Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes

Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomat...

Full description

Saved in:
Bibliographic Details
Published inTopics in catalysis Vol. 66; no. 9; pp. 707 - 722
Main Authors Villalba-Rodríguez, Angel M., Martínez-Zamudio, Lidia Yaritza, Martínez, Saúl Antonio Hernández, Rodríguez-Hernández, Jesús Alfredo, Melchor-Martínez, Elda M., Flores-Contreras, Elda A., González-González, Reyna Berenice, Parra-Saldívar, Roberto
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Graphical Abstract
AbstractList Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability.Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability.
Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability.
Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Graphical Abstract
Author Martínez-Zamudio, Lidia Yaritza
Martínez, Saúl Antonio Hernández
Rodríguez-Hernández, Jesús Alfredo
Melchor-Martínez, Elda M.
Parra-Saldívar, Roberto
Flores-Contreras, Elda A.
González-González, Reyna Berenice
Villalba-Rodríguez, Angel M.
Author_xml – sequence: 1
  givenname: Angel M.
  surname: Villalba-Rodríguez
  fullname: Villalba-Rodríguez, Angel M.
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
– sequence: 2
  givenname: Lidia Yaritza
  surname: Martínez-Zamudio
  fullname: Martínez-Zamudio, Lidia Yaritza
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
– sequence: 3
  givenname: Saúl Antonio Hernández
  surname: Martínez
  fullname: Martínez, Saúl Antonio Hernández
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
– sequence: 4
  givenname: Jesús Alfredo
  surname: Rodríguez-Hernández
  fullname: Rodríguez-Hernández, Jesús Alfredo
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
– sequence: 5
  givenname: Elda M.
  surname: Melchor-Martínez
  fullname: Melchor-Martínez, Elda M.
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
– sequence: 6
  givenname: Elda A.
  surname: Flores-Contreras
  fullname: Flores-Contreras, Elda A.
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
– sequence: 7
  givenname: Reyna Berenice
  orcidid: 0000-0002-3022-7746
  surname: González-González
  fullname: González-González, Reyna Berenice
  email: reyna.g@tec.mx
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
– sequence: 8
  givenname: Roberto
  surname: Parra-Saldívar
  fullname: Parra-Saldívar, Roberto
  email: r.parra@tec.mx
  organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36597435$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAcxEVJaR7tF8ghGHrpxanesnpLljwKob20Z_FfWS4KtrSR5MPm01feTQjksCcJ6TfDMHOKjkIMDqFzgi8Jxup7JoRy3mJKW0yUlC3_gE6IULTVmHZH9b58CUG7Y3Sa8yPGlCitP6FjJoVWnIkTBL8gxAmKSx7GZhVDLmm2JTdDTM0KCozb4m1ztdmM3kLxFWh8aK59nFzvrQ_uR7NYrH20OzpXLYR-9_i8nVz-jD4OMGb35eU8Q39vb_6s7tuH33c_V1cPreVcldYOxFHLLRFSS8UJF6C4WFPqGGgBzMkeQAqQ0Cuneyph0IxiS9jArO16doa-7X03KT7NLhcz-WzdOEJwcc6GKok7ulRW0a_v0Mc4p1DTGUY6JQVXojtE0Y5wTbCSpFIXL9S8rpWYTfITpK15rbgC3R6wKeac3GCsL7smSwI_GoLNsqbZr2nqZGa3plly0nfSV_eDIrYX5QqHfy69xT6g-g9RcbD1
CitedBy_id crossref_primary_10_3389_fbioe_2024_1363227
crossref_primary_10_1039_D4NR00742E
crossref_primary_10_1016_j_ijbiomac_2024_135811
crossref_primary_10_1021_acsomega_4c04185
crossref_primary_10_1021_acs_jafc_4c06379
crossref_primary_10_1016_j_indcrop_2024_120256
crossref_primary_10_3389_fchem_2024_1478273
crossref_primary_10_1016_j_carpta_2024_100638
crossref_primary_10_7717_peerj_17589
crossref_primary_10_1016_j_ijbiomac_2025_141508
crossref_primary_10_1016_j_rechem_2024_101724
crossref_primary_10_15212_AMM_2024_0046
crossref_primary_10_1007_s11244_024_01911_1
crossref_primary_10_1021_acsomega_4c08364
crossref_primary_10_1016_j_clay_2024_107507
crossref_primary_10_3390_cryst13030427
crossref_primary_10_1016_j_carres_2024_109208
crossref_primary_10_1007_s40820_024_01323_6
crossref_primary_10_1016_j_ijbiomac_2024_136946
crossref_primary_10_1007_s11244_023_01824_5
crossref_primary_10_1016_j_fochx_2024_102030
crossref_primary_10_3390_nano14121018
crossref_primary_10_1007_s10522_024_10095_w
Cites_doi 10.1016/J.CCR.2022.214757
10.1016/j.mee.2015.10.011
10.1016/j.trac.2015.05.008
10.1016/j.ijbiomac.2018.03.088
10.1080/10826068.2019.1679175
10.1016/B978-0-12-802392-1.00012-5
10.1016/B978-0-12-803581-8.04133-3
10.1016/j.biortech.2021.125491
10.1016/J.CCLET.2021.01.014
10.1002/advs.202201703
10.1021/acsabm.0c00198
10.1016/J.IJBIOMAC.2019.11.129
10.1155/2016/5194239
10.1089/ten.TEB.2014.0168
10.1039/C9NR05647E
10.1007/S00604-019-4103-4/TABLES/3
10.1016/j.trac.2018.03.011
10.26502/jnr.2688-85210023
10.1016/j.biortech.2018.12.120
10.3390/pharmaceutics13111850
10.3390/mi13010076
10.1016/j.envres.2022.113411
10.1007/s13399-020-00628-x/Published
10.1039/C8GC02736F
10.3390/en13010177
10.3934/medsci.2017.3.352
10.1038/s41377-022-00764-1
10.1016/j.cej.2020.126272
10.1021/accountsmr.1c00074
10.3390/catal11101211
10.1016/J.JARE.2021.09.013
10.1039/D1TB01077H
10.1016/j.carbpol.2017.12.033
10.1016/j.snb.2022.132532
10.1016/J.CEJ.2021.131396
10.1016/j.snb.2021.131150
10.1039/9781839163791-00001
10.1016/J.JHAZMAT.2022.129919
10.1016/J.APSB.2017.12.002
10.1016/J.SNB.2022.131563
10.1016/J.JELECHEM.2020.114826
10.1016/j.ceramint.2021.12.290
10.1515/boca-2016-0001
10.1016/j.ijbiomac.2018.10.056
10.2174/1381612827666211122153946
10.1021/acsomega.2c03155
10.1039/C4RA13972K
10.1016/J.COLSURFA.2022.129390
10.1021/acs.biomac.9b00040
10.3390/catal9120995
10.1016/j.biomaterials.2019.119752
10.4014/JMB.2107.07046
10.1002/advs.201900605
10.1016/j.ccr.2019.02.024
10.1016/j.pmatsci.2016.02.002
10.1016/j.mtchem.2018.05.002
10.1016/J.MOLLIQ.2021.118111
10.1016/B978-0-08-102509-3.00022-5
10.3390/molecules25010185
10.1016/B978-0-12-386456-7.01808-6
10.1016/j.fuel.2021.122927
10.1016/j.biomaterials.2019.119303
10.1038/s41467-021-22278-x
10.1016/B978-0-12-824436-4.00001-0
10.1016/j.compositesb.2020.108208
10.1016/j.jece.2018.11.049
10.1016/j.ijbiomac.2017.03.152
10.1016/j.ijbiomac.2020.08.122
10.1166/jnn.2018.15697
10.1080/10408398.2022.2092719
10.1016/j.ccr.2022.214685
10.1016/j.progpolymsci.2018.03.001
10.3390/gels7020059
10.1016/j.nanoms.2019.02.006
10.1016/J.CARBPOL.2020.116498
10.1016/J.IJBIOMAC.2020.09.091
10.1002/SMLL.202203001
10.5757/asct.2017.26.6.157
10.1016/J.MATT.2021.10.016
10.1016/J.CEJ.2021.129345
10.1016/J.BIOTECHADV.2021.107738
10.1016/J.SNB.2020.127861
10.1007/s11426-020-9923-9
10.1016/j.ccr.2020.213475
10.1002/ADMA.202003708
10.1016/J.ONANO.2022.100049
10.1007/s10311-017-0671-x
10.1039/C5RA20674J
10.1016/j.jfda.2014.10.008
10.3390/nano9121663
10.1016/J.APMT.2017.09.002
10.1016/j.techsoc.2022.101888
10.1021/bk-2020-1353.ch015
10.1021/acsomega.2c00357
10.1016/j.ijbiomac.2021.11.112
10.1016/j.ijbiomac.2021.03.175
10.1016/j.carbpol.2016.09.074
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2023
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s11244-022-01766-4
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-9028
EndPage 722
ExternalDocumentID 36597435
10_1007_s11244_022_01766_4
Genre Journal Article
Review
GroupedDBID -Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
-4Y
-58
-5G
-BR
-EM
ABDEX
ADINQ
GQ6
NPM
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z92
ABRTQ
7X8
ID FETCH-LOGICAL-c447t-cf1e2c4c1569674145a745b22e3a95a3e6daa65a6ad7e9d26af9320c13f3cc8d3
IEDL.DBID U2A
ISSN 1022-5528
IngestDate Fri Jul 11 05:02:14 EDT 2025
Sat Jul 12 03:11:06 EDT 2025
Fri Jul 25 10:59:16 EDT 2025
Wed Feb 19 02:23:53 EST 2025
Tue Jul 01 04:54:34 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Apr 09 21:53:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Artificial enzymes
Enzymes
Nanomaterials
Enzyme immobilization
Biocatalysis
Enzyme mimicking
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-cf1e2c4c1569674145a745b22e3a95a3e6daa65a6ad7e9d26af9320c13f3cc8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3022-7746
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11244-022-01766-4.pdf
PMID 36597435
PQID 2814910761
PQPubID 2043828
PageCount 16
ParticipantIDs proquest_miscellaneous_2760821124
proquest_journals_3187654758
proquest_journals_2814910761
pubmed_primary_36597435
crossref_citationtrail_10_1007_s11244_022_01766_4
crossref_primary_10_1007_s11244_022_01766_4
springer_journals_10_1007_s11244_022_01766_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Topics in catalysis
PublicationTitleAbbrev Top Catal
PublicationTitleAlternate Top Catal
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 1766_CR58
X Li (1766_CR32) 2022; 18
W Wenjun (1766_CR93) 2022; 32
Y Shao (1766_CR96) 2022; 7
L Su (1766_CR89) 2022
S Sagbas (1766_CR23) 2019
P Somu (1766_CR71) 2022
H Ye (1766_CR56) 2019; 121
P Carneiro (1766_CR13) 2019; 9
Y Piao (1766_CR57) 2016; 6
H Liu (1766_CR91) 2020; 3
MA Elgadir (1766_CR54) 2015; 23
M Bilal (1766_CR61) 2020; 162
Z Kang (1766_CR29) 2019; 11
RG Araújo (1766_CR1) 2022; 7
H He (1766_CR77) 2022
JJ Hu (1766_CR72) 2019
TM Pelegrino (1766_CR42) 2017; 4
E Gkantzou (1766_CR19) 2021; 51
R-A de Jesús (1766_CR5) 2016; 2
A Döring (1766_CR25) 2022; 11
L Alvarado-Ramírez (1766_CR62) 2021; 181
Z Lin (1766_CR34) 2022; 359
K Sunar (1766_CR49) 2016
W Zhou (1766_CR68) 2021; 403
M Bilal (1766_CR67) 2020; 422
S Kumar (1766_CR52) 2018; 80
H Zeng (1766_CR12) 2021; 32
P Tripathi (1766_CR14) 2022; 28
S Fu (1766_CR44) 2019; 1
Z Li (1766_CR94) 2022; 428
MI Khan (1766_CR11) 2022; 472
F Miao (1766_CR83) 2016; 149
OA Kost (1766_CR74) 2016
MM Rodríguez-Delgado (1766_CR69) 2015; 74
R Zhang (1766_CR21) 2021; 2
HH Nguyen (1766_CR63) 2017; 26
F Wahid (1766_CR47) 2020; 200
M Bilal (1766_CR20) 2022; 38
ZB Mohammadi (1766_CR51) 2022
M Heidarizadeh (1766_CR48) 2017; 101
R Reshmy (1766_CR6) 2021; 337
CM O'Brien (1766_CR97) 2015; 21
X Lyu (1766_CR70) 2021; 11
P Kannan (1766_CR17) 2022; 13
JH Kim (1766_CR59) 2017; 157
SAH Martínez (1766_CR65) 2022
J del Arco (1766_CR39) 2019; 276
AMBF Soares (1766_CR78) 2020; 243
W Feng (1766_CR9) 2021
DO Lopez-Cantu (1766_CR7) 2022; 194
D Giliopoulos (1766_CR45) 2020; 25
X-F Lou (1766_CR92) 2021; 13
B Notario (1766_CR53) 2016; 78–79
OM Darwesh (1766_CR64) 2019; 7
Y Zhou (1766_CR88) 2020; 32
A Zhao (1766_CR95) 2020; 310
K Jin (1766_CR15) 2018; 8
Y Gong (1766_CR90) 2021; 418
P Kaur (1766_CR37) 2021; 11
N Kutlu (1766_CR8) 2020; 50
G Sharma (1766_CR60) 2018; 16
Q Li (1766_CR31) 2023; 441
ECHT Lau (1766_CR40) 2022
J Jacob (1766_CR43) 2018; 9
M Koosha (1766_CR46) 2015; 5
1766_CR3
ID Muhammad (1766_CR2) 2022
S Hu (1766_CR55) 2018; 184
I Lee (1766_CR81) 2020; 155
AM Villalba-Rodríguez (1766_CR50) 2021; 7
R Ali (1766_CR76) 2022; 48
SW Fatima (1766_CR80) 2020; 163
W Zeng (1766_CR86) 2022
D-M Liu (1766_CR66) 2018; 102
H Yan (1766_CR16) 2019; 6
W Sheng (1766_CR38) 2018; 114
MI Khan (1766_CR10) 2022; 7
ML Liu (1766_CR22) 2019; 21
M Ozhukil-Valappil (1766_CR26) 2017; 9
T Touqeer (1766_CR36) 2020; 13
AT Khalil (1766_CR18) 2021; 7
DO Lopez-Cantu (1766_CR4) 2022; 469
M Bilal (1766_CR35) 2019; 388
L Su (1766_CR30) 2020; 187
A Harguindey (1766_CR85) 2019; 20
G Ge (1766_CR24) 2021; 9
A Giannakopoulou (1766_CR41) 2019; 9
M Chung (1766_CR84) 2018; 18
C Ren (1766_CR87) 2020
L Zhang (1766_CR75) 2021; 64
B Wang (1766_CR28) 2022; 5
A Soozanipour (1766_CR79) 2022; 349
R Pahwa (1766_CR73) 2022
N Zhao (1766_CR33) 2022; 648
TA Tabish (1766_CR27) 2016; 1–5
D Soto (1766_CR82) 2021; 880
References_xml – volume: 472
  start-page: 214757
  year: 2022
  ident: 1766_CR11
  publication-title: Coord Chem Rev
  doi: 10.1016/J.CCR.2022.214757
– volume: 149
  start-page: 153
  year: 2016
  ident: 1766_CR83
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2015.10.011
– volume: 74
  start-page: 21
  year: 2015
  ident: 1766_CR69
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2015.05.008
– volume: 114
  start-page: 143
  year: 2018
  ident: 1766_CR38
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2018.03.088
– volume: 50
  start-page: 425
  year: 2020
  ident: 1766_CR8
  publication-title: Prep Biochem Biotechnol
  doi: 10.1080/10826068.2019.1679175
– start-page: 279
  volume-title: Agro-industrial wastes as feedstock for enzyme production
  year: 2016
  ident: 1766_CR49
  doi: 10.1016/B978-0-12-802392-1.00012-5
– volume: 1–5
  start-page: 171
  year: 2016
  ident: 1766_CR27
  publication-title: Comprehen Nanosci Nanotechnol
  doi: 10.1016/B978-0-12-803581-8.04133-3
– volume: 337
  start-page: 125491
  year: 2021
  ident: 1766_CR6
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2021.125491
– volume: 32
  start-page: 1857
  year: 2021
  ident: 1766_CR12
  publication-title: Chin Chem Lett
  doi: 10.1016/J.CCLET.2021.01.014
– year: 2022
  ident: 1766_CR86
  publication-title: Adv Sci
  doi: 10.1002/advs.202201703
– volume: 3
  start-page: 2499
  year: 2020
  ident: 1766_CR91
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.0c00198
– volume: 155
  start-page: 1520
  year: 2020
  ident: 1766_CR81
  publication-title: Int J Biol Macromol
  doi: 10.1016/J.IJBIOMAC.2019.11.129
– year: 2016
  ident: 1766_CR74
  publication-title: Oxid Med Cell Longev
  doi: 10.1155/2016/5194239
– volume: 21
  start-page: 103
  issue: 1
  year: 2015
  ident: 1766_CR97
  publication-title: Tissue Eng Part B Rev
  doi: 10.1089/ten.TEB.2014.0168
– volume: 11
  start-page: 19214
  year: 2019
  ident: 1766_CR29
  publication-title: Nanoscale
  doi: 10.1039/C9NR05647E
– volume: 187
  start-page: 1
  year: 2020
  ident: 1766_CR30
  publication-title: Microchim Acta
  doi: 10.1007/S00604-019-4103-4/TABLES/3
– volume: 102
  start-page: 332
  year: 2018
  ident: 1766_CR66
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2018.03.011
– ident: 1766_CR3
  doi: 10.26502/jnr.2688-85210023
– volume: 276
  start-page: 244
  year: 2019
  ident: 1766_CR39
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2018.12.120
– volume: 13
  start-page: 1850
  year: 2021
  ident: 1766_CR92
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13111850
– volume: 13
  start-page: 76
  year: 2022
  ident: 1766_CR17
  publication-title: Micromachines (Basel)
  doi: 10.3390/mi13010076
– year: 2022
  ident: 1766_CR71
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.113411
– volume: 11
  start-page: 955
  year: 2021
  ident: 1766_CR37
  publication-title: Biomass Convers Biorefin
  doi: 10.1007/s13399-020-00628-x/Published
– volume: 21
  start-page: 449
  year: 2019
  ident: 1766_CR22
  publication-title: Green Chem
  doi: 10.1039/C8GC02736F
– volume: 13
  start-page: 177
  year: 2020
  ident: 1766_CR36
  publication-title: Energies (Basel)
  doi: 10.3390/en13010177
– volume: 4
  start-page: 352
  year: 2017
  ident: 1766_CR42
  publication-title: AIMS Med Sci
  doi: 10.3934/medsci.2017.3.352
– volume: 11
  start-page: 1
  issue: 1
  year: 2022
  ident: 1766_CR25
  publication-title: Light
  doi: 10.1038/s41377-022-00764-1
– volume: 403
  start-page: 126272
  year: 2021
  ident: 1766_CR68
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.126272
– volume: 2
  start-page: 534
  year: 2021
  ident: 1766_CR21
  publication-title: Acc Mater Res
  doi: 10.1021/accountsmr.1c00074
– volume: 11
  start-page: 1211
  year: 2021
  ident: 1766_CR70
  publication-title: Catalysts
  doi: 10.3390/catal11101211
– volume: 38
  start-page: 157
  year: 2022
  ident: 1766_CR20
  publication-title: J Adv Res
  doi: 10.1016/J.JARE.2021.09.013
– volume: 9
  start-page: 6553
  year: 2021
  ident: 1766_CR24
  publication-title: J Mater Chem B
  doi: 10.1039/D1TB01077H
– volume: 184
  start-page: 154
  year: 2018
  ident: 1766_CR55
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2017.12.033
– year: 2022
  ident: 1766_CR77
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2022.132532
– volume: 428
  start-page: 131396
  year: 2022
  ident: 1766_CR94
  publication-title: Chem Eng J
  doi: 10.1016/J.CEJ.2021.131396
– year: 2022
  ident: 1766_CR89
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2021.131150
– volume: 7
  start-page: 1
  year: 2021
  ident: 1766_CR18
  publication-title: Nanoscience
  doi: 10.1039/9781839163791-00001
– volume: 441
  start-page: 129919
  year: 2023
  ident: 1766_CR31
  publication-title: J Hazard Mater
  doi: 10.1016/J.JHAZMAT.2022.129919
– volume: 8
  start-page: 23
  year: 2018
  ident: 1766_CR15
  publication-title: Acta Pharm Sin B
  doi: 10.1016/J.APSB.2017.12.002
– volume: 359
  start-page: 131563
  year: 2022
  ident: 1766_CR34
  publication-title: Sens Actuators B Chem
  doi: 10.1016/J.SNB.2022.131563
– volume: 880
  start-page: 114826
  year: 2021
  ident: 1766_CR82
  publication-title: J Electroanal Chem
  doi: 10.1016/J.JELECHEM.2020.114826
– volume: 48
  start-page: 10741
  year: 2022
  ident: 1766_CR76
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2021.12.290
– volume: 2
  start-page: 1
  year: 2016
  ident: 1766_CR5
  publication-title: Biocatalysis
  doi: 10.1515/boca-2016-0001
– volume: 121
  start-page: 633
  year: 2019
  ident: 1766_CR56
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2018.10.056
– volume: 28
  start-page: 116
  year: 2022
  ident: 1766_CR14
  publication-title: Curr Pharm Des
  doi: 10.2174/1381612827666211122153946
– volume: 7
  start-page: 32863
  year: 2022
  ident: 1766_CR1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c03155
– volume: 5
  start-page: 10479
  year: 2015
  ident: 1766_CR46
  publication-title: RSC Adv
  doi: 10.1039/C4RA13972K
– volume: 648
  start-page: 129390
  year: 2022
  ident: 1766_CR33
  publication-title: Colloids Surf A
  doi: 10.1016/J.COLSURFA.2022.129390
– volume: 20
  start-page: 1683
  year: 2019
  ident: 1766_CR85
  publication-title: Biomacromol
  doi: 10.1021/acs.biomac.9b00040
– volume: 9
  start-page: 995
  year: 2019
  ident: 1766_CR41
  publication-title: Catalysts
  doi: 10.3390/catal9120995
– year: 2020
  ident: 1766_CR87
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119752
– volume: 32
  start-page: 263
  year: 2022
  ident: 1766_CR93
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/JMB.2107.07046
– volume: 6
  start-page: 1900605
  year: 2019
  ident: 1766_CR16
  publication-title: Adv Sci
  doi: 10.1002/advs.201900605
– volume: 388
  start-page: 1
  year: 2019
  ident: 1766_CR35
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2019.02.024
– volume: 78–79
  start-page: 93
  year: 2016
  ident: 1766_CR53
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2016.02.002
– volume: 9
  start-page: 43
  year: 2018
  ident: 1766_CR43
  publication-title: Mater Today Chem
  doi: 10.1016/j.mtchem.2018.05.002
– volume: 349
  start-page: 118111
  year: 2022
  ident: 1766_CR79
  publication-title: J Mol Liq
  doi: 10.1016/J.MOLLIQ.2021.118111
– year: 2019
  ident: 1766_CR23
  publication-title: Nanocarb Compos
  doi: 10.1016/B978-0-08-102509-3.00022-5
– volume: 25
  start-page: 185
  year: 2020
  ident: 1766_CR45
  publication-title: Molecules
  doi: 10.3390/molecules25010185
– year: 2022
  ident: 1766_CR73
  publication-title: Pathobiol Hum Dis
  doi: 10.1016/B978-0-12-386456-7.01808-6
– year: 2022
  ident: 1766_CR65
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122927
– year: 2019
  ident: 1766_CR72
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119303
– year: 2021
  ident: 1766_CR9
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22278-x
– start-page: 301
  volume-title: Nanomaterials for biocatalysis
  year: 2022
  ident: 1766_CR40
  doi: 10.1016/B978-0-12-824436-4.00001-0
– volume: 200
  start-page: 108208
  year: 2020
  ident: 1766_CR47
  publication-title: Compos B Eng
  doi: 10.1016/j.compositesb.2020.108208
– volume: 7
  start-page: 102805
  year: 2019
  ident: 1766_CR64
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2018.11.049
– volume: 101
  start-page: 696
  year: 2017
  ident: 1766_CR48
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2017.03.152
– volume: 162
  start-page: 1906
  year: 2020
  ident: 1766_CR61
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.08.122
– volume: 18
  start-page: 6555
  year: 2018
  ident: 1766_CR84
  publication-title: J Nanosci Nanotechnol
  doi: 10.1166/jnn.2018.15697
– year: 2022
  ident: 1766_CR51
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2022.2092719
– volume: 469
  start-page: 214685
  year: 2022
  ident: 1766_CR4
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2022.214685
– volume: 80
  start-page: 1
  year: 2018
  ident: 1766_CR52
  publication-title: Prog Polym Sci
  doi: 10.1016/j.progpolymsci.2018.03.001
– volume: 7
  start-page: 59
  year: 2021
  ident: 1766_CR50
  publication-title: Gels
  doi: 10.3390/gels7020059
– volume: 1
  start-page: 2
  year: 2019
  ident: 1766_CR44
  publication-title: Nano Mater Sci
  doi: 10.1016/j.nanoms.2019.02.006
– volume: 243
  start-page: 116498
  year: 2020
  ident: 1766_CR78
  publication-title: Carbohydr Polym
  doi: 10.1016/J.CARBPOL.2020.116498
– volume: 163
  start-page: 1747
  year: 2020
  ident: 1766_CR80
  publication-title: Int J Biol Macromol
  doi: 10.1016/J.IJBIOMAC.2020.09.091
– volume: 18
  start-page: 2203001
  year: 2022
  ident: 1766_CR32
  publication-title: Small
  doi: 10.1002/SMLL.202203001
– volume: 26
  start-page: 157
  year: 2017
  ident: 1766_CR63
  publication-title: Appl Sci Converg Technol
  doi: 10.5757/asct.2017.26.6.157
– volume: 5
  start-page: 110
  year: 2022
  ident: 1766_CR28
  publication-title: Matter
  doi: 10.1016/J.MATT.2021.10.016
– volume: 418
  start-page: 129345
  year: 2021
  ident: 1766_CR90
  publication-title: Chem Eng J
  doi: 10.1016/J.CEJ.2021.129345
– volume: 51
  start-page: 107738
  year: 2021
  ident: 1766_CR19
  publication-title: Biotechnol Adv
  doi: 10.1016/J.BIOTECHADV.2021.107738
– volume: 310
  start-page: 127861
  year: 2020
  ident: 1766_CR95
  publication-title: Sens Actuators B Chem
  doi: 10.1016/J.SNB.2020.127861
– volume: 64
  start-page: 616
  year: 2021
  ident: 1766_CR75
  publication-title: Sci China Chem
  doi: 10.1007/s11426-020-9923-9
– volume: 422
  start-page: 213475
  year: 2020
  ident: 1766_CR67
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2020.213475
– volume: 32
  start-page: 2003708
  year: 2020
  ident: 1766_CR88
  publication-title: Adv Mater
  doi: 10.1002/ADMA.202003708
– volume: 7
  start-page: 100049
  year: 2022
  ident: 1766_CR10
  publication-title: OpenNano
  doi: 10.1016/J.ONANO.2022.100049
– volume: 16
  start-page: 113
  year: 2018
  ident: 1766_CR60
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-017-0671-x
– volume: 6
  start-page: 6171
  year: 2016
  ident: 1766_CR57
  publication-title: RSC Adv
  doi: 10.1039/C5RA20674J
– volume: 23
  start-page: 619
  year: 2015
  ident: 1766_CR54
  publication-title: J Food Drug Anal
  doi: 10.1016/j.jfda.2014.10.008
– volume: 9
  start-page: 1
  year: 2019
  ident: 1766_CR13
  publication-title: Nanomaterials
  doi: 10.3390/nano9121663
– volume: 9
  start-page: 350
  year: 2017
  ident: 1766_CR26
  publication-title: Appl Mater Today
  doi: 10.1016/J.APMT.2017.09.002
– year: 2022
  ident: 1766_CR2
  publication-title: Technol Soc
  doi: 10.1016/j.techsoc.2022.101888
– ident: 1766_CR58
  doi: 10.1021/bk-2020-1353.ch015
– volume: 7
  start-page: 11530
  issue: 14
  year: 2022
  ident: 1766_CR96
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c00357
– volume: 194
  start-page: 676
  year: 2022
  ident: 1766_CR7
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2021.11.112
– volume: 181
  start-page: 683
  year: 2021
  ident: 1766_CR62
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2021.03.175
– volume: 157
  start-page: 137
  year: 2017
  ident: 1766_CR59
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.09.074
SSID ssj0021799
Score 2.5483959
SecondaryResourceType review_article
Snippet Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 707
SubjectTerms Catalysis
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Nanocomposites
Nanomaterials
Optical properties
Pharmacy
Physical Chemistry
Review Paper
Title Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes
URI https://link.springer.com/article/10.1007/s11244-022-01766-4
https://www.ncbi.nlm.nih.gov/pubmed/36597435
https://www.proquest.com/docview/2814910761
https://www.proquest.com/docview/3187654758
https://www.proquest.com/docview/2760821124
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9sw8OiSh-2lbN2XuzRosLdNEFsfdvqWpE1Dy_a0QPZkZEmGQusMnD6kv753ip1sJBv0yWBJZ3F31t3pvgC-qIGNbVpqXmgvOKVC8sxlgmdaukyhwPchQ-77Dz2by-uFWjRJYXUb7d66JMNJvUt2I1HEKfp8QFUNuXwBXUW2O3LxPBltzSyqcRZ8nGRmqSRrUmUOw_hbHO3pmHv-0SB2pq_huNEX2WhD4Ddw5KsTeDlp27S9BYPn4xLVzsBJjPpvhoqwNUNtlE3ocmaNS9noD0c1u63YOKTdB7f6OSMQxe0yXOWsa1xrKhdePq7vff0O5tPLn5MZb_omcCtluuK2jH1ipUXTbKhRY5DKpFIViHdhhsoIr50xWhltXOqHLtGmRC0OiSZKYW3mxHvoVMvKfwTmVBEXSlpZqlR6VRQUdWql0whXJm4QQdyiL7dNUXHqbXGX78ohE8pzRHkeUJ7LCL5u1_zelNT47-xeS5W8-b3qPMnQsIvpCubgMJ5TKTVVVlkEn7fDSBdyhpjKLx8QRKpR-6HPRfBhQ-ztboQmM0uoCL611N8B__dWT583_RO8ot71m7izHnSQO_wZajirog_d0fhiPKXn1a-by35g8CcwA_KC
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONAL4tU2ZSmuxA0sbeJHvNyWVVcLBU6sxC1ybEdCotlKoYfl13fGm-yCgEq9xvYkmnE833heAMeq71KXV5qXOghOqZDceCO40dIbhQo_xAy56xs9mcrLO3XXJoU1XbR755KMJ_Uq2Y1UEafo8z5VNeTyA2wgGDAUyDXNhkszi2qcRR8nmVkqM22qzNs0XqqjVxjzlX80qp3xNmy1eJENFwLegbVQ78LmqGvTtgcWz8cZws64kxj134wVYRuGaJSN6HJmjkvZ8Jmjmt3X7Dym3Ue3-hkjEuX9LF7lzBtca2sfHz7Nf4VmH6bjH7ejCW_7JnAnZf7IXZWGzEmHptlAI2KQyuZSlch3YQfKiqC9tVpZbX0eBj7TtkIUh0ITlXDOePEJ1utZHb4A86pMSyWdrFQugypLijp10mukKzPfTyDt2Fe4tqg49bZ4KFblkInlBbK8iCwvZAInyzW_FyU1_jm710mlaH-vpsgMGnYpXcG8OYznVE5NlZVJ4PtyGOVCzhBbh9kfJJFrRD_0ugQ-L4S9_BqhycwSKoHTTvor4u9_6tf_m34Em5Pb66vi6uLm5wF8pD72ixi0HqzjTgmHiHYey29xc_8FlFPybw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkIAL4tmGpytxay028SNZbsvCCmiLOLASt8ixHQmpzSLtctj--s44yS6Ih9RrbE-imYn9jecFcKw6NrZpqXmhveCUCskzlwmeaekyhQe-Dxlyv2705VBe36v7Z1n8Idq9dUnWOQ1UpamanDy68mSe-EbHEqdI9A5VOOTyEyzhdhyTXg-T3szkonpnwd9JJpdKsiZt5m0aL4-mV3jzla80HEGDdVhrsCPr1cLegAVfbcJKv23ZtgUG98oRQtCgVYx6cYbqsGOGyJT16aJmiktZ75nTmj1U7Cyk4AcX-ykjEsXDKFzrTMe41lQuPPw7_ePH2zAcXNz1L3nTQ4FbKdMJt2XsEystmmldjehBKpNKVaAMhOkqI7x2xmhltHGp77pEmxIRHQpQlMLazIkdWKxGlf8CzKkiLpS0slSp9KooKALVSqeRrkxcJ4K4ZV9umwLj1Ofidz4vjUwsz5HleWB5LiP4NlvzWJfX-HD2fiuVvPnVxnmSoZEX03XMm8O4Z6XUYFllEXydDaNcyDFiKj96QhKpRiREr4vgcy3s2dcITSaXUBF8b6U_J_7-p-7-3_QjWL49H-Q_r25-7MEqtbSvw9H2YREVxR8g8JkUh0G3_wGea_ar
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomaterial+Constructs+for+Catalytic+Applications+in+Biomedicine%3A+Nanobiocatalysts+and+Nanozymes&rft.jtitle=Topics+in+catalysis&rft.au=Villalba-Rodr%C3%ADguez%2C+Angel+M&rft.au=Mart%C3%ADnez-Zamudio%2C+Lidia+Yaritza&rft.au=Mart%C3%ADnez%2C+Sa%C3%BAl+Antonio+Hern%C3%A1ndez&rft.au=Rodr%C3%ADguez-Hern%C3%A1ndez%2C+Jes%C3%BAs+Alfredo&rft.date=2023-06-01&rft.issn=1022-5528&rft.volume=66&rft.issue=9-12&rft.spage=707&rft_id=info:doi/10.1007%2Fs11244-022-01766-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon