Combined Mutation of Apc, Kras , and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer
Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 78; no. 5; pp. 1334 - 1346 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research, Inc
01.03.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-17-3303 |
Cover
Loading…
Abstract | Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (
) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases.
mutation caused intestinal adenomas and combination with
mutation or
deletion induced submucosal invasion. The addition of
mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of
with
and
mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that
was critical for liver metastasis following splenic transplantation, when this mutation was combined with either
plus
or
deletion, with the highest incidence of metastasis displayed by tumors with a
genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in
tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.
These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies.
. |
---|---|
AbstractList | Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (
) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases.
mutation caused intestinal adenomas and combination with
mutation or
deletion induced submucosal invasion. The addition of
mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of
with
and
mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that
was critical for liver metastasis following splenic transplantation, when this mutation was combined with either
plus
or
deletion, with the highest incidence of metastasis displayed by tumors with a
genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in
tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.
These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies.
. Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (Apc, Kras, Tgfbr2, Trp53, Fbxw7) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. ApcΔ716 mutation caused intestinal adenomas and combination with Trp53R270H mutation or Tgfbr2 deletion induced submucosal invasion. The addition of KrasG12D mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of ApcΔ716 with KrasG12D and Fbxw7 mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that KrasG12D was critical for liver metastasis following splenic transplantation, when this mutation was combined with either ApcΔ716 plus Trp53R270H or Tgfbr2 deletion, with the highest incidence of metastasis displayed by tumors with a ApcΔ716 KrasG12D Tgfbr2-/- genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in ApcΔ716 KrasG12D Tgfbr2-/- tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.Significance: These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. Cancer Res; 78(5); 1334-46. ©2017 AACR.Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (Apc, Kras, Tgfbr2, Trp53, Fbxw7) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. ApcΔ716 mutation caused intestinal adenomas and combination with Trp53R270H mutation or Tgfbr2 deletion induced submucosal invasion. The addition of KrasG12D mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of ApcΔ716 with KrasG12D and Fbxw7 mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that KrasG12D was critical for liver metastasis following splenic transplantation, when this mutation was combined with either ApcΔ716 plus Trp53R270H or Tgfbr2 deletion, with the highest incidence of metastasis displayed by tumors with a ApcΔ716 KrasG12D Tgfbr2-/- genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in ApcΔ716 KrasG12D Tgfbr2-/- tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.Significance: These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. Cancer Res; 78(5); 1334-46. ©2017 AACR. These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies.Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (Apc, Kras, Tgfbr2, Trp53, Fbxw7) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. ApcΔ716 mutation caused intestinal adenomas and combination with Trp53R270H mutation or Tgfbr2 deletion induced submucosal invasion. The addition of KrasG12D mutation yielded epithelial–mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of ApcΔ716 with KrasG12D and Fbxw7 mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that KrasG12D was critical for liver metastasis following splenic transplantation, when this mutation was combined with either ApcΔ716 plus Trp53R270H or Tgfbr2 deletion, with the highest incidence of metastasis displayed by tumors with a ApcΔ716 KrasG12D Tgfbr2−/− genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in ApcΔ716 KrasG12D Tgfbr2−/− tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.Significance: These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. Cancer Res; 78(5); 1334–46. ©2017 AACR. |
Author | Oshima, Masanobu Oshima, Hiroko Sakai, Eri Ock, Chan-Young Nakayama, Keiichi I. Suzuki, Yutaka Fujii, Satoshi Niida, Atsushi Mimori, Koshi Hong, Chang Pyo Nakayama, Mizuho Kouyama, Yuta Ochiai, Atsushi Kim, Seong-Jin |
Author_xml | – sequence: 1 givenname: Eri surname: Sakai fullname: Sakai, Eri – sequence: 2 givenname: Mizuho surname: Nakayama fullname: Nakayama, Mizuho – sequence: 3 givenname: Hiroko surname: Oshima fullname: Oshima, Hiroko – sequence: 4 givenname: Yuta surname: Kouyama fullname: Kouyama, Yuta – sequence: 5 givenname: Atsushi surname: Niida fullname: Niida, Atsushi – sequence: 6 givenname: Satoshi surname: Fujii fullname: Fujii, Satoshi – sequence: 7 givenname: Atsushi surname: Ochiai fullname: Ochiai, Atsushi – sequence: 8 givenname: Keiichi I. surname: Nakayama fullname: Nakayama, Keiichi I. – sequence: 9 givenname: Koshi surname: Mimori fullname: Mimori, Koshi – sequence: 10 givenname: Yutaka surname: Suzuki fullname: Suzuki, Yutaka – sequence: 11 givenname: Chang Pyo surname: Hong fullname: Hong, Chang Pyo – sequence: 12 givenname: Chan-Young surname: Ock fullname: Ock, Chan-Young – sequence: 13 givenname: Seong-Jin surname: Kim fullname: Kim, Seong-Jin – sequence: 14 givenname: Masanobu surname: Oshima fullname: Oshima, Masanobu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29282223$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJ6W7S_IQWQS89xIlGH5ZMT4uzSUOS5pJcI2RZLgpeeSvZhfz7yGy2hz0UBIPgeWeGeY7RURiCQ-gLkHMAoS4IIaoQXNLzevWrAFkwRtgHtATBVCE5F0do-Y9ZoOOUXvJXABGf0IJWVFFK2RI918Om8cG1-H4azeiHgIcOr7b2DN9Gk_AZNqHFj7-7JlK87jpnR__X9a_4Muaa8L0bTcrPpzl3E0aXRh9Mj2sTrIuf0cfO9MmdvtcT9HS1fqx_FncP1zf16q6wnMuxsB0VVgBXlVKmssZSwRyUlBsuJDW8Kjm4VjZArKStEVACLzlvoG2IkJayE_R913cbhz9T3kFvfLKu701ww5Q0VAoUkRnO6LcD9GWYYl45aUoAmCoZJZn6-k5Nzca1ehv9xsRXvb9cBn7sABuHlKLrtPW7A47R-F4D0bMnPTvQswOdPWmQevaU0-IgvR_w_9wb1d2SuA |
CitedBy_id | crossref_primary_10_3390_ijms20235822 crossref_primary_10_3748_wjg_v26_i13_1394 crossref_primary_10_1111_brv_12562 crossref_primary_10_1096_fj_201801176R crossref_primary_10_1038_s41419_024_06965_3 crossref_primary_10_1038_s41388_022_02190_4 crossref_primary_10_3390_ijms232214436 crossref_primary_10_1038_s41575_019_0255_2 crossref_primary_10_1038_s41388_021_01997_x crossref_primary_10_3390_biom12030453 crossref_primary_10_1016_j_isci_2023_106958 crossref_primary_10_1053_j_gastro_2021_04_064 crossref_primary_10_2147_IJGM_S307367 crossref_primary_10_3389_fonc_2020_588542 crossref_primary_10_1111_cas_15891 crossref_primary_10_1002_ijc_34297 crossref_primary_10_1186_s12964_023_01238_6 crossref_primary_10_3390_medsci6020031 crossref_primary_10_1016_j_cca_2024_119686 crossref_primary_10_1038_s12276_022_00882_1 crossref_primary_10_3748_wjg_v25_i16_1913 crossref_primary_10_1016_j_bpj_2022_04_018 crossref_primary_10_1016_j_ccell_2019_08_003 crossref_primary_10_1002_cai2_50 crossref_primary_10_1007_s11888_018_0403_z crossref_primary_10_1177_15330338231221856 crossref_primary_10_1158_1078_0432_CCR_21_4391 crossref_primary_10_1186_s13148_020_0819_6 crossref_primary_10_3389_fcell_2021_609452 crossref_primary_10_3390_cancers13081763 crossref_primary_10_3892_mmr_2018_9540 crossref_primary_10_3390_biom12070878 crossref_primary_10_3390_cancers15245820 crossref_primary_10_3390_cancers13051148 crossref_primary_10_1038_s41586_023_06254_7 crossref_primary_10_1186_s13287_019_1222_0 crossref_primary_10_1186_s12929_024_01060_3 crossref_primary_10_1007_s12195_023_00776_w crossref_primary_10_1038_s41467_021_22450_3 crossref_primary_10_1080_14789450_2023_2275681 crossref_primary_10_1016_j_gene_2025_149433 crossref_primary_10_1073_pnas_1904714116 crossref_primary_10_1111_cas_15709 crossref_primary_10_3389_fonc_2022_898117 crossref_primary_10_1093_jmcb_mjy075 crossref_primary_10_1111_cpr_12553 crossref_primary_10_1002_smll_202206213 crossref_primary_10_15430_JCP_2022_27_1_1 crossref_primary_10_1038_s41467_023_42228_z crossref_primary_10_1158_1541_7786_MCR_24_0624 crossref_primary_10_1093_jb_mvae044 crossref_primary_10_1158_0008_5472_CAN_22_1369 crossref_primary_10_3390_cancers12113081 crossref_primary_10_3390_cancers15092570 crossref_primary_10_3390_ijms25084140 crossref_primary_10_1158_0008_5472_CAN_23_1490 crossref_primary_10_1016_j_ccell_2023_09_014 crossref_primary_10_1016_j_gde_2020_12_003 crossref_primary_10_1158_2767_9764_CRC_22_0347 crossref_primary_10_1158_2767_9764_CRC_24_0471 crossref_primary_10_3390_cells8091019 crossref_primary_10_1002_1878_0261_12819 crossref_primary_10_1038_s41467_020_16245_1 crossref_primary_10_1038_s41467_021_21160_0 crossref_primary_10_1016_j_biomaterials_2021_121256 crossref_primary_10_1016_j_ejcb_2025_151478 crossref_primary_10_26508_lsa_202301912 crossref_primary_10_3389_fonc_2020_01511 crossref_primary_10_3390_ijms25137400 crossref_primary_10_3390_cancers13235910 crossref_primary_10_3390_ijms222111941 crossref_primary_10_1186_s12885_025_13544_y crossref_primary_10_1038_s41467_021_24064_1 crossref_primary_10_1186_s40364_021_00323_7 crossref_primary_10_1158_1541_7786_MCR_21_0994 crossref_primary_10_3389_fgene_2021_698771 crossref_primary_10_1016_j_biomaterials_2020_120198 crossref_primary_10_3390_cancers13051000 crossref_primary_10_1038_s41417_023_00723_x crossref_primary_10_3390_biology13060386 crossref_primary_10_3390_livers1040015 crossref_primary_10_1039_C8RA05259J crossref_primary_10_1158_2159_8290_CD_20_1531 crossref_primary_10_1186_s12943_022_01569_x crossref_primary_10_1038_s42003_022_04369_7 crossref_primary_10_3390_cells12081139 crossref_primary_10_1016_j_celrep_2024_114952 crossref_primary_10_1038_s41467_021_22125_z crossref_primary_10_1016_j_bbcan_2021_188586 |
Cites_doi | 10.1002/gene.20042 10.1073/pnas.92.10.4482 10.1101/gad.293449.116 10.1038/bjc.2014.619 10.1038/bjc.2014.259 10.1038/nature15251 10.1084/jem.20062299 10.1038/ni.1878 10.1126/science.1235122 10.1158/1078-0432.CCR-13-1059 doi:10.1038/nm.3802 10.1016/j.cell.2009.10.027 10.1038/nature11252 10.1016/j.cell.2012.05.012 10.1053/j.gastro.2010.05.078 10.1158/0008-5472.CAN-15-1293 10.1186/gb-2013-14-4-r36 10.1038/nm.3585 10.1038/nbt.3836 10.1002/gene.10046 10.1016/j.celrep.2016.03.075 10.1136/gut.42.5.673 10.1158/0008-5472.CAN-09-2356 10.1053/j.gastro.2016.10.015 10.3322/caac.21220 10.1016/j.cell.2004.11.004 10.1038/ng1997 10.1056/NEJMoa1500596 10.1158/0008-5472.CAN-14-2036 10.1016/j.cell.2016.11.037 10.1016/j.neuron.2013.10.022 10.1016/j.cell.2008.03.027 10.1158/1078-0432.CCR-14-2662 10.1038/nrc2620 10.1016/j.cell.2013.03.002 10.1038/nbt.1621 10.1101/gad.263202.115 10.1101/gad.943001 10.1038/nprot.2008.211 10.1016/j.ejca.2012.12.027 10.1038/nrc2290 10.1038/onc.2017.194 10.1084/jem.20100830 10.1038/bjc.2011.26 10.1016/S0092-8674(00)81988-1 10.1038/nature14415 10.1056/NEJMra0804588 |
ContentType | Journal Article |
Copyright | 2017 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. Mar 1, 2018 |
Copyright_xml | – notice: 2017 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. Mar 1, 2018 |
DBID | AAYXX CITATION NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 |
DOI | 10.1158/0008-5472.CAN-17-3303 |
DatabaseName | CrossRef PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 1346 |
ExternalDocumentID | 29282223 10_1158_0008_5472_CAN_17_3303 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c447t-cf25c5148988a9cac253e1624a4572a49641ed7b10c72da51614644b1db057c23 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Mon Jul 21 11:12:53 EDT 2025 Fri Jul 25 20:02:21 EDT 2025 Thu Apr 03 07:05:39 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Tue Jul 01 01:19:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2017 American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-cf25c5148988a9cac253e1624a4572a49641ed7b10c72da51614644b1db057c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://kanazawa-u.repo.nii.ac.jp/records/44136 |
PMID | 29282223 |
PQID | 2011386320 |
PQPubID | 105549 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1981807057 proquest_journals_2011386320 pubmed_primary_29282223 crossref_citationtrail_10_1158_0008_5472_CAN_17_3303 crossref_primary_10_1158_0008_5472_CAN_17_3303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-01 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2018 |
Publisher | American Association for Cancer Research, Inc |
Publisher_xml | – name: American Association for Cancer Research, Inc |
References | 2020122622164086000_78.5.1334.1 2020122622164086000_78.5.1334.2 Nakayama (2020122622164086000_78.5.1334.22) 2017; 36 2020122622164086000_78.5.1334.3 Kitamura (2020122622164086000_78.5.1334.20) 2007; 39 2020122622164086000_78.5.1334.43 2020122622164086000_78.5.1334.41 2020122622164086000_78.5.1334.46 2020122622164086000_78.5.1334.47 2020122622164086000_78.5.1334.44 2020122622164086000_78.5.1334.45 2020122622164086000_78.5.1334.48 2020122622164086000_78.5.1334.49 Oshima (2020122622164086000_78.5.1334.36) 2001; 61 Pereira (2020122622164086000_78.5.1334.42) 2015; 112 2020122622164086000_78.5.1334.31 2020122622164086000_78.5.1334.32 2020122622164086000_78.5.1334.30 2020122622164086000_78.5.1334.35 2020122622164086000_78.5.1334.33 2020122622164086000_78.5.1334.34 2020122622164086000_78.5.1334.39 2020122622164086000_78.5.1334.37 2020122622164086000_78.5.1334.38 2020122622164086000_78.5.1334.21 2020122622164086000_78.5.1334.24 2020122622164086000_78.5.1334.25 2020122622164086000_78.5.1334.23 2020122622164086000_78.5.1334.28 2020122622164086000_78.5.1334.29 2020122622164086000_78.5.1334.26 2020122622164086000_78.5.1334.27 Colvin (2020122622164086000_78.5.1334.40) 2010; 22 Jung (2020122622164086000_78.5.1334.14) 2017; 152 2020122622164086000_78.5.1334.50 2020122622164086000_78.5.1334.4 2020122622164086000_78.5.1334.5 2020122622164086000_78.5.1334.10 2020122622164086000_78.5.1334.6 2020122622164086000_78.5.1334.7 2020122622164086000_78.5.1334.8 2020122622164086000_78.5.1334.13 2020122622164086000_78.5.1334.9 2020122622164086000_78.5.1334.11 2020122622164086000_78.5.1334.12 2020122622164086000_78.5.1334.17 2020122622164086000_78.5.1334.18 2020122622164086000_78.5.1334.15 2020122622164086000_78.5.1334.16 2020122622164086000_78.5.1334.19 |
References_xml | – ident: 2020122622164086000_78.5.1334.27 doi: 10.1002/gene.20042 – ident: 2020122622164086000_78.5.1334.25 doi: 10.1073/pnas.92.10.4482 – ident: 2020122622164086000_78.5.1334.23 doi: 10.1101/gad.293449.116 – volume: 112 start-page: 424 year: 2015 ident: 2020122622164086000_78.5.1334.42 article-title: Association between KRAS mutation and lung metastasis in advanced colorectal cancer publication-title: Br J Cancer doi: 10.1038/bjc.2014.619 – ident: 2020122622164086000_78.5.1334.47 doi: 10.1038/bjc.2014.259 – ident: 2020122622164086000_78.5.1334.19 doi: 10.1038/nature15251 – ident: 2020122622164086000_78.5.1334.26 doi: 10.1084/jem.20062299 – volume: 22 start-page: 495 year: 2010 ident: 2020122622164086000_78.5.1334.40 article-title: Synaptotagmin-mediated vesicle fusion regulates cell migration publication-title: Nat Immunol doi: 10.1038/ni.1878 – ident: 2020122622164086000_78.5.1334.11 doi: 10.1126/science.1235122 – ident: 2020122622164086000_78.5.1334.45 doi: 10.1158/1078-0432.CCR-13-1059 – ident: 2020122622164086000_78.5.1334.9 doi: doi:10.1038/nm.3802 – ident: 2020122622164086000_78.5.1334.46 doi: 10.1016/j.cell.2009.10.027 – ident: 2020122622164086000_78.5.1334.6 doi: 10.1038/nature11252 – ident: 2020122622164086000_78.5.1334.12 doi: 10.1016/j.cell.2012.05.012 – ident: 2020122622164086000_78.5.1334.16 doi: 10.1053/j.gastro.2010.05.078 – ident: 2020122622164086000_78.5.1334.43 doi: 10.1158/0008-5472.CAN-15-1293 – ident: 2020122622164086000_78.5.1334.32 doi: 10.1186/gb-2013-14-4-r36 – ident: 2020122622164086000_78.5.1334.8 doi: 10.1038/nm.3585 – ident: 2020122622164086000_78.5.1334.24 doi: 10.1038/nbt.3836 – ident: 2020122622164086000_78.5.1334.28 doi: 10.1002/gene.10046 – volume: 61 start-page: 1733 year: 2001 ident: 2020122622164086000_78.5.1334.36 article-title: Chemoprevention of intestinal polyposis in the Apcδ716 mouse by rofecoxib, a specific cyclooxigenase-2 inhibitor publication-title: Cancer Res – ident: 2020122622164086000_78.5.1334.7 doi: 10.1016/j.celrep.2016.03.075 – ident: 2020122622164086000_78.5.1334.49 doi: 10.1136/gut.42.5.673 – ident: 2020122622164086000_78.5.1334.44 doi: 10.1158/0008-5472.CAN-09-2356 – ident: 2020122622164086000_78.5.1334.31 – volume: 152 start-page: 36 year: 2017 ident: 2020122622164086000_78.5.1334.14 article-title: Transforming growth factor β superfamily signaling in development of colorectal cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.10.015 – ident: 2020122622164086000_78.5.1334.2 doi: 10.3322/caac.21220 – ident: 2020122622164086000_78.5.1334.29 doi: 10.1016/j.cell.2004.11.004 – volume: 39 start-page: 465 year: 2007 ident: 2020122622164086000_78.5.1334.20 article-title: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion publication-title: Nat Genet doi: 10.1038/ng1997 – ident: 2020122622164086000_78.5.1334.50 doi: 10.1056/NEJMoa1500596 – ident: 2020122622164086000_78.5.1334.21 doi: 10.1158/0008-5472.CAN-14-2036 – ident: 2020122622164086000_78.5.1334.37 doi: 10.1016/j.cell.2016.11.037 – ident: 2020122622164086000_78.5.1334.39 doi: 10.1016/j.neuron.2013.10.022 – ident: 2020122622164086000_78.5.1334.48 doi: 10.1016/j.cell.2008.03.027 – ident: 2020122622164086000_78.5.1334.13 doi: 10.1158/1078-0432.CCR-14-2662 – ident: 2020122622164086000_78.5.1334.38 doi: 10.1038/nrc2620 – ident: 2020122622164086000_78.5.1334.5 doi: 10.1016/j.cell.2013.03.002 – ident: 2020122622164086000_78.5.1334.33 doi: 10.1038/nbt.1621 – ident: 2020122622164086000_78.5.1334.18 doi: 10.1101/gad.263202.115 – ident: 2020122622164086000_78.5.1334.30 doi: 10.1101/gad.943001 – ident: 2020122622164086000_78.5.1334.34 doi: 10.1038/nprot.2008.211 – ident: 2020122622164086000_78.5.1334.1 doi: 10.1016/j.ejca.2012.12.027 – ident: 2020122622164086000_78.5.1334.15 doi: 10.1038/nrc2290 – volume: 36 start-page: 5885 year: 2017 ident: 2020122622164086000_78.5.1334.22 article-title: Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular structure formation publication-title: Oncogene doi: 10.1038/onc.2017.194 – ident: 2020122622164086000_78.5.1334.17 doi: 10.1084/jem.20100830 – ident: 2020122622164086000_78.5.1334.41 doi: 10.1038/bjc.2011.26 – ident: 2020122622164086000_78.5.1334.35 doi: 10.1016/S0092-8674(00)81988-1 – ident: 2020122622164086000_78.5.1334.3 – ident: 2020122622164086000_78.5.1334.10 doi: 10.1038/nature14415 – ident: 2020122622164086000_78.5.1334.4 doi: 10.1056/NEJMra0804588 |
SSID | ssj0005105 |
Score | 2.5459733 |
Snippet | Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression... These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1334 |
SubjectTerms | Adenomatous polyposis coli Animal models Cdc4 protein Clonal deletion Colon Colon cancer Colorectal cancer Colorectal carcinoma Epithelial cells Gene deletion Gene expression Genotypes Intestine Invasiveness K-Ras protein Mesenchyme Metastases Metastasis Mutation Organoids Ribonucleic acid RNA Spleen Tumors Wnt protein |
Title | Combined Mutation of Apc, Kras , and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29282223 https://www.proquest.com/docview/2011386320 https://www.proquest.com/docview/1981807057 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviDuFgYzEW5fS-BInj1W3abC1PNBK5QFFjp2s1UozpcnD9pf4kxzHuaGN60tUuXWc-nw-_s7JOccIveNcM5oQ7QQJrCbg_4EjJVeO4Jwnbkw1pSbBeTrzThbs45Ive73vnailIo-G6vrWvJL_kSq0gVxNluw_SLa5KTTAZ5AvXEHCcP0rGcNiBsMWKOO0yBvqN75UdvXaVC3jGJ-fJ1FGBrZSMai3zdXgMCvrzU7jXAI_rKqSGPcgLHlDUCcGDVmXutqWQVUdaFW-_rVxHKWe2WyGHa_CZ3kh10bJNs5maLiS3-Rgur4uVmnj292t1iYZap2lF03jaVqUP_1S5LLrlXD9NiyrkwgAGqoDsjJusnrWOqzwRsCn4SQOZ_Y4n2HcKmXBbNnJWmsLv4NO3lHBYHSzznbuUuvivLlVcN_GVtrxhpPxzIEdm9IRbffGOh5g9ik8XpydhfOj5fwOukvAJjHHZRx-OG3jiap42fqGVboYDPP-1kF-JkK_sG5KljN_iB5U5gkeW6w9Qr14-xjdm1YBGE_Q1xpyuIYcThMMkDvABnAHGOCGLdxwB27Ywg23cDPdWrhhK7CnaHF8NJ-cONUJHY5iTOSOSghXQLn9wPdloKQinMauR5hkXBDJAo-5sRaRO1KCaMnBvGBAwCNXR2AnKEKfob1tuo1fIKy5jJmOIqU5mMQjEsVMeBr4ufak0NLrI1ZPV6iq8vXmFJVNWJqx3DdhFH5oZjmEWQ5dEZpZ7qNh0-3S1m_5U4f9WhZhtdR3oWHJ1PcoGfXR2-ZrUMTm7ZrcxmmxC93AlE0Q8L_66LmVYTMiCUhJxF_-_uav0P12Le2jvTwr4tfAefPoTYm1HzGzpfw |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Mutation+of+Apc%2C+Kras%2C+and+Tgfbr2+Effectively+Drives+Metastasis+of+Intestinal+Cancer&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Sakai+Eri&rft.au=Nakayama+Mizuho&rft.au=Oshima+Hiroko&rft.au=Kouyama+Yuta&rft.date=2018-03-01&rft.pub=American+Association+for+Cancer+Research%2C+Inc&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=78&rft.issue=5&rft.spage=1334&rft.epage=1346&rft_id=info:doi/10.1158%2F0008-5472.CAN-17-3303&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |