Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes
Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomat...
Saved in:
Published in | Topics in catalysis Vol. 66; no. 9; pp. 707 - 722 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability.
Graphical Abstract |
---|---|
AbstractList | Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability.Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Graphical Abstract |
Author | Martínez-Zamudio, Lidia Yaritza Martínez, Saúl Antonio Hernández Rodríguez-Hernández, Jesús Alfredo Melchor-Martínez, Elda M. Parra-Saldívar, Roberto Flores-Contreras, Elda A. González-González, Reyna Berenice Villalba-Rodríguez, Angel M. |
Author_xml | – sequence: 1 givenname: Angel M. surname: Villalba-Rodríguez fullname: Villalba-Rodríguez, Angel M. organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey – sequence: 2 givenname: Lidia Yaritza surname: Martínez-Zamudio fullname: Martínez-Zamudio, Lidia Yaritza organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey – sequence: 3 givenname: Saúl Antonio Hernández surname: Martínez fullname: Martínez, Saúl Antonio Hernández organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey – sequence: 4 givenname: Jesús Alfredo surname: Rodríguez-Hernández fullname: Rodríguez-Hernández, Jesús Alfredo organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey – sequence: 5 givenname: Elda M. surname: Melchor-Martínez fullname: Melchor-Martínez, Elda M. organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey – sequence: 6 givenname: Elda A. surname: Flores-Contreras fullname: Flores-Contreras, Elda A. organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey – sequence: 7 givenname: Reyna Berenice orcidid: 0000-0002-3022-7746 surname: González-González fullname: González-González, Reyna Berenice email: reyna.g@tec.mx organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey – sequence: 8 givenname: Roberto surname: Parra-Saldívar fullname: Parra-Saldívar, Roberto email: r.parra@tec.mx organization: School of Engineering and Sciences, Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36597435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAcxEVJaR7tF8ghGHrpxanesnpLljwKob20Z_FfWS4KtrSR5MPm01feTQjksCcJ6TfDMHOKjkIMDqFzgi8Jxup7JoRy3mJKW0yUlC3_gE6IULTVmHZH9b58CUG7Y3Sa8yPGlCitP6FjJoVWnIkTBL8gxAmKSx7GZhVDLmm2JTdDTM0KCozb4m1ztdmM3kLxFWh8aK59nFzvrQ_uR7NYrH20OzpXLYR-9_i8nVz-jD4OMGb35eU8Q39vb_6s7tuH33c_V1cPreVcldYOxFHLLRFSS8UJF6C4WFPqGGgBzMkeQAqQ0Cuneyph0IxiS9jArO16doa-7X03KT7NLhcz-WzdOEJwcc6GKok7ulRW0a_v0Mc4p1DTGUY6JQVXojtE0Y5wTbCSpFIXL9S8rpWYTfITpK15rbgC3R6wKeac3GCsL7smSwI_GoLNsqbZr2nqZGa3plly0nfSV_eDIrYX5QqHfy69xT6g-g9RcbD1 |
CitedBy_id | crossref_primary_10_3389_fbioe_2024_1363227 crossref_primary_10_1039_D4NR00742E crossref_primary_10_1016_j_ijbiomac_2024_135811 crossref_primary_10_1021_acsomega_4c04185 crossref_primary_10_1021_acs_jafc_4c06379 crossref_primary_10_1016_j_indcrop_2024_120256 crossref_primary_10_3389_fchem_2024_1478273 crossref_primary_10_1016_j_carpta_2024_100638 crossref_primary_10_7717_peerj_17589 crossref_primary_10_1016_j_ijbiomac_2025_141508 crossref_primary_10_1016_j_rechem_2024_101724 crossref_primary_10_15212_AMM_2024_0046 crossref_primary_10_1007_s11244_024_01911_1 crossref_primary_10_1021_acsomega_4c08364 crossref_primary_10_1016_j_clay_2024_107507 crossref_primary_10_3390_cryst13030427 crossref_primary_10_1016_j_carres_2024_109208 crossref_primary_10_1007_s40820_024_01323_6 crossref_primary_10_1016_j_ijbiomac_2024_136946 crossref_primary_10_1007_s11244_023_01824_5 crossref_primary_10_1016_j_fochx_2024_102030 crossref_primary_10_3390_nano14121018 crossref_primary_10_1007_s10522_024_10095_w |
Cites_doi | 10.1016/J.CCR.2022.214757 10.1016/j.mee.2015.10.011 10.1016/j.trac.2015.05.008 10.1016/j.ijbiomac.2018.03.088 10.1080/10826068.2019.1679175 10.1016/B978-0-12-802392-1.00012-5 10.1016/B978-0-12-803581-8.04133-3 10.1016/j.biortech.2021.125491 10.1016/J.CCLET.2021.01.014 10.1002/advs.202201703 10.1021/acsabm.0c00198 10.1016/J.IJBIOMAC.2019.11.129 10.1155/2016/5194239 10.1089/ten.TEB.2014.0168 10.1039/C9NR05647E 10.1007/S00604-019-4103-4/TABLES/3 10.1016/j.trac.2018.03.011 10.26502/jnr.2688-85210023 10.1016/j.biortech.2018.12.120 10.3390/pharmaceutics13111850 10.3390/mi13010076 10.1016/j.envres.2022.113411 10.1007/s13399-020-00628-x/Published 10.1039/C8GC02736F 10.3390/en13010177 10.3934/medsci.2017.3.352 10.1038/s41377-022-00764-1 10.1016/j.cej.2020.126272 10.1021/accountsmr.1c00074 10.3390/catal11101211 10.1016/J.JARE.2021.09.013 10.1039/D1TB01077H 10.1016/j.carbpol.2017.12.033 10.1016/j.snb.2022.132532 10.1016/J.CEJ.2021.131396 10.1016/j.snb.2021.131150 10.1039/9781839163791-00001 10.1016/J.JHAZMAT.2022.129919 10.1016/J.APSB.2017.12.002 10.1016/J.SNB.2022.131563 10.1016/J.JELECHEM.2020.114826 10.1016/j.ceramint.2021.12.290 10.1515/boca-2016-0001 10.1016/j.ijbiomac.2018.10.056 10.2174/1381612827666211122153946 10.1021/acsomega.2c03155 10.1039/C4RA13972K 10.1016/J.COLSURFA.2022.129390 10.1021/acs.biomac.9b00040 10.3390/catal9120995 10.1016/j.biomaterials.2019.119752 10.4014/JMB.2107.07046 10.1002/advs.201900605 10.1016/j.ccr.2019.02.024 10.1016/j.pmatsci.2016.02.002 10.1016/j.mtchem.2018.05.002 10.1016/J.MOLLIQ.2021.118111 10.1016/B978-0-08-102509-3.00022-5 10.3390/molecules25010185 10.1016/B978-0-12-386456-7.01808-6 10.1016/j.fuel.2021.122927 10.1016/j.biomaterials.2019.119303 10.1038/s41467-021-22278-x 10.1016/B978-0-12-824436-4.00001-0 10.1016/j.compositesb.2020.108208 10.1016/j.jece.2018.11.049 10.1016/j.ijbiomac.2017.03.152 10.1016/j.ijbiomac.2020.08.122 10.1166/jnn.2018.15697 10.1080/10408398.2022.2092719 10.1016/j.ccr.2022.214685 10.1016/j.progpolymsci.2018.03.001 10.3390/gels7020059 10.1016/j.nanoms.2019.02.006 10.1016/J.CARBPOL.2020.116498 10.1016/J.IJBIOMAC.2020.09.091 10.1002/SMLL.202203001 10.5757/asct.2017.26.6.157 10.1016/J.MATT.2021.10.016 10.1016/J.CEJ.2021.129345 10.1016/J.BIOTECHADV.2021.107738 10.1016/J.SNB.2020.127861 10.1007/s11426-020-9923-9 10.1016/j.ccr.2020.213475 10.1002/ADMA.202003708 10.1016/J.ONANO.2022.100049 10.1007/s10311-017-0671-x 10.1039/C5RA20674J 10.1016/j.jfda.2014.10.008 10.3390/nano9121663 10.1016/J.APMT.2017.09.002 10.1016/j.techsoc.2022.101888 10.1021/bk-2020-1353.ch015 10.1021/acsomega.2c00357 10.1016/j.ijbiomac.2021.11.112 10.1016/j.ijbiomac.2021.03.175 10.1016/j.carbpol.2016.09.074 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. 2023 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. 2023 |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1007/s11244-022-01766-4 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 722 |
ExternalDocumentID | 36597435 10_1007_s11244_022_01766_4 |
Genre | Journal Article Review |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION -4Y -58 -5G -BR -EM ABDEX ADINQ GQ6 NPM Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z92 ABRTQ 7X8 |
ID | FETCH-LOGICAL-c447t-cf1e2c4c1569674145a745b22e3a95a3e6daa65a6ad7e9d26af9320c13f3cc8d3 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Fri Jul 11 05:02:14 EDT 2025 Sat Jul 12 03:11:06 EDT 2025 Fri Jul 25 10:59:16 EDT 2025 Wed Feb 19 02:23:53 EST 2025 Tue Jul 01 04:54:34 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Apr 09 21:53:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Artificial enzymes Enzymes Nanomaterials Enzyme immobilization Biocatalysis Enzyme mimicking |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-cf1e2c4c1569674145a745b22e3a95a3e6daa65a6ad7e9d26af9320c13f3cc8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3022-7746 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11244-022-01766-4.pdf |
PMID | 36597435 |
PQID | 2814910761 |
PQPubID | 2043828 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2760821124 proquest_journals_3187654758 proquest_journals_2814910761 pubmed_primary_36597435 crossref_citationtrail_10_1007_s11244_022_01766_4 crossref_primary_10_1007_s11244_022_01766_4 springer_journals_10_1007_s11244_022_01766_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationTitleAlternate | Top Catal |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 1766_CR58 X Li (1766_CR32) 2022; 18 W Wenjun (1766_CR93) 2022; 32 Y Shao (1766_CR96) 2022; 7 L Su (1766_CR89) 2022 S Sagbas (1766_CR23) 2019 P Somu (1766_CR71) 2022 H Ye (1766_CR56) 2019; 121 P Carneiro (1766_CR13) 2019; 9 Y Piao (1766_CR57) 2016; 6 H Liu (1766_CR91) 2020; 3 MA Elgadir (1766_CR54) 2015; 23 M Bilal (1766_CR61) 2020; 162 Z Kang (1766_CR29) 2019; 11 RG Araújo (1766_CR1) 2022; 7 H He (1766_CR77) 2022 JJ Hu (1766_CR72) 2019 TM Pelegrino (1766_CR42) 2017; 4 E Gkantzou (1766_CR19) 2021; 51 R-A de Jesús (1766_CR5) 2016; 2 A Döring (1766_CR25) 2022; 11 L Alvarado-Ramírez (1766_CR62) 2021; 181 Z Lin (1766_CR34) 2022; 359 K Sunar (1766_CR49) 2016 W Zhou (1766_CR68) 2021; 403 M Bilal (1766_CR67) 2020; 422 S Kumar (1766_CR52) 2018; 80 H Zeng (1766_CR12) 2021; 32 P Tripathi (1766_CR14) 2022; 28 S Fu (1766_CR44) 2019; 1 Z Li (1766_CR94) 2022; 428 MI Khan (1766_CR11) 2022; 472 F Miao (1766_CR83) 2016; 149 OA Kost (1766_CR74) 2016 MM Rodríguez-Delgado (1766_CR69) 2015; 74 R Zhang (1766_CR21) 2021; 2 HH Nguyen (1766_CR63) 2017; 26 F Wahid (1766_CR47) 2020; 200 M Bilal (1766_CR20) 2022; 38 ZB Mohammadi (1766_CR51) 2022 M Heidarizadeh (1766_CR48) 2017; 101 R Reshmy (1766_CR6) 2021; 337 CM O'Brien (1766_CR97) 2015; 21 X Lyu (1766_CR70) 2021; 11 P Kannan (1766_CR17) 2022; 13 JH Kim (1766_CR59) 2017; 157 SAH Martínez (1766_CR65) 2022 J del Arco (1766_CR39) 2019; 276 AMBF Soares (1766_CR78) 2020; 243 W Feng (1766_CR9) 2021 DO Lopez-Cantu (1766_CR7) 2022; 194 D Giliopoulos (1766_CR45) 2020; 25 X-F Lou (1766_CR92) 2021; 13 B Notario (1766_CR53) 2016; 78–79 OM Darwesh (1766_CR64) 2019; 7 Y Zhou (1766_CR88) 2020; 32 A Zhao (1766_CR95) 2020; 310 K Jin (1766_CR15) 2018; 8 Y Gong (1766_CR90) 2021; 418 P Kaur (1766_CR37) 2021; 11 N Kutlu (1766_CR8) 2020; 50 G Sharma (1766_CR60) 2018; 16 Q Li (1766_CR31) 2023; 441 ECHT Lau (1766_CR40) 2022 J Jacob (1766_CR43) 2018; 9 M Koosha (1766_CR46) 2015; 5 1766_CR3 ID Muhammad (1766_CR2) 2022 S Hu (1766_CR55) 2018; 184 I Lee (1766_CR81) 2020; 155 AM Villalba-Rodríguez (1766_CR50) 2021; 7 R Ali (1766_CR76) 2022; 48 SW Fatima (1766_CR80) 2020; 163 W Zeng (1766_CR86) 2022 D-M Liu (1766_CR66) 2018; 102 H Yan (1766_CR16) 2019; 6 W Sheng (1766_CR38) 2018; 114 MI Khan (1766_CR10) 2022; 7 ML Liu (1766_CR22) 2019; 21 M Ozhukil-Valappil (1766_CR26) 2017; 9 T Touqeer (1766_CR36) 2020; 13 AT Khalil (1766_CR18) 2021; 7 DO Lopez-Cantu (1766_CR4) 2022; 469 M Bilal (1766_CR35) 2019; 388 L Su (1766_CR30) 2020; 187 A Harguindey (1766_CR85) 2019; 20 G Ge (1766_CR24) 2021; 9 A Giannakopoulou (1766_CR41) 2019; 9 M Chung (1766_CR84) 2018; 18 C Ren (1766_CR87) 2020 L Zhang (1766_CR75) 2021; 64 B Wang (1766_CR28) 2022; 5 A Soozanipour (1766_CR79) 2022; 349 R Pahwa (1766_CR73) 2022 N Zhao (1766_CR33) 2022; 648 TA Tabish (1766_CR27) 2016; 1–5 D Soto (1766_CR82) 2021; 880 |
References_xml | – volume: 472 start-page: 214757 year: 2022 ident: 1766_CR11 publication-title: Coord Chem Rev doi: 10.1016/J.CCR.2022.214757 – volume: 149 start-page: 153 year: 2016 ident: 1766_CR83 publication-title: Microelectron Eng doi: 10.1016/j.mee.2015.10.011 – volume: 74 start-page: 21 year: 2015 ident: 1766_CR69 publication-title: TrAC Trends Anal Chem doi: 10.1016/j.trac.2015.05.008 – volume: 114 start-page: 143 year: 2018 ident: 1766_CR38 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2018.03.088 – volume: 50 start-page: 425 year: 2020 ident: 1766_CR8 publication-title: Prep Biochem Biotechnol doi: 10.1080/10826068.2019.1679175 – start-page: 279 volume-title: Agro-industrial wastes as feedstock for enzyme production year: 2016 ident: 1766_CR49 doi: 10.1016/B978-0-12-802392-1.00012-5 – volume: 1–5 start-page: 171 year: 2016 ident: 1766_CR27 publication-title: Comprehen Nanosci Nanotechnol doi: 10.1016/B978-0-12-803581-8.04133-3 – volume: 337 start-page: 125491 year: 2021 ident: 1766_CR6 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2021.125491 – volume: 32 start-page: 1857 year: 2021 ident: 1766_CR12 publication-title: Chin Chem Lett doi: 10.1016/J.CCLET.2021.01.014 – year: 2022 ident: 1766_CR86 publication-title: Adv Sci doi: 10.1002/advs.202201703 – volume: 3 start-page: 2499 year: 2020 ident: 1766_CR91 publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.0c00198 – volume: 155 start-page: 1520 year: 2020 ident: 1766_CR81 publication-title: Int J Biol Macromol doi: 10.1016/J.IJBIOMAC.2019.11.129 – year: 2016 ident: 1766_CR74 publication-title: Oxid Med Cell Longev doi: 10.1155/2016/5194239 – volume: 21 start-page: 103 issue: 1 year: 2015 ident: 1766_CR97 publication-title: Tissue Eng Part B Rev doi: 10.1089/ten.TEB.2014.0168 – volume: 11 start-page: 19214 year: 2019 ident: 1766_CR29 publication-title: Nanoscale doi: 10.1039/C9NR05647E – volume: 187 start-page: 1 year: 2020 ident: 1766_CR30 publication-title: Microchim Acta doi: 10.1007/S00604-019-4103-4/TABLES/3 – volume: 102 start-page: 332 year: 2018 ident: 1766_CR66 publication-title: TrAC Trends Anal Chem doi: 10.1016/j.trac.2018.03.011 – ident: 1766_CR3 doi: 10.26502/jnr.2688-85210023 – volume: 276 start-page: 244 year: 2019 ident: 1766_CR39 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.12.120 – volume: 13 start-page: 1850 year: 2021 ident: 1766_CR92 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13111850 – volume: 13 start-page: 76 year: 2022 ident: 1766_CR17 publication-title: Micromachines (Basel) doi: 10.3390/mi13010076 – year: 2022 ident: 1766_CR71 publication-title: Environ Res doi: 10.1016/j.envres.2022.113411 – volume: 11 start-page: 955 year: 2021 ident: 1766_CR37 publication-title: Biomass Convers Biorefin doi: 10.1007/s13399-020-00628-x/Published – volume: 21 start-page: 449 year: 2019 ident: 1766_CR22 publication-title: Green Chem doi: 10.1039/C8GC02736F – volume: 13 start-page: 177 year: 2020 ident: 1766_CR36 publication-title: Energies (Basel) doi: 10.3390/en13010177 – volume: 4 start-page: 352 year: 2017 ident: 1766_CR42 publication-title: AIMS Med Sci doi: 10.3934/medsci.2017.3.352 – volume: 11 start-page: 1 issue: 1 year: 2022 ident: 1766_CR25 publication-title: Light doi: 10.1038/s41377-022-00764-1 – volume: 403 start-page: 126272 year: 2021 ident: 1766_CR68 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.126272 – volume: 2 start-page: 534 year: 2021 ident: 1766_CR21 publication-title: Acc Mater Res doi: 10.1021/accountsmr.1c00074 – volume: 11 start-page: 1211 year: 2021 ident: 1766_CR70 publication-title: Catalysts doi: 10.3390/catal11101211 – volume: 38 start-page: 157 year: 2022 ident: 1766_CR20 publication-title: J Adv Res doi: 10.1016/J.JARE.2021.09.013 – volume: 9 start-page: 6553 year: 2021 ident: 1766_CR24 publication-title: J Mater Chem B doi: 10.1039/D1TB01077H – volume: 184 start-page: 154 year: 2018 ident: 1766_CR55 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2017.12.033 – year: 2022 ident: 1766_CR77 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2022.132532 – volume: 428 start-page: 131396 year: 2022 ident: 1766_CR94 publication-title: Chem Eng J doi: 10.1016/J.CEJ.2021.131396 – year: 2022 ident: 1766_CR89 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2021.131150 – volume: 7 start-page: 1 year: 2021 ident: 1766_CR18 publication-title: Nanoscience doi: 10.1039/9781839163791-00001 – volume: 441 start-page: 129919 year: 2023 ident: 1766_CR31 publication-title: J Hazard Mater doi: 10.1016/J.JHAZMAT.2022.129919 – volume: 8 start-page: 23 year: 2018 ident: 1766_CR15 publication-title: Acta Pharm Sin B doi: 10.1016/J.APSB.2017.12.002 – volume: 359 start-page: 131563 year: 2022 ident: 1766_CR34 publication-title: Sens Actuators B Chem doi: 10.1016/J.SNB.2022.131563 – volume: 880 start-page: 114826 year: 2021 ident: 1766_CR82 publication-title: J Electroanal Chem doi: 10.1016/J.JELECHEM.2020.114826 – volume: 48 start-page: 10741 year: 2022 ident: 1766_CR76 publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.12.290 – volume: 2 start-page: 1 year: 2016 ident: 1766_CR5 publication-title: Biocatalysis doi: 10.1515/boca-2016-0001 – volume: 121 start-page: 633 year: 2019 ident: 1766_CR56 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2018.10.056 – volume: 28 start-page: 116 year: 2022 ident: 1766_CR14 publication-title: Curr Pharm Des doi: 10.2174/1381612827666211122153946 – volume: 7 start-page: 32863 year: 2022 ident: 1766_CR1 publication-title: ACS Omega doi: 10.1021/acsomega.2c03155 – volume: 5 start-page: 10479 year: 2015 ident: 1766_CR46 publication-title: RSC Adv doi: 10.1039/C4RA13972K – volume: 648 start-page: 129390 year: 2022 ident: 1766_CR33 publication-title: Colloids Surf A doi: 10.1016/J.COLSURFA.2022.129390 – volume: 20 start-page: 1683 year: 2019 ident: 1766_CR85 publication-title: Biomacromol doi: 10.1021/acs.biomac.9b00040 – volume: 9 start-page: 995 year: 2019 ident: 1766_CR41 publication-title: Catalysts doi: 10.3390/catal9120995 – year: 2020 ident: 1766_CR87 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119752 – volume: 32 start-page: 263 year: 2022 ident: 1766_CR93 publication-title: J Microbiol Biotechnol doi: 10.4014/JMB.2107.07046 – volume: 6 start-page: 1900605 year: 2019 ident: 1766_CR16 publication-title: Adv Sci doi: 10.1002/advs.201900605 – volume: 388 start-page: 1 year: 2019 ident: 1766_CR35 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2019.02.024 – volume: 78–79 start-page: 93 year: 2016 ident: 1766_CR53 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2016.02.002 – volume: 9 start-page: 43 year: 2018 ident: 1766_CR43 publication-title: Mater Today Chem doi: 10.1016/j.mtchem.2018.05.002 – volume: 349 start-page: 118111 year: 2022 ident: 1766_CR79 publication-title: J Mol Liq doi: 10.1016/J.MOLLIQ.2021.118111 – year: 2019 ident: 1766_CR23 publication-title: Nanocarb Compos doi: 10.1016/B978-0-08-102509-3.00022-5 – volume: 25 start-page: 185 year: 2020 ident: 1766_CR45 publication-title: Molecules doi: 10.3390/molecules25010185 – year: 2022 ident: 1766_CR73 publication-title: Pathobiol Hum Dis doi: 10.1016/B978-0-12-386456-7.01808-6 – year: 2022 ident: 1766_CR65 publication-title: Fuel doi: 10.1016/j.fuel.2021.122927 – year: 2019 ident: 1766_CR72 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119303 – year: 2021 ident: 1766_CR9 publication-title: Nat Commun doi: 10.1038/s41467-021-22278-x – start-page: 301 volume-title: Nanomaterials for biocatalysis year: 2022 ident: 1766_CR40 doi: 10.1016/B978-0-12-824436-4.00001-0 – volume: 200 start-page: 108208 year: 2020 ident: 1766_CR47 publication-title: Compos B Eng doi: 10.1016/j.compositesb.2020.108208 – volume: 7 start-page: 102805 year: 2019 ident: 1766_CR64 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2018.11.049 – volume: 101 start-page: 696 year: 2017 ident: 1766_CR48 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2017.03.152 – volume: 162 start-page: 1906 year: 2020 ident: 1766_CR61 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.08.122 – volume: 18 start-page: 6555 year: 2018 ident: 1766_CR84 publication-title: J Nanosci Nanotechnol doi: 10.1166/jnn.2018.15697 – year: 2022 ident: 1766_CR51 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2022.2092719 – volume: 469 start-page: 214685 year: 2022 ident: 1766_CR4 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2022.214685 – volume: 80 start-page: 1 year: 2018 ident: 1766_CR52 publication-title: Prog Polym Sci doi: 10.1016/j.progpolymsci.2018.03.001 – volume: 7 start-page: 59 year: 2021 ident: 1766_CR50 publication-title: Gels doi: 10.3390/gels7020059 – volume: 1 start-page: 2 year: 2019 ident: 1766_CR44 publication-title: Nano Mater Sci doi: 10.1016/j.nanoms.2019.02.006 – volume: 243 start-page: 116498 year: 2020 ident: 1766_CR78 publication-title: Carbohydr Polym doi: 10.1016/J.CARBPOL.2020.116498 – volume: 163 start-page: 1747 year: 2020 ident: 1766_CR80 publication-title: Int J Biol Macromol doi: 10.1016/J.IJBIOMAC.2020.09.091 – volume: 18 start-page: 2203001 year: 2022 ident: 1766_CR32 publication-title: Small doi: 10.1002/SMLL.202203001 – volume: 26 start-page: 157 year: 2017 ident: 1766_CR63 publication-title: Appl Sci Converg Technol doi: 10.5757/asct.2017.26.6.157 – volume: 5 start-page: 110 year: 2022 ident: 1766_CR28 publication-title: Matter doi: 10.1016/J.MATT.2021.10.016 – volume: 418 start-page: 129345 year: 2021 ident: 1766_CR90 publication-title: Chem Eng J doi: 10.1016/J.CEJ.2021.129345 – volume: 51 start-page: 107738 year: 2021 ident: 1766_CR19 publication-title: Biotechnol Adv doi: 10.1016/J.BIOTECHADV.2021.107738 – volume: 310 start-page: 127861 year: 2020 ident: 1766_CR95 publication-title: Sens Actuators B Chem doi: 10.1016/J.SNB.2020.127861 – volume: 64 start-page: 616 year: 2021 ident: 1766_CR75 publication-title: Sci China Chem doi: 10.1007/s11426-020-9923-9 – volume: 422 start-page: 213475 year: 2020 ident: 1766_CR67 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2020.213475 – volume: 32 start-page: 2003708 year: 2020 ident: 1766_CR88 publication-title: Adv Mater doi: 10.1002/ADMA.202003708 – volume: 7 start-page: 100049 year: 2022 ident: 1766_CR10 publication-title: OpenNano doi: 10.1016/J.ONANO.2022.100049 – volume: 16 start-page: 113 year: 2018 ident: 1766_CR60 publication-title: Environ Chem Lett doi: 10.1007/s10311-017-0671-x – volume: 6 start-page: 6171 year: 2016 ident: 1766_CR57 publication-title: RSC Adv doi: 10.1039/C5RA20674J – volume: 23 start-page: 619 year: 2015 ident: 1766_CR54 publication-title: J Food Drug Anal doi: 10.1016/j.jfda.2014.10.008 – volume: 9 start-page: 1 year: 2019 ident: 1766_CR13 publication-title: Nanomaterials doi: 10.3390/nano9121663 – volume: 9 start-page: 350 year: 2017 ident: 1766_CR26 publication-title: Appl Mater Today doi: 10.1016/J.APMT.2017.09.002 – year: 2022 ident: 1766_CR2 publication-title: Technol Soc doi: 10.1016/j.techsoc.2022.101888 – ident: 1766_CR58 doi: 10.1021/bk-2020-1353.ch015 – volume: 7 start-page: 11530 issue: 14 year: 2022 ident: 1766_CR96 publication-title: ACS Omega doi: 10.1021/acsomega.2c00357 – volume: 194 start-page: 676 year: 2022 ident: 1766_CR7 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2021.11.112 – volume: 181 start-page: 683 year: 2021 ident: 1766_CR62 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2021.03.175 – volume: 157 start-page: 137 year: 2017 ident: 1766_CR59 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.09.074 |
SSID | ssj0021799 |
Score | 2.5483959 |
SecondaryResourceType | review_article |
Snippet | Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties.... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 707 |
SubjectTerms | Catalysis Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Industrial Chemistry/Chemical Engineering Nanocomposites Nanomaterials Optical properties Pharmacy Physical Chemistry Review Paper |
Title | Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes |
URI | https://link.springer.com/article/10.1007/s11244-022-01766-4 https://www.ncbi.nlm.nih.gov/pubmed/36597435 https://www.proquest.com/docview/2814910761 https://www.proquest.com/docview/3187654758 https://www.proquest.com/docview/2760821124 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1da9sw8OiSh-2lbN2XuzRosLdNEFsfdvqWpE1Dy_a0QPZkZEmGQusMnD6kv753ip1sJBv0yWBJZ3F31t3pvgC-qIGNbVpqXmgvOKVC8sxlgmdaukyhwPchQ-77Dz2by-uFWjRJYXUb7d66JMNJvUt2I1HEKfp8QFUNuXwBXUW2O3LxPBltzSyqcRZ8nGRmqSRrUmUOw_hbHO3pmHv-0SB2pq_huNEX2WhD4Ddw5KsTeDlp27S9BYPn4xLVzsBJjPpvhoqwNUNtlE3ocmaNS9noD0c1u63YOKTdB7f6OSMQxe0yXOWsa1xrKhdePq7vff0O5tPLn5MZb_omcCtluuK2jH1ipUXTbKhRY5DKpFIViHdhhsoIr50xWhltXOqHLtGmRC0OiSZKYW3mxHvoVMvKfwTmVBEXSlpZqlR6VRQUdWql0whXJm4QQdyiL7dNUXHqbXGX78ohE8pzRHkeUJ7LCL5u1_zelNT47-xeS5W8-b3qPMnQsIvpCubgMJ5TKTVVVlkEn7fDSBdyhpjKLx8QRKpR-6HPRfBhQ-ztboQmM0uoCL611N8B__dWT583_RO8ot71m7izHnSQO_wZajirog_d0fhiPKXn1a-by35g8CcwA_KC |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONAL4tU2ZSmuxA0sbeJHvNyWVVcLBU6sxC1ybEdCotlKoYfl13fGm-yCgEq9xvYkmnE833heAMeq71KXV5qXOghOqZDceCO40dIbhQo_xAy56xs9mcrLO3XXJoU1XbR755KMJ_Uq2Y1UEafo8z5VNeTyA2wgGDAUyDXNhkszi2qcRR8nmVkqM22qzNs0XqqjVxjzlX80qp3xNmy1eJENFwLegbVQ78LmqGvTtgcWz8cZws64kxj134wVYRuGaJSN6HJmjkvZ8Jmjmt3X7Dym3Ue3-hkjEuX9LF7lzBtca2sfHz7Nf4VmH6bjH7ejCW_7JnAnZf7IXZWGzEmHptlAI2KQyuZSlch3YQfKiqC9tVpZbX0eBj7TtkIUh0ITlXDOePEJ1utZHb4A86pMSyWdrFQugypLijp10mukKzPfTyDt2Fe4tqg49bZ4KFblkInlBbK8iCwvZAInyzW_FyU1_jm710mlaH-vpsgMGnYpXcG8OYznVE5NlZVJ4PtyGOVCzhBbh9kfJJFrRD_0ugQ-L4S9_BqhycwSKoHTTvor4u9_6tf_m34Em5Pb66vi6uLm5wF8pD72ixi0HqzjTgmHiHYey29xc_8FlFPybw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkIAL4tmGpytxay028SNZbsvCCmiLOLASt8ixHQmpzSLtctj--s44yS6Ih9RrbE-imYn9jecFcKw6NrZpqXmhveCUCskzlwmeaekyhQe-Dxlyv2705VBe36v7Z1n8Idq9dUnWOQ1UpamanDy68mSe-EbHEqdI9A5VOOTyEyzhdhyTXg-T3szkonpnwd9JJpdKsiZt5m0aL4-mV3jzla80HEGDdVhrsCPr1cLegAVfbcJKv23ZtgUG98oRQtCgVYx6cYbqsGOGyJT16aJmiktZ75nTmj1U7Cyk4AcX-ykjEsXDKFzrTMe41lQuPPw7_ePH2zAcXNz1L3nTQ4FbKdMJt2XsEystmmldjehBKpNKVaAMhOkqI7x2xmhltHGp77pEmxIRHQpQlMLazIkdWKxGlf8CzKkiLpS0slSp9KooKALVSqeRrkxcJ4K4ZV9umwLj1Ofidz4vjUwsz5HleWB5LiP4NlvzWJfX-HD2fiuVvPnVxnmSoZEX03XMm8O4Z6XUYFllEXydDaNcyDFiKj96QhKpRiREr4vgcy3s2dcITSaXUBF8b6U_J_7-p-7-3_QjWL49H-Q_r25-7MEqtbSvw9H2YREVxR8g8JkUh0G3_wGea_ar |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanomaterial+Constructs+for+Catalytic+Applications+in+Biomedicine%3A+Nanobiocatalysts+and+Nanozymes&rft.jtitle=Topics+in+catalysis&rft.au=Villalba-Rodr%C3%ADguez%2C+Angel+M&rft.au=Mart%C3%ADnez-Zamudio%2C+Lidia+Yaritza&rft.au=Mart%C3%ADnez%2C+Sa%C3%BAl+Antonio+Hern%C3%A1ndez&rft.au=Rodr%C3%ADguez-Hern%C3%A1ndez%2C+Jes%C3%BAs+Alfredo&rft.date=2023-06-01&rft.issn=1022-5528&rft.volume=66&rft.issue=9-12&rft.spage=707&rft_id=info:doi/10.1007%2Fs11244-022-01766-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |