Combined Mutation of Apc, Kras , and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer

Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 78; no. 5; pp. 1334 - 1346
Main Authors Sakai, Eri, Nakayama, Mizuho, Oshima, Hiroko, Kouyama, Yuta, Niida, Atsushi, Fujii, Satoshi, Ochiai, Atsushi, Nakayama, Keiichi I., Mimori, Koshi, Suzuki, Yutaka, Hong, Chang Pyo, Ock, Chan-Young, Kim, Seong-Jin, Oshima, Masanobu
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research, Inc 01.03.2018
Subjects
Online AccessGet full text
ISSN0008-5472
1538-7445
1538-7445
DOI10.1158/0008-5472.CAN-17-3303

Cover

Loading…
Abstract Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations ( ) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. mutation caused intestinal adenomas and combination with mutation or deletion induced submucosal invasion. The addition of mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of with and mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that was critical for liver metastasis following splenic transplantation, when this mutation was combined with either plus or deletion, with the highest incidence of metastasis displayed by tumors with a genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies. These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. .
AbstractList Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations ( ) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. mutation caused intestinal adenomas and combination with mutation or deletion induced submucosal invasion. The addition of mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of with and mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that was critical for liver metastasis following splenic transplantation, when this mutation was combined with either plus or deletion, with the highest incidence of metastasis displayed by tumors with a genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies. These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. .
Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (Apc, Kras, Tgfbr2, Trp53, Fbxw7) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. ApcΔ716 mutation caused intestinal adenomas and combination with Trp53R270H mutation or Tgfbr2 deletion induced submucosal invasion. The addition of KrasG12D mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of ApcΔ716 with KrasG12D and Fbxw7 mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that KrasG12D was critical for liver metastasis following splenic transplantation, when this mutation was combined with either ApcΔ716 plus Trp53R270H or Tgfbr2 deletion, with the highest incidence of metastasis displayed by tumors with a ApcΔ716 KrasG12D Tgfbr2-/- genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in ApcΔ716 KrasG12D Tgfbr2-/- tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.Significance: These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. Cancer Res; 78(5); 1334-46. ©2017 AACR.Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (Apc, Kras, Tgfbr2, Trp53, Fbxw7) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. ApcΔ716 mutation caused intestinal adenomas and combination with Trp53R270H mutation or Tgfbr2 deletion induced submucosal invasion. The addition of KrasG12D mutation yielded epithelial-mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of ApcΔ716 with KrasG12D and Fbxw7 mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that KrasG12D was critical for liver metastasis following splenic transplantation, when this mutation was combined with either ApcΔ716 plus Trp53R270H or Tgfbr2 deletion, with the highest incidence of metastasis displayed by tumors with a ApcΔ716 KrasG12D Tgfbr2-/- genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in ApcΔ716 KrasG12D Tgfbr2-/- tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.Significance: These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. Cancer Res; 78(5); 1334-46. ©2017 AACR.
These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies.Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression are not fully understood. In this study, we generated mouse models harboring different combinations of key colorectal cancer driver mutations (Apc, Kras, Tgfbr2, Trp53, Fbxw7) in intestinal epithelial cells to comprehensively investigate their roles in the development of primary tumors and metastases. ApcΔ716 mutation caused intestinal adenomas and combination with Trp53R270H mutation or Tgfbr2 deletion induced submucosal invasion. The addition of KrasG12D mutation yielded epithelial–mesenchymal transition (EMT)-like morphology and lymph vessel intravasation of the invasive tumors. In contrast, combinations of ApcΔ716 with KrasG12D and Fbxw7 mutation were insufficient for submucosal invasion, but still induced EMT-like histology. Studies using tumor-derived organoids showed that KrasG12D was critical for liver metastasis following splenic transplantation, when this mutation was combined with either ApcΔ716 plus Trp53R270H or Tgfbr2 deletion, with the highest incidence of metastasis displayed by tumors with a ApcΔ716 KrasG12D Tgfbr2−/− genotype. RNA sequencing analysis of tumor organoids defined distinct gene expression profiles characteristic for the respective combinations of driver mutations, with upregulated genes in ApcΔ716 KrasG12D Tgfbr2−/− tumors found to be similarly upregulated in specimens of human metastatic colorectal cancer. Our results show how activation of Wnt and Kras with suppression of TGFβ signaling in intestinal epithelial cells is sufficient for colorectal cancer metastasis, with possible implications for the development of metastasis prevention strategies.Significance: These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for the development of suitable prevention strategies. Cancer Res; 78(5); 1334–46. ©2017 AACR.
Author Oshima, Masanobu
Oshima, Hiroko
Sakai, Eri
Ock, Chan-Young
Nakayama, Keiichi I.
Suzuki, Yutaka
Fujii, Satoshi
Niida, Atsushi
Mimori, Koshi
Hong, Chang Pyo
Nakayama, Mizuho
Kouyama, Yuta
Ochiai, Atsushi
Kim, Seong-Jin
Author_xml – sequence: 1
  givenname: Eri
  surname: Sakai
  fullname: Sakai, Eri
– sequence: 2
  givenname: Mizuho
  surname: Nakayama
  fullname: Nakayama, Mizuho
– sequence: 3
  givenname: Hiroko
  surname: Oshima
  fullname: Oshima, Hiroko
– sequence: 4
  givenname: Yuta
  surname: Kouyama
  fullname: Kouyama, Yuta
– sequence: 5
  givenname: Atsushi
  surname: Niida
  fullname: Niida, Atsushi
– sequence: 6
  givenname: Satoshi
  surname: Fujii
  fullname: Fujii, Satoshi
– sequence: 7
  givenname: Atsushi
  surname: Ochiai
  fullname: Ochiai, Atsushi
– sequence: 8
  givenname: Keiichi I.
  surname: Nakayama
  fullname: Nakayama, Keiichi I.
– sequence: 9
  givenname: Koshi
  surname: Mimori
  fullname: Mimori, Koshi
– sequence: 10
  givenname: Yutaka
  surname: Suzuki
  fullname: Suzuki, Yutaka
– sequence: 11
  givenname: Chang Pyo
  surname: Hong
  fullname: Hong, Chang Pyo
– sequence: 12
  givenname: Chan-Young
  surname: Ock
  fullname: Ock, Chan-Young
– sequence: 13
  givenname: Seong-Jin
  surname: Kim
  fullname: Kim, Seong-Jin
– sequence: 14
  givenname: Masanobu
  surname: Oshima
  fullname: Oshima, Masanobu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29282223$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJ6W7S_IQWQS89xIlGH5ZMT4uzSUOS5pJcI2RZLgpeeSvZhfz7yGy2hz0UBIPgeWeGeY7RURiCQ-gLkHMAoS4IIaoQXNLzevWrAFkwRtgHtATBVCE5F0do-Y9ZoOOUXvJXABGf0IJWVFFK2RI918Om8cG1-H4azeiHgIcOr7b2DN9Gk_AZNqHFj7-7JlK87jpnR__X9a_4Muaa8L0bTcrPpzl3E0aXRh9Mj2sTrIuf0cfO9MmdvtcT9HS1fqx_FncP1zf16q6wnMuxsB0VVgBXlVKmssZSwRyUlBsuJDW8Kjm4VjZArKStEVACLzlvoG2IkJayE_R913cbhz9T3kFvfLKu701ww5Q0VAoUkRnO6LcD9GWYYl45aUoAmCoZJZn6-k5Nzca1ehv9xsRXvb9cBn7sABuHlKLrtPW7A47R-F4D0bMnPTvQswOdPWmQevaU0-IgvR_w_9wb1d2SuA
CitedBy_id crossref_primary_10_3390_ijms20235822
crossref_primary_10_3748_wjg_v26_i13_1394
crossref_primary_10_1111_brv_12562
crossref_primary_10_1096_fj_201801176R
crossref_primary_10_1038_s41419_024_06965_3
crossref_primary_10_1038_s41388_022_02190_4
crossref_primary_10_3390_ijms232214436
crossref_primary_10_1038_s41575_019_0255_2
crossref_primary_10_1038_s41388_021_01997_x
crossref_primary_10_3390_biom12030453
crossref_primary_10_1016_j_isci_2023_106958
crossref_primary_10_1053_j_gastro_2021_04_064
crossref_primary_10_2147_IJGM_S307367
crossref_primary_10_3389_fonc_2020_588542
crossref_primary_10_1111_cas_15891
crossref_primary_10_1002_ijc_34297
crossref_primary_10_1186_s12964_023_01238_6
crossref_primary_10_3390_medsci6020031
crossref_primary_10_1016_j_cca_2024_119686
crossref_primary_10_1038_s12276_022_00882_1
crossref_primary_10_3748_wjg_v25_i16_1913
crossref_primary_10_1016_j_bpj_2022_04_018
crossref_primary_10_1016_j_ccell_2019_08_003
crossref_primary_10_1002_cai2_50
crossref_primary_10_1007_s11888_018_0403_z
crossref_primary_10_1177_15330338231221856
crossref_primary_10_1158_1078_0432_CCR_21_4391
crossref_primary_10_1186_s13148_020_0819_6
crossref_primary_10_3389_fcell_2021_609452
crossref_primary_10_3390_cancers13081763
crossref_primary_10_3892_mmr_2018_9540
crossref_primary_10_3390_biom12070878
crossref_primary_10_3390_cancers15245820
crossref_primary_10_3390_cancers13051148
crossref_primary_10_1038_s41586_023_06254_7
crossref_primary_10_1186_s13287_019_1222_0
crossref_primary_10_1186_s12929_024_01060_3
crossref_primary_10_1007_s12195_023_00776_w
crossref_primary_10_1038_s41467_021_22450_3
crossref_primary_10_1080_14789450_2023_2275681
crossref_primary_10_1016_j_gene_2025_149433
crossref_primary_10_1073_pnas_1904714116
crossref_primary_10_1111_cas_15709
crossref_primary_10_3389_fonc_2022_898117
crossref_primary_10_1093_jmcb_mjy075
crossref_primary_10_1111_cpr_12553
crossref_primary_10_1002_smll_202206213
crossref_primary_10_15430_JCP_2022_27_1_1
crossref_primary_10_1038_s41467_023_42228_z
crossref_primary_10_1158_1541_7786_MCR_24_0624
crossref_primary_10_1093_jb_mvae044
crossref_primary_10_1158_0008_5472_CAN_22_1369
crossref_primary_10_3390_cancers12113081
crossref_primary_10_3390_cancers15092570
crossref_primary_10_3390_ijms25084140
crossref_primary_10_1158_0008_5472_CAN_23_1490
crossref_primary_10_1016_j_ccell_2023_09_014
crossref_primary_10_1016_j_gde_2020_12_003
crossref_primary_10_1158_2767_9764_CRC_22_0347
crossref_primary_10_1158_2767_9764_CRC_24_0471
crossref_primary_10_3390_cells8091019
crossref_primary_10_1002_1878_0261_12819
crossref_primary_10_1038_s41467_020_16245_1
crossref_primary_10_1038_s41467_021_21160_0
crossref_primary_10_1016_j_biomaterials_2021_121256
crossref_primary_10_1016_j_ejcb_2025_151478
crossref_primary_10_26508_lsa_202301912
crossref_primary_10_3389_fonc_2020_01511
crossref_primary_10_3390_ijms25137400
crossref_primary_10_3390_cancers13235910
crossref_primary_10_3390_ijms222111941
crossref_primary_10_1186_s12885_025_13544_y
crossref_primary_10_1038_s41467_021_24064_1
crossref_primary_10_1186_s40364_021_00323_7
crossref_primary_10_1158_1541_7786_MCR_21_0994
crossref_primary_10_3389_fgene_2021_698771
crossref_primary_10_1016_j_biomaterials_2020_120198
crossref_primary_10_3390_cancers13051000
crossref_primary_10_1038_s41417_023_00723_x
crossref_primary_10_3390_biology13060386
crossref_primary_10_3390_livers1040015
crossref_primary_10_1039_C8RA05259J
crossref_primary_10_1158_2159_8290_CD_20_1531
crossref_primary_10_1186_s12943_022_01569_x
crossref_primary_10_1038_s42003_022_04369_7
crossref_primary_10_3390_cells12081139
crossref_primary_10_1016_j_celrep_2024_114952
crossref_primary_10_1038_s41467_021_22125_z
crossref_primary_10_1016_j_bbcan_2021_188586
Cites_doi 10.1002/gene.20042
10.1073/pnas.92.10.4482
10.1101/gad.293449.116
10.1038/bjc.2014.619
10.1038/bjc.2014.259
10.1038/nature15251
10.1084/jem.20062299
10.1038/ni.1878
10.1126/science.1235122
10.1158/1078-0432.CCR-13-1059
doi:10.1038/nm.3802
10.1016/j.cell.2009.10.027
10.1038/nature11252
10.1016/j.cell.2012.05.012
10.1053/j.gastro.2010.05.078
10.1158/0008-5472.CAN-15-1293
10.1186/gb-2013-14-4-r36
10.1038/nm.3585
10.1038/nbt.3836
10.1002/gene.10046
10.1016/j.celrep.2016.03.075
10.1136/gut.42.5.673
10.1158/0008-5472.CAN-09-2356
10.1053/j.gastro.2016.10.015
10.3322/caac.21220
10.1016/j.cell.2004.11.004
10.1038/ng1997
10.1056/NEJMoa1500596
10.1158/0008-5472.CAN-14-2036
10.1016/j.cell.2016.11.037
10.1016/j.neuron.2013.10.022
10.1016/j.cell.2008.03.027
10.1158/1078-0432.CCR-14-2662
10.1038/nrc2620
10.1016/j.cell.2013.03.002
10.1038/nbt.1621
10.1101/gad.263202.115
10.1101/gad.943001
10.1038/nprot.2008.211
10.1016/j.ejca.2012.12.027
10.1038/nrc2290
10.1038/onc.2017.194
10.1084/jem.20100830
10.1038/bjc.2011.26
10.1016/S0092-8674(00)81988-1
10.1038/nature14415
10.1056/NEJMra0804588
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research, Inc. Mar 1, 2018
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research, Inc. Mar 1, 2018
DBID AAYXX
CITATION
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
DOI 10.1158/0008-5472.CAN-17-3303
DatabaseName CrossRef
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 1346
ExternalDocumentID 29282223
10_1158_0008_5472_CAN_17_3303
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
ID FETCH-LOGICAL-c447t-cf25c5148988a9cac253e1624a4572a49641ed7b10c72da51614644b1db057c23
ISSN 0008-5472
1538-7445
IngestDate Mon Jul 21 11:12:53 EDT 2025
Fri Jul 25 20:02:21 EDT 2025
Thu Apr 03 07:05:39 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Tue Jul 01 01:19:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2017 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-cf25c5148988a9cac253e1624a4572a49641ed7b10c72da51614644b1db057c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://kanazawa-u.repo.nii.ac.jp/records/44136
PMID 29282223
PQID 2011386320
PQPubID 105549
PageCount 13
ParticipantIDs proquest_miscellaneous_1981807057
proquest_journals_2011386320
pubmed_primary_29282223
crossref_citationtrail_10_1158_0008_5472_CAN_17_3303
crossref_primary_10_1158_0008_5472_CAN_17_3303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2018
Publisher American Association for Cancer Research, Inc
Publisher_xml – name: American Association for Cancer Research, Inc
References 2020122622164086000_78.5.1334.1
2020122622164086000_78.5.1334.2
Nakayama (2020122622164086000_78.5.1334.22) 2017; 36
2020122622164086000_78.5.1334.3
Kitamura (2020122622164086000_78.5.1334.20) 2007; 39
2020122622164086000_78.5.1334.43
2020122622164086000_78.5.1334.41
2020122622164086000_78.5.1334.46
2020122622164086000_78.5.1334.47
2020122622164086000_78.5.1334.44
2020122622164086000_78.5.1334.45
2020122622164086000_78.5.1334.48
2020122622164086000_78.5.1334.49
Oshima (2020122622164086000_78.5.1334.36) 2001; 61
Pereira (2020122622164086000_78.5.1334.42) 2015; 112
2020122622164086000_78.5.1334.31
2020122622164086000_78.5.1334.32
2020122622164086000_78.5.1334.30
2020122622164086000_78.5.1334.35
2020122622164086000_78.5.1334.33
2020122622164086000_78.5.1334.34
2020122622164086000_78.5.1334.39
2020122622164086000_78.5.1334.37
2020122622164086000_78.5.1334.38
2020122622164086000_78.5.1334.21
2020122622164086000_78.5.1334.24
2020122622164086000_78.5.1334.25
2020122622164086000_78.5.1334.23
2020122622164086000_78.5.1334.28
2020122622164086000_78.5.1334.29
2020122622164086000_78.5.1334.26
2020122622164086000_78.5.1334.27
Colvin (2020122622164086000_78.5.1334.40) 2010; 22
Jung (2020122622164086000_78.5.1334.14) 2017; 152
2020122622164086000_78.5.1334.50
2020122622164086000_78.5.1334.4
2020122622164086000_78.5.1334.5
2020122622164086000_78.5.1334.10
2020122622164086000_78.5.1334.6
2020122622164086000_78.5.1334.7
2020122622164086000_78.5.1334.8
2020122622164086000_78.5.1334.13
2020122622164086000_78.5.1334.9
2020122622164086000_78.5.1334.11
2020122622164086000_78.5.1334.12
2020122622164086000_78.5.1334.17
2020122622164086000_78.5.1334.18
2020122622164086000_78.5.1334.15
2020122622164086000_78.5.1334.16
2020122622164086000_78.5.1334.19
References_xml – ident: 2020122622164086000_78.5.1334.27
  doi: 10.1002/gene.20042
– ident: 2020122622164086000_78.5.1334.25
  doi: 10.1073/pnas.92.10.4482
– ident: 2020122622164086000_78.5.1334.23
  doi: 10.1101/gad.293449.116
– volume: 112
  start-page: 424
  year: 2015
  ident: 2020122622164086000_78.5.1334.42
  article-title: Association between KRAS mutation and lung metastasis in advanced colorectal cancer
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2014.619
– ident: 2020122622164086000_78.5.1334.47
  doi: 10.1038/bjc.2014.259
– ident: 2020122622164086000_78.5.1334.19
  doi: 10.1038/nature15251
– ident: 2020122622164086000_78.5.1334.26
  doi: 10.1084/jem.20062299
– volume: 22
  start-page: 495
  year: 2010
  ident: 2020122622164086000_78.5.1334.40
  article-title: Synaptotagmin-mediated vesicle fusion regulates cell migration
  publication-title: Nat Immunol
  doi: 10.1038/ni.1878
– ident: 2020122622164086000_78.5.1334.11
  doi: 10.1126/science.1235122
– ident: 2020122622164086000_78.5.1334.45
  doi: 10.1158/1078-0432.CCR-13-1059
– ident: 2020122622164086000_78.5.1334.9
  doi: doi:10.1038/nm.3802
– ident: 2020122622164086000_78.5.1334.46
  doi: 10.1016/j.cell.2009.10.027
– ident: 2020122622164086000_78.5.1334.6
  doi: 10.1038/nature11252
– ident: 2020122622164086000_78.5.1334.12
  doi: 10.1016/j.cell.2012.05.012
– ident: 2020122622164086000_78.5.1334.16
  doi: 10.1053/j.gastro.2010.05.078
– ident: 2020122622164086000_78.5.1334.43
  doi: 10.1158/0008-5472.CAN-15-1293
– ident: 2020122622164086000_78.5.1334.32
  doi: 10.1186/gb-2013-14-4-r36
– ident: 2020122622164086000_78.5.1334.8
  doi: 10.1038/nm.3585
– ident: 2020122622164086000_78.5.1334.24
  doi: 10.1038/nbt.3836
– ident: 2020122622164086000_78.5.1334.28
  doi: 10.1002/gene.10046
– volume: 61
  start-page: 1733
  year: 2001
  ident: 2020122622164086000_78.5.1334.36
  article-title: Chemoprevention of intestinal polyposis in the Apcδ716 mouse by rofecoxib, a specific cyclooxigenase-2 inhibitor
  publication-title: Cancer Res
– ident: 2020122622164086000_78.5.1334.7
  doi: 10.1016/j.celrep.2016.03.075
– ident: 2020122622164086000_78.5.1334.49
  doi: 10.1136/gut.42.5.673
– ident: 2020122622164086000_78.5.1334.44
  doi: 10.1158/0008-5472.CAN-09-2356
– ident: 2020122622164086000_78.5.1334.31
– volume: 152
  start-page: 36
  year: 2017
  ident: 2020122622164086000_78.5.1334.14
  article-title: Transforming growth factor β superfamily signaling in development of colorectal cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.10.015
– ident: 2020122622164086000_78.5.1334.2
  doi: 10.3322/caac.21220
– ident: 2020122622164086000_78.5.1334.29
  doi: 10.1016/j.cell.2004.11.004
– volume: 39
  start-page: 465
  year: 2007
  ident: 2020122622164086000_78.5.1334.20
  article-title: SMAD4-deficient intestinal tumors recruit CCR1+ myeloid cells that promote invasion
  publication-title: Nat Genet
  doi: 10.1038/ng1997
– ident: 2020122622164086000_78.5.1334.50
  doi: 10.1056/NEJMoa1500596
– ident: 2020122622164086000_78.5.1334.21
  doi: 10.1158/0008-5472.CAN-14-2036
– ident: 2020122622164086000_78.5.1334.37
  doi: 10.1016/j.cell.2016.11.037
– ident: 2020122622164086000_78.5.1334.39
  doi: 10.1016/j.neuron.2013.10.022
– ident: 2020122622164086000_78.5.1334.48
  doi: 10.1016/j.cell.2008.03.027
– ident: 2020122622164086000_78.5.1334.13
  doi: 10.1158/1078-0432.CCR-14-2662
– ident: 2020122622164086000_78.5.1334.38
  doi: 10.1038/nrc2620
– ident: 2020122622164086000_78.5.1334.5
  doi: 10.1016/j.cell.2013.03.002
– ident: 2020122622164086000_78.5.1334.33
  doi: 10.1038/nbt.1621
– ident: 2020122622164086000_78.5.1334.18
  doi: 10.1101/gad.263202.115
– ident: 2020122622164086000_78.5.1334.30
  doi: 10.1101/gad.943001
– ident: 2020122622164086000_78.5.1334.34
  doi: 10.1038/nprot.2008.211
– ident: 2020122622164086000_78.5.1334.1
  doi: 10.1016/j.ejca.2012.12.027
– ident: 2020122622164086000_78.5.1334.15
  doi: 10.1038/nrc2290
– volume: 36
  start-page: 5885
  year: 2017
  ident: 2020122622164086000_78.5.1334.22
  article-title: Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular structure formation
  publication-title: Oncogene
  doi: 10.1038/onc.2017.194
– ident: 2020122622164086000_78.5.1334.17
  doi: 10.1084/jem.20100830
– ident: 2020122622164086000_78.5.1334.41
  doi: 10.1038/bjc.2011.26
– ident: 2020122622164086000_78.5.1334.35
  doi: 10.1016/S0092-8674(00)81988-1
– ident: 2020122622164086000_78.5.1334.3
– ident: 2020122622164086000_78.5.1334.10
  doi: 10.1038/nature14415
– ident: 2020122622164086000_78.5.1334.4
  doi: 10.1056/NEJMra0804588
SSID ssj0005105
Score 2.5459733
Snippet Colorectal cancer is driven by the accumulation of driver mutations, but the contributions of specific mutations to different steps in malignant progression...
These findings illuminate how key driver mutations in colon cancer cooperate to drive the development of metastatic disease, with potential implications for...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1334
SubjectTerms Adenomatous polyposis coli
Animal models
Cdc4 protein
Clonal deletion
Colon
Colon cancer
Colorectal cancer
Colorectal carcinoma
Epithelial cells
Gene deletion
Gene expression
Genotypes
Intestine
Invasiveness
K-Ras protein
Mesenchyme
Metastases
Metastasis
Mutation
Organoids
Ribonucleic acid
RNA
Spleen
Tumors
Wnt protein
Title Combined Mutation of Apc, Kras , and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/29282223
https://www.proquest.com/docview/2011386320
https://www.proquest.com/docview/1981807057
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviDuFgYzEW5fS-BInj1W3abC1PNBK5QFFjp2s1UozpcnD9pf4kxzHuaGN60tUuXWc-nw-_s7JOccIveNcM5oQ7QQJrCbg_4EjJVeO4Jwnbkw1pSbBeTrzThbs45Ive73vnailIo-G6vrWvJL_kSq0gVxNluw_SLa5KTTAZ5AvXEHCcP0rGcNiBsMWKOO0yBvqN75UdvXaVC3jGJ-fJ1FGBrZSMai3zdXgMCvrzU7jXAI_rKqSGPcgLHlDUCcGDVmXutqWQVUdaFW-_rVxHKWe2WyGHa_CZ3kh10bJNs5maLiS3-Rgur4uVmnj292t1iYZap2lF03jaVqUP_1S5LLrlXD9NiyrkwgAGqoDsjJusnrWOqzwRsCn4SQOZ_Y4n2HcKmXBbNnJWmsLv4NO3lHBYHSzznbuUuvivLlVcN_GVtrxhpPxzIEdm9IRbffGOh5g9ik8XpydhfOj5fwOukvAJjHHZRx-OG3jiap42fqGVboYDPP-1kF-JkK_sG5KljN_iB5U5gkeW6w9Qr14-xjdm1YBGE_Q1xpyuIYcThMMkDvABnAHGOCGLdxwB27Ywg23cDPdWrhhK7CnaHF8NJ-cONUJHY5iTOSOSghXQLn9wPdloKQinMauR5hkXBDJAo-5sRaRO1KCaMnBvGBAwCNXR2AnKEKfob1tuo1fIKy5jJmOIqU5mMQjEsVMeBr4ufak0NLrI1ZPV6iq8vXmFJVNWJqx3DdhFH5oZjmEWQ5dEZpZ7qNh0-3S1m_5U4f9WhZhtdR3oWHJ1PcoGfXR2-ZrUMTm7ZrcxmmxC93AlE0Q8L_66LmVYTMiCUhJxF_-_uav0P12Le2jvTwr4tfAefPoTYm1HzGzpfw
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+Mutation+of+Apc%2C+Kras%2C+and+Tgfbr2+Effectively+Drives+Metastasis+of+Intestinal+Cancer&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Sakai+Eri&rft.au=Nakayama+Mizuho&rft.au=Oshima+Hiroko&rft.au=Kouyama+Yuta&rft.date=2018-03-01&rft.pub=American+Association+for+Cancer+Research%2C+Inc&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=78&rft.issue=5&rft.spage=1334&rft.epage=1346&rft_id=info:doi/10.1158%2F0008-5472.CAN-17-3303&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon