Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil

Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nit...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 747; p. 141340
Main Authors Wang, Jing, Tu, Xiaoshun, Zhang, Huimin, Cui, Jingya, Ni, Kang, Chen, Jinlin, Cheng, Yi, Zhang, Jinbo, Chang, Scott X.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.12.2020
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2020.141340

Cover

Loading…
Abstract Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg−1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations. [Display omitted] •How NH4+-N input affects soil pH and nitrification in tea plantations is unclear.•We determined pH, net nitrification rate, and NOx fluxes under NH4+-N input.•NH4+-based N addition affected net nitrification rates by changing soil pH.•Nitrification inhibitor should be co-applied with urea and NH4HCO3.
AbstractList Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5-6.0, and prefer ammonium (NH4+) over nitrate (NO3-); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg-1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations.Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5-6.0, and prefer ammonium (NH4+) over nitrate (NO3-); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg-1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations.
Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg−1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations. [Display omitted] •How NH4+-N input affects soil pH and nitrification in tea plantations is unclear.•We determined pH, net nitrification rate, and NOx fluxes under NH4+-N input.•NH4+-based N addition affected net nitrification rates by changing soil pH.•Nitrification inhibitor should be co-applied with urea and NH4HCO3.
Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH₄⁺) over nitrate (NO₃⁻); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH₄⁺-based fertilizers can enhance nitrification and produce H⁺ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH₄⁺-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH₄⁺-based fertilizers on pH, net nitrification rates, and N₂O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg⁻¹ soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH₄⁺-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N₂O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations.
ArticleNumber 141340
Author Cheng, Yi
Chen, Jinlin
Zhang, Huimin
Cui, Jingya
Tu, Xiaoshun
Ni, Kang
Wang, Jing
Zhang, Jinbo
Chang, Scott X.
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-8415-6296
  surname: Wang
  fullname: Wang, Jing
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
– sequence: 2
  givenname: Xiaoshun
  surname: Tu
  fullname: Tu, Xiaoshun
  organization: School of Geography, Nanjing Normal University, Nanjing 210023, China
– sequence: 3
  givenname: Huimin
  surname: Zhang
  fullname: Zhang, Huimin
  organization: School of Geography, Nanjing Normal University, Nanjing 210023, China
– sequence: 4
  givenname: Jingya
  surname: Cui
  fullname: Cui, Jingya
  organization: School of Geography, Nanjing Normal University, Nanjing 210023, China
– sequence: 5
  givenname: Kang
  surname: Ni
  fullname: Ni, Kang
  organization: Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
– sequence: 6
  givenname: Jinlin
  surname: Chen
  fullname: Chen, Jinlin
  organization: Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
– sequence: 7
  givenname: Yi
  orcidid: 0000-0002-3989-0704
  surname: Cheng
  fullname: Cheng, Yi
  organization: School of Geography, Nanjing Normal University, Nanjing 210023, China
– sequence: 8
  givenname: Jinbo
  surname: Zhang
  fullname: Zhang, Jinbo
  organization: School of Geography, Nanjing Normal University, Nanjing 210023, China
– sequence: 9
  givenname: Scott X.
  surname: Chang
  fullname: Chang, Scott X.
  email: scott.chang@ualberta.ca
  organization: Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton T6G 2E3, Canada
BookMark eNqNUU1r3DAQFSWFbNL-hurYizf6sGX50EMIaRMI5JKehVYabbXYkitpA-2v6U-tvA6l9NIIoYGZ955m5l2gsxADIPSBki0lVFwdttn4EguE5y0jrGZbylvyBm2o7IeGEibO0IaQVjaDGPpzdJHzgdTTS7pBv26dA1Myjg7raYrBH6dmpzNYHHxJcQ8Ba2t98THgenP046ninTf6lNXhL-xeZwyTz7lWMrYwQ61WkINU_Oh_Qmp8sEdT9c03HfaQsQ94vltejQtoPI86lFV5-ewdeuv0mOH9S7xEXz_fPt3cNQ-PX-5vrh8a07Z9aSxYa2XL-CAdoc7uRLujhgqgomNEaipZzxwl0Au-Y2SAXkvOekO14F3dDb9EH1fdOcXvR8hF1SkMjLUbiMes2CA7QbtOvALa8toTJx2v0E8r1KSYcwKnqlen4UrSflSUqMVEdVB_TFSLiWo1sfL7f_hz8pNOP17BvF6ZUJf27CEtOAh18T5Vw5WN_r8avwHPBcEk
CitedBy_id crossref_primary_10_3390_plants14050707
crossref_primary_10_1016_j_agee_2024_109278
crossref_primary_10_1016_j_scitotenv_2024_171006
crossref_primary_10_1016_j_envres_2023_116217
crossref_primary_10_1007_s00374_023_01776_8
crossref_primary_10_3390_agronomy12102521
crossref_primary_10_3390_agronomy13051303
crossref_primary_10_3390_f16030481
crossref_primary_10_1016_j_agwat_2021_107351
crossref_primary_10_3390_agronomy11112232
crossref_primary_10_1007_s11356_022_20636_w
crossref_primary_10_1016_j_chemosphere_2024_141657
crossref_primary_10_1016_j_apsoil_2025_105890
crossref_primary_10_1007_s12665_022_10573_9
crossref_primary_10_1007_s42729_023_01217_3
crossref_primary_10_1080_03650340_2022_2104452
crossref_primary_10_1016_j_indcrop_2024_120436
crossref_primary_10_1016_j_scitotenv_2022_160315
crossref_primary_10_1016_j_jenvman_2022_115583
crossref_primary_10_1016_j_jenvman_2023_119045
crossref_primary_10_1007_s11356_024_32221_4
crossref_primary_10_1016_j_plaphy_2023_107934
crossref_primary_10_1029_2020JG006211
crossref_primary_10_1080_01904167_2024_2410821
crossref_primary_10_3390_ijms26062606
crossref_primary_10_3390_soilsystems8010016
crossref_primary_10_1016_j_soilbio_2024_109495
crossref_primary_10_1111_sum_12897
crossref_primary_10_3390_agronomy13020364
crossref_primary_10_15243_jdmlm_2024_121_6545
crossref_primary_10_1007_s42729_024_01921_8
crossref_primary_10_1007_s42729_023_01384_3
crossref_primary_10_3390_nitrogen3010003
crossref_primary_10_1016_j_eti_2024_103911
crossref_primary_10_1016_j_jwpe_2024_105788
crossref_primary_10_1016_j_seppur_2025_131740
crossref_primary_10_1007_s11104_024_06600_2
crossref_primary_10_31676_2073_4948_2024_78_70_83
crossref_primary_10_3389_fpls_2022_950367
crossref_primary_10_1007_s11356_024_32015_8
crossref_primary_10_1016_j_jenvman_2021_113642
crossref_primary_10_3389_fmicb_2023_1111087
crossref_primary_10_1016_j_envres_2022_113800
crossref_primary_10_1016_j_scitotenv_2023_169062
crossref_primary_10_1007_s42729_024_02018_y
crossref_primary_10_1016_j_scitotenv_2024_172400
crossref_primary_10_1016_j_apsoil_2023_105015
crossref_primary_10_1080_00380768_2022_2087198
crossref_primary_10_1186_s12870_024_04906_y
crossref_primary_10_1007_s10653_021_00949_4
crossref_primary_10_1016_j_envpol_2023_122840
crossref_primary_10_1016_j_rechem_2024_101399
crossref_primary_10_1007_s42832_023_0215_1
crossref_primary_10_1016_j_still_2022_105464
crossref_primary_10_1016_j_eti_2023_103226
crossref_primary_10_1016_j_eti_2025_104039
crossref_primary_10_1007_s11356_025_36251_4
crossref_primary_10_3390_plants13010013
crossref_primary_10_1007_s11104_024_07145_0
crossref_primary_10_1007_s00284_022_03160_5
crossref_primary_10_1111_plb_13621
crossref_primary_10_1016_j_soilbio_2024_109398
crossref_primary_10_1007_s00344_022_10634_0
crossref_primary_10_1007_s42729_024_01995_4
crossref_primary_10_1016_j_jfca_2025_107379
crossref_primary_10_1071_SR23192
crossref_primary_10_1016_j_soilbio_2023_109130
crossref_primary_10_11648_j_ajac_20241203_12
crossref_primary_10_1016_j_jconhyd_2024_104494
crossref_primary_10_1111_gcb_16555
crossref_primary_10_3390_agronomy12092149
crossref_primary_10_1016_j_jhazmat_2022_129135
crossref_primary_10_1139_cjss_2021_0197
Cites_doi 10.1016/j.soilbio.2016.08.009
10.1126/science.1182570
10.1073/pnas.1107196108
10.1016/j.scitotenv.2020.136963
10.1007/s11368-013-0695-1
10.1007/s13593-017-0485-z
10.1007/s11104-007-9334-1
10.1016/j.soilbio.2007.08.020
10.1016/j.cosust.2014.07.005
10.1016/S0038-0717(00)00247-9
10.1016/j.soilbio.2012.06.006
10.1016/j.agrformet.2017.10.020
10.1016/S1002-0160(06)60113-6
10.1088/1748-9326/10/2/024019
10.2136/sssaj1981.03615995004500050015x
10.1016/j.agee.2017.10.004
10.1111/ejss.12533
10.1016/j.soilbio.2012.08.021
10.21273/HORTSCI.45.7.1099
10.1016/j.agee.2016.08.036
10.1038/ismej.2012.45
10.2136/sssaj2010.0187
10.1111/j.1747-0765.2006.00097.x
10.1016/S0038-0717(99)00086-3
10.1016/j.soilbio.2014.10.025
10.1038/ismej.2011.168
10.1007/s11368-017-1655-y
10.1007/s11104-018-3672-z
10.1093/aob/mcl258
10.1038/s41598-020-57809-x
10.1002/jpln.201400577
10.1007/s10705-012-9517-x
10.1016/j.agee.2014.03.036
10.1016/j.soilbio.2017.10.023
10.1023/A:1004297607070
10.1016/S0038-0717(01)00096-7
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2020.141340
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2020_141340
S0048969720348695
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
7X8
7S9
L.6
ID FETCH-LOGICAL-c447t-deddd842398f01fdb64b1c16e165208a18272f10e763b209e7a8327c1a6350483
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 09:33:39 EDT 2025
Fri Jul 11 10:53:24 EDT 2025
Tue Jul 01 04:24:29 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Fri Feb 23 02:47:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Net nitrification rate
NH4+-N availability
Nitrification inhibitor
N2O emission
Soil acidification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-deddd842398f01fdb64b1c16e165208a18272f10e763b209e7a8327c1a6350483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3989-0704
0000-0001-8415-6296
PQID 2434473053
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2985615568
proquest_miscellaneous_2434473053
crossref_citationtrail_10_1016_j_scitotenv_2020_141340
crossref_primary_10_1016_j_scitotenv_2020_141340
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_141340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-10
PublicationDateYYYYMMDD 2020-12-10
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-10
  day: 10
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yan, Wu, Wang, Fu, Shen, Li, Zhang, Zhang, Fan, Han (bb0170) 2020; 715
Tian, Niu (bb0155) 2015; 10
Qiao, Xu, Han, Wang, Wang, Liu, Liu, Wan, Tan, Liu, Zhao (bb0115) 2018; 38
Akiyama, Yan, Yagi (bb0010) 2006; 52
Lehtovirta-Morley, Stoecker, Vilcinskas, Prosser, Nicol (bb0080) 2011; 108
Cheng, Wang, Mary, Zhang, Cai, Chang (bb0025) 2013; 57
Oh, Kato, Li, Li (bb0110) 2006; 16
Snyder, Davidson, Smith, Venterea (bb0135) 2014; 9–10
Yao, Zheng, Liu, Wang, Xie, Butterbach-Bahl (bb0185) 2018; 248
Jiang, Hou, Zhou, Xin, Wright, Jia (bb0070) 2015; 81
Schroder, Zhang, Girma, Raun, Penn, Payton (bb0130) 2011; 75
Yang, Ni, Shi, Yi, Zhang, Fang, Ma, Ruan (bb0180) 2018; 252
Tang, Liu, Zheng, Li, Ma, Xiao, Zhou, Xu, Jiang, He, Wu (bb0150) 2020; 10
Zhang, Hu, Shen, He (bb0190) 2012; 6
Stillwell, Woodmansee (bb0145) 1981; 45
Liu, Yang, Yang, Zou (bb0095) 2012; 93
Zhang, Cai, Müller (bb0200) 2018; 69
Boschiero, Mariano, Trivelin (bb0020) 2018; 429
Cheng, Zhang, Wang, Cai, Wang (bb0030) 2015; 178
Hilal (bb0055) 2015; vol. IV
Wrage, Velthof, van Beusichem, Oenema (bb0165) 2001; 33
Hicks (bb0050) 2009; 12
International Statistical Yearbook (bb0065) 2018
Abalos, Jeffery, Sanz-Cobena, Guardia, Vallejo (bb0005) 2014; 189
Barak, Jobe, Krueger, Peterson, Laird (bb0015) 1997; 197
De Boer, Kowalchuk (bb0035) 2001; 33
Li, Li, Yang, Wang, Xue, Niu (bb0085) 2016; 233
Guo, Liu, Zhang, Shen, Han, Zhang, Christie, Goulding, Vitousek, Zhang (bb0040) 2010; 327
Ste-Marie, Pare (bb0140) 1999; 31
Zhao, Cai, Xu (bb0205) 2007; 297
Huang, Xiao, Long (bb0060) 2017; 17
Zhang, Wang, Müller, Cai (bb0195) 2016; 103
Russow, Spott, Stange (bb0125) 2008; 40
Li, Chapman, Nicol, Yao (bb0090) 2018; 116
USEPA (bb0160) 2008
Lu, Han, Zhang, Wu, Wang, Lin, Zhu, Cai, Jia (bb0100) 2012; 6
Ni, Liao, Yi, Niu, Ma, Shi, Zhang, Liu, Ruan (bb0105) 2019; 25
Ruan, Gerendás, Hardter, Sattelmacher (bb0120) 2007; 99
He, Hu, Zhang (bb0045) 2012; 55
Johnson, Fisher, Huang (bb0075) 2010; 45
Zhou, Xia, Liu, He, Xu, Brookes (bb0210) 2014; 14
Snyder (10.1016/j.scitotenv.2020.141340_bb0135) 2014; 9–10
Zhang (10.1016/j.scitotenv.2020.141340_bb0190) 2012; 6
Schroder (10.1016/j.scitotenv.2020.141340_bb0130) 2011; 75
Yao (10.1016/j.scitotenv.2020.141340_bb0185) 2018; 248
USEPA (10.1016/j.scitotenv.2020.141340_bb0160) 2008
He (10.1016/j.scitotenv.2020.141340_bb0045) 2012; 55
Ruan (10.1016/j.scitotenv.2020.141340_bb0120) 2007; 99
Abalos (10.1016/j.scitotenv.2020.141340_bb0005) 2014; 189
Lu (10.1016/j.scitotenv.2020.141340_bb0100) 2012; 6
Yan (10.1016/j.scitotenv.2020.141340_bb0170) 2020; 715
Zhao (10.1016/j.scitotenv.2020.141340_bb0205) 2007; 297
Akiyama (10.1016/j.scitotenv.2020.141340_bb0010) 2006; 52
Zhang (10.1016/j.scitotenv.2020.141340_bb0200) 2018; 69
Zhou (10.1016/j.scitotenv.2020.141340_bb0210) 2014; 14
Li (10.1016/j.scitotenv.2020.141340_bb0085) 2016; 233
Johnson (10.1016/j.scitotenv.2020.141340_bb0075) 2010; 45
Russow (10.1016/j.scitotenv.2020.141340_bb0125) 2008; 40
Stillwell (10.1016/j.scitotenv.2020.141340_bb0145) 1981; 45
Ni (10.1016/j.scitotenv.2020.141340_bb0105) 2019; 25
Tian (10.1016/j.scitotenv.2020.141340_bb0155) 2015; 10
International Statistical Yearbook (10.1016/j.scitotenv.2020.141340_bb0065) 2018
Qiao (10.1016/j.scitotenv.2020.141340_bb0115) 2018; 38
Oh (10.1016/j.scitotenv.2020.141340_bb0110) 2006; 16
Hicks (10.1016/j.scitotenv.2020.141340_bb0050) 2009; 12
Ste-Marie (10.1016/j.scitotenv.2020.141340_bb0140) 1999; 31
Cheng (10.1016/j.scitotenv.2020.141340_bb0030) 2015; 178
De Boer (10.1016/j.scitotenv.2020.141340_bb0035) 2001; 33
Zhang (10.1016/j.scitotenv.2020.141340_bb0195) 2016; 103
Hilal (10.1016/j.scitotenv.2020.141340_bb0055) 2015; vol. IV
Tang (10.1016/j.scitotenv.2020.141340_bb0150) 2020; 10
Jiang (10.1016/j.scitotenv.2020.141340_bb0070) 2015; 81
Boschiero (10.1016/j.scitotenv.2020.141340_bb0020) 2018; 429
Liu (10.1016/j.scitotenv.2020.141340_bb0095) 2012; 93
Cheng (10.1016/j.scitotenv.2020.141340_bb0025) 2013; 57
Guo (10.1016/j.scitotenv.2020.141340_bb0040) 2010; 327
Barak (10.1016/j.scitotenv.2020.141340_bb0015) 1997; 197
Huang (10.1016/j.scitotenv.2020.141340_bb0060) 2017; 17
Yang (10.1016/j.scitotenv.2020.141340_bb0180) 2018; 252
Lehtovirta-Morley (10.1016/j.scitotenv.2020.141340_bb0080) 2011; 108
Li (10.1016/j.scitotenv.2020.141340_bb0090) 2018; 116
Wrage (10.1016/j.scitotenv.2020.141340_bb0165) 2001; 33
References_xml – volume: 233
  start-page: 60
  year: 2016
  end-page: 66
  ident: bb0085
  article-title: Rates of soil acidification in tea plantations and possible causes
  publication-title: Agric. Ecosyst. Environ.
– volume: 197
  start-page: 61
  year: 1997
  end-page: 69
  ident: bb0015
  article-title: Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin
  publication-title: Plant Soil
– volume: 31
  start-page: 1579
  year: 1999
  end-page: 1589
  ident: bb0140
  article-title: Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands
  publication-title: Soil Biol. Biochem.
– volume: 14
  start-page: 415
  year: 2014
  end-page: 422
  ident: bb0210
  article-title: Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China
  publication-title: J. Soils Sediments
– volume: 33
  start-page: 853
  year: 2001
  end-page: 866
  ident: bb0035
  article-title: Nitrification in acid soils: micro-organisms and mechanisms
  publication-title: Soil Biol. Biochem.
– volume: 17
  start-page: 1599
  year: 2017
  end-page: 1606
  ident: bb0060
  article-title: Fungal denitrification contributes significantly to N
  publication-title: J. Soils Sediments
– volume: 99
  start-page: 301
  year: 2007
  end-page: 310
  ident: bb0120
  article-title: Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants
  publication-title: Ann. Bot.
– volume: 12
  start-page: 251
  year: 2009
  end-page: 264
  ident: bb0050
  article-title: Current status and future development of global tea production and tea products
  publication-title: Au J.T.
– volume: 45
  start-page: 893
  year: 1981
  end-page: 898
  ident: bb0145
  article-title: Chemical transformations of urea-nitrogen and movement of nitrogen in a shortgrass prairie soil
  publication-title: Soil Sci. Soc. Am. J.
– volume: 715
  start-page: 136963
  year: 2020
  ident: bb0170
  article-title: Soil acidification in Chinese tea plantations
  publication-title: Sci. Total Environ.
– volume: vol. IV
  start-page: 99
  year: 2015
  ident: bb0055
  article-title: The dynamics of production, consumption and prices: a study on global tea industry
  publication-title: Agro Business Management. Proceedings of 4
– volume: 248
  start-page: 386
  year: 2018
  end-page: 396
  ident: bb0185
  article-title: Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China
  publication-title: Agric. For. Meteorol.
– volume: 429
  start-page: 1
  year: 2018
  end-page: 17
  ident: bb0020
  article-title: “Preferential” ammonium uptake by sugarcane does not increase the
  publication-title: Plant Soil
– volume: 45
  start-page: 1099
  year: 2010
  end-page: 1105
  ident: bb0075
  article-title: Quantifying the acidity of an ammonium-based fertilizer in containerized plant production
  publication-title: Hortscience
– volume: 93
  start-page: 297
  year: 2012
  end-page: 307
  ident: bb0095
  article-title: Effects of rainfall and fertilizer types on nitrogen and phosphorus concentrations in surface runoff from subtropical tea fields in Zhejiang, China
  publication-title: Nutr. Cycl. Agroecosyst.
– start-page: 11
  year: 2008
  end-page: 26
  ident: bb0160
  article-title: Registering Pesticides
– volume: 116
  start-page: 290
  year: 2018
  end-page: 301
  ident: bb0090
  article-title: Nitrification and nitrifiers in acidic soils
  publication-title: Soil Biol. Biochem.
– volume: 25
  start-page: 421
  year: 2019
  end-page: 432
  ident: bb0105
  article-title: Fertilization status and reduction potential in tea gardens of China
  publication-title: J. Plant Nutr. Fert.
– volume: 297
  start-page: 213
  year: 2007
  end-page: 221
  ident: bb0205
  article-title: Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China?
  publication-title: Plant Soil
– volume: 75
  start-page: 957
  year: 2011
  end-page: 964
  ident: bb0130
  article-title: Soil acidification from long-term use of nitrogen fertilizers on winter wheat
  publication-title: Soil Sci. Soc. Am. J.
– volume: 189
  start-page: 136
  year: 2014
  end-page: 144
  ident: bb0005
  article-title: Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency
  publication-title: Agric. Ecosyst. Environ.
– volume: 52
  start-page: 774
  year: 2006
  end-page: 787
  ident: bb0010
  article-title: Estimations of emission factors for fertilizer-induced direct N
  publication-title: Soil Sci. Plant Nutr.
– volume: 10
  start-page: 024019
  year: 2015
  ident: bb0155
  article-title: LA global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
– volume: 178
  start-page: 370
  year: 2015
  end-page: 373
  ident: bb0030
  article-title: Soil pH is a good predictor of the dominating N
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 57
  start-page: 848
  year: 2013
  end-page: 857
  ident: bb0025
  article-title: Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada
  publication-title: Soil Biol. Biochem.
– volume: 33
  start-page: 1723
  year: 2001
  end-page: 1732
  ident: bb0165
  article-title: Role of nitrifier denitrification in the production of nitrous oxide
  publication-title: Soil Biol. Biochem.
– volume: 6
  start-page: 1032
  year: 2012
  end-page: 1045
  ident: bb0190
  article-title: Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
  publication-title: ISME J
– volume: 9–10
  start-page: 46
  year: 2014
  end-page: 54
  ident: bb0135
  article-title: Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 10
  start-page: 1745
  year: 2020
  ident: bb0150
  article-title: Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis
  publication-title: Sci. Rep.
– volume: 103
  start-page: 63
  year: 2016
  end-page: 70
  ident: bb0195
  article-title: Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics
  publication-title: Soil Biol. Biochem.
– volume: 40
  start-page: 380
  year: 2008
  end-page: 391
  ident: bb0125
  article-title: Evaluation of nitrate and ammonium as sources of NO and N
  publication-title: Soil Biol. Biochem.
– volume: 38
  start-page: 10
  year: 2018
  ident: bb0115
  article-title: Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea: a meta-analysis
  publication-title: Agron. Sustain. Dev.
– volume: 81
  start-page: 9
  year: 2015
  end-page: 16
  ident: bb0070
  article-title: pH regulates key players of nitrification in paddy soils
  publication-title: Soil Biol. Biochem.
– volume: 6
  start-page: 1978
  year: 2012
  end-page: 1984
  ident: bb0100
  article-title: Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea
  publication-title: ISME J
– year: 2018
  ident: bb0065
  article-title: National Bureau of Statistics of China
– volume: 327
  start-page: 1008
  year: 2010
  end-page: 1010
  ident: bb0040
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
– volume: 69
  start-page: 488
  year: 2018
  end-page: 501
  ident: bb0200
  article-title: Terrestrial N cycling associated with climate and plant-specific N preferences: a review
  publication-title: Eur. J. Soil Sci.
– volume: 16
  start-page: 770
  year: 2006
  end-page: 777
  ident: bb0110
  article-title: Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide
  publication-title: Pedosphere
– volume: 108
  start-page: 15892
  year: 2011
  end-page: 15897
  ident: bb0080
  article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil
  publication-title: Proc. Natl. Acad. Sci.
– volume: 55
  start-page: 146
  year: 2012
  end-page: 154
  ident: bb0045
  article-title: Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils
  publication-title: Soil Biol. Biochem.
– volume: 252
  start-page: 74
  year: 2018
  end-page: 82
  ident: bb0180
  article-title: Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China
  publication-title: Agric. Ecosyst. Environ.
– volume: 103
  start-page: 63
  year: 2016
  ident: 10.1016/j.scitotenv.2020.141340_bb0195
  article-title: Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.08.009
– volume: 327
  start-page: 1008
  year: 2010
  ident: 10.1016/j.scitotenv.2020.141340_bb0040
  article-title: Significant acidification in major Chinese croplands
  publication-title: Science
  doi: 10.1126/science.1182570
– year: 2018
  ident: 10.1016/j.scitotenv.2020.141340_bb0065
– volume: 108
  start-page: 15892
  year: 2011
  ident: 10.1016/j.scitotenv.2020.141340_bb0080
  article-title: Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1107196108
– volume: 715
  start-page: 136963
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141340_bb0170
  article-title: Soil acidification in Chinese tea plantations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136963
– volume: 14
  start-page: 415
  year: 2014
  ident: 10.1016/j.scitotenv.2020.141340_bb0210
  article-title: Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-013-0695-1
– volume: 38
  start-page: 10
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141340_bb0115
  article-title: Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea: a meta-analysis
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-017-0485-z
– volume: 297
  start-page: 213
  year: 2007
  ident: 10.1016/j.scitotenv.2020.141340_bb0205
  article-title: Does ammonium-based N addition influence nitrification and acidification in humid subtropical soils of China?
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9334-1
– volume: 40
  start-page: 380
  year: 2008
  ident: 10.1016/j.scitotenv.2020.141340_bb0125
  article-title: Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.08.020
– volume: 9–10
  start-page: 46
  year: 2014
  ident: 10.1016/j.scitotenv.2020.141340_bb0135
  article-title: Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2014.07.005
– volume: 33
  start-page: 853
  year: 2001
  ident: 10.1016/j.scitotenv.2020.141340_bb0035
  article-title: Nitrification in acid soils: micro-organisms and mechanisms
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00247-9
– volume: 55
  start-page: 146
  year: 2012
  ident: 10.1016/j.scitotenv.2020.141340_bb0045
  article-title: Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.06.006
– volume: 248
  start-page: 386
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141340_bb0185
  article-title: Stand age amplifies greenhouse gas and NO releases following conversion of rice paddy to tea plantations in subtropical China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.10.020
– volume: 16
  start-page: 770
  year: 2006
  ident: 10.1016/j.scitotenv.2020.141340_bb0110
  article-title: Environmental problems from tea cultivation in Japan and a control measure using calcium cyanamide
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(06)60113-6
– volume: 10
  start-page: 024019
  year: 2015
  ident: 10.1016/j.scitotenv.2020.141340_bb0155
  article-title: LA global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/2/024019
– volume: 45
  start-page: 893
  year: 1981
  ident: 10.1016/j.scitotenv.2020.141340_bb0145
  article-title: Chemical transformations of urea-nitrogen and movement of nitrogen in a shortgrass prairie soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1981.03615995004500050015x
– volume: 252
  start-page: 74
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141340_bb0180
  article-title: Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2017.10.004
– volume: 69
  start-page: 488
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141340_bb0200
  article-title: Terrestrial N cycling associated with climate and plant-specific N preferences: a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12533
– volume: 57
  start-page: 848
  year: 2013
  ident: 10.1016/j.scitotenv.2020.141340_bb0025
  article-title: Soil pH has contrasting effects on gross and net nitrogen mineralizations in adjacent forest and grassland soils in central Alberta, Canada
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.08.021
– volume: 25
  start-page: 421
  year: 2019
  ident: 10.1016/j.scitotenv.2020.141340_bb0105
  article-title: Fertilization status and reduction potential in tea gardens of China
  publication-title: J. Plant Nutr. Fert.
– volume: 45
  start-page: 1099
  issue: 7
  year: 2010
  ident: 10.1016/j.scitotenv.2020.141340_bb0075
  article-title: Quantifying the acidity of an ammonium-based fertilizer in containerized plant production
  publication-title: Hortscience
  doi: 10.21273/HORTSCI.45.7.1099
– volume: 233
  start-page: 60
  year: 2016
  ident: 10.1016/j.scitotenv.2020.141340_bb0085
  article-title: Rates of soil acidification in tea plantations and possible causes
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2016.08.036
– volume: 6
  start-page: 1978
  year: 2012
  ident: 10.1016/j.scitotenv.2020.141340_bb0100
  article-title: Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea
  publication-title: ISME J
  doi: 10.1038/ismej.2012.45
– volume: 75
  start-page: 957
  year: 2011
  ident: 10.1016/j.scitotenv.2020.141340_bb0130
  article-title: Soil acidification from long-term use of nitrogen fertilizers on winter wheat
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0187
– volume: 12
  start-page: 251
  issue: 4
  year: 2009
  ident: 10.1016/j.scitotenv.2020.141340_bb0050
  article-title: Current status and future development of global tea production and tea products
  publication-title: Au J.T.
– volume: 52
  start-page: 774
  year: 2006
  ident: 10.1016/j.scitotenv.2020.141340_bb0010
  article-title: Estimations of emission factors for fertilizer-induced direct N2O emissions from agricultural soils in Japan: summary of available data
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2006.00097.x
– volume: 31
  start-page: 1579
  year: 1999
  ident: 10.1016/j.scitotenv.2020.141340_bb0140
  article-title: Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00086-3
– volume: 81
  start-page: 9
  year: 2015
  ident: 10.1016/j.scitotenv.2020.141340_bb0070
  article-title: pH regulates key players of nitrification in paddy soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.10.025
– volume: 6
  start-page: 1032
  year: 2012
  ident: 10.1016/j.scitotenv.2020.141340_bb0190
  article-title: Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
  publication-title: ISME J
  doi: 10.1038/ismej.2011.168
– volume: 17
  start-page: 1599
  year: 2017
  ident: 10.1016/j.scitotenv.2020.141340_bb0060
  article-title: Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-017-1655-y
– volume: 429
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141340_bb0020
  article-title: “Preferential” ammonium uptake by sugarcane does not increase the 15N recovery of fertilizer sources
  publication-title: Plant Soil
  doi: 10.1007/s11104-018-3672-z
– volume: 99
  start-page: 301
  year: 2007
  ident: 10.1016/j.scitotenv.2020.141340_bb0120
  article-title: Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcl258
– volume: 10
  start-page: 1745
  year: 2020
  ident: 10.1016/j.scitotenv.2020.141340_bb0150
  article-title: Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57809-x
– volume: 178
  start-page: 370
  year: 2015
  ident: 10.1016/j.scitotenv.2020.141340_bb0030
  article-title: Soil pH is a good predictor of the dominating N2O production processes under aerobic conditions
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.201400577
– volume: 93
  start-page: 297
  year: 2012
  ident: 10.1016/j.scitotenv.2020.141340_bb0095
  article-title: Effects of rainfall and fertilizer types on nitrogen and phosphorus concentrations in surface runoff from subtropical tea fields in Zhejiang, China
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-012-9517-x
– start-page: 11
  year: 2008
  ident: 10.1016/j.scitotenv.2020.141340_bb0160
– volume: 189
  start-page: 136
  year: 2014
  ident: 10.1016/j.scitotenv.2020.141340_bb0005
  article-title: Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.03.036
– volume: 116
  start-page: 290
  year: 2018
  ident: 10.1016/j.scitotenv.2020.141340_bb0090
  article-title: Nitrification and nitrifiers in acidic soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.10.023
– volume: vol. IV
  start-page: 99
  year: 2015
  ident: 10.1016/j.scitotenv.2020.141340_bb0055
  article-title: The dynamics of production, consumption and prices: a study on global tea industry
– volume: 197
  start-page: 61
  year: 1997
  ident: 10.1016/j.scitotenv.2020.141340_bb0015
  article-title: Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin
  publication-title: Plant Soil
  doi: 10.1023/A:1004297607070
– volume: 33
  start-page: 1723
  year: 2001
  ident: 10.1016/j.scitotenv.2020.141340_bb0165
  article-title: Role of nitrifier denitrification in the production of nitrous oxide
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(01)00096-7
SSID ssj0000781
Score 2.6058912
Snippet Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH4+) over nitrate (NO3−); strong soil acidification and...
Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5-6.0, and prefer ammonium (NH4+) over nitrate (NO3-); strong soil acidification and...
Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5–6.0, and prefer ammonium (NH₄⁺) over nitrate (NO₃⁻); strong soil acidification and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 141340
SubjectTerms ammonium
ammonium bicarbonate
ammonium sulfate
Camellia sinensis
environment
fertilizers
N2O emission
Net nitrification rate
NH4+-N availability
nitrates
nitrification
Nitrification inhibitor
nitrogen
Soil acidification
soil pH
tea
urea
urease
Title Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil
URI https://dx.doi.org/10.1016/j.scitotenv.2020.141340
https://www.proquest.com/docview/2434473053
https://www.proquest.com/docview/2985615568
Volume 747
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EEQql6LVSaysr-Lo1m9tsNn0TUc4e-iCV-rZsspuSck2Oy12hffBv6Z_amWyitZT6IISEbGaTJb_Zmf2YD4DDxOnMj1PJReFLLpPM8azQCRcqsVqVEnUKLehfXKrJtfx4k9yswcngC0Nmlb3sDzK9k9Z9yVH_N4_mVUU-vlJnKqN9RKlVRo7mUqYUP__97b2ZBwWzCbvM2LGR-oGNF7532eDY9DtOFGMsRYlOqyD_1lB_yepOAZ1twYt-5MiOQ-O2Yc3XI9gMuSR_jGDn9N5lDcn6PtuO4HlYmWPB4egl_AoBi1vWlMwSF1arb5yUmWPYvRcNchQjKyNCjOHRNtWse0JGRR2OzNZ_0H6xLaOkcbTs1rKQVJfqlWSxPat--gXHeT9ykGPBy7hlVc3mEzpbhjzG5jMbHKDCx17B9dnpp5MJ7_M08AJ_-JI775zTXSTBMhKly5XMRSGUR8DjSFucwqRxKSKPsiyPo8ynFuVIWgiLox0Kab8D63VT-9fAco10UWILERcyGlvrS5VK6_3Y40zU-11QAzam6IOYUy6NmRms1b6aO1ANgWoCqLsQ3VWchzgej1f5MIBvHrCkQW3zeOWDgV0MQkC7MLb2zao1saQgiyhmx_-hyXRCG8ZKv3lKI_bgGd2R9Y2I3sL6crHy73AMtcz3u06yDxvH59PJJV2nV5-nvwEPDCFp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ShNJCKO22oWn6UKFXEcsry3JuISQ4TbKnBHITsiUXl629rHcL7a_pT-2MZedRSnMoGB9sjW38jb7RYx4AnxKnMz9NJRelr7hMMsezUidcqMRqVUm0KbSgfzFT-ZX8fJ1cb8DRGAtDbpUD9wdO79l6uLI__M39RV1TjK_UmcpoH1FqlSWPYIuyU6Gybx2enuWzW0JOdSicJ7Fvo8A9Ny989KrF4el3nCvGeBVJnRZC_m6k_qDr3gadPIdnw-CRHYbvewEbvpnA41BO8scEdo5vo9aw2dBtuwlsh8U5FmKOXsKvkLO4Y23FLClivf7GyZ45hj182aJSMXI0ItAYHl1bz_s75FfUQ8lsc6ftF9sxqhtHK28dC3V1Sa4ip-15_dMvOU79UYkcC4HGHasbtsjpbBmqGVvMbYiBCi97BVcnx5dHOR9KNfBSynTFnXfO6T6ZYBWJyhVKFqIUyiPmcaQtzmLSuBKRRzor4ijzqUUqSUthccBDWe13YLNpG_8aWKGxXZTYUsSljKbW-kql0no_9TgZ9X4X1IiNKYc85lROY25Gh7Wv5gZUQ6CaAOouRDeCi5DK42GRgxF8c08rDRqch4U_jupiEALaiLGNb9ediSXlWUSmnf6jTaYT2jNW-s3_fMQHeJJfXpyb89PZ2R48pTvkjCOit7C5Wq79OxxSrYr3Q5f5DcjvInc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ammonium-based+nitrogen+addition+on+soil+nitrification+and+nitrogen+gas+emissions+depend+on+fertilizer-induced+changes+in+pH+in+a+tea+plantation+soil&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wang%2C+Jing&rft.au=Tu%2C+Xiaoshun&rft.au=Zhang%2C+Huimin&rft.au=Cui%2C+Jingya&rft.date=2020-12-10&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=747&rft.spage=141340&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.141340&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon