Limits of Performance Gain of Aligned CNT Over Randomized Network: Theoretical Predictions and Experimental Validation
Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model t...
Saved in:
Published in | IEEE electron device letters Vol. 28; no. 7; pp. 593 - 595 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.07.2007
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L S , and channel length L C ; 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L S , and L C ; and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure. |
---|---|
AbstractList | Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L sub(S), and channel length L sub(C); 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L sub(S), and L sub(C); and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure. Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L S , and channel length L C ; 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L S , and L C ; and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure. Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L@@dS@, and channel length L@@dC@; 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L@@dS@, and L@@dC@; and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure. In this paper, we 1 use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length LS, and channel length LC; 2 interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, LS, and LC; and 3 demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure. |
Author | Alam, M.A. Kocabas, C. Pimparkar, N. Seong Jun Kang Rogers, J. |
Author_xml | – sequence: 1 givenname: N. surname: Pimparkar fullname: Pimparkar, N. organization: Purdue Univ., West Lafayette – sequence: 2 givenname: C. surname: Kocabas fullname: Kocabas, C. – sequence: 3 surname: Seong Jun Kang fullname: Seong Jun Kang – sequence: 4 givenname: J. surname: Rogers fullname: Rogers, J. – sequence: 5 givenname: M.A. surname: Alam fullname: Alam, M.A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18898638$$DView record in Pascal Francis |
BookMark | eNp9kc1vEzEQxS1UJNLAmQMXCwl62tTjj12bWxVCQYraCgWuK8c7Cy67drA3pfDX4ygVSBw4jfTeb0Yz807JSYgBCXkObAHAzPl69XbBGWsW2miu6kdkBkrpiqlanJAZayRUAlj9hJzmfMsYSNnIGblb-9FPmcae3mDqYxptcEgvrQ8H7WLwXwJ2dHm1odd3mOhHG7o4-l9Fu8LpR0zf3tDNV4wJJ-_sQG8Sdt5NPoZMC0pX9ztMfsQwFfOzHXxnD-ZT8ri3Q8ZnD3VOPr1bbZbvq_X15YflxbpyZb2pcl0HDXCphAJoto43ndTKCdmgqhn2qjcGFC-aqLXeqm0N2nKjDFoptAAxJ2fHubsUv-8xT-3os8NhsAHjPreG14Jzw2UhX_-XFFIxDVoU8OU_4G3cp1CuaA1w0CBrVqDzI-RSzDlh3-7KF2z62QJrD3G1Ja72EFd7jKt0vHoYa3N5ZJ9KDj7_bdOFq8tNc_LiyHlE_GNLrjiHRvwGRmidrA |
CODEN | EDLEDZ |
CitedBy_id | crossref_primary_10_1021_am401592v crossref_primary_10_1021_nl803849e crossref_primary_10_1021_nl902522f crossref_primary_10_1103_PhysRevE_101_012304 crossref_primary_10_1109_TNANO_2010_2046674 crossref_primary_10_1021_acs_nanolett_6b00428 crossref_primary_10_1063_1_3263723 crossref_primary_10_3390_s22010218 crossref_primary_10_1002_aelm_202100972 crossref_primary_10_1021_nn201828y crossref_primary_10_1016_j_carbon_2016_01_024 crossref_primary_10_1021_nl9025488 crossref_primary_10_1002_adma_200801995 crossref_primary_10_1002_adma_200803211 crossref_primary_10_1063_1_3679155 crossref_primary_10_1002_adma_200801032 crossref_primary_10_1002_adfm_201300034 crossref_primary_10_1063_1_2905270 crossref_primary_10_1109_TCAD_2012_2187527 crossref_primary_10_1021_la300770b crossref_primary_10_1007_s11434_016_1075_1 crossref_primary_10_1021_nn1021378 crossref_primary_10_1063_1_4931676 crossref_primary_10_1063_1_3524209 crossref_primary_10_1021_nn1006094 crossref_primary_10_1039_C2CS35325C crossref_primary_10_1016_j_mtadv_2023_100385 crossref_primary_10_1021_acsanm_9b01514 crossref_primary_10_1021_nn800708w crossref_primary_10_1063_5_0065730 crossref_primary_10_1557_jmr_2012_321 crossref_primary_10_1002_smll_201203178 crossref_primary_10_2197_ipsjtsldm_4_2 crossref_primary_10_1007_s12274_009_9013_z crossref_primary_10_1021_acs_nanolett_3c04190 crossref_primary_10_1038_s41598_017_01391_2 crossref_primary_10_1002_mabi_201600261 crossref_primary_10_1021_jp107361n crossref_primary_10_1109_TED_2008_2010604 crossref_primary_10_1021_nn101092d crossref_primary_10_1115_1_4004220 crossref_primary_10_1016_j_crhy_2010_07_016 crossref_primary_10_1002_adma_200900697 crossref_primary_10_1007_s12274_008_8033_4 crossref_primary_10_1021_jp207388n crossref_primary_10_1007_s12274_012_0211_8 crossref_primary_10_1002_adma_201000889 crossref_primary_10_1002_aelm_201600229 crossref_primary_10_1038_nnano_2012_257 crossref_primary_10_1039_b905185f crossref_primary_10_1002_smll_201600922 crossref_primary_10_1063_1_4821885 crossref_primary_10_1088_0957_4484_19_39_395303 crossref_primary_10_1021_jp212231j crossref_primary_10_1039_C4NR07650H |
Cites_doi | 10.1116/1.1768185 10.1103/PhysRevB.43.3331 10.1063/1.1767591 10.1021/nl062907m 10.1002/smll.200500120 10.1103/PhysRevLett.95.146805 10.1103/PhysRevLett.92.106804 10.1103/PhysRevB.10.1421 10.1126/science.1058782 10.1126/science.1133781 10.1038/nnano.2007.77 10.1103/PhysRevB.72.121404 10.1109/TED.2007.891871 10.1103/PhysRevLett.51.1605 10.1103/PhysRevB.55.1858 10.1063/1.1854721 10.1103/PhysRevB.28.3799 10.1021/nl049776e 10.1021/nl048687z 10.1109/LED.2006.889219 10.1103/PhysRevLett.95.066802 10.1021/ja0603150 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007 |
DBID | 97E RIA RIE IQODW AAYXX CITATION 7SP 8FD L7M F28 FR3 |
DOI | 10.1109/LED.2007.898256 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library Pascal-Francis CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Research Database Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences Physics |
EISSN | 1558-0563 |
EndPage | 595 |
ExternalDocumentID | 2544399041 10_1109_LED_2007_898256 18898638 4252217 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AFFNX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG RNS TAE TN5 TWZ VH1 XFK 08R IQODW AAYXX CITATION 7SP 8FD L7M F28 FR3 |
ID | FETCH-LOGICAL-c447t-cdd17124535117bc27d485c347e560ef5f991524853688b5b618a2959ea438313 |
IEDL.DBID | RIE |
ISSN | 0741-3106 |
IngestDate | Sat Aug 17 01:36:25 EDT 2024 Fri Aug 16 23:29:26 EDT 2024 Thu Oct 10 19:03:04 EDT 2024 Fri Aug 23 01:29:34 EDT 2024 Sun Oct 22 16:07:29 EDT 2023 Wed Jun 26 19:26:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Performance evaluation High performance Amorphous material percolation threshold Measurement sensor stick percolation Carbon nanotubes Optimization thin-film transistors (TFTs) Long channel Singlewalled nanotube Large area electronics random CNT networks Drain current Percolation Thin film transistor transistor models Current gain Aligned carbon nanotube (CNT) networks |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-cdd17124535117bc27d485c347e560ef5f991524853688b5b618a2959ea438313 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 912181460 |
PQPubID | 23500 |
PageCount | 3 |
ParticipantIDs | ieee_primary_4252217 crossref_primary_10_1109_LED_2007_898256 pascalfrancis_primary_18898638 proquest_miscellaneous_926322924 proquest_miscellaneous_34508183 proquest_journals_912181460 |
PublicationCentury | 2000 |
PublicationDate | 2007-07-01 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE electron device letters |
PublicationTitleAbbrev | LED |
PublicationYear | 2007 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 collins (ref22) 2001; 292 ref3 ref6 ref5 |
References_xml | – ident: ref2 doi: 10.1116/1.1768185 – ident: ref18 doi: 10.1103/PhysRevB.43.3331 – ident: ref3 doi: 10.1063/1.1767591 – ident: ref13 doi: 10.1021/nl062907m – ident: ref9 doi: 10.1002/smll.200500120 – ident: ref15 doi: 10.1103/PhysRevLett.95.146805 – ident: ref1 doi: 10.1103/PhysRevLett.92.106804 – ident: ref20 doi: 10.1103/PhysRevB.10.1421 – volume: 292 start-page: 706 year: 2001 ident: ref22 article-title: engineering carbon nanotubes and nanotube circuits using electrical breakdown publication-title: Science doi: 10.1126/science.1058782 contributor: fullname: collins – ident: ref21 doi: 10.1126/science.1133781 – ident: ref10 doi: 10.1038/nnano.2007.77 – ident: ref11 doi: 10.1103/PhysRevB.72.121404 – ident: ref4 doi: 10.1109/TED.2007.891871 – ident: ref16 doi: 10.1103/PhysRevLett.51.1605 – ident: ref19 doi: 10.1103/PhysRevB.55.1858 – ident: ref7 doi: 10.1063/1.1854721 – ident: ref17 doi: 10.1103/PhysRevB.28.3799 – ident: ref6 doi: 10.1021/nl049776e – ident: ref14 doi: 10.1021/nl048687z – ident: ref5 doi: 10.1109/LED.2006.889219 – ident: ref12 doi: 10.1103/PhysRevLett.95.066802 – ident: ref8 doi: 10.1021/ja0603150 |
SSID | ssj0014474 |
Score | 2.1844213 |
Snippet | Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance... In this paper, we 1 use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length LS, and... |
SourceID | proquest crossref pascalfrancis ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 593 |
SubjectTerms | Aligned carbon nanotube (CNT) networks Alignment Applied sciences Biological system modeling Biosensors Carbon nanotubes Chemical and biological sensors Chemical technology Degradation Devices Displays Electronics Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Joining processes Mathematical models Nanostructure Nanotubes Networks Niobium percolation threshold Performance gain Physics random CNT networks Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing stick percolation Studies Thin film transistors thin-film transistors (TFTs) transistor models Transistors |
Title | Limits of Performance Gain of Aligned CNT Over Randomized Network: Theoretical Predictions and Experimental Validation |
URI | https://ieeexplore.ieee.org/document/4252217 https://www.proquest.com/docview/912181460 https://search.proquest.com/docview/34508183 https://search.proquest.com/docview/926322924 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4CTtthgzG0jA182IHDUuLEju3dqlJA0yhoKohbZDsOqrYlE2134NfzHKctsCHtFjl25Pg925_93vsewKdKuBJhqI2Nj_1gholYW-5inltHucBm0scOn43y00v29Zpfr8HnZSyMc651PnM9_9ja8svGzv1V2SHqV4oQeh3WhVIhVmtpMWAsMC7jDonrSpJ3ND40UYffhkeBq1AqPA_lj3agNqWKd4jUUxyTKiSz-Gtdbjeb49dwtuhm8DH50ZvPTM_ePWFw_N__2IRXHeok_aAmW7Dm6jfw8gEX4Tb8aUOdpqSpyMUqmICc6Enty_o_Jze4IpPBaEzOUf3Jd12Xza_JHZaNgiv5FzJeRUWSi1tvAmq1mmBVMnyQSoBcIfoPyZzewuXxcDw4jbukDLHFIZ7FtiypQFDAvQVSGJuKkkluMyYcgidX8QoRJ_dEaVkupeEmp1KniiunPSsqzXZgo25q9w4Ik06lxmhVMseqihsjjU65pJpqU-U2goOFoIrfgXujaM8siSpQpj6DpiiCTCPY9sO8rNaNcAR7jwS7-ozEdrj0RLC7kHTRTd5poajHPSxPIthfvsVZ500punbNfFpkjHsuwCwC8kwN5YnwUzzdvv9313bhxeKaOKEfYGN2O3cfEd_MzF6r2PfVcfjW |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAcNmAgssHmAwcOpIsT27G5TVtHgbZMqEO7RbbjoGojQWvLYX89z3HabvyQuEWOHTl-z8-f_fy-B_C6yl2JMNTGxsd-MMPyWFvuYi6sozzHZtLHDo_GYnDOPl7wiw14u4qFcc61l89czz-2vvyysQt_VHaI-pUihL4H9xFXSxGitVY-A8YC5zKukWhZEtER-dBEHQ77J4GtUCrcEYk7a1CbVMVfidQzHJUqpLP4wzK3y83pNoyWHQ23TC57i7np2ZvfOBz_908ew1aHO8lRUJQnsOHqp_DoFhvhDvxsg51mpKnI2TqcgLzX09qXHV1Nv6FNJsfjCfmME4B80XXZfJ_eYNk4XCZ_RybruEhydu2dQK1eE6xK-reSCZCviP9DOqdncH7anxwP4i4tQ2xxiOexLUuaIyzg3geZG5vmJZPcZix3CJ9cxSvEnNxTpWVCSsONoFKniiunPS8qzZ7DZt3U7gUQJp1KjdGqZI5VFTdGGp1ySTXVphI2gjdLQRU_AvtG0e5aElWgTH0OzbwIMo1gxw_zqlo3whHs3xHs-jMS26HxiWBvKemim76zQlGPfJhIIjhYvcV5550punbNYlZkjHs2wCwC8o8aylPhp7i_3f171w7gwWAyGhbDD-NPe_BweWic0JewOb9euFeIduZmv1XyX_bq_CE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limits+of+performance+gain+of+aligned+CNT+over+randomized+network+%3A+Theoretical+predictions+and+experimental+validation&rft.jtitle=IEEE+electron+device+letters&rft.au=PIMPARKAR%2C+Ninad&rft.au=KOCABAS%2C+Coskun&rft.au=SEONG+JUN+KANG&rft.au=ROGERS%2C+John&rft.date=2007-07-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0741-3106&rft.eissn=1558-0563&rft.volume=28&rft.issue=7&rft.spage=593&rft.epage=595&rft_id=info:doi/10.1109%2Fled.2007.898256&rft.externalDBID=n%2Fa&rft.externalDocID=18898638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3106&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3106&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3106&client=summon |