016_j_soilbio_2024_109495 crossref_primary_10_1111_sum_12897 crossref_primary_10_3390_agronomy13020364 crossref_primary_10_15243_jdmlm_2024_121_6545 crossref_primary_10_1007_s42729_024_01921_8 crossref_primary_10_1007_s42729_023_01384_3 crossref_primary_10_3390_nitrogen3010003 crossref_primary_10_1016_j_eti_2024_103911 crossref_primary_10_1016_j_jwpe_2024_105788 crossref_primary_10_1016_j_seppur_2025_131740 crossref_primary_10_1007_s11104_024_06600_2 crossref_primary_10_31676_2073_4948_2024_78_70_83 crossref_primary_10_3389_fpls_2022_950367 crossref_primary_10_1007_s11356_024_32015_8 crossref_primary_10_1016_j_jenvman_2021_113642 crossref_primary_10_3389_fmicb_2023_1111087 crossref_primary_10_1016_j_envres_2022_113800 crossref_primary_10_1016_j_scitotenv_2023_169062 crossref_primary_10_1007_s42729_024_02018_y crossref_primary_10_1016_j_scitotenv_2024_172400 crossref_primary_10_1016_j_apsoil_2023_105015 crossref_primary_10_1080_00380768_2022_2087198 crossref_primary_10_1186_s12870_024_04906_y crossref_primary_10_1007_s10653_021_00949_4 crossref_primary_10_1016_j_envpol_2023_122840 crossref_primary_10_1016_j_rechem_2024_101399 crossref_primary_10_1007_s42832_023_0215_1 crossref_primary_10_1016_j_still_2022_105464 crossref_primary_10_1016_j_eti_2023_103226 crossref_primary_10_1016_j_eti_2025_104039 crossref_primary_10_1007_s11356_025_36251_4 crossref_primary_10_3390_plants13010013 crossref_primary_10_1007_s11104_024_07145_0 crossref_primary_10_1007_s00284_022_03160_5 crossref_primary_10_1111_plb_13621 crossref_primary_10_1016_j_soilbio_2024_109398 crossref_primary_10_1007_s00344_022_10634_0 crossref_primary_10_1007_s42729_024_01995_4 crossref_primary_10_1016_j_jfca_2025_107379 crossref_primary_10_1071_SR23192 crossref_primary_10_1016_j_soilbio_2023_109130 crossref_primary_10_11648_j_ajac_20241203_12 crossref_primary_10_1016_j_jconhyd_2024_104494 crossref_primary_10_1111_gcb_16555 crossref_primary_10_3390_agronomy12092149 crossref_primary_10_1016_j_jhazmat_2022_129135 crossref_primary_10_1139_cjss_2021_0197 |
Cites_doi | 10.1016/j.soilbio.2016.08.009 10.1126/science.1182570 10.1073/pnas.1107196108 10.1016/j.scitotenv.2020.136963 10.1007/s11368-013-0695-1 10.1007/s13593-017-0485-z 10.1007/s11104-007-9334-1 10.1016/j.soilbio.2007.08.020 10.1016/j.cosust.2014.07.005 10.1016/S0038-0717(00)00247-9 10.1016/j.soilbio.2012.06.006 10.1016/j.agrformet.2017.10.020 10.1016/S1002-0160(06)60113-6 10.1088/1748-9326/10/2/024019 10.2136/sssaj1981.03615995004500050015x 10.1016/j.agee.2017.10.004 10.1111/ejss.12533 10.1016/j.soilbio.2012.08.021 10.21273/HORTSCI.45.7.1099 10.1016/j.agee.2016.08.036 10.1038/ismej.2012.45 10.2136/sssaj2010.0187 10.1111/j.1747-0765.2006.00097.x 10.1016/S0038-0717(99)00086-3 10.1016/j.soilbio.2014.10.025 10.1038/ismej.2011.168 10.1007/s11368-017-1655-y 10.1007/s11104-018-3672-z 10.1093/aob/mcl258 10.1038/s41598-020-57809-x 10.1002/jpln.201400577 10.1007/s10705-012-9517-x 10.1016/j.agee.2014.03.036 10.1016/j.soilbio.2017.10.023 10.1023/A:1004297607070 10.1016/S0038-0717(01)00096-7 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2020.141340 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2020_141340 S0048969720348695 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c447t-deddd842398f01fdb64b1c16e165208a18272f10e763b209e7a8327c1a6350483 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 09:33:39 EDT 2025 Fri Jul 11 10:53:24 EDT 2025 Tue Jul 01 04:24:29 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Fri Feb 23 02:47:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Net nitrification rate NH4+-N availability Nitrification inhibitor N2O emission Soil acidification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-deddd842398f01fdb64b1c16e165208a18272f10e763b209e7a8327c1a6350483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3989-0704 0000-0001-8415-6296 |
PQID | 2434473053 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2985615568 proquest_miscellaneous_2434473053 crossref_citationtrail_10_1016_j_scitotenv_2020_141340 crossref_primary_10_1016_j_scitotenv_2020_141340 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_141340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-10 |
PublicationDateYYYYMMDD | 2020-12-10 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yan, Wu, Wang, Fu, Shen, Li, Zhang, Zhang, Fan, Han (bb0170) 2020; 715 Tian, Niu (bb0155) 2015; 10 Qiao, Xu, Han, Wang, Wang, Liu, Liu, Wan, Tan, Liu, Zhao (bb0115) 2018; 38 Akiyama, Yan, Yagi (bb0010) 2006; 52 Lehtovirta-Morley, Stoecker, Vilcinskas, Prosser, Nicol (bb0080) 2011; 108 Cheng, Wang, Mary, Zhang, Cai, Chang (bb0025) 2013; 57 Oh, Kato, Li, Li (bb0110) 2006; 16 Snyder, Davidson, Smith, Venterea (bb0135) 2014; 9–10 Yao, Zheng, Liu, Wang, Xie, Butterbach-Bahl (bb0185) 2018; 248 Jiang, Hou, Zhou, Xin, Wright, Jia (bb0070) 2015; 81 Schroder, Zhang, Girma, Raun, Penn, Payton (bb0130) 2011; 75 Yang, Ni, Shi, Yi, Zhang, Fang, Ma, Ruan (bb0180) 2018; 252 Tang, Liu, Zheng, Li, Ma, Xiao, Zhou, Xu, Jiang, He, Wu (bb0150) 2020; 10 Zhang, Hu, Shen, He (bb0190) 2012; 6 Stillwell, Woodmansee (bb0145) 1981; 45 Liu, Yang, Yang, Zou (bb0095) 2012; 93 Zhang, Cai, Müller (bb0200) 2018; 69 Boschiero, Mariano, Trivelin (bb0020) 2018; 429 Cheng, Zhang, Wang, Cai, Wang (bb0030) 2015; 178 Hilal (bb0055) 2015; vol. IV Wrage, Velthof, van Beusichem, Oenema (bb0165) 2001; 33 Hicks (bb0050) 2009; 12 International Statistical Yearbook (bb0065) 2018 Abalos, Jeffery, Sanz-Cobena, Guardia, Vallejo (bb0005) 2014; 189 Barak, Jobe, Krueger, Peterson, Laird (bb0015) 1997; 197 De Boer, Kowalchuk (bb0035) 2001; 33 Li, Li, Yang, Wang, Xue, Niu (bb0085) 2016; 233 Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (bb0040) 2010; 327 Ste-Marie, Pare (bb0140) 1999; 31 Zhao, Cai, Xu (bb0205) 2007; 297 Huang, Xiao, Long (bb0060) 2017; 17 Zhang, Wang, Müller, Cai (bb0195) 2016; 103 Russow, Spott, Stange (bb0125) 2008; 40 Li, Chapman, Nicol, Yao (bb0090) 2018; 116 USEPA (bb0160) 2008 Lu, Han, Zhang, Wu, Wang, Lin, Zhu, Cai, Jia (bb0100) 2012; 6 Ni, Liao, Yi, Niu, Ma, Shi, Zhang, Liu, Ruan (bb0105) 2019; 25 Ruan, Gerendás, Hardter, Sattelmacher (bb0120) 2007; 99 He, Hu, Zhang (bb0045) 2012; 55 Johnson, Fisher, Huang (bb0075) 2010; 45 Zhou, Xia, Liu, He, Xu, Brookes (bb0210) 2014; 14 Snyder (10.1016/j.scitotenv.2020.141340_bb0135) 2014; 9–10 Zhang (10.1016/j.scitotenv.2020.141340_bb0190) 2012; 6 Schroder (10.1016/j.scitotenv.2020.141340_bb0130) 2011; 75 Yao (10.1016/j.scitotenv.2020.141340_bb0185) 2018; 248 USEPA (10.1016/j.scitotenv.2020.141340_bb0160) 2008 He (10.1016/j.scitotenv.2020.141340_bb0045) 2012; 55 Ruan (10.1016/j.scitotenv.2020.141340_bb0120) 2007; 99 Abalos (10.1016/j.scitotenv.2020.141340_bb0005) 2014; 189 Lu (10.1016/j.scitotenv.2020.141340_bb0100) 2012; 6 Yan (10.1016/j.scitotenv.2020.141340_bb0170) 2020; 715 Zhao (10.1016/j.scitotenv.2020.141340_bb0205) 2007; 297 Akiyama (10.1016/j.scitotenv.2020.141340_bb0010) 2006; 52 Zhang (10.1016/j.scitotenv.2020.141340_bb0200) 2018; 69 Zhou (10.1016/j.scitotenv.2020.141340_bb0210) 2014; 14 Li (10.1016/j.scitotenv.2020.141340_bb0085) 2016; 233 Johnson (10.1016/j.scitotenv.2020.141340_bb0075) 2010; 45 Russow (10.1016/j.scitotenv.2020.141340_bb0125) 2008; 40 Stillwell (10.1016/j.scitotenv.2020.141340_bb0145) 1981; 45 Ni (10.1016/j.scitotenv.2020.141340_bb0105) 2019; 25 Tian (10.1016/j.scitotenv.2020.141340_bb0155) 2015; 10 International Statistical Yearbook (10.1016/j.scitotenv.2020.141340_bb0065) 2018 Qiao (10.1016/j.scitotenv.2020.141340_bb0115) 2018; 38 Oh (10.1016/j.scitotenv.2020.141340_bb0110) 2006; 16 Hicks (10.1016/j.scitotenv.2020.141340_bb0050) 2009; 12 Ste-Marie (10.1016/j.scitotenv.2020.141340_bb0140) 1999; 31 Cheng (10.1016/j.scitotenv.2020.141340_bb0030) 2015; 178 De Boer (10.1016/j.scitotenv.2020.141340_bb0035) 2001; 33 Zhang (10.1016/j.scitotenv.2020.141340_bb0195) 2016; 103 Hilal (10.1016/j.scitotenv.2020.141340_bb0055) 2015; vol. IV Tang (10.1016/j.scitotenv.2020.141340_bb0150) 2020; 10 Jiang (10.1016/j.scitotenv.2020.141340_bb0070) 2015; 81 Boschiero (10.1016/j.scitotenv.2020.141340_bb0020) 2018; 429 Liu (10.1016/j.scitotenv.2020.141340_bb0095) 2012; 93 Cheng (10.1016/j.scitotenv.2020.141340_bb0025) 2013; 57 Guo (10.1016/j.scitotenv.2020.141340_bb0040) 2010; 327 Barak (10.1016/j.scitotenv.2020.141340_bb0015) 1997; 197 Huang (10.1016/j.scitotenv.2020.141340_bb0060) 2017; 17 Yang (10.1016/j.scitotenv.2020.141340_bb0180) 2018; 252 Lehtovirta-Morley (10.1016/j.scitotenv.2020.141340_bb0080) 2011; 108 Li (10.1016/j.scitotenv.2020.141340_bb0090) 2018; 116 Wrage (10.1016/j.scitotenv.2020.141340_bb0165) 2001; 33 |
References_xml | – volume: 233 start-page: 60 year: 2016 end-page: 66 ident: bb0085 article-title: Rates of soil acidification in tea plantations and possible causes publication-title: Agric. Ecosyst. Environ. – volume: 197 start-page: 61 year: 1997 end-page: 69 ident: bb0015 article-title: Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin publication-title: Plant Soil – volume: 31 start-page: 1579 year: 1999 end-page: 1589 ident: bb0140 article-title: Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands publication-title: Soil Biol. Biochem. – volume: 14 start-page: 415 year: 2014 end-page: 422 ident: bb0210 article-title: Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China publication-title: J. Soils Sediments – volume: 33 start-page: 853 year: 2001 end-page: 866 ident: bb0035 article-title: Nitrification in acid soils: micro-organisms and mechanisms publication-title: Soil Biol. Biochem. – volume: 17 start-page: 1599 year: 2017 end-page: 1606 ident: bb0060 article-title: Fungal denitrification contributes significantly to N publication-title: J. Soils Sediments – volume: 99 start-page: 301 year: 2007 end-page: 310 ident: bb0120 article-title: Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants publication-title: Ann. Bot. – volume: 12 start-page: 251 year: 2009 end-page: 264 ident: bb0050 article-title: Current status and future development of global tea production and tea products publication-title: Au J.T. – volume: 45 start-page: 893 year: 1981 end-page: 898 ident: bb0145 article-title: Chemical transformations of urea-nitrogen and movement of nitrogen in a shortgrass prairie soil publication-title: Soil Sci. Soc. Am. J. – volume: 715 start-page: 136963 year: 2020 ident: bb0170 article-title: Soil acidification in Chinese tea plantations publication-title: Sci. Total Environ. – volume: vol. IV start-page: 99 year: 2015 ident: bb0055 article-title: The dynamics of production, consumption and prices: a study on global tea industry publication-title: Agro Business Management. Proceedings of 4 – volume: 248 start-page: 386 year: 2018 end-page: 396 ident: bb0185 article-title: Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China publication-title: Agric. For. Meteorol. – volume: 429 start-page: 1 year: 2018 end-page: 17 ident: bb0020 article-title: “Preferential” ammonium uptake by sugarcane does not increase the publication-title: Plant Soil – volume: 45 start-page: 1099 year: 2010 end-page: 1105 ident: bb0075 article-title: Quantifying the acidity of an ammonium-based fertilizer in containerized plant production publication-title: Hortscience – volume: 93 start-page: 297 year: 2012 end-page: 307 ident: bb0095 article-title: Effects of rainfall and fertilizer types on nitrogen and phosphorus concentrations in surface runoff from subtropical tea fields in Zhejiang, China publication-title: Nutr. Cycl. Agroecosyst. – start-page: 11 year: 2008 end-page: 26 ident: bb0160 article-title: Registering Pesticides – volume: 116 start-page: 290 year: 2018 end-page: 301 ident: bb0090 article-title: Nitrification and nitrifiers in acidic soils publication-title: Soil Biol. Biochem. – volume: 25 start-page: 421 year: 2019 end-page: 432 ident: bb0105 article-title: Fertilization status and reduction potential in tea gardens of China publication-title: J. Plant Nutr. Fert. – volume: 297 start-page: 213 year: 2007 end-page: 221 ident: bb0205 article-title: Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China? publication-title: Plant Soil – volume: 75 start-page: 957 year: 2011 end-page: 964 ident: bb0130 article-title: Soil acidification from long-term use of nitrogen fertilizers on winter wheat publication-title: Soil Sci. Soc. Am. J. – volume: 189 start-page: 136 year: 2014 end-page: 144 ident: bb0005 article-title: Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency publication-title: Agric. Ecosyst. Environ. – volume: 52 start-page: 774 year: 2006 end-page: 787 ident: bb0010 article-title: Estimations of emission factors for fertilizer-induced direct N publication-title: Soil Sci. Plant Nutr. – volume: 10 start-page: 024019 year: 2015 ident: bb0155 article-title: LA global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. – volume: 178 start-page: 370 year: 2015 end-page: 373 ident: bb0030 article-title: Soil pH is a good predictor of the dominating N publication-title: J. Plant Nutr. Soil Sci. – volume: 57 start-page: 848 year: 2013 end-page: 857 ident: bb0025 article-title: Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada publication-title: Soil Biol. Biochem. – volume: 33 start-page: 1723 year: 2001 end-page: 1732 ident: bb0165 article-title: Role of nitrifier denitrification in the production of nitrous oxide publication-title: Soil Biol. Biochem. – volume: 6 start-page: 1032 year: 2012 end-page: 1045 ident: bb0190 article-title: Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils publication-title: ISME J – volume: 9–10 start-page: 46 year: 2014 end-page: 54 ident: bb0135 article-title: Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions publication-title: Curr. Opin. Environ. Sustain. – volume: 10 start-page: 1745 year: 2020 ident: bb0150 article-title: Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis publication-title: Sci. Rep. – volume: 103 start-page: 63 year: 2016 end-page: 70 ident: bb0195 article-title: Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics publication-title: Soil Biol. Biochem. – volume: 40 start-page: 380 year: 2008 end-page: 391 ident: bb0125 article-title: Evaluation of nitrate and ammonium as sources of NO and N publication-title: Soil Biol. Biochem. – volume: 38 start-page: 10 year: 2018 ident: bb0115 article-title: Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea: a meta-analysis publication-title: Agron. Sustain. Dev. – volume: 81 start-page: 9 year: 2015 end-page: 16 ident: bb0070 article-title: pH regulates key players of nitrification in paddy soils publication-title: Soil Biol. Biochem. – volume: 6 start-page: 1978 year: 2012 end-page: 1984 ident: bb0100 article-title: Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea publication-title: ISME J – year: 2018 ident: bb0065 article-title: National Bureau of Statistics of China – volume: 327 start-page: 1008 year: 2010 end-page: 1010 ident: bb0040 article-title: Significant acidification in major Chinese croplands publication-title: Science – volume: 69 start-page: 488 year: 2018 end-page: 501 ident: bb0200 article-title: Terrestrial N cycling associated with climate and plant-specific N preferences: a review publication-title: Eur. J. Soil Sci. – volume: 16 start-page: 770 year: 2006 end-page: 777 ident: bb0110 article-title: Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide publication-title: Pedosphere – volume: 108 start-page: 15892 year: 2011 end-page: 15897 ident: bb0080 article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil publication-title: Proc. Natl. Acad. Sci. – volume: 55 start-page: 146 year: 2012 end-page: 154 ident: bb0045 article-title: Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils publication-title: Soil Biol. Biochem. – volume: 252 start-page: 74 year: 2018 end-page: 82 ident: bb0180 article-title: Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China publication-title: Agric. Ecosyst. Environ. – volume: 103 start-page: 63 year: 2016 ident: 10.1016/j.scitotenv.2020.141340_bb0195 article-title: Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.08.009 – volume: 327 start-page: 1008 year: 2010 ident: 10.1016/j.scitotenv.2020.141340_bb0040 article-title: Significant acidification in major Chinese croplands publication-title: Science doi: 10.1126/science.1182570 – year: 2018 ident: 10.1016/j.scitotenv.2020.141340_bb0065 – volume: 108 start-page: 15892 year: 2011 ident: 10.1016/j.scitotenv.2020.141340_bb0080 article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1107196108 – volume: 715 start-page: 136963 year: 2020 ident: 10.1016/j.scitotenv.2020.141340_bb0170 article-title: Soil acidification in Chinese tea plantations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136963 – volume: 14 start-page: 415 year: 2014 ident: 10.1016/j.scitotenv.2020.141340_bb0210 article-title: Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0695-1 – volume: 38 start-page: 10 year: 2018 ident: 10.1016/j.scitotenv.2020.141340_bb0115 article-title: Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea: a meta-analysis publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-017-0485-z – volume: 297 start-page: 213 year: 2007 ident: 10.1016/j.scitotenv.2020.141340_bb0205 article-title: Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China? publication-title: Plant Soil doi: 10.1007/s11104-007-9334-1 – volume: 40 start-page: 380 year: 2008 ident: 10.1016/j.scitotenv.2020.141340_bb0125 article-title: Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.08.020 – volume: 9–10 start-page: 46 year: 2014 ident: 10.1016/j.scitotenv.2020.141340_bb0135 article-title: Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2014.07.005 – volume: 33 start-page: 853 year: 2001 ident: 10.1016/j.scitotenv.2020.141340_bb0035 article-title: Nitrification in acid soils: micro-organisms and mechanisms publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00247-9 – volume: 55 start-page: 146 year: 2012 ident: 10.1016/j.scitotenv.2020.141340_bb0045 article-title: Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.06.006 – volume: 248 start-page: 386 year: 2018 ident: 10.1016/j.scitotenv.2020.141340_bb0185 article-title: Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.10.020 – volume: 16 start-page: 770 year: 2006 ident: 10.1016/j.scitotenv.2020.141340_bb0110 article-title: Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide publication-title: Pedosphere doi: 10.1016/S1002-0160(06)60113-6 – volume: 10 start-page: 024019 year: 2015 ident: 10.1016/j.scitotenv.2020.141340_bb0155 article-title: LA global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/2/024019 – volume: 45 start-page: 893 year: 1981 ident: 10.1016/j.scitotenv.2020.141340_bb0145 article-title: Chemical transformations of urea-nitrogen and movement of nitrogen in a shortgrass prairie soil publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1981.03615995004500050015x – volume: 252 start-page: 74 year: 2018 ident: 10.1016/j.scitotenv.2020.141340_bb0180 article-title: Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2017.10.004 – volume: 69 start-page: 488 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2020.141340_bb0200 article-title: Terrestrial N cycling associated with climate and plant-specific N preferences: a review publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12533 – volume: 57 start-page: 848 year: 2013 ident: 10.1016/j.scitotenv.2020.141340_bb0025 article-title: Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2012.08.021 – volume: 25 start-page: 421 year: 2019 ident: 10.1016/j.scitotenv.2020.141340_bb0105 article-title: Fertilization status and reduction potential in tea gardens of China publication-title: J. Plant Nutr. Fert. – volume: 45 start-page: 1099 issue: 7 year: 2010 ident: 10.1016/j.scitotenv.2020.141340_bb0075 article-title: Quantifying the acidity of an ammonium-based fertilizer in containerized plant production publication-title: Hortscience doi: 10.21273/HORTSCI.45.7.1099 – volume: 233 start-page: 60 year: 2016 ident: 10.1016/j.scitotenv.2020.141340_bb0085 article-title: Rates of soil acidification in tea plantations and possible causes publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.08.036 – volume: 6 start-page: 1978 year: 2012 ident: 10.1016/j.scitotenv.2020.141340_bb0100 article-title: Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea publication-title: ISME J doi: 10.1038/ismej.2012.45 – volume: 75 start-page: 957 year: 2011 ident: 10.1016/j.scitotenv.2020.141340_bb0130 article-title: Soil acidification from long-term use of nitrogen fertilizers on winter wheat publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0187 – volume: 12 start-page: 251 issue: 4 year: 2009 ident: 10.1016/j.scitotenv.2020.141340_bb0050 article-title: Current status and future development of global tea production and tea products publication-title: Au J.T. – volume: 52 start-page: 774 year: 2006 ident: 10.1016/j.scitotenv.2020.141340_bb0010 article-title: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2006.00097.x – volume: 31 start-page: 1579 year: 1999 ident: 10.1016/j.scitotenv.2020.141340_bb0140 article-title: Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00086-3 – volume: 81 start-page: 9 year: 2015 ident: 10.1016/j.scitotenv.2020.141340_bb0070 article-title: pH regulates key players of nitrification in paddy soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.10.025 – volume: 6 start-page: 1032 year: 2012 ident: 10.1016/j.scitotenv.2020.141340_bb0190 article-title: Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils publication-title: ISME J doi: 10.1038/ismej.2011.168 – volume: 17 start-page: 1599 year: 2017 ident: 10.1016/j.scitotenv.2020.141340_bb0060 article-title: Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil publication-title: J. Soils Sediments doi: 10.1007/s11368-017-1655-y – volume: 429 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2020.141340_bb0020 article-title: “Preferential” ammonium uptake by sugarcane does not increase the 15N recovery of fertilizer sources publication-title: Plant Soil doi: 10.1007/s11104-018-3672-z – volume: 99 start-page: 301 year: 2007 ident: 10.1016/j.scitotenv.2020.141340_bb0120 article-title: Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants publication-title: Ann. Bot. doi: 10.1093/aob/mcl258 – volume: 10 start-page: 1745 year: 2020 ident: 10.1016/j.scitotenv.2020.141340_bb0150 article-title: Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-57809-x – volume: 178 start-page: 370 year: 2015 ident: 10.1016/j.scitotenv.2020.141340_bb0030 article-title: Soil pH is a good predictor of the dominating N2O production processes under aerobic conditions publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.201400577 – volume: 93 start-page: 297 year: 2012 ident: 10.1016/j.scitotenv.2020.141340_bb0095 article-title: Effects of rainfall and fertilizer types on nitrogen and phosphorus concentrations in surface runoff from subtropical tea fields in Zhejiang, China publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-012-9517-x – start-page: 11 year: 2008 ident: 10.1016/j.scitotenv.2020.141340_bb0160 – volume: 189 start-page: 136 year: 2014 ident: 10.1016/j.scitotenv.2020.141340_bb0005 article-title: Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.03.036 – volume: 116 start-page: 290 year: 2018 ident: 10.1016/j.scitotenv.2020.141340_bb0090 article-title: Nitrification and nitrifiers in acidic soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.10.023 – volume: vol. IV start-page: 99 year: 2015 ident: 10.1016/j.scitotenv.2020.141340_bb0055 article-title: The dynamics of production, consumption and prices: a study on global tea industry – volume: 197 start-page: 61 year: 1997 ident: 10.1016/j.scitotenv.2020.141340_bb0015 article-title: Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin publication-title: Plant Soil doi: 10.1023/A:1004297607070 – volume: 33 start-page: 1723 year: 2001 ident: 10.1016/j.scitotenv.2020.141340_bb0165 article-title: Role of nitrifier denitrification in the production of nitrous oxide publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00096-7 |
SSID | ssj0000781 |
Score | 2.6058912 |
Snippet | Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and... Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5-6.0, and prefer ammonium (NH4+) over nitrate (NO3-); strong soil acidification and... Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH₄⁺) over nitrate (NO₃⁻); strong soil acidification and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 141340 |
SubjectTerms | ammonium ammonium bicarbonate ammonium sulfate Camellia sinensis environment fertilizers N2O emission Net nitrification rate NH4+-N availability nitrates nitrification Nitrification inhibitor nitrogen Soil acidification soil pH tea urea urease |
Title | Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.141340 https://www.proquest.com/docview/2434473053 https://www.proquest.com/docview/2985615568 |
Volume | 747 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EEQql6LVSaysr-Lo1m9tsNn0TUc4e-iCV-rZsspuSck2Oy12hffBv6Z_amWyitZT6IISEbGaTJb_Zmf2YD4DDxOnMj1PJReFLLpPM8azQCRcqsVqVEnUKLehfXKrJtfx4k9yswcngC0Nmlb3sDzK9k9Z9yVH_N4_mVUU-vlJnKqN9RKlVRo7mUqYUP__97b2ZBwWzCbvM2LGR-oGNF7532eDY9DtOFGMsRYlOqyD_1lB_yepOAZ1twYt-5MiOQ-O2Yc3XI9gMuSR_jGDn9N5lDcn6PtuO4HlYmWPB4egl_AoBi1vWlMwSF1arb5yUmWPYvRcNchQjKyNCjOHRNtWse0JGRR2OzNZ_0H6xLaOkcbTs1rKQVJfqlWSxPat--gXHeT9ykGPBy7hlVc3mEzpbhjzG5jMbHKDCx17B9dnpp5MJ7_M08AJ_-JI775zTXSTBMhKly5XMRSGUR8DjSFucwqRxKSKPsiyPo8ynFuVIWgiLox0Kab8D63VT-9fAco10UWILERcyGlvrS5VK6_3Y40zU-11QAzam6IOYUy6NmRms1b6aO1ANgWoCqLsQ3VWchzgej1f5MIBvHrCkQW3zeOWDgV0MQkC7MLb2zao1saQgiyhmx_-hyXRCG8ZKv3lKI_bgGd2R9Y2I3sL6crHy73AMtcz3u06yDxvH59PJJV2nV5-nvwEPDCFp |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ShNJCKO22oWn6UKFXEcsry3JuISQ4TbKnBHITsiUXl629rHcL7a_pT-2MZedRSnMoGB9sjW38jb7RYx4AnxKnMz9NJRelr7hMMsezUidcqMRqVUm0KbSgfzFT-ZX8fJ1cb8DRGAtDbpUD9wdO79l6uLI__M39RV1TjK_UmcpoH1FqlSWPYIuyU6Gybx2enuWzW0JOdSicJ7Fvo8A9Ny989KrF4el3nCvGeBVJnRZC_m6k_qDr3gadPIdnw-CRHYbvewEbvpnA41BO8scEdo5vo9aw2dBtuwlsh8U5FmKOXsKvkLO4Y23FLClivf7GyZ45hj182aJSMXI0ItAYHl1bz_s75FfUQ8lsc6ftF9sxqhtHK28dC3V1Sa4ip-15_dMvOU79UYkcC4HGHasbtsjpbBmqGVvMbYiBCi97BVcnx5dHOR9KNfBSynTFnXfO6T6ZYBWJyhVKFqIUyiPmcaQtzmLSuBKRRzor4ijzqUUqSUthccBDWe13YLNpG_8aWKGxXZTYUsSljKbW-kql0no_9TgZ9X4X1IiNKYc85lROY25Gh7Wv5gZUQ6CaAOouRDeCi5DK42GRgxF8c08rDRqch4U_jupiEALaiLGNb9ediSXlWUSmnf6jTaYT2jNW-s3_fMQHeJJfXpyb89PZ2R48pTvkjCOit7C5Wq79OxxSrYr3Q5f5DcjvInc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ammonium-based+nitrogen+addition+on+soil+nitrification+and+nitrogen+gas+emissions+depend+on+fertilizer-induced+changes+in+pH+in+a+tea+plantation+soil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wang%2C+Jing&rft.au=Tu%2C+Xiaoshun&rft.au=Zhang%2C+Huimin&rft.au=Cui%2C+Jingya&rft.date=2020-12-10&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=747&rft.spage=141340&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.141340&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |