Limits of Performance Gain of Aligned CNT Over Randomized Network: Theoretical Predictions and Experimental Validation

Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model t...

Full description

Saved in:
Bibliographic Details
Published inIEEE electron device letters Vol. 28; no. 7; pp. 593 - 595
Main Authors Pimparkar, N., Kocabas, C., Seong Jun Kang, Rogers, J., Alam, M.A.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L S , and channel length L C ; 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L S , and L C ; and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure.
AbstractList Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L sub(S), and channel length L sub(C); 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L sub(S), and L sub(C); and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure.
Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L S , and channel length L C ; 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L S , and L C ; and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure.
Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance alternative to amorphous-Si technology for various macroelectronic applications involving sensors and displays. Here, we use stick-percolation model to study the effect of collective (stick) alignment on the performance of NB-TFTs. For long-channel TFT, small degree of alignment improves the drain current due to the reduction of average path length; however, near-parallel alignment degrades the current rapidly, reflecting the decrease in the number of connecting paths bridging the source/drain. In this paper, we 1) use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length L@@dS@, and channel length L@@dC@; 2) interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, L@@dS@, and L@@dC@; and 3) demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure.
In this paper, we 1 use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length LS, and channel length LC; 2 interpret the experimental data with a stick- percolation model to develop a comprehensive theory of NB-TFT for arbitrary D,thetas, LS, and LC; and 3 demonstrate theoretically and experimentally the feasibility of fivefold enhancement in current gain with optimized transistor structure.
Author Alam, M.A.
Kocabas, C.
Pimparkar, N.
Seong Jun Kang
Rogers, J.
Author_xml – sequence: 1
  givenname: N.
  surname: Pimparkar
  fullname: Pimparkar, N.
  organization: Purdue Univ., West Lafayette
– sequence: 2
  givenname: C.
  surname: Kocabas
  fullname: Kocabas, C.
– sequence: 3
  surname: Seong Jun Kang
  fullname: Seong Jun Kang
– sequence: 4
  givenname: J.
  surname: Rogers
  fullname: Rogers, J.
– sequence: 5
  givenname: M.A.
  surname: Alam
  fullname: Alam, M.A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18898638$$DView record in Pascal Francis
BookMark eNp9kc1vEzEQxS1UJNLAmQMXCwl62tTjj12bWxVCQYraCgWuK8c7Cy67drA3pfDX4ygVSBw4jfTeb0Yz807JSYgBCXkObAHAzPl69XbBGWsW2miu6kdkBkrpiqlanJAZayRUAlj9hJzmfMsYSNnIGblb-9FPmcae3mDqYxptcEgvrQ8H7WLwXwJ2dHm1odd3mOhHG7o4-l9Fu8LpR0zf3tDNV4wJJ-_sQG8Sdt5NPoZMC0pX9ztMfsQwFfOzHXxnD-ZT8ri3Q8ZnD3VOPr1bbZbvq_X15YflxbpyZb2pcl0HDXCphAJoto43ndTKCdmgqhn2qjcGFC-aqLXeqm0N2nKjDFoptAAxJ2fHubsUv-8xT-3os8NhsAHjPreG14Jzw2UhX_-XFFIxDVoU8OU_4G3cp1CuaA1w0CBrVqDzI-RSzDlh3-7KF2z62QJrD3G1Ja72EFd7jKt0vHoYa3N5ZJ9KDj7_bdOFq8tNc_LiyHlE_GNLrjiHRvwGRmidrA
CODEN EDLEDZ
CitedBy_id crossref_primary_10_1021_am401592v
crossref_primary_10_1021_nl803849e
crossref_primary_10_1021_nl902522f
crossref_primary_10_1103_PhysRevE_101_012304
crossref_primary_10_1109_TNANO_2010_2046674
crossref_primary_10_1021_acs_nanolett_6b00428
crossref_primary_10_1063_1_3263723
crossref_primary_10_3390_s22010218
crossref_primary_10_1002_aelm_202100972
crossref_primary_10_1021_nn201828y
crossref_primary_10_1016_j_carbon_2016_01_024
crossref_primary_10_1021_nl9025488
crossref_primary_10_1002_adma_200801995
crossref_primary_10_1002_adma_200803211
crossref_primary_10_1063_1_3679155
crossref_primary_10_1002_adma_200801032
crossref_primary_10_1002_adfm_201300034
crossref_primary_10_1063_1_2905270
crossref_primary_10_1109_TCAD_2012_2187527
crossref_primary_10_1021_la300770b
crossref_primary_10_1007_s11434_016_1075_1
crossref_primary_10_1021_nn1021378
crossref_primary_10_1063_1_4931676
crossref_primary_10_1063_1_3524209
crossref_primary_10_1021_nn1006094
crossref_primary_10_1039_C2CS35325C
crossref_primary_10_1016_j_mtadv_2023_100385
crossref_primary_10_1021_acsanm_9b01514
crossref_primary_10_1021_nn800708w
crossref_primary_10_1063_5_0065730
crossref_primary_10_1557_jmr_2012_321
crossref_primary_10_1002_smll_201203178
crossref_primary_10_2197_ipsjtsldm_4_2
crossref_primary_10_1007_s12274_009_9013_z
crossref_primary_10_1021_acs_nanolett_3c04190
crossref_primary_10_1038_s41598_017_01391_2
crossref_primary_10_1002_mabi_201600261
crossref_primary_10_1021_jp107361n
crossref_primary_10_1109_TED_2008_2010604
crossref_primary_10_1021_nn101092d
crossref_primary_10_1115_1_4004220
crossref_primary_10_1016_j_crhy_2010_07_016
crossref_primary_10_1002_adma_200900697
crossref_primary_10_1007_s12274_008_8033_4
crossref_primary_10_1021_jp207388n
crossref_primary_10_1007_s12274_012_0211_8
crossref_primary_10_1002_adma_201000889
crossref_primary_10_1002_aelm_201600229
crossref_primary_10_1038_nnano_2012_257
crossref_primary_10_1039_b905185f
crossref_primary_10_1002_smll_201600922
crossref_primary_10_1063_1_4821885
crossref_primary_10_1088_0957_4484_19_39_395303
crossref_primary_10_1021_jp212231j
crossref_primary_10_1039_C4NR07650H
Cites_doi 10.1116/1.1768185
10.1103/PhysRevB.43.3331
10.1063/1.1767591
10.1021/nl062907m
10.1002/smll.200500120
10.1103/PhysRevLett.95.146805
10.1103/PhysRevLett.92.106804
10.1103/PhysRevB.10.1421
10.1126/science.1058782
10.1126/science.1133781
10.1038/nnano.2007.77
10.1103/PhysRevB.72.121404
10.1109/TED.2007.891871
10.1103/PhysRevLett.51.1605
10.1103/PhysRevB.55.1858
10.1063/1.1854721
10.1103/PhysRevB.28.3799
10.1021/nl049776e
10.1021/nl048687z
10.1109/LED.2006.889219
10.1103/PhysRevLett.95.066802
10.1021/ja0603150
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007
DBID 97E
RIA
RIE
IQODW
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
DOI 10.1109/LED.2007.898256
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library
Pascal-Francis
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database

Engineering Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
Physics
EISSN 1558-0563
EndPage 595
ExternalDocumentID 2544399041
10_1109_LED_2007_898256
18898638
4252217
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AFFNX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
TWZ
VH1
XFK
08R
IQODW
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c447t-cdd17124535117bc27d485c347e560ef5f991524853688b5b618a2959ea438313
IEDL.DBID RIE
ISSN 0741-3106
IngestDate Sat Aug 17 01:36:25 EDT 2024
Fri Aug 16 23:29:26 EDT 2024
Thu Oct 10 19:03:04 EDT 2024
Fri Aug 23 01:29:34 EDT 2024
Sun Oct 22 16:07:29 EDT 2023
Wed Jun 26 19:26:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Performance evaluation
High performance
Amorphous material
percolation threshold
Measurement sensor
stick percolation
Carbon nanotubes
Optimization
thin-film transistors (TFTs)
Long channel
Singlewalled nanotube
Large area electronics
random CNT networks
Drain current
Percolation
Thin film transistor
transistor models
Current gain
Aligned carbon nanotube (CNT) networks
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-cdd17124535117bc27d485c347e560ef5f991524853688b5b618a2959ea438313
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 912181460
PQPubID 23500
PageCount 3
ParticipantIDs ieee_primary_4252217
crossref_primary_10_1109_LED_2007_898256
pascalfrancis_primary_18898638
proquest_miscellaneous_926322924
proquest_miscellaneous_34508183
proquest_journals_912181460
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE electron device letters
PublicationTitleAbbrev LED
PublicationYear 2007
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
collins (ref22) 2001; 292
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1116/1.1768185
– ident: ref18
  doi: 10.1103/PhysRevB.43.3331
– ident: ref3
  doi: 10.1063/1.1767591
– ident: ref13
  doi: 10.1021/nl062907m
– ident: ref9
  doi: 10.1002/smll.200500120
– ident: ref15
  doi: 10.1103/PhysRevLett.95.146805
– ident: ref1
  doi: 10.1103/PhysRevLett.92.106804
– ident: ref20
  doi: 10.1103/PhysRevB.10.1421
– volume: 292
  start-page: 706
  year: 2001
  ident: ref22
  article-title: engineering carbon nanotubes and nanotube circuits using electrical breakdown
  publication-title: Science
  doi: 10.1126/science.1058782
  contributor:
    fullname: collins
– ident: ref21
  doi: 10.1126/science.1133781
– ident: ref10
  doi: 10.1038/nnano.2007.77
– ident: ref11
  doi: 10.1103/PhysRevB.72.121404
– ident: ref4
  doi: 10.1109/TED.2007.891871
– ident: ref16
  doi: 10.1103/PhysRevLett.51.1605
– ident: ref19
  doi: 10.1103/PhysRevB.55.1858
– ident: ref7
  doi: 10.1063/1.1854721
– ident: ref17
  doi: 10.1103/PhysRevB.28.3799
– ident: ref6
  doi: 10.1021/nl049776e
– ident: ref14
  doi: 10.1021/nl048687z
– ident: ref5
  doi: 10.1109/LED.2006.889219
– ident: ref12
  doi: 10.1103/PhysRevLett.95.066802
– ident: ref8
  doi: 10.1021/ja0603150
SSID ssj0014474
Score 2.1844213
Snippet Nanobundle thin-film transistors (NB-TFTs) that are based on random networks of single-walled carbon nanotubes are often regarded as high performance...
In this paper, we 1 use a recently developed alignment technique to fabricate NB-TFT devices with multiple densities D, alignment thetas, stick length LS, and...
SourceID proquest
crossref
pascalfrancis
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 593
SubjectTerms Aligned carbon nanotube (CNT) networks
Alignment
Applied sciences
Biological system modeling
Biosensors
Carbon nanotubes
Chemical and biological sensors
Chemical technology
Degradation
Devices
Displays
Electronics
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Joining processes
Mathematical models
Nanostructure
Nanotubes
Networks
Niobium
percolation threshold
Performance gain
Physics
random CNT networks
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing
stick percolation
Studies
Thin film transistors
thin-film transistors (TFTs)
transistor models
Transistors
Title Limits of Performance Gain of Aligned CNT Over Randomized Network: Theoretical Predictions and Experimental Validation
URI https://ieeexplore.ieee.org/document/4252217
https://www.proquest.com/docview/912181460
https://search.proquest.com/docview/34508183
https://search.proquest.com/docview/926322924
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4CTtthgzG0jA182IHDUuLEju3dqlJA0yhoKohbZDsOqrYlE2134NfzHKctsCHtFjl25Pg925_93vsewKdKuBJhqI2Nj_1gholYW-5inltHucBm0scOn43y00v29Zpfr8HnZSyMc651PnM9_9ja8svGzv1V2SHqV4oQeh3WhVIhVmtpMWAsMC7jDonrSpJ3ND40UYffhkeBq1AqPA_lj3agNqWKd4jUUxyTKiSz-Gtdbjeb49dwtuhm8DH50ZvPTM_ePWFw_N__2IRXHeok_aAmW7Dm6jfw8gEX4Tb8aUOdpqSpyMUqmICc6Enty_o_Jze4IpPBaEzOUf3Jd12Xza_JHZaNgiv5FzJeRUWSi1tvAmq1mmBVMnyQSoBcIfoPyZzewuXxcDw4jbukDLHFIZ7FtiypQFDAvQVSGJuKkkluMyYcgidX8QoRJ_dEaVkupeEmp1KniiunPSsqzXZgo25q9w4Ik06lxmhVMseqihsjjU65pJpqU-U2goOFoIrfgXujaM8siSpQpj6DpiiCTCPY9sO8rNaNcAR7jwS7-ozEdrj0RLC7kHTRTd5poajHPSxPIthfvsVZ500punbNfFpkjHsuwCwC8kwN5YnwUzzdvv9313bhxeKaOKEfYGN2O3cfEd_MzF6r2PfVcfjW
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAcNmAgssHmAwcOpIsT27G5TVtHgbZMqEO7RbbjoGojQWvLYX89z3HabvyQuEWOHTl-z8-f_fy-B_C6yl2JMNTGxsd-MMPyWFvuYi6sozzHZtLHDo_GYnDOPl7wiw14u4qFcc61l89czz-2vvyysQt_VHaI-pUihL4H9xFXSxGitVY-A8YC5zKukWhZEtER-dBEHQ77J4GtUCrcEYk7a1CbVMVfidQzHJUqpLP4wzK3y83pNoyWHQ23TC57i7np2ZvfOBz_908ew1aHO8lRUJQnsOHqp_DoFhvhDvxsg51mpKnI2TqcgLzX09qXHV1Nv6FNJsfjCfmME4B80XXZfJ_eYNk4XCZ_RybruEhydu2dQK1eE6xK-reSCZCviP9DOqdncH7anxwP4i4tQ2xxiOexLUuaIyzg3geZG5vmJZPcZix3CJ9cxSvEnNxTpWVCSsONoFKniiunPS8qzZ7DZt3U7gUQJp1KjdGqZI5VFTdGGp1ySTXVphI2gjdLQRU_AvtG0e5aElWgTH0OzbwIMo1gxw_zqlo3whHs3xHs-jMS26HxiWBvKemim76zQlGPfJhIIjhYvcV5550punbNYlZkjHs2wCwC8o8aylPhp7i_3f171w7gwWAyGhbDD-NPe_BweWic0JewOb9euFeIduZmv1XyX_bq_CE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Limits+of+performance+gain+of+aligned+CNT+over+randomized+network+%3A+Theoretical+predictions+and+experimental+validation&rft.jtitle=IEEE+electron+device+letters&rft.au=PIMPARKAR%2C+Ninad&rft.au=KOCABAS%2C+Coskun&rft.au=SEONG+JUN+KANG&rft.au=ROGERS%2C+John&rft.date=2007-07-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0741-3106&rft.eissn=1558-0563&rft.volume=28&rft.issue=7&rft.spage=593&rft.epage=595&rft_id=info:doi/10.1109%2Fled.2007.898256&rft.externalDBID=n%2Fa&rft.externalDocID=18898638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-3106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-3106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-3106&client=summon