The isotopic patterns and source apportionment of nitrate and ammonium in atmospheric aerosol
Nitrate (NO3-) and ammonium (NH4+) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study conducted a year-round field measurement of TSP, PM2.5 and PM1.0 in five different sites in the Beijing-Tianjin-Hebei (BTH) region to determine...
Saved in:
Published in | The Science of the total environment Vol. 803; p. 149559 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nitrate (NO3-) and ammonium (NH4+) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study conducted a year-round field measurement of TSP, PM2.5 and PM1.0 in five different sites in the Beijing-Tianjin-Hebei (BTH) region to determine the concentrations of water-soluble inorganic ions (WSIIs) and the isotopic compositions of inorganic nitrogen (δ15N-NH4+, δ15N-NO3-, and δ18O-NO3-). The results showed the highest concentration of WSIIs in winter and lowest in summer. δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+ were in the range of -6.1–18.2, 52.2–103.8, and -28.7–36.2‰, respectively. The seasonal variations of δ15N-NO3- and δ15N-NH4+ were an indication of relative contributions of the main sources and effects of meteorological conditions. The source apportionment identified fossil fuel combustion (38.2–50.6%), agricultural emissions (18–24.7%), biomass burning (16.3–22.7%), and road dust/soil (8.7–23.4%) were the main sources of inorganic aerosols. The local sources and regional migration contributed to the level of inorganic aerosol pollution. In winter, the aerosol in the BTH region was affected by the air mass from the northwest. While in spring and summer, the air mass was mainly from the South China. The low temperature and high relative humidity favored to the formation of inorganic nitrogen aerosol, and solar radiation affected the formation processes of inorganic aerosols by changing the oxidation pathway of NO3- and accelerating the volatilization and dissociation of ammonium nitrate (NH4NO3). This study discovered the main source contributions of inorganic nitrogen aerosol using N and O isotopes composition, and the obtained information has a great importance in understanding the effects of meteorological conditions on formation and the contribution of regional transport.
[Display omitted]
•Isotopic patterns of inorganic nitrogen aerosol in the BTH region were reported.•Fossil fuel combustion accounted for 38.2– 50.6% of inorganic nitrogen aerosol.•Meteorological conditions played a vital role on formation processes.•The regional migration was from the northwest in winter, while south in summer. |
---|---|
AbstractList | Nitrate (NO₃⁻) and ammonium (NH₄⁺) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study conducted a year-round field measurement of TSP, PM₂.₅ and PM₁.₀ in five different sites in the Beijing-Tianjin-Hebei (BTH) region to determine the concentrations of water-soluble inorganic ions (WSIIs) and the isotopic compositions of inorganic nitrogen (δ¹⁵N-NH₄⁺, δ¹⁵N-NO₃⁻, and δ¹⁸O-NO₃⁻). The results showed the highest concentration of WSIIs in winter and lowest in summer. δ¹⁵N-NO₃⁻, δ¹⁸O-NO₃⁻, and δ¹⁵N-NH₄⁺ were in the range of -6.1–18.2, 52.2–103.8, and -28.7–36.2‰, respectively. The seasonal variations of δ¹⁵N-NO₃⁻ and δ¹⁵N-NH₄⁺ were an indication of relative contributions of the main sources and effects of meteorological conditions. The source apportionment identified fossil fuel combustion (38.2–50.6%), agricultural emissions (18–24.7%), biomass burning (16.3–22.7%), and road dust/soil (8.7–23.4%) were the main sources of inorganic aerosols. The local sources and regional migration contributed to the level of inorganic aerosol pollution. In winter, the aerosol in the BTH region was affected by the air mass from the northwest. While in spring and summer, the air mass was mainly from the South China. The low temperature and high relative humidity favored to the formation of inorganic nitrogen aerosol, and solar radiation affected the formation processes of inorganic aerosols by changing the oxidation pathway of NO₃⁻ and accelerating the volatilization and dissociation of ammonium nitrate (NH₄NO₃). This study discovered the main source contributions of inorganic nitrogen aerosol using N and O isotopes composition, and the obtained information has a great importance in understanding the effects of meteorological conditions on formation and the contribution of regional transport. Nitrate (NO3-) and ammonium (NH4+) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study conducted a year-round field measurement of TSP, PM2.5 and PM1.0 in five different sites in the Beijing-Tianjin-Hebei (BTH) region to determine the concentrations of water-soluble inorganic ions (WSIIs) and the isotopic compositions of inorganic nitrogen (δ15N-NH4+, δ15N-NO3-, and δ18O-NO3-). The results showed the highest concentration of WSIIs in winter and lowest in summer. δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+ were in the range of -6.1-18.2, 52.2-103.8, and -28.7-36.2‰, respectively. The seasonal variations of δ15N-NO3- and δ15N-NH4+ were an indication of relative contributions of the main sources and effects of meteorological conditions. The source apportionment identified fossil fuel combustion (38.2-50.6%), agricultural emissions (18-24.7%), biomass burning (16.3-22.7%), and road dust/soil (8.7-23.4%) were the main sources of inorganic aerosols. The local sources and regional migration contributed to the level of inorganic aerosol pollution. In winter, the aerosol in the BTH region was affected by the air mass from the northwest. While in spring and summer, the air mass was mainly from the South China. The low temperature and high relative humidity favored to the formation of inorganic nitrogen aerosol, and solar radiation affected the formation processes of inorganic aerosols by changing the oxidation pathway of NO3- and accelerating the volatilization and dissociation of ammonium nitrate (NH4NO3). This study discovered the main source contributions of inorganic nitrogen aerosol using N and O isotopes composition, and the obtained information has a great importance in understanding the effects of meteorological conditions on formation and the contribution of regional transport.Nitrate (NO3-) and ammonium (NH4+) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study conducted a year-round field measurement of TSP, PM2.5 and PM1.0 in five different sites in the Beijing-Tianjin-Hebei (BTH) region to determine the concentrations of water-soluble inorganic ions (WSIIs) and the isotopic compositions of inorganic nitrogen (δ15N-NH4+, δ15N-NO3-, and δ18O-NO3-). The results showed the highest concentration of WSIIs in winter and lowest in summer. δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+ were in the range of -6.1-18.2, 52.2-103.8, and -28.7-36.2‰, respectively. The seasonal variations of δ15N-NO3- and δ15N-NH4+ were an indication of relative contributions of the main sources and effects of meteorological conditions. The source apportionment identified fossil fuel combustion (38.2-50.6%), agricultural emissions (18-24.7%), biomass burning (16.3-22.7%), and road dust/soil (8.7-23.4%) were the main sources of inorganic aerosols. The local sources and regional migration contributed to the level of inorganic aerosol pollution. In winter, the aerosol in the BTH region was affected by the air mass from the northwest. While in spring and summer, the air mass was mainly from the South China. The low temperature and high relative humidity favored to the formation of inorganic nitrogen aerosol, and solar radiation affected the formation processes of inorganic aerosols by changing the oxidation pathway of NO3- and accelerating the volatilization and dissociation of ammonium nitrate (NH4NO3). This study discovered the main source contributions of inorganic nitrogen aerosol using N and O isotopes composition, and the obtained information has a great importance in understanding the effects of meteorological conditions on formation and the contribution of regional transport. Nitrate (NO3-) and ammonium (NH4+) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study conducted a year-round field measurement of TSP, PM2.5 and PM1.0 in five different sites in the Beijing-Tianjin-Hebei (BTH) region to determine the concentrations of water-soluble inorganic ions (WSIIs) and the isotopic compositions of inorganic nitrogen (δ15N-NH4+, δ15N-NO3-, and δ18O-NO3-). The results showed the highest concentration of WSIIs in winter and lowest in summer. δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+ were in the range of -6.1–18.2, 52.2–103.8, and -28.7–36.2‰, respectively. The seasonal variations of δ15N-NO3- and δ15N-NH4+ were an indication of relative contributions of the main sources and effects of meteorological conditions. The source apportionment identified fossil fuel combustion (38.2–50.6%), agricultural emissions (18–24.7%), biomass burning (16.3–22.7%), and road dust/soil (8.7–23.4%) were the main sources of inorganic aerosols. The local sources and regional migration contributed to the level of inorganic aerosol pollution. In winter, the aerosol in the BTH region was affected by the air mass from the northwest. While in spring and summer, the air mass was mainly from the South China. The low temperature and high relative humidity favored to the formation of inorganic nitrogen aerosol, and solar radiation affected the formation processes of inorganic aerosols by changing the oxidation pathway of NO3- and accelerating the volatilization and dissociation of ammonium nitrate (NH4NO3). This study discovered the main source contributions of inorganic nitrogen aerosol using N and O isotopes composition, and the obtained information has a great importance in understanding the effects of meteorological conditions on formation and the contribution of regional transport. [Display omitted] •Isotopic patterns of inorganic nitrogen aerosol in the BTH region were reported.•Fossil fuel combustion accounted for 38.2– 50.6% of inorganic nitrogen aerosol.•Meteorological conditions played a vital role on formation processes.•The regional migration was from the northwest in winter, while south in summer. |
ArticleNumber | 149559 |
Author | Dong, Xinyuan Guo, Qingjun Tao, Zhenghua Wei, Rongfei Han, Xiaokun |
Author_xml | – sequence: 1 givenname: Xinyuan surname: Dong fullname: Dong, Xinyuan organization: Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Qingjun surname: Guo fullname: Guo, Qingjun email: guoqj@igsnrr.ac.cn organization: Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Xiaokun surname: Han fullname: Han, Xiaokun organization: Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China – sequence: 4 givenname: Rongfei surname: Wei fullname: Wei, Rongfei organization: Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 5 givenname: Zhenghua surname: Tao fullname: Tao, Zhenghua organization: Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
BookMark | eNqNkTtPwzAUhS1UJErhN-CRJcXOw4kHhqriJVViKSOyHOdGdZXYwXYr8e9xCGJgKfZwZemcY93vXKKZsQYQuqFkSQlld_ulVzrYAOa4TElKlzTnRcHP0JxWJU8oSdkMzQnJq4QzXl6gS-_3JJ6yonP0vt0B1t4GO2iFBxkCOOOxNA329uAUYDkM1gVtTQ8mYNtio4OTAb41su-t0Ycea4Nl6K0fduBikARnve2u0HkrOw_XP3OB3h4ftuvnZPP69LJebRKV52VIVF1kqmobJRlnoBoOBeXxRVm8RTkOVkjWNjRukyumKKmzomy5ymqZ1jJboNspd3D24wA-iF57BV0nDdiDFynLWJFmPC9PS-N_PI2gSJTeT1IVl_EOWhFByxFFBKA7QYkYGxB78duAGBsQUwPRX_7xD0730n3-w7manBChHTW4UQdGQaMdqCAaq09mfAE09qpF |
CitedBy_id | crossref_primary_10_1021_acs_est_4c12063 crossref_primary_10_1016_j_chemosphere_2024_142356 crossref_primary_10_1016_j_scitotenv_2024_171583 crossref_primary_10_1016_j_scitotenv_2024_171265 crossref_primary_10_1016_j_scitotenv_2024_174027 crossref_primary_10_1016_j_scitotenv_2024_177388 crossref_primary_10_1016_j_atmosenv_2022_119460 crossref_primary_10_1016_j_atmosenv_2024_120674 crossref_primary_10_1016_j_envpol_2023_121296 crossref_primary_10_1021_acsestair_3c00116 crossref_primary_10_1016_j_apr_2022_101535 crossref_primary_10_1016_j_scitotenv_2023_162655 crossref_primary_10_3389_fmars_2022_993160 crossref_primary_10_1029_2024JD040792 crossref_primary_10_1016_j_jhazmat_2022_130678 crossref_primary_10_1016_j_scitotenv_2022_155949 crossref_primary_10_1021_acs_est_3c05072 |
Cites_doi | 10.1039/jr9470000562 10.1029/2020JD032604 10.1016/j.chemosphere.2020.127991 10.1016/j.atmosenv.2020.117662 10.5194/acp-14-11571-2014 10.1029/2003GL017015 10.1016/j.scitotenv.2016.11.025 10.1029/2017JD028095 10.1021/acs.est.7b00280 10.1016/S1352-2310(00)00408-8 10.1002/rcm.6679 10.1016/j.atmosenv.2011.08.057 10.1021/es203355v 10.1016/j.scitotenv.2020.137190 10.5194/acp-11-1313-2011 10.1021/ac061022s 10.1016/j.envpol.2017.06.010 10.5194/acp-11-10803-2011 10.1016/j.atmosenv.2015.01.075 10.3390/atmos6111753 10.1080/10256010701550732 10.1016/j.atmosenv.2009.01.036 10.1016/j.atmosres.2019.05.015 10.1021/acs.chemrev.5b00067 10.1002/rcm.1123 10.5194/acp-16-1-2016 10.1021/acs.est.5b02769 10.5194/acp-9-5043-2009 10.1016/j.atmosenv.2015.03.006 10.1016/j.envpol.2018.03.038 10.1016/j.atmosres.2011.06.014 10.1016/j.envpol.2019.01.081 10.1175/BAMS-D-14-00110.1 10.4209/aaqr.2015.05.0380 10.1080/10256016.2015.1054821 10.1021/acs.est.6b00634 10.5194/acp-13-2635-2013 10.5194/acp-11-3653-2011 10.1016/j.atmosres.2020.105197 10.1093/nsr/nww079 10.1016/j.scitotenv.2018.12.474 10.1029/93JD00874 10.1080/10962247.2012.701193 10.1016/j.atmosenv.2012.09.029 10.1021/ac010088e 10.1016/j.scitotenv.2018.10.306 10.1073/pnas.1616540113 10.1021/es505580v 10.1029/2003JD003789 10.1016/j.envpol.2020.115278 10.1021/acs.est.6b06316 10.1007/BF01636894 10.1021/ac403756u 10.1016/j.jhazmat.2014.07.023 10.1016/j.atmosenv.2014.04.005 10.1007/s004420050122 10.1016/j.atmosenv.2010.05.039 10.5194/acp-9-7657-2009 10.1080/16000889.2017.1299672 10.1016/j.scitotenv.2019.03.131 10.1021/acs.est.6b03510 10.1002/grl.50209 10.1016/j.envpol.2016.10.069 10.1029/2019JD030284 10.1021/acs.est.7b05235 10.1038/nature13774 10.1016/j.atmosenv.2013.03.042 10.3402/tellusb.v43i1.15244 10.1016/j.atmosres.2018.10.010 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.149559 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2021_149559 S0048969721046337 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c447t-cb53c8fdca696ecd9e519dca1616157161665a6fd11024c6c10b357f9c3ba2ba3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Mon Jul 21 10:46:14 EDT 2025 Thu Jul 10 17:35:23 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Tue Jul 01 04:25:11 EDT 2025 Fri Feb 23 02:44:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regional migration Inorganic nitrogen Isotopes Source apportionment Formation processes Meteorological conditions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-cb53c8fdca696ecd9e519dca1616157161665a6fd11024c6c10b357f9c3ba2ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2571926970 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636523947 proquest_miscellaneous_2571926970 crossref_citationtrail_10_1016_j_scitotenv_2021_149559 crossref_primary_10_1016_j_scitotenv_2021_149559 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_149559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-10 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Pan, Tian, Liu, Fang, Zhu, Gao (bb0205) 2018; 238 Felix, Elliott, Avery, Kieber, Mead, Willey (bb0070) 2015; 106 Freyer (bb0085) 1991; 43B Heaton, Spiro, Robertson (bb0105) 1997; 109 Wang, Zhou, Liu, Wu, Peng, Zhang (bb0285) 2016; 219 Kaiser, Hastings, Houlton, Rockmann, Sigman (bb0135) 2007; 79 Fang, Koba, Wang, Wen, Li, Takebayashi (bb0045) 2011; 11 Walters, Goodwin, Michalski (bb0250) 2015; 49 Felix, Elliott, Shaw (bb0060) 2012; 46 Wu, Dai, Zhu, Zhang, Yan, Schwab (bb0300) 2019; 228 Urey (bb5015) 1947 Xiao, Xie, Long, Ye, Pan, Li (bb0305) 2015; 109 Xiao, Zhu, Pan, Guo, Zheng, Liu (bb0310) 2020; 125 Kawashima, Kurahashi (bb0140) 2011; 45 Wang, Liu, Song, Yang, Han, Dou (bb0290) 2017; 69 Li, Wang, Ji, Wen, Pan, Sun (bb0145) 2013; 77 Felix, Elliott, Gish, McConnell, Shaw (bb0065) 2013; 27 Wang, Song, Yang, Sun, Tong, Wang (bb0295) 2019; 124 Han, Guo, Strauss, Liu, Hu, Guo (bb0095) 2017; 51 Morin, Sander, Savarino (bb0185) 2011; 11 Wang, Zhang, He, Zhang, Chai (bb0265) 2013; 13 Zhang, Tian, Ji, Lin, Peng, Pan (bb0340) 2017 Cao, Shen, Chow, Watson, Lee, Tie (bb0025) 2012; 62 Tian, Pan, Wang (bb0240) 2016; 16 Reis, Pinder, Zhang, Lijie, Sutton (bb0220) 2009; 9 Wang, Zhang, Gomez, Yang, Zamora, Hu (bb0280) 2016; 113 Huang, Zhang, Bozzetii, Ho, Cao, Han (bb0115) 2014; 514 Li, Jiang, Bai, Yang, Liu, Chen (bb0150) 2019; 218 Liu, Xiao, Xiao, Song, Sun, Zheng (bb0165) 2017; 230 Bohlke, Mroczkowski, Coplen (bb0020) 2003; 17 Michalski, Scott, Kabiling, Thiemens (bb0175) 2003; 30 Zhang, Cao, Tie, Shen, Liu, Ding (bb0330) 2011; 102 Hastings, Sigman, Lipschultz (bb0100) 2003; 108 Pan, Tian, Liu, Fang, Zhu, Gao (bb0195) 2018; 123 Pavuluri, Kawamura, Tachibana, Swaminathan (bb0215) 2010; 44 Tian, Pan, Liu, Wen, Wang (bb0235) 2014; 279 Chen, Li, Ristovski, Milic, Gu, Islam (bb0040) 2017; 579 Felix, Elliott (bb0050) 2013; 40 Walters, Tharp, Fang, Kozak, Michalski (bb0255) 2015; 49 Zhang, Wang, Guo, Zamora, Ying, Lin (bb0335) 2015; 115 Wang, Wang, Yang, Gao, Nie, Yu (bb0260) 2012; 63 Michalski, Kolanowski, Riha (bb0180) 2015; 51 Stein, Draxler, Rolph, Stunder, Cohen, Ngan (bb0230) 2015; 96 Wang, Cao, Tie, Wang, Li, Hu (bb0275) 2015; 15 Pan, Tian, Liu, Fang, Zhu, Zhang (bb0190) 2016; 50 Zong, Wang, Tian, Chen, Fang, Zhang (bb0345) 2017; 51 Huang, Zhuang, Li, Wang, Sun, Lin (bb0110) 2010; 115 Alexander, Savarino, Kreutz, Thiemens (bb0005) 2004; 109 Freyer, Kley, Volz-thomas, Kobel (bb0090) 1993; 98 Pan, Tian, Zhao, Zhang, Zhu, Gao (bb0200) 2018; 52 Yeatman, Spokes, Dennis, Jickells (bb0320) 2001; 35 Huang, Duan, Li, Chen, Chen, Tang (bb0120) 2020; 717 Wang, Cheng, Huang, Tao, Ren, Wu (bb0270) 2014; 14 Alexander, Hastings, Allman, Dachs, Thornton, Kunasek (bb0010) 2009; 9 Chen, Yan, Zhao (bb0035) 2015; 6 Jin, Luo, Fu, Li (bb0130) 2016; 4 Felix, Elliott (bb0055) 2014; 92 Li, Li, Yang, Cui, Ding (bb5000) 2021; 248 Liu, Fang, Tu, Pan (bb0160) 2014; 86 Pang, Gao, Zhu, Hui, Zhao, Xu (bb0210) 2021; 263 Luo, Wu, Xiao, Zhang, Lin, Zhang (bb0170) 2019; 653 Chang, Wang, Zhao, Xing, Liu, Wei (bb0030) 2019; 660 Bateman, Kelly (bb0015) 2007; 43 Fibiger, Hastings (bb0075) 2016; 50 Li, Zhang, Jin, Sun, Wu, Xie (bb0155) 2020; 237 Song, Wang, Yang (bb5010) 2019; 248 Freyer (bb0080) 1978; 116 Yu, Chen, Qin, Cheng, Zhang, Ahmad (bb0325) 2019; 669 Sigman, Casciotti, Andreani, Barford, Galanter, Bohlke (bb0225) 2001; 73 Tie, Wu, Brasseur (bb0245) 2009; 43 Xiao, Wu, Luo, Liu, Xie, Xiao (bb0315) 2020; 266 Ianniello, Spataro, Esposito, Allegrini, Hu, Zhu (bb0125) 2011; 11 Freyer (10.1016/j.scitotenv.2021.149559_bb0090) 1993; 98 Li (10.1016/j.scitotenv.2021.149559_bb0145) 2013; 77 Pan (10.1016/j.scitotenv.2021.149559_bb0195) 2018; 123 Felix (10.1016/j.scitotenv.2021.149559_bb0055) 2014; 92 Chen (10.1016/j.scitotenv.2021.149559_bb0040) 2017; 579 Chang (10.1016/j.scitotenv.2021.149559_bb0030) 2019; 660 Wang (10.1016/j.scitotenv.2021.149559_bb0280) 2016; 113 Sigman (10.1016/j.scitotenv.2021.149559_bb0225) 2001; 73 Tian (10.1016/j.scitotenv.2021.149559_bb0235) 2014; 279 Stein (10.1016/j.scitotenv.2021.149559_bb0230) 2015; 96 Xiao (10.1016/j.scitotenv.2021.149559_bb0310) 2020; 125 Huang (10.1016/j.scitotenv.2021.149559_bb0115) 2014; 514 Zhang (10.1016/j.scitotenv.2021.149559_bb0330) 2011; 102 Wang (10.1016/j.scitotenv.2021.149559_bb0290) 2017; 69 Li (10.1016/j.scitotenv.2021.149559_bb0155) 2020; 237 Pan (10.1016/j.scitotenv.2021.149559_bb0200) 2018; 52 Fang (10.1016/j.scitotenv.2021.149559_bb0045) 2011; 11 Luo (10.1016/j.scitotenv.2021.149559_bb0170) 2019; 653 Bateman (10.1016/j.scitotenv.2021.149559_bb0015) 2007; 43 Michalski (10.1016/j.scitotenv.2021.149559_bb0175) 2003; 30 Morin (10.1016/j.scitotenv.2021.149559_bb0185) 2011; 11 Heaton (10.1016/j.scitotenv.2021.149559_bb0105) 1997; 109 Xiao (10.1016/j.scitotenv.2021.149559_bb0305) 2015; 109 Xiao (10.1016/j.scitotenv.2021.149559_bb0315) 2020; 266 Wang (10.1016/j.scitotenv.2021.149559_bb0265) 2013; 13 Michalski (10.1016/j.scitotenv.2021.149559_bb0180) 2015; 51 Wang (10.1016/j.scitotenv.2021.149559_bb0270) 2014; 14 Kaiser (10.1016/j.scitotenv.2021.149559_bb0135) 2007; 79 Kawashima (10.1016/j.scitotenv.2021.149559_bb0140) 2011; 45 Han (10.1016/j.scitotenv.2021.149559_bb0095) 2017; 51 Liu (10.1016/j.scitotenv.2021.149559_bb0165) 2017; 230 Huang (10.1016/j.scitotenv.2021.149559_bb0110) 2010; 115 Walters (10.1016/j.scitotenv.2021.149559_bb0250) 2015; 49 Wang (10.1016/j.scitotenv.2021.149559_bb0295) 2019; 124 Song (10.1016/j.scitotenv.2021.149559_bb5010) 2019; 248 Cao (10.1016/j.scitotenv.2021.149559_bb0025) 2012; 62 Alexander (10.1016/j.scitotenv.2021.149559_bb0010) 2009; 9 Urey (10.1016/j.scitotenv.2021.149559_bb5015) 1947 Felix (10.1016/j.scitotenv.2021.149559_bb0070) 2015; 106 Liu (10.1016/j.scitotenv.2021.149559_bb0160) 2014; 86 Wu (10.1016/j.scitotenv.2021.149559_bb0300) 2019; 228 Pan (10.1016/j.scitotenv.2021.149559_bb0190) 2016; 50 Alexander (10.1016/j.scitotenv.2021.149559_bb0005) 2004; 109 Li (10.1016/j.scitotenv.2021.149559_bb0150) 2019; 218 Wang (10.1016/j.scitotenv.2021.149559_bb0285) 2016; 219 Zong (10.1016/j.scitotenv.2021.149559_bb0345) 2017; 51 Yu (10.1016/j.scitotenv.2021.149559_bb0325) 2019; 669 Yeatman (10.1016/j.scitotenv.2021.149559_bb0320) 2001; 35 Zhang (10.1016/j.scitotenv.2021.149559_bb0335) 2015; 115 Wang (10.1016/j.scitotenv.2021.149559_bb0260) 2012; 63 Felix (10.1016/j.scitotenv.2021.149559_bb0050) 2013; 40 Walters (10.1016/j.scitotenv.2021.149559_bb0255) 2015; 49 Felix (10.1016/j.scitotenv.2021.149559_bb0060) 2012; 46 Tian (10.1016/j.scitotenv.2021.149559_bb0240) 2016; 16 Freyer (10.1016/j.scitotenv.2021.149559_bb0080) 1978; 116 Reis (10.1016/j.scitotenv.2021.149559_bb0220) 2009; 9 Freyer (10.1016/j.scitotenv.2021.149559_bb0085) 1991; 43B Pavuluri (10.1016/j.scitotenv.2021.149559_bb0215) 2010; 44 Bohlke (10.1016/j.scitotenv.2021.149559_bb0020) 2003; 17 Chen (10.1016/j.scitotenv.2021.149559_bb0035) 2015; 6 Huang (10.1016/j.scitotenv.2021.149559_bb0120) 2020; 717 Fibiger (10.1016/j.scitotenv.2021.149559_bb0075) 2016; 50 Zhang (10.1016/j.scitotenv.2021.149559_bb0340) 2017 Ianniello (10.1016/j.scitotenv.2021.149559_bb0125) 2011; 11 Pang (10.1016/j.scitotenv.2021.149559_bb0210) 2021; 263 Pan (10.1016/j.scitotenv.2021.149559_bb0205) 2018; 238 Tie (10.1016/j.scitotenv.2021.149559_bb0245) 2009; 43 Felix (10.1016/j.scitotenv.2021.149559_bb0065) 2013; 27 Hastings (10.1016/j.scitotenv.2021.149559_bb0100) 2003; 108 Li (10.1016/j.scitotenv.2021.149559_bb5000) 2021; 248 Wang (10.1016/j.scitotenv.2021.149559_bb0275) 2015; 15 Jin (10.1016/j.scitotenv.2021.149559_bb0130) 2016; 4 |
References_xml | – volume: 73 start-page: 4145 year: 2001 end-page: 4153 ident: bb0225 article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater publication-title: Anal. Chem. – volume: 15 start-page: 1844 year: 2015 end-page: 1854 ident: bb0275 article-title: Impact of meteorological parameters and gaseous pollutants on PM publication-title: Aerosol Air Qual. Res. – volume: 113 start-page: 13630 year: 2016 end-page: 13635 ident: bb0280 article-title: Persistent sulfate formation from London fog to chinese haze publication-title: Proc. Natl. Acad. Sci. – volume: 102 start-page: 110 year: 2011 end-page: 119 ident: bb0330 article-title: Water-soluble ions in atmospheric aerosols measured in Xi'an, China: seasonal variations and sources publication-title: Atmos. Res. – volume: 45 start-page: 6309 year: 2011 end-page: 6316 ident: bb0140 article-title: Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at yurihonjo, Japan: implications for nitrogen sources publication-title: Atmos. Environ. – volume: 123 start-page: 5681 year: 2018 end-page: 5689 ident: bb0195 article-title: Source apportionment of aerosol ammonium in an ammonia-rich atmosphere: an isotopic study of summer clean and hazy days in urban Beijing publication-title: J. Geophys. Res. Atmos. – volume: 115 start-page: 3803 year: 2015 end-page: 3855 ident: bb0335 article-title: Formation of urban fine particulate matter publication-title: Chem. Rev. – volume: 43B start-page: 30 year: 1991 end-page: 44 ident: bb0085 article-title: Seasonal variation of 15N/14N ratios in atmospheric nitrate species publication-title: Tellus – volume: 30 year: 2003 ident: bb0175 article-title: First measurements and modeling of Δ publication-title: Geophys. Res. Lett. – volume: 279 start-page: 452 year: 2014 end-page: 460 ident: bb0235 article-title: Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China publication-title: J. Hazard. Mater. – volume: 77 start-page: 250 year: 2013 end-page: 259 ident: bb0145 article-title: Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: spatial/temporal variability, size distribution and sources publication-title: Atmos. Environ. – volume: 14 start-page: 11571 year: 2014 end-page: 11585 ident: bb0270 article-title: Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 – part 1: sources, chemical forms and formation mechanisms of nitrate and sulfate publication-title: Atmos. Chem. Phys. – volume: 717 year: 2020 ident: bb0120 article-title: Effects of NH publication-title: Sci. Total Environ. – volume: 514 start-page: 218 year: 2014 end-page: 222 ident: bb0115 article-title: High secondary aerosol contribution to particulate pollution during haze events in China publication-title: Nature – volume: 9 start-page: 5043 year: 2009 end-page: 5056 ident: bb0010 article-title: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ publication-title: Atmos. Chem. Phys. – volume: 50 start-page: 8049 year: 2016 end-page: 8056 ident: bb0190 article-title: Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from publication-title: Environ. Sci. Technol. – volume: 219 start-page: 982 year: 2016 end-page: 992 ident: bb0285 article-title: Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin publication-title: Environ. Pollut. – volume: 248 start-page: 183 year: 2019 end-page: 190 ident: bb5010 article-title: Isotopic evaluation on relative contributions of major NO publication-title: Environ. Pollut. – volume: 17 start-page: 1835 year: 2003 end-page: 1846 ident: bb0020 article-title: Oxygen isotopes in nitrate: new reference materials for publication-title: Rapid Commun. Mass Spectrom. – volume: 669 start-page: 175 year: 2019 end-page: 184 ident: bb0325 article-title: Characteristics and secondary formation of water-soluble organic acids in PM publication-title: Sci. Total Environ. – volume: 263 year: 2021 ident: bb0210 article-title: Impact of clean air action on the PM publication-title: Chemosphere – volume: 4 start-page: 593 year: 2016 end-page: 610 ident: bb0130 article-title: Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts publication-title: Natl. Sci. Rev. – volume: 109 start-page: 600 year: 1997 end-page: 607 ident: bb0105 article-title: Potential canopy influences on the isotopic composition of nitrogen and Sulphur in atmospheric deposition publication-title: Oecologia – start-page: 3 year: 2017 end-page: 25 ident: bb0340 publication-title: Overview of Persistent Haze Events in China, Air Pollution in Eastern Asia: An Integrated Perspective – volume: 98 start-page: 14791 year: 1993 end-page: 14796 ident: bb0090 article-title: On the interaction of isotopic exchange processes with photochemical-reactions in atmospheric oxides of nitrogen publication-title: J. Geophys. Res. – volume: 51 start-page: 7794 year: 2017 end-page: 7803 ident: bb0095 article-title: Multiple sulfur isotope constraints on sources and formation processes of sulfate in Beijing PM publication-title: Environ. Sci. Technol. – volume: 653 start-page: 776 year: 2019 end-page: 782 ident: bb0170 article-title: Origins of aerosol nitrate in Beijing during late winter through spring publication-title: Sci. Total Environ. – volume: 92 start-page: 359 year: 2014 end-page: 366 ident: bb0055 article-title: Isotopic composition of passively collected nitrogen dioxide emissions: vehicle, soil and livestock source signatures publication-title: Atmos. Environ. – volume: 51 start-page: 5923 year: 2017 end-page: 5931 ident: bb0345 article-title: First assessment of NO publication-title: Environ. Sci. Technol. – volume: 43 start-page: 237 year: 2007 end-page: 247 ident: bb0015 article-title: Fertilizer nitrogen isotope signatures publication-title: Isot. Environ. Health Stud. – volume: 125 year: 2020 ident: bb0310 article-title: Differentiation between nitrate aerosol formation pathways in a southeast Chinese city by dual isotope and modeling studies[J] publication-title: J. Geophys. Res.-Atmos. – volume: 49 start-page: 11363 year: 2015 end-page: 11371 ident: bb0255 article-title: Nitrogen isotope composition of thermally produced NO publication-title: Environ. Sci. Technol. – volume: 238 start-page: 942 year: 2018 end-page: 947 ident: bb0205 article-title: Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere publication-title: Environ. Pollut. – volume: 109 year: 2004 ident: bb0005 article-title: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen publication-title: J. Geophys. Res. – volume: 108 year: 2003 ident: bb0100 article-title: Isotopic evidence for source changes of nitrate in rain at Bermuda publication-title: J. Geophys. Res. Atmos. – volume: 43 start-page: 2375 year: 2009 end-page: 2377 ident: bb0245 article-title: Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China publication-title: Atmos. Environ. – volume: 63 start-page: 68 year: 2012 end-page: 76 ident: bb0260 article-title: The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions publication-title: Atmos. Environ. – volume: 248 year: 2021 ident: bb5000 article-title: Diurnal and seasonal variations in water-soluble inorganic ions and nitrate dual isotopes of PM publication-title: Atmos. Res. – volume: 9 start-page: 7657 year: 2009 end-page: 7677 ident: bb0220 article-title: Reactive nitrogen in atmospheric emission inventories publication-title: Atmos. Chem. Phys. – volume: 116 start-page: 393 year: 1978 end-page: 404 ident: bb0080 article-title: Preliminary publication-title: Pure Appl. Geophys. – start-page: 562 year: 1947 end-page: 581 ident: bb5015 article-title: The thermodynamic properties of isotopic substances publication-title: J. Chem. Soc. – volume: 579 start-page: 1000 year: 2017 end-page: 1034 ident: bb0040 article-title: A review of biomass burning: emissions and impacts on air quality, health and climate in China publication-title: Sci. Total Environ. – volume: 69 start-page: 1299672 year: 2017 ident: bb0290 article-title: Source appointment of nitrogen in PM publication-title: Tellus Ser. B Chem. Phys. Meteorol. – volume: 115 year: 2010 ident: bb0110 article-title: Mixing of asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007 publication-title: J. Geophys. Res. – volume: 124 start-page: 4174 year: 2019 end-page: 4185 ident: bb0295 article-title: Influences of atmospheric pollution on the contributions of major oxidation pathways to PM publication-title: J. Geophys. Res. Atmos. – volume: 6 start-page: 1753 year: 2015 end-page: 1770 ident: bb0035 article-title: Seasonal variations of atmospheric pollution and air quality in Beijing publication-title: Atmosphere – volume: 11 start-page: 1313 year: 2011 end-page: 1325 ident: bb0045 article-title: Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China publication-title: Atmos. Chem. Phys. – volume: 40 start-page: 1642 year: 2013 end-page: 1646 ident: bb0050 article-title: The agricultural history of human-nitrogen interactions as recorded in ice core δ publication-title: Geophys. Res. Lett. – volume: 266 year: 2020 ident: bb0315 article-title: Enhanced biomass burning as a source of aerosol ammonium over cities in Central China in autumn publication-title: Environ. Pollut. – volume: 44 start-page: 3597 year: 2010 end-page: 3604 ident: bb0215 article-title: Elevated nitrogen isotope ratios of tropical indian aerosols from Chennai: implication for the origins of aerosol nitrogen in south and Southeast Asia publication-title: Atmos. Environ. – volume: 230 start-page: 486 year: 2017 end-page: 494 ident: bb0165 article-title: Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China publication-title: Environ. Pollut. – volume: 106 start-page: 191 year: 2015 end-page: 195 ident: bb0070 article-title: Isotopic composition of nitrate in sequential hurricane Irene precipitation samples: implications for changing NOx sources publication-title: Atmos. Environ. – volume: 27 start-page: 2239 year: 2013 end-page: 2246 ident: bb0065 article-title: Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach publication-title: Rapid Commun. Mass Spectrom. – volume: 50 start-page: 11569 year: 2016 end-page: 11574 ident: bb0075 article-title: First measurements of the nitrogen isotopic composition of NOx from biomass burning publication-title: Environ. Sci. Technol. – volume: 660 start-page: 1191 year: 2019 end-page: 1200 ident: bb0030 article-title: Contributions of inter-city and regional transport to PM publication-title: Sci. Total Environ. – volume: 109 start-page: 70 year: 2015 end-page: 78 ident: bb0305 article-title: Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea publication-title: Atmos. Environ. – volume: 228 start-page: 68 year: 2019 end-page: 76 ident: bb0300 article-title: The impact of sea-salt aerosols on particulate inorganic nitrogen deposition in the western Taiwan Strait region, China publication-title: Atmos. Res. – volume: 35 start-page: 1307 year: 2001 end-page: 1320 ident: bb0320 article-title: Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites publication-title: Atmos. Environ. – volume: 46 start-page: 3528 year: 2012 end-page: 3535 ident: bb0060 article-title: Nitrogen isotopic composition of coal-fired power plant NO publication-title: Environ. Sci. Technol. – volume: 79 start-page: 599 year: 2007 end-page: 607 ident: bb0135 article-title: Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N publication-title: Anal. Chem. – volume: 218 start-page: 25 year: 2019 end-page: 33 ident: bb0150 article-title: Wintertime aerosol chemistry in Beijing during haze period: significant contribution from secondary formation and biomass burning emission publication-title: Atmos. Res. – volume: 16 start-page: 1 year: 2016 end-page: 19 ident: bb0240 article-title: Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes publication-title: Atmos. Chem. Phys. – volume: 62 start-page: 1214 year: 2012 end-page: 1226 ident: bb0025 article-title: Winter and summer PM publication-title: J. Air Waste Manage. Assoc. – volume: 51 start-page: 382 year: 2015 end-page: 391 ident: bb0180 article-title: Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts publication-title: Isot. Environ. Health Stud. – volume: 49 start-page: 2278 year: 2015 end-page: 2285 ident: bb0250 article-title: Nitrogen stable isotope composition (δ publication-title: Environ. Sci. Technol. – volume: 13 start-page: 2635 year: 2013 end-page: 2652 ident: bb0265 article-title: Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 10803 year: 2011 end-page: 10822 ident: bb0125 article-title: Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China) publication-title: Atmos. Chem. Phys. – volume: 11 start-page: 3653 year: 2011 end-page: 3671 ident: bb0185 article-title: Simulation of the diurnal variations of the oxygen isotope anomaly (Δ publication-title: Atmos. Chem. Phys. – volume: 52 start-page: 3926 year: 2018 end-page: 3934 ident: bb0200 article-title: Identifying ammonia hotspots in China using a National Observation Network publication-title: Environ. Sci. Technol. – volume: 237 year: 2020 ident: bb0155 article-title: Characterizing the ratio of nitrate to sulfate in ambient fne particles of urban Beijing during 2018–2019 publication-title: Atmos. Environ. – volume: 86 start-page: 3787 year: 2014 end-page: 3792 ident: bb0160 article-title: Chemical method for nitrogen isotopic analysis of ammonium at natural abundance publication-title: Anal. Chem. – volume: 96 start-page: 2059 year: 2015 end-page: 2077 ident: bb0230 article-title: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system publication-title: Bull. Am. Meteorol. Soc. – start-page: 3 year: 2017 ident: 10.1016/j.scitotenv.2021.149559_bb0340 – start-page: 562 year: 1947 ident: 10.1016/j.scitotenv.2021.149559_bb5015 article-title: The thermodynamic properties of isotopic substances publication-title: J. Chem. Soc. doi: 10.1039/jr9470000562 – volume: 125 issue: 13 year: 2020 ident: 10.1016/j.scitotenv.2021.149559_bb0310 article-title: Differentiation between nitrate aerosol formation pathways in a southeast Chinese city by dual isotope and modeling studies[J] publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2020JD032604 – volume: 263 year: 2021 ident: 10.1016/j.scitotenv.2021.149559_bb0210 article-title: Impact of clean air action on the PM2.5 pollution in Beijing, China: insights gained from two heating seasons measurements publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127991 – volume: 237 year: 2020 ident: 10.1016/j.scitotenv.2021.149559_bb0155 article-title: Characterizing the ratio of nitrate to sulfate in ambient fne particles of urban Beijing during 2018–2019 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2020.117662 – volume: 14 start-page: 11571 issue: 21 year: 2014 ident: 10.1016/j.scitotenv.2021.149559_bb0270 article-title: Evolution of aerosol chemistry in Xi'an, inland China, during the dust storm period of 2013 – part 1: sources, chemical forms and formation mechanisms of nitrate and sulfate publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-14-11571-2014 – volume: 115 year: 2010 ident: 10.1016/j.scitotenv.2021.149559_bb0110 article-title: Mixing of asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007 publication-title: J. Geophys. Res. – volume: 30 issue: 16 year: 2003 ident: 10.1016/j.scitotenv.2021.149559_bb0175 article-title: First measurements and modeling of Δ17O in atmospheric nitrate publication-title: Geophys. Res. Lett. doi: 10.1029/2003GL017015 – volume: 579 start-page: 1000 year: 2017 ident: 10.1016/j.scitotenv.2021.149559_bb0040 article-title: A review of biomass burning: emissions and impacts on air quality, health and climate in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.025 – volume: 123 start-page: 5681 issue: 10 year: 2018 ident: 10.1016/j.scitotenv.2021.149559_bb0195 article-title: Source apportionment of aerosol ammonium in an ammonia-rich atmosphere: an isotopic study of summer clean and hazy days in urban Beijing publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2017JD028095 – volume: 51 start-page: 7794 issue: 14 year: 2017 ident: 10.1016/j.scitotenv.2021.149559_bb0095 article-title: Multiple sulfur isotope constraints on sources and formation processes of sulfate in Beijing PM2.5 aerosol publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00280 – volume: 35 start-page: 1307 year: 2001 ident: 10.1016/j.scitotenv.2021.149559_bb0320 article-title: Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites publication-title: Atmos. Environ. doi: 10.1016/S1352-2310(00)00408-8 – volume: 27 start-page: 2239 issue: 20 year: 2013 ident: 10.1016/j.scitotenv.2021.149559_bb0065 article-title: Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.6679 – volume: 45 start-page: 6309 issue: 35 year: 2011 ident: 10.1016/j.scitotenv.2021.149559_bb0140 article-title: Inorganic ion and nitrogen isotopic compositions of atmospheric aerosols at yurihonjo, Japan: implications for nitrogen sources publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.08.057 – volume: 46 start-page: 3528 issue: 6 year: 2012 ident: 10.1016/j.scitotenv.2021.149559_bb0060 article-title: Nitrogen isotopic composition of coal-fired power plant NOx: influence of emission controls and implications for global emission inventories publication-title: Environ. Sci. Technol. doi: 10.1021/es203355v – volume: 717 year: 2020 ident: 10.1016/j.scitotenv.2021.149559_bb0120 article-title: Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137190 – volume: 11 start-page: 1313 issue: 3 year: 2011 ident: 10.1016/j.scitotenv.2021.149559_bb0045 article-title: Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-1313-2011 – volume: 79 start-page: 599 issue: 2 year: 2007 ident: 10.1016/j.scitotenv.2021.149559_bb0135 article-title: Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O publication-title: Anal. Chem. doi: 10.1021/ac061022s – volume: 230 start-page: 486 year: 2017 ident: 10.1016/j.scitotenv.2021.149559_bb0165 article-title: Stable isotope analyses of precipitation nitrogen sources in Guiyang, southwestern China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.06.010 – volume: 11 start-page: 10803 issue: 21 year: 2011 ident: 10.1016/j.scitotenv.2021.149559_bb0125 article-title: Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China) publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-10803-2011 – volume: 106 start-page: 191 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0070 article-title: Isotopic composition of nitrate in sequential hurricane Irene precipitation samples: implications for changing NOx sources publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.01.075 – volume: 6 start-page: 1753 issue: 12 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0035 article-title: Seasonal variations of atmospheric pollution and air quality in Beijing publication-title: Atmosphere doi: 10.3390/atmos6111753 – volume: 43 start-page: 237 issue: 3 year: 2007 ident: 10.1016/j.scitotenv.2021.149559_bb0015 article-title: Fertilizer nitrogen isotope signatures publication-title: Isot. Environ. Health Stud. doi: 10.1080/10256010701550732 – volume: 43 start-page: 2375 issue: 14 year: 2009 ident: 10.1016/j.scitotenv.2021.149559_bb0245 article-title: Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.01.036 – volume: 228 start-page: 68 year: 2019 ident: 10.1016/j.scitotenv.2021.149559_bb0300 article-title: The impact of sea-salt aerosols on particulate inorganic nitrogen deposition in the western Taiwan Strait region, China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.05.015 – volume: 115 start-page: 3803 issue: 10 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0335 article-title: Formation of urban fine particulate matter publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00067 – volume: 17 start-page: 1835 issue: 16 year: 2003 ident: 10.1016/j.scitotenv.2021.149559_bb0020 article-title: Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration publication-title: Rapid Commun. Mass Spectrom. doi: 10.1002/rcm.1123 – volume: 16 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2021.149559_bb0240 article-title: Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-1-2016 – volume: 49 start-page: 11363 issue: 19 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0255 article-title: Nitrogen isotope composition of thermally produced NOx from various fossil-fuel combustion sources publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b02769 – volume: 9 start-page: 5043 year: 2009 ident: 10.1016/j.scitotenv.2021.149559_bb0010 article-title: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-5043-2009 – volume: 109 start-page: 70 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0305 article-title: Use of isotopic compositions of nitrate in TSP to identify sources and chemistry in South China Sea publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.03.006 – volume: 238 start-page: 942 year: 2018 ident: 10.1016/j.scitotenv.2021.149559_bb0205 article-title: Isotopic evidence for enhanced fossil fuel sources of aerosol ammonium in the urban atmosphere publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.03.038 – volume: 102 start-page: 110 issue: 1–2 year: 2011 ident: 10.1016/j.scitotenv.2021.149559_bb0330 article-title: Water-soluble ions in atmospheric aerosols measured in Xi'an, China: seasonal variations and sources publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2011.06.014 – volume: 248 start-page: 183 year: 2019 ident: 10.1016/j.scitotenv.2021.149559_bb5010 article-title: Isotopic evaluation on relative contributions of major NOx sources to nitrate of PM2.5 in Beijing publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.01.081 – volume: 96 start-page: 2059 issue: 12 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0230 article-title: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-14-00110.1 – volume: 15 start-page: 1844 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0275 article-title: Impact of meteorological parameters and gaseous pollutants on PM2.5 and PM10 mass concentrations during 2010 in Xi’an, China publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2015.05.0380 – volume: 51 start-page: 382 issue: 3 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0180 article-title: Oxygen and nitrogen isotopic composition of nitrate in commercial fertilizers, nitric acid, and reagent salts publication-title: Isot. Environ. Health Stud. doi: 10.1080/10256016.2015.1054821 – volume: 50 start-page: 8049 issue: 15 year: 2016 ident: 10.1016/j.scitotenv.2021.149559_bb0190 article-title: Fossil fuel combustion-related emissions dominate atmospheric ammonia sources during severe haze episodes: evidence from 15N-stable isotope in size-resolved aerosol ammonium publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00634 – volume: 13 start-page: 2635 issue: 5 year: 2013 ident: 10.1016/j.scitotenv.2021.149559_bb0265 article-title: Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-2635-2013 – volume: 11 start-page: 3653 issue: 8 year: 2011 ident: 10.1016/j.scitotenv.2021.149559_bb0185 article-title: Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-3653-2011 – volume: 248 year: 2021 ident: 10.1016/j.scitotenv.2021.149559_bb5000 article-title: Diurnal and seasonal variations in water-soluble inorganic ions and nitrate dual isotopes of PM2.5: implications for source apportionment and formation processes of urban aerosol nitrate publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2020.105197 – volume: 4 start-page: 593 issue: 4 year: 2016 ident: 10.1016/j.scitotenv.2021.149559_bb0130 article-title: Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nww079 – volume: 660 start-page: 1191 year: 2019 ident: 10.1016/j.scitotenv.2021.149559_bb0030 article-title: Contributions of inter-city and regional transport to PM2.5 concentrations in the Beijing-Tianjin-Hebei region and its implications on regional joint air pollution control publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.474 – volume: 98 start-page: 14791 year: 1993 ident: 10.1016/j.scitotenv.2021.149559_bb0090 article-title: On the interaction of isotopic exchange processes with photochemical-reactions in atmospheric oxides of nitrogen publication-title: J. Geophys. Res. doi: 10.1029/93JD00874 – volume: 62 start-page: 1214 issue: 10 year: 2012 ident: 10.1016/j.scitotenv.2021.149559_bb0025 article-title: Winter and summer PM2.5 chemical compositions in fourteen Chinese cities publication-title: J. Air Waste Manage. Assoc. doi: 10.1080/10962247.2012.701193 – volume: 63 start-page: 68 year: 2012 ident: 10.1016/j.scitotenv.2021.149559_bb0260 article-title: The secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditions publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.09.029 – volume: 73 start-page: 4145 year: 2001 ident: 10.1016/j.scitotenv.2021.149559_bb0225 article-title: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater publication-title: Anal. Chem. doi: 10.1021/ac010088e – volume: 653 start-page: 776 year: 2019 ident: 10.1016/j.scitotenv.2021.149559_bb0170 article-title: Origins of aerosol nitrate in Beijing during late winter through spring publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.306 – volume: 113 start-page: 13630 issue: 48 year: 2016 ident: 10.1016/j.scitotenv.2021.149559_bb0280 article-title: Persistent sulfate formation from London fog to chinese haze publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1616540113 – volume: 49 start-page: 2278 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2021.149559_bb0250 article-title: Nitrogen stable isotope composition (δ15N) of vehicle-emitted NOx publication-title: Environ. Sci. Technol. doi: 10.1021/es505580v – volume: 108 issue: D24 year: 2003 ident: 10.1016/j.scitotenv.2021.149559_bb0100 article-title: Isotopic evidence for source changes of nitrate in rain at Bermuda publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2003JD003789 – volume: 266 year: 2020 ident: 10.1016/j.scitotenv.2021.149559_bb0315 article-title: Enhanced biomass burning as a source of aerosol ammonium over cities in Central China in autumn publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115278 – volume: 51 start-page: 5923 issue: 11 year: 2017 ident: 10.1016/j.scitotenv.2021.149559_bb0345 article-title: First assessment of NOx sources at a regional background site in North China using isotopic analysis linked with modeling publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06316 – volume: 116 start-page: 393 issue: 2–3 year: 1978 ident: 10.1016/j.scitotenv.2021.149559_bb0080 article-title: Preliminary 15N studies on atmospheric nitrogenous trace gases publication-title: Pure Appl. Geophys. doi: 10.1007/BF01636894 – volume: 86 start-page: 3787 issue: 8 year: 2014 ident: 10.1016/j.scitotenv.2021.149559_bb0160 article-title: Chemical method for nitrogen isotopic analysis of ammonium at natural abundance publication-title: Anal. Chem. doi: 10.1021/ac403756u – volume: 279 start-page: 452 year: 2014 ident: 10.1016/j.scitotenv.2021.149559_bb0235 article-title: Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.07.023 – volume: 92 start-page: 359 year: 2014 ident: 10.1016/j.scitotenv.2021.149559_bb0055 article-title: Isotopic composition of passively collected nitrogen dioxide emissions: vehicle, soil and livestock source signatures publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.04.005 – volume: 109 start-page: 600 issue: 4 year: 1997 ident: 10.1016/j.scitotenv.2021.149559_bb0105 article-title: Potential canopy influences on the isotopic composition of nitrogen and Sulphur in atmospheric deposition publication-title: Oecologia doi: 10.1007/s004420050122 – volume: 44 start-page: 3597 issue: 29 year: 2010 ident: 10.1016/j.scitotenv.2021.149559_bb0215 article-title: Elevated nitrogen isotope ratios of tropical indian aerosols from Chennai: implication for the origins of aerosol nitrogen in south and Southeast Asia publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2010.05.039 – volume: 9 start-page: 7657 year: 2009 ident: 10.1016/j.scitotenv.2021.149559_bb0220 article-title: Reactive nitrogen in atmospheric emission inventories publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-7657-2009 – volume: 69 start-page: 1299672 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2021.149559_bb0290 article-title: Source appointment of nitrogen in PM2.5 based on bulk δ15N signatures and a bayesian isotope mixing model publication-title: Tellus Ser. B Chem. Phys. Meteorol. doi: 10.1080/16000889.2017.1299672 – volume: 669 start-page: 175 year: 2019 ident: 10.1016/j.scitotenv.2021.149559_bb0325 article-title: Characteristics and secondary formation of water-soluble organic acids in PM1, PM2.5 and PM10 in Beijing during haze episodes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.131 – volume: 50 start-page: 11569 issue: 21 year: 2016 ident: 10.1016/j.scitotenv.2021.149559_bb0075 article-title: First measurements of the nitrogen isotopic composition of NOx from biomass burning publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03510 – volume: 109 issue: D8 year: 2004 ident: 10.1016/j.scitotenv.2021.149559_bb0005 article-title: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen publication-title: J. Geophys. Res. – volume: 40 start-page: 1642 issue: 8 year: 2013 ident: 10.1016/j.scitotenv.2021.149559_bb0050 article-title: The agricultural history of human-nitrogen interactions as recorded in ice core δ15N-NO3- publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50209 – volume: 219 start-page: 982 year: 2016 ident: 10.1016/j.scitotenv.2021.149559_bb0285 article-title: Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in Tianjin publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.069 – volume: 124 start-page: 4174 issue: 7 year: 2019 ident: 10.1016/j.scitotenv.2021.149559_bb0295 article-title: Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD030284 – volume: 52 start-page: 3926 issue: 7 year: 2018 ident: 10.1016/j.scitotenv.2021.149559_bb0200 article-title: Identifying ammonia hotspots in China using a National Observation Network publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05235 – volume: 514 start-page: 218 issue: 7521 year: 2014 ident: 10.1016/j.scitotenv.2021.149559_bb0115 article-title: High secondary aerosol contribution to particulate pollution during haze events in China publication-title: Nature doi: 10.1038/nature13774 – volume: 77 start-page: 250 year: 2013 ident: 10.1016/j.scitotenv.2021.149559_bb0145 article-title: Characterization of the size-segregated water-soluble inorganic ions in the Jing-Jin-Ji urban agglomeration: spatial/temporal variability, size distribution and sources publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.03.042 – volume: 43B start-page: 30 year: 1991 ident: 10.1016/j.scitotenv.2021.149559_bb0085 article-title: Seasonal variation of 15N/14N ratios in atmospheric nitrate species publication-title: Tellus doi: 10.3402/tellusb.v43i1.15244 – volume: 218 start-page: 25 year: 2019 ident: 10.1016/j.scitotenv.2021.149559_bb0150 article-title: Wintertime aerosol chemistry in Beijing during haze period: significant contribution from secondary formation and biomass burning emission publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2018.10.010 |
SSID | ssj0000781 |
Score | 2.4603071 |
Snippet | Nitrate (NO3-) and ammonium (NH4+) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study... Nitrate (NO₃⁻) and ammonium (NH₄⁺) are the major components in inorganic aerosol. However, their sources and formation processes remain unclear. This study... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 149559 |
SubjectTerms | aerosols air ammonium ammonium nitrate biomass China dissociation dust environment Formation processes fossil fuels fuel combustion Inorganic nitrogen Isotopes Meteorological conditions nitrogen pollution Regional migration relative humidity soil solar radiation Source apportionment spring summer temperature volatilization water solubility winter |
Title | The isotopic patterns and source apportionment of nitrate and ammonium in atmospheric aerosol |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.149559 https://www.proquest.com/docview/2571926970 https://www.proquest.com/docview/2636523947 |
Volume | 803 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS90wFD6IMhBkuKuizkkGe632tmna-Cai3O0yH4aiLxKSNIWKtsX2Dnzxt--cplUcQx_2FBqSkOacnHxJzvkC8C3nPOJO4u7EGB5wFyaBTLIwkNplUkeplv11wc9zMbvkP66T6yU4GWNhyK1ysP3epvfWesg5HEbzsClLivHlmRTEPkOsVzFFlHOekpYfPL24eRCZjb9lxomNpV_5eGG7XY3Y9DduFKPpAe0WiLT03yvUX7a6X4DO1uHjgBzZse_cJ1hy1QQ--LckHyewdfoSsobFhjnbTmDNn8wxH3C0ATeoGaxs665uMLfp-TWrlukqZ_4kn-mGQHnp22J1wXDaE6NEX0aT4paLe1ZWTHf3dUu8BNiQdvg39d0mXJ6dXpzMguGRhcDiaHWBNUlssyK3WkjhbC4dYjr8QiSIYCelRCRaFDnihIhbYaehiZO0kDY2OjI63oLlqq7cNjDiGUgzNAEmj7nJC5PbaZrZYmpTR5c4OyDGgVV2YCCnhzDu1OhqdqueJaJIIspLZAfC54qNJ-F4v8rRKDn1Sp8ULhXvV_46ylrhbKMrFF25etEqNHAIiVGNwjfKiFgk9OJ8uvs_nfgMqxGFWoTkcrgHy93Dwn1BANSZ_V7D92Hl-Pt8dk7p_NfV_A-mUgp8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS90wFD44x5gwZLub6JxbBnut9rZp0vg2RLnb1CcFX0ZI0hQ6tC1rr-DL_vad07SKQ_RhT6UlCW3Pj3xJzvkOwJeC84R7hasTa3nEfZxFKsvjSBmfK5NIo4bjgpNTsTjn3y-yixU4mHJhKKxy9P3Bpw_eenyyN_7NvbaqKMeX50oQ-wyxXqXyGTznaL5UxmD3z12cB7HZhGNmtGxsfi_ICwfuGwSn17hSTOa7tFwg1tKHp6h_nPUwAx29hvUROrKv4e3ewIqvZ_AiFJO8mcHG4V3OGjYbjbabwauwNcdCxtFb-Imqwaqu6ZsWn7YDwWbdMVMXLGzlM9MSKq_CWKwpGdo9UUoMbQxpbrW8YlXNTH_VdERMgAMZj1_TXL6D86PDs4NFNFZZiBznso-czVKXl4UzQgnvCuUR1OEdQkFEO5IuIjOiLBAoJNwJN49tmslSudSaxJp0A1brpvabwIhoQOboA2yRcluUtnBzmbty7qSnU5wtENOP1W6kIKdKGJd6ijX7pW8lokkiOkhkC-Lbjm1g4Xi6y_4kOX1PoTTOFU93_jzJWqO50RmKqX2z7DR6OMTEqEbxI21EKjIqOS_f_89LfIKXi7OTY3387fTHNqwllHcRU_zhB1jtfy_9DqKh3n4ctP0vSrQKZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+isotopic+patterns+and+source+apportionment+of+nitrate+and+ammonium+in+atmospheric+aerosol&rft.jtitle=The+Science+of+the+total+environment&rft.au=Dong%2C+Xinyuan&rft.au=Guo%2C+Qingjun&rft.au=Han%2C+Xiaokun&rft.au=Wei%2C+Rongfei&rft.date=2022-01-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=803&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.149559&rft.externalDocID=S0048969721046337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |