ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions
Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and funct...
Saved in:
Published in | Blood Vol. 137; no. 21; pp. 2958 - 2969 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.05.2021
American Society of Hematology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.
•Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions.•Effector functions of ATG5-deficient mouse and human eosinophils are enhanced under in vivo conditions.
[Display omitted] |
---|---|
AbstractList | Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses. Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses. •Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions.•Effector functions of ATG5-deficient mouse and human eosinophils are enhanced under in vivo conditions. [Display omitted] Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions. Effector functions of ATG5-deficient mouse and human eosinophils are enhanced under in vivo conditions. Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5 eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5 eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5 eoΔ Il5 tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5 -knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5 -knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5 eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium . Evidence for increased degranulation of ATG5 low -expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses. Eosinophils are white blood cells contributing to the regulation of immunity and they are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available about the role of autophagy in eosinophil differentiation and functions. In order to study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and in an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions, but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also seen in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils demonstrated augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter (C.) rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5 which controls the amplitude of overall antibacterial eosinophil immune responses. Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses. |
Author | Hosseini, Aref Calzavarini, Sara Benarafa, Charaf Riether, Carsten Müller, Anne Yousefi, Shida Oberson, Kevin Germic, Nina Stojkov, Darko Simon, Hans-Uwe Claus, Meike Arnold, Isabelle C. Angelillo-Scherrer, Anne |
Author_xml | – sequence: 1 givenname: Nina orcidid: 0000-0001-8592-8067 surname: Germic fullname: Germic, Nina organization: Institute of Pharmacology, University of Bern, Bern, Switzerland – sequence: 2 givenname: Aref orcidid: 0000-0003-3703-2009 surname: Hosseini fullname: Hosseini, Aref organization: Institute of Pharmacology, University of Bern, Bern, Switzerland – sequence: 3 givenname: Darko orcidid: 0000-0001-9243-3759 surname: Stojkov fullname: Stojkov, Darko organization: Institute of Pharmacology, University of Bern, Bern, Switzerland – sequence: 4 givenname: Kevin surname: Oberson fullname: Oberson, Kevin organization: Institute of Pharmacology, University of Bern, Bern, Switzerland – sequence: 5 givenname: Meike surname: Claus fullname: Claus, Meike organization: Institute of Pharmacology, University of Bern, Bern, Switzerland – sequence: 6 givenname: Charaf orcidid: 0000-0002-2049-7769 surname: Benarafa fullname: Benarafa, Charaf organization: Institute of Virology and Immunology, Mittelhäusern, Switzerland – sequence: 7 givenname: Sara orcidid: 0000-0002-7494-2995 surname: Calzavarini fullname: Calzavarini, Sara organization: Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland – sequence: 8 givenname: Anne orcidid: 0000-0003-2872-4863 surname: Angelillo-Scherrer fullname: Angelillo-Scherrer, Anne organization: Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland – sequence: 9 givenname: Isabelle C. orcidid: 0000-0001-8679-9666 surname: Arnold fullname: Arnold, Isabelle C. organization: Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland – sequence: 10 givenname: Anne orcidid: 0000-0002-1368-8276 surname: Müller fullname: Müller, Anne organization: Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland – sequence: 11 givenname: Carsten orcidid: 0000-0001-7512-513X surname: Riether fullname: Riether, Carsten organization: Tumor Immunology, Department for Biomedical Research – sequence: 12 givenname: Shida orcidid: 0000-0002-9855-4305 surname: Yousefi fullname: Yousefi, Shida organization: Institute of Pharmacology, University of Bern, Bern, Switzerland – sequence: 13 givenname: Hans-Uwe orcidid: 0000-0002-9404-7736 surname: Simon fullname: Simon, Hans-Uwe email: hus@pki.unibe.ch organization: Institute of Pharmacology, University of Bern, Bern, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33598715$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtrFTEUDlKxt9W9K5mlm6lJJpmHC6EUW4WCm7oOycmJ98jc5JrMFPz3pt62PkA3JxzO9yDfd8KOYorI2EvBz4QY5Rs3p-TPJJecizrGJ2wjtBxbXpcjtuGc962aBnHMTkr5WkGqk_oZO-46PY2D0Bt2eX5zpZt9Tru0YGkwFYppnwgLlcatS0NxS46Wx9OW5gZDQFhSbsIaYaEUy3P2NNi54Iv795R9vnx_c_Ghvf509fHi_LoFpYalBcv7wXMI0uug3DCNCjphQaPqHKK3DhQXQTppg_MwgYc-gHY61P-pcexO2buD7n51O_SAccl2NvtMO5u_m2TJ_HmJtDVf0q0ZRc81V1Xg9b1ATt9WLIvZUQGcZxsxrcVINQned2LiFfrqd69Hk4fwKqA_ACCnUjIGA7TYuzyqNc1GcHPXkvnZkvnVUiXyv4gP2v-hvD1QsKZ7S5hNAcII6CnXLoxP9G_yD7eQq94 |
CitedBy_id | crossref_primary_10_1007_s00281_021_00860_1 crossref_primary_10_1080_15548627_2022_2042783 crossref_primary_10_1182_blood_2023021055 crossref_primary_10_1080_15548627_2023_2254664 crossref_primary_10_3390_cells12111553 crossref_primary_10_3390_cells11111821 crossref_primary_10_1128_iai_00175_24 crossref_primary_10_1111_all_15751 crossref_primary_10_1016_j_jep_2024_119125 crossref_primary_10_1126_scisignal_abm0517 crossref_primary_10_3390_cells13231936 crossref_primary_10_1002_adhm_202405085 crossref_primary_10_3389_fimmu_2023_1156086 crossref_primary_10_1016_j_celrep_2024_114084 crossref_primary_10_3390_ijms22137091 crossref_primary_10_3389_fimmu_2023_1331151 crossref_primary_10_1080_27694127_2022_2119743 crossref_primary_10_3390_ijms25116098 |
Cites_doi | 10.1084/jem.20081756 10.1007/978-1-4939-1016-8_26 10.1016/j.immuni.2014.02.014 10.1084/jem.20020170 10.1038/cdd.2014.169 10.1016/j.celrep.2016.04.082 10.1038/ni.3225 10.1038/ni.1981 10.1016/j.jaci.2012.07.025 10.1016/j.immuni.2017.08.005 10.1038/s41598-018-25358-z 10.1084/jem.20050548 10.4049/jimmunol.1600611 10.1016/S1074-7613(00)80414-8 10.1074/jbc.M109.042671 10.1189/jlb.0213089 10.1111/imm.12790 10.1146/annurev-cellbio-092910-154005 10.1016/j.celrep.2015.08.019 10.1002/eji.201747227 10.1111/all.12570 10.1016/j.cell.2019.05.026 10.4049/jimmunol.158.3.1332 10.4161/auto.5474 10.4049/jimmunol.165.4.2198 10.1016/j.jaci.2010.12.1078 10.1016/j.jaci.2003.08.015 10.1038/nature03029 10.1038/26506 10.1182/blood.V91.6.2126 10.1038/nature04724 10.1371/journal.pone.0033454 10.4161/auto.23484 10.1056/NEJMoa025217 10.1182/blood.V99.11.4039 10.1038/cddis.2016.74 10.1073/pnas.1707792114 10.1093/emboj/19.21.5720 10.1038/nm.1855 10.1101/gad.12.15.2403 10.1038/ni.3412 10.4049/jimmunol.165.7.4069 10.1084/jem.20020656 10.1182/blood-2009-12-261339 10.1182/blood.V66.6.1233.1233 10.1038/ajg.2015.404 10.1159/000504847 10.1038/cdd.2016.73 10.1016/j.celrep.2016.04.002 10.1002/jcp.28966 10.1189/jlb.3A1015-480R 10.1101/gad.12.15.2413 10.1038/s41418-019-0295-8 10.1016/j.lfs.2006.12.016 10.1084/jem.20172049 10.1182/blood-2003-07-2479 10.4049/jimmunol.1000446 10.1016/j.jaci.2007.02.010 10.1016/j.immuni.2009.12.006 10.1182/blood-2005-08-3153 10.1038/ni.2757 10.1080/15548627.2015.1009787 10.1189/jlb.1106686 10.1073/pnas.1210500109 10.1165/rcmb.2014-0097OC 10.1074/jbc.M204777200 10.2741/3514 10.4049/jimmunol.181.6.4004 10.1007/s00277-012-1653-5 10.4049/jimmunol.1302241 10.1083/jcb.152.4.657 10.1126/scisignal.aag2791 10.1182/blood.2018872218 10.1016/j.cell.2011.10.026 |
ContentType | Journal Article |
Copyright | 2021 American Society of Hematology Copyright © 2021 American Society of Hematology. 2021 by The American Society of Hematology. 2021 by The American Society of Hematology 2021 |
Copyright_xml | – notice: 2021 American Society of Hematology – notice: Copyright © 2021 American Society of Hematology. – notice: 2021 by The American Society of Hematology. – notice: 2021 by The American Society of Hematology 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1182/blood.2020010208 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology Anatomy & Physiology |
EISSN | 1528-0020 |
EndPage | 2969 |
ExternalDocumentID | PMC8160504 33598715 10_1182_blood_2020010208 S0006497121003608 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 1CY 23N 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6J9 AAEDW AAXUO ABOCM ABVKL ACGFO ADBBV AENEX AFOSN AHPSJ ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD EX3 F5P FDB FRP GS5 GX1 IH2 K-O KQ8 L7B LSO MJL N9A OK1 P2P R.V RHF RHI ROL SJN THE TR2 TWZ W2D W8F WH7 WOQ WOW X7M YHG YKV ZA5 0R~ AALRI AAYXX ACVFH ADCNI ADVLN AEUPX AFETI AFPUW AGCQF AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c447t-ca067d0cf2d5f4b7984c31ac5e43beedabc401f2b2afbdc9cdc6fc5b5f0104883 |
ISSN | 0006-4971 1528-0020 |
IngestDate | Thu Aug 21 18:30:02 EDT 2025 Fri Jul 11 07:38:32 EDT 2025 Thu Apr 03 06:58:14 EDT 2025 Tue Jul 01 00:19:35 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 Fri Feb 23 02:47:07 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Copyright © 2021 American Society of Hematology. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-ca067d0cf2d5f4b7984c31ac5e43beedabc401f2b2afbdc9cdc6fc5b5f0104883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9243-3759 0000-0001-7512-513X 0000-0003-3703-2009 0000-0003-2872-4863 0000-0002-9855-4305 0000-0002-9404-7736 0000-0002-2049-7769 0000-0002-1368-8276 0000-0001-8592-8067 0000-0002-7494-2995 0000-0001-8679-9666 |
OpenAccessLink | https://ashpublications.org/blood/article-pdf/137/21/2958/1807856/bloodbld2020010208.pdf |
PMID | 33598715 |
PQID | 2491063190 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8160504 proquest_miscellaneous_2491063190 pubmed_primary_33598715 crossref_citationtrail_10_1182_blood_2020010208 crossref_primary_10_1182_blood_2020010208 elsevier_sciencedirect_doi_10_1182_blood_2020010208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-27 |
PublicationDateYYYYMMDD | 2021-05-27 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington, DC |
PublicationTitle | Blood |
PublicationTitleAlternate | Blood |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society of Hematology |
Publisher_xml | – name: Elsevier Inc – name: American Society of Hematology |
References | Tian, Hua, Xia (bib14) 2015; 52 Nerlov, McNagny, Döderlein, Kowenz-Leutz, Graf (bib8) 1998; 12 Lee, Mattei, Steinberg (bib27) 2010; 32 Hirasawa, Shimizu, Takahashi (bib5) 2002; 195 Lee, McGarry, Larson, Horton, Kristensen, Lee (bib36) 1997; 158 Loi, Müller, Steinbach (bib28) 2016; 15 Yang, Büsche, Ganser, Li (bib49) 2013; 92 Ushio, Ueno, Kojima (bib72) 2011; 127 Cools, Quentmeier, Huntly (bib58) 2004; 103 Mizushima, Komatsu (bib17) 2011; 147 Rožman, Yousefi, Oberson, Kaufmann, Benarafa, Simon (bib21) 2015; 22 Simon, Yousefi, Germic (bib1) 2020; 181 Ishihara, Takahashi, Kaneko (bib59) 2007; 80 Simon, Radonjic-Hösli, Straumann, Yousefi, Simon (bib60) 2015; 70 de Bruin, Buitenhuis, van der Sluijs, van Gisbergen, Boon, Nolte (bib13) 2010; 116 Conway, Kuballa, Khor (bib20) 2013; 9 Simon, Weber, Becker, Zilberman, Blaser, Levi-Schaffer (bib71) 2000; 165 Saito, Bourinbaiar, Ginsburg (bib57) 1985; 66 Doyle, Jacobsen, Ochkur (bib34) 2013; 94 Merves, Whelan, Benitez (bib31) 2016; 111 Adachi, Choudhury, Stafford, Sur, Alam (bib43) 2000; 165 Dyer, Moser, Czapiga, Siegel, Percopo, Rosenberg (bib41) 2008; 181 Yoshida, Ikuta, Sugaya (bib39) 1996; 4 Yamada, Cancelas, Rothenberg (bib50) 2014; 1178 Mori, Iwasaki, Kohno (bib2) 2009; 206 Riffelmacher, Clarke, Richter (bib22) 2017; 47 Miller, Zhao, Stephenson (bib19) 2008; 4 Castillo, Dekonenko, Arko-Mensah (bib25) 2012; 109 Simon, Friis, Tait, Ryan (bib62) 2017; 10 Mizushima, Yoshimori, Ohsumi (bib18) 2011; 27 Drissen, Buza-Vidas, Woll (bib63) 2016; 17 Sarma, Takeda, Yaseen (bib42) 2010; 46 van Dijk, Caldenhoven, Raaijmakers, Lammers, Koenderman, de Groot (bib7) 1998; 91 Arnold, Artola-Borán, Tallón de Lara (bib56) 2018; 215 Yu, Cantor, Yang (bib4) 2002; 195 Hara, Nakamura, Matsui (bib33) 2006; 441 Kuma, Hatano, Matsui (bib37) 2004; 432 Du, Stankiewicz, Liu (bib9) 2002; 277 Bettigole, Lis, Adoro (bib10) 2015; 16 Voehringer, van Rooijen, Locksley (bib38) 2007; 81 Chu, Fröhlich, Steinhauser (bib66) 2011; 12 Silveira, Antunes, Kaiber (bib32) 2020; 235 Iwasaki, Mizuno, Mayfield (bib3) 2005; 201 Stoeckle, Geering, Yousefi (bib12) 2016; 23 Mahmudi-Azer, Downey, Moqbel (bib54) 2002; 99 Germic, Stojkov, Oberson, Yousefi, Simon (bib35) 2017; 152 Mizushima, Yamamoto, Hatano (bib45) 2001; 152 Liu, Zhao, Ilyas (bib24) 2015; 11 Wong, Doyle, Lee, Jelinek (bib65) 2014; 192 Cools, DeAngelo, Gotlib (bib52) 2003; 348 Kabeya, Mizushima, Ueno (bib46) 2000; 19 O'Sullivan, Geary, Weizman (bib23) 2016; 15 Lee, Jacobsen, Ochkur (bib48) 2012; 130 Hunter, Wang, Eubank, Baran, Nana-Sinkam, Marsh (bib69) 2009; 14 Johnston, Hsu, Krier-Burris (bib40) 2016; 197 Martinez-Moczygemba, Huston (bib11) 2003; 112 Yamada, Rothenberg, Lee (bib51) 2006; 107 Legrand, Driss, Delbeke (bib74) 2010; 185 Carmo, Bonjour, Ueki (bib53) 2016; 100 Bhattacharya, Wei, Shin (bib73) 2015; 12 Xia, Hua, Jin (bib16) 2016; 7 Martin, Gupta, Jyothula (bib30) 2012; 7 Ben Baruch-Morgenstern, Shik, Moshkovits (bib15) 2014; 15 Simon, Simon (bib61) 2007; 119 Mack, Stein, Rome (bib64) 2019; 133 Chu, Beller, Rausch (bib67) 2014; 40 Haberland, Ackermann, Ipseiz (bib68) 2018; 48 Köster, Upadhyay, Chandra (bib26) 2017; 114 Roca, Varsos, Sud, Craig, Ying, Pienta (bib70) 2009; 284 Mizushima, Noda, Yoshimori (bib44) 1998; 395 Germic, Frangez, Yousefi, Simon (bib29) 2019; 26 Yousefi, Gold, Andina (bib55) 2008; 14 Zhu, Xia, Li (bib47) 2018; 8 Nerlov, Graf (bib6) 1998; 12 Galluzzi, Green (bib75) 2019; 177 Simon (2021052715230753400_B61) 2007; 119 Mahmudi-Azer (2021052715230753400_B54) 2002; 99 Haberland (2021052715230753400_B68) 2018; 48 Köster (2021052715230753400_B26) 2017; 114 Xia (2021052715230753400_B16) 2016; 7 Lee (2021052715230753400_B27) 2010; 32 Chu (2021052715230753400_B67) 2014; 40 Legrand (2021052715230753400_B74) 2010; 185 Mori (2021052715230753400_B2) 2009; 206 Conway (2021052715230753400_B20) 2013; 9 van Dijk (2021052715230753400_B7) 1998; 91 Merves (2021052715230753400_B31) 2016; 111 Galluzzi (2021052715230753400_B75) 2019; 177 Yamada (2021052715230753400_B51) 2006; 107 Chu (2021052715230753400_B66) 2011; 12 Castillo (2021052715230753400_B25) 2012; 109 Martin (2021052715230753400_B30) 2012; 7 Doyle (2021052715230753400_B34) 2013; 94 Loi (2021052715230753400_B28) 2016; 15 Nerlov (2021052715230753400_B8) 1998; 12 O’Sullivan (2021052715230753400_B23) 2016; 15 Mizushima (2021052715230753400_B18) 2011; 27 Hara (2021052715230753400_B33) 2006; 441 Mizushima (2021052715230753400_B44) 1998; 395 Cools (2021052715230753400_B58) 2004; 103 Yu (2021052715230753400_B4) 2002; 195 Silveira (2021052715230753400_B32) 2020; 235 Tian (2021052715230753400_B14) 2015; 52 Kuma (2021052715230753400_B37) 2004; 432 Mizushima (2021052715230753400_B45) 2001; 152 Drissen (2021052715230753400_B63) 2016; 17 Dyer (2021052715230753400_B41) 2008; 181 Simon (2021052715230753400_B1) 2020; 181 Ushio (2021052715230753400_B72) 2011; 127 Germic (2021052715230753400_B29) 2019; 26 Miller (2021052715230753400_B19) 2008; 4 Du (2021052715230753400_B9) 2002; 277 Saito (2021052715230753400_B57) 1985; 66 Adachi (2021052715230753400_B43) 2000; 165 Mack (2021052715230753400_B64) 2019; 133 Voehringer (2021052715230753400_B38) 2007; 81 Arnold (2021052715230753400_B56) 2018; 215 Lee (2021052715230753400_B48) 2012; 130 Simon (2021052715230753400_B60) 2015; 70 Lee (2021052715230753400_B36) 1997; 158 Mizushima (2021052715230753400_B17) 2011; 147 Bhattacharya (2021052715230753400_B73) 2015; 12 de Bruin (2021052715230753400_B13) 2010; 116 Johnston (2021052715230753400_B40) 2016; 197 Ben Baruch-Morgenstern (2021052715230753400_B15) 2014; 15 Cools (2021052715230753400_B52) 2003; 348 Zhu (2021052715230753400_B47) 2018; 8 Simon (2021052715230753400_B62) 2017; 10 Kabeya (2021052715230753400_B46) 2000; 19 Roca (2021052715230753400_B70) 2009; 284 Rožman (2021052715230753400_B21) 2015; 22 Hunter (2021052715230753400_B69) 2009; 14 Liu (2021052715230753400_B24) 2015; 11 Yang (2021052715230753400_B49) 2013; 92 Yoshida (2021052715230753400_B39) 1996; 4 Bettigole (2021052715230753400_B10) 2015; 16 Yousefi (2021052715230753400_B55) 2008; 14 Carmo (2021052715230753400_B53) 2016; 100 Wong (2021052715230753400_B65) 2014; 192 Simon (2021052715230753400_B71) 2000; 165 Ishihara (2021052715230753400_B59) 2007; 80 Germic (2021052715230753400_B35) 2017; 152 Iwasaki (2021052715230753400_B3) 2005; 201 Yamada (2021052715230753400_B50) 2014; 1178 Sarma (2021052715230753400_B42) 2010; 46 Nerlov (2021052715230753400_B6) 1998; 12 Stoeckle (2021052715230753400_B12) 2016; 23 Martinez-Moczygemba (2021052715230753400_B11) 2003; 112 Hirasawa (2021052715230753400_B5) 2002; 195 Riffelmacher (2021052715230753400_B22) 2017; 47 |
References_xml | – volume: 107 start-page: 4071 year: 2006 end-page: 4079 ident: bib51 article-title: The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease publication-title: Blood – volume: 127 start-page: 1267 year: 2011 ident: bib72 article-title: Crucial role for autophagy in degranulation of mast cells publication-title: J Allergy Clin Immunol – volume: 14 start-page: 4079 year: 2009 end-page: 4102 ident: bib69 article-title: Survival of monocytes and macrophages and their role in health and disease publication-title: Front Biosci – volume: 23 start-page: 1961 year: 2016 end-page: 1972 ident: bib12 article-title: RhoH is a negative regulator of eosinophilopoiesis publication-title: Cell Death Differ – volume: 206 start-page: 183 year: 2009 end-page: 193 ident: bib2 article-title: Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor publication-title: J Exp Med – volume: 12 start-page: 2413 year: 1998 end-page: 2423 ident: bib8 article-title: Distinct C/EBP functions are required for eosinophil lineage commitment and maturation publication-title: Genes Dev – volume: 165 start-page: 4069 year: 2000 end-page: 4075 ident: bib71 article-title: Eosinophils maintain their capacity to signal and release eosinophil cationic protein upon repetitive stimulation with the same agonist publication-title: J Immunol – volume: 1178 start-page: 309 year: 2014 end-page: 320 ident: bib50 article-title: Murine models of eosinophilic leukemia: a model of FIP1L1-PDGFRα initiated chronic eosinophilic leukemia/systemic mastocytosis publication-title: Methods Mol Biol – volume: 19 start-page: 5720 year: 2000 end-page: 5728 ident: bib46 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J – volume: 7 start-page: e2175 year: 2016 ident: bib16 article-title: Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2 [published correction appears in publication-title: Cell Death Dis – volume: 66 start-page: 1233 year: 1985 end-page: 1240 ident: bib57 article-title: Establishment and characterization of a new human eosinophilic leukemia cell line publication-title: Blood – volume: 201 start-page: 1891 year: 2005 end-page: 1897 ident: bib3 article-title: Identification of eosinophil lineage-committed progenitors in the murine bone marrow publication-title: J Exp Med – volume: 99 start-page: 4039 year: 2002 end-page: 4047 ident: bib54 article-title: Translocation of the tetraspanin CD63 in association with human eosinophil mediator release publication-title: Blood – volume: 195 start-page: 1387 year: 2002 end-page: 1395 ident: bib4 article-title: Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo publication-title: J Exp Med – volume: 12 start-page: 151 year: 2011 end-page: 159 ident: bib66 article-title: Eosinophils are required for the maintenance of plasma cells in the bone marrow publication-title: Nat Immunol – volume: 9 start-page: 528 year: 2013 end-page: 537 ident: bib20 article-title: ATG5 regulates plasma cell differentiation publication-title: Autophagy – volume: 103 start-page: 2802 year: 2004 end-page: 2805 ident: bib58 article-title: The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia publication-title: Blood – volume: 235 start-page: 267 year: 2020 end-page: 280 ident: bib32 article-title: Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model publication-title: J Cell Physiol – volume: 15 start-page: 1076 year: 2016 end-page: 1087 ident: bib28 article-title: Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8 publication-title: Cell Rep – volume: 26 start-page: 703 year: 2019 end-page: 714 ident: bib29 article-title: Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells publication-title: Cell Death Differ – volume: 7 start-page: e33454 year: 2012 ident: bib30 article-title: Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma publication-title: PLoS One – volume: 70 start-page: 443 year: 2015 end-page: 452 ident: bib60 article-title: Active eosinophilic esophagitis is characterized by epithelial barrier defects and eosinophil extracellular trap formation publication-title: Allergy – volume: 11 start-page: 271 year: 2015 end-page: 284 ident: bib24 article-title: Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization publication-title: Autophagy – volume: 16 start-page: 829 year: 2015 end-page: 837 ident: bib10 article-title: The transcription factor XBP1 is selectively required for eosinophil differentiation publication-title: Nat Immunol – volume: 46 start-page: 2195 year: 2010 ident: bib42 article-title: Colony forming cell (CFC) assay for human hematopoietic cells publication-title: J Vis Exp – volume: 22 start-page: 445 year: 2015 end-page: 456 ident: bib21 article-title: The generation of neutrophils in the bone marrow is controlled by autophagy publication-title: Cell Death Differ – volume: 181 start-page: 11 year: 2020 end-page: 23 ident: bib1 article-title: The cellular functions of eosinophils: Collegium Internationale Allergologicum (CIA) update 2020 publication-title: Int Arch Allergy Immunol – volume: 4 start-page: 309 year: 2008 end-page: 314 ident: bib19 article-title: The autophagy gene ATG5 plays an essential role in B lymphocyte development publication-title: Autophagy – volume: 152 start-page: 517 year: 2017 end-page: 525 ident: bib35 article-title: Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation publication-title: Immunology – volume: 17 start-page: 666 year: 2016 end-page: 676 ident: bib63 article-title: Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing publication-title: Nat Immunol – volume: 14 start-page: 949 year: 2008 end-page: 953 ident: bib55 article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense publication-title: Nat Med – volume: 152 start-page: 657 year: 2001 end-page: 668 ident: bib45 article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells publication-title: J Cell Biol – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: bib18 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol – volume: 80 start-page: 1213 year: 2007 end-page: 1220 ident: bib59 article-title: Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors publication-title: Life Sci – volume: 192 start-page: 3548 year: 2014 end-page: 3558 ident: bib65 article-title: Eosinophils regulate peripheral B cell numbers in both mice and humans publication-title: J Immunol – volume: 52 start-page: 459 year: 2015 end-page: 470 ident: bib14 article-title: Exogenous interleukin-17A inhibits eosinophil differentiation and alleviates allergic airway inflammation publication-title: Am J Respir Cell Mol Biol – volume: 109 start-page: E3168 year: 2012 end-page: E3176 ident: bib25 article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation publication-title: Proc Natl Acad Sci U S A – volume: 15 start-page: 36 year: 2014 end-page: 44 ident: bib15 article-title: Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development publication-title: Nat Immunol – volume: 197 start-page: 3445 year: 2016 end-page: 3453 ident: bib40 article-title: IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis publication-title: J Immunol – volume: 133 start-page: 2413 year: 2019 end-page: 2426 ident: bib64 article-title: Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program publication-title: Blood – volume: 114 start-page: E8711 year: 2017 end-page: E8720 ident: bib26 article-title: is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA [published correction appears in publication-title: Proc Natl Acad Sci U S A – volume: 112 start-page: 653 year: 2003 end-page: 665, quiz 666 ident: bib11 article-title: Biology of common β receptor-signaling cytokines: IL-3, IL-5, and GM-CSF publication-title: J Allergy Clin Immunol – volume: 441 start-page: 885 year: 2006 end-page: 889 ident: bib33 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature – volume: 32 start-page: 227 year: 2010 end-page: 239 ident: bib27 article-title: In vivo requirement for Atg5 in antigen presentation by dendritic cells publication-title: Immunity – volume: 92 start-page: 587 year: 2013 end-page: 594 ident: bib49 article-title: Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects publication-title: Ann Hematol – volume: 158 start-page: 1332 year: 1997 end-page: 1344 ident: bib36 article-title: Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies publication-title: J Immunol – volume: 94 start-page: 17 year: 2013 end-page: 24 ident: bib34 article-title: Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils publication-title: J Leukoc Biol – volume: 111 start-page: 151 year: 2016 end-page: 153 ident: bib31 article-title: ATG7 gene expression as a novel tissue biomarker in eosinophilic esophagitis publication-title: Am J Gastroenterol – volume: 215 start-page: 2055 year: 2018 end-page: 2072 ident: bib56 article-title: Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation publication-title: J Exp Med – volume: 177 start-page: 1682 year: 2019 end-page: 1699 ident: bib75 article-title: Autophagy-independent functions of the autophagy machinery publication-title: Cell – volume: 91 start-page: 2126 year: 1998 end-page: 2132 ident: bib7 article-title: The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene publication-title: Blood – volume: 15 start-page: 1910 year: 2016 end-page: 1919 ident: bib23 article-title: Atg5 is essential for the development and survival of innate lymphocytes publication-title: Cell Rep – volume: 395 start-page: 395 year: 1998 end-page: 398 ident: bib44 article-title: A protein conjugation system essential for autophagy publication-title: Nature – volume: 10 start-page: 2791 year: 2017 ident: bib62 article-title: Retrograde signaling from autophagy modulates stress responses publication-title: Sci Signal – volume: 147 start-page: 728 year: 2011 end-page: 741 ident: bib17 article-title: Autophagy: renovation of cells and tissues publication-title: Cell – volume: 81 start-page: 1434 year: 2007 end-page: 1444 ident: bib38 article-title: Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages publication-title: J Leukoc Biol – volume: 432 start-page: 1032 year: 2004 end-page: 1036 ident: bib37 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature – volume: 119 start-page: 1291 year: 2007 end-page: 1300, NaN-1302 ident: bib61 article-title: Eosinophilic disorders publication-title: J Allergy Clin Immunol – volume: 48 start-page: 822 year: 2018 end-page: 828 ident: bib68 article-title: Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow publication-title: Eur J Immunol – volume: 348 start-page: 1201 year: 2003 end-page: 1214 ident: bib52 article-title: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome publication-title: N Engl J Med – volume: 185 start-page: 7443 year: 2010 end-page: 7451 ident: bib74 article-title: Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells publication-title: J Immunol – volume: 4 start-page: 483 year: 1996 end-page: 494 ident: bib39 article-title: Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R α-deficient mice publication-title: Immunity – volume: 181 start-page: 4004 year: 2008 end-page: 4009 ident: bib41 article-title: Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow publication-title: J Immunol – volume: 40 start-page: 582 year: 2014 end-page: 593 ident: bib67 article-title: Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis publication-title: Immunity – volume: 47 start-page: 466 year: 2017 end-page: 480.e5 ident: bib22 article-title: Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation publication-title: Immunity – volume: 284 start-page: 34342 year: 2009 end-page: 34354 ident: bib70 article-title: CCL2 and interleukin-6 promote survival of human CD11b publication-title: J Biol Chem – volume: 12 start-page: 2403 year: 1998 end-page: 2412 ident: bib6 article-title: PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors publication-title: Genes Dev – volume: 8 start-page: 6883 year: 2018 ident: bib47 article-title: mTOR complexes differentially orchestrates eosinophil development in allergy publication-title: Sci Rep – volume: 12 start-page: 1731 year: 2015 end-page: 1739 ident: bib73 article-title: Autophagy is required for neutrophil-mediated inflammation publication-title: Cell Rep – volume: 277 start-page: 43481 year: 2002 end-page: 43494 ident: bib9 article-title: Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein publication-title: J Biol Chem – volume: 100 start-page: 391 year: 2016 end-page: 401 ident: bib53 article-title: CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils publication-title: J Leukoc Biol – volume: 130 start-page: 572 year: 2012 end-page: 584 ident: bib48 article-title: Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red.” publication-title: J Allergy Clin Immunol – volume: 165 start-page: 2198 year: 2000 end-page: 2204 ident: bib43 article-title: The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions publication-title: J Immunol – volume: 116 start-page: 2559 year: 2010 end-page: 2569 ident: bib13 article-title: Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-γ publication-title: Blood – volume: 195 start-page: 1379 year: 2002 end-page: 1386 ident: bib5 article-title: Essential and instructive roles of GATA factors in eosinophil development publication-title: J Exp Med – volume: 206 start-page: 183 issue: 1 year: 2009 ident: 2021052715230753400_B2 article-title: Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor publication-title: J Exp Med doi: 10.1084/jem.20081756 – volume: 1178 start-page: 309 year: 2014 ident: 2021052715230753400_B50 article-title: Murine models of eosinophilic leukemia: a model of FIP1L1-PDGFRα initiated chronic eosinophilic leukemia/systemic mastocytosis publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-1016-8_26 – volume: 40 start-page: 582 issue: 4 year: 2014 ident: 2021052715230753400_B67 article-title: Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis publication-title: Immunity doi: 10.1016/j.immuni.2014.02.014 – volume: 195 start-page: 1379 issue: 11 year: 2002 ident: 2021052715230753400_B5 article-title: Essential and instructive roles of GATA factors in eosinophil development publication-title: J Exp Med doi: 10.1084/jem.20020170 – volume: 22 start-page: 445 issue: 3 year: 2015 ident: 2021052715230753400_B21 article-title: The generation of neutrophils in the bone marrow is controlled by autophagy publication-title: Cell Death Differ doi: 10.1038/cdd.2014.169 – volume: 15 start-page: 1910 issue: 9 year: 2016 ident: 2021052715230753400_B23 article-title: Atg5 is essential for the development and survival of innate lymphocytes publication-title: Cell Rep doi: 10.1016/j.celrep.2016.04.082 – volume: 16 start-page: 829 issue: 8 year: 2015 ident: 2021052715230753400_B10 article-title: The transcription factor XBP1 is selectively required for eosinophil differentiation publication-title: Nat Immunol doi: 10.1038/ni.3225 – volume: 12 start-page: 151 issue: 2 year: 2011 ident: 2021052715230753400_B66 article-title: Eosinophils are required for the maintenance of plasma cells in the bone marrow publication-title: Nat Immunol doi: 10.1038/ni.1981 – volume: 130 start-page: 572 issue: 3 year: 2012 ident: 2021052715230753400_B48 article-title: Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red.” publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2012.07.025 – volume: 47 start-page: 466 issue: 3 year: 2017 ident: 2021052715230753400_B22 article-title: Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation publication-title: Immunity doi: 10.1016/j.immuni.2017.08.005 – volume: 8 start-page: 6883 issue: 1 year: 2018 ident: 2021052715230753400_B47 article-title: mTOR complexes differentially orchestrates eosinophil development in allergy publication-title: Sci Rep doi: 10.1038/s41598-018-25358-z – volume: 201 start-page: 1891 issue: 12 year: 2005 ident: 2021052715230753400_B3 article-title: Identification of eosinophil lineage-committed progenitors in the murine bone marrow publication-title: J Exp Med doi: 10.1084/jem.20050548 – volume: 197 start-page: 3445 issue: 9 year: 2016 ident: 2021052715230753400_B40 article-title: IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis publication-title: J Immunol doi: 10.4049/jimmunol.1600611 – volume: 4 start-page: 483 issue: 5 year: 1996 ident: 2021052715230753400_B39 article-title: Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R α-deficient mice publication-title: Immunity doi: 10.1016/S1074-7613(00)80414-8 – volume: 284 start-page: 34342 issue: 49 year: 2009 ident: 2021052715230753400_B70 article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization publication-title: J Biol Chem doi: 10.1074/jbc.M109.042671 – volume: 94 start-page: 17 issue: 1 year: 2013 ident: 2021052715230753400_B34 article-title: Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils publication-title: J Leukoc Biol doi: 10.1189/jlb.0213089 – volume: 152 start-page: 517 issue: 3 year: 2017 ident: 2021052715230753400_B35 article-title: Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation publication-title: Immunology doi: 10.1111/imm.12790 – volume: 27 start-page: 107 issue: 1 year: 2011 ident: 2021052715230753400_B18 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154005 – volume: 12 start-page: 1731 issue: 11 year: 2015 ident: 2021052715230753400_B73 article-title: Autophagy is required for neutrophil-mediated inflammation publication-title: Cell Rep doi: 10.1016/j.celrep.2015.08.019 – volume: 48 start-page: 822 issue: 5 year: 2018 ident: 2021052715230753400_B68 article-title: Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow publication-title: Eur J Immunol doi: 10.1002/eji.201747227 – volume: 70 start-page: 443 issue: 4 year: 2015 ident: 2021052715230753400_B60 article-title: Active eosinophilic esophagitis is characterized by epithelial barrier defects and eosinophil extracellular trap formation publication-title: Allergy doi: 10.1111/all.12570 – volume: 177 start-page: 1682 issue: 7 year: 2019 ident: 2021052715230753400_B75 article-title: Autophagy-independent functions of the autophagy machinery publication-title: Cell doi: 10.1016/j.cell.2019.05.026 – volume: 46 start-page: 2195 issue: 46 year: 2010 ident: 2021052715230753400_B42 article-title: Colony forming cell (CFC) assay for human hematopoietic cells publication-title: J Vis Exp – volume: 158 start-page: 1332 issue: 3 year: 1997 ident: 2021052715230753400_B36 article-title: Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies publication-title: J Immunol doi: 10.4049/jimmunol.158.3.1332 – volume: 4 start-page: 309 issue: 3 year: 2008 ident: 2021052715230753400_B19 article-title: The autophagy gene ATG5 plays an essential role in B lymphocyte development publication-title: Autophagy doi: 10.4161/auto.5474 – volume: 165 start-page: 2198 issue: 4 year: 2000 ident: 2021052715230753400_B43 article-title: The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions publication-title: J Immunol doi: 10.4049/jimmunol.165.4.2198 – volume: 127 start-page: 1267 issue: 5 year: 2011 ident: 2021052715230753400_B72 article-title: Crucial role for autophagy in degranulation of mast cells publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2010.12.1078 – volume: 112 start-page: 653 issue: 4 year: 2003 ident: 2021052715230753400_B11 article-title: Biology of common β receptor-signaling cytokines: IL-3, IL-5, and GM-CSF publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2003.08.015 – volume: 432 start-page: 1032 issue: 7020 year: 2004 ident: 2021052715230753400_B37 article-title: The role of autophagy during the early neonatal starvation period publication-title: Nature doi: 10.1038/nature03029 – volume: 395 start-page: 395 issue: 6700 year: 1998 ident: 2021052715230753400_B44 article-title: A protein conjugation system essential for autophagy publication-title: Nature doi: 10.1038/26506 – volume: 91 start-page: 2126 issue: 6 year: 1998 ident: 2021052715230753400_B7 article-title: The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene publication-title: Blood doi: 10.1182/blood.V91.6.2126 – volume: 441 start-page: 885 issue: 7095 year: 2006 ident: 2021052715230753400_B33 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature doi: 10.1038/nature04724 – volume: 7 start-page: e33454 issue: 4 year: 2012 ident: 2021052715230753400_B30 article-title: Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma publication-title: PLoS One doi: 10.1371/journal.pone.0033454 – volume: 9 start-page: 528 issue: 4 year: 2013 ident: 2021052715230753400_B20 article-title: ATG5 regulates plasma cell differentiation publication-title: Autophagy doi: 10.4161/auto.23484 – volume: 348 start-page: 1201 issue: 13 year: 2003 ident: 2021052715230753400_B52 article-title: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome publication-title: N Engl J Med doi: 10.1056/NEJMoa025217 – volume: 99 start-page: 4039 issue: 11 year: 2002 ident: 2021052715230753400_B54 article-title: Translocation of the tetraspanin CD63 in association with human eosinophil mediator release publication-title: Blood doi: 10.1182/blood.V99.11.4039 – volume: 7 start-page: e2175 issue: 4 year: 2016 ident: 2021052715230753400_B16 article-title: Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2 [published correction appears in Cell Death Differ. 2019;26(9):1859-1860] publication-title: Cell Death Dis doi: 10.1038/cddis.2016.74 – volume: 114 start-page: E8711 issue: 41 year: 2017 ident: 2021052715230753400_B26 article-title: Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA [published correction appears in Proc Natl Acad Sci U S A. 2017;114(45):E9752] publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1707792114 – volume: 19 start-page: 5720 issue: 21 year: 2000 ident: 2021052715230753400_B46 article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing publication-title: EMBO J doi: 10.1093/emboj/19.21.5720 – volume: 14 start-page: 949 issue: 9 year: 2008 ident: 2021052715230753400_B55 article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense publication-title: Nat Med doi: 10.1038/nm.1855 – volume: 12 start-page: 2403 issue: 15 year: 1998 ident: 2021052715230753400_B6 article-title: PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors publication-title: Genes Dev doi: 10.1101/gad.12.15.2403 – volume: 17 start-page: 666 issue: 6 year: 2016 ident: 2021052715230753400_B63 article-title: Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing publication-title: Nat Immunol doi: 10.1038/ni.3412 – volume: 165 start-page: 4069 issue: 7 year: 2000 ident: 2021052715230753400_B71 article-title: Eosinophils maintain their capacity to signal and release eosinophil cationic protein upon repetitive stimulation with the same agonist publication-title: J Immunol doi: 10.4049/jimmunol.165.7.4069 – volume: 195 start-page: 1387 issue: 11 year: 2002 ident: 2021052715230753400_B4 article-title: Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo publication-title: J Exp Med doi: 10.1084/jem.20020656 – volume: 116 start-page: 2559 issue: 14 year: 2010 ident: 2021052715230753400_B13 article-title: Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-γ publication-title: Blood doi: 10.1182/blood-2009-12-261339 – volume: 66 start-page: 1233 issue: 6 year: 1985 ident: 2021052715230753400_B57 article-title: Establishment and characterization of a new human eosinophilic leukemia cell line publication-title: Blood doi: 10.1182/blood.V66.6.1233.1233 – volume: 111 start-page: 151 issue: 1 year: 2016 ident: 2021052715230753400_B31 article-title: ATG7 gene expression as a novel tissue biomarker in eosinophilic esophagitis publication-title: Am J Gastroenterol doi: 10.1038/ajg.2015.404 – volume: 181 start-page: 11 issue: 1 year: 2020 ident: 2021052715230753400_B1 article-title: The cellular functions of eosinophils: Collegium Internationale Allergologicum (CIA) update 2020 publication-title: Int Arch Allergy Immunol doi: 10.1159/000504847 – volume: 23 start-page: 1961 issue: 12 year: 2016 ident: 2021052715230753400_B12 article-title: RhoH is a negative regulator of eosinophilopoiesis publication-title: Cell Death Differ doi: 10.1038/cdd.2016.73 – volume: 15 start-page: 1076 issue: 5 year: 2016 ident: 2021052715230753400_B28 article-title: Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8+ T cell responses publication-title: Cell Rep doi: 10.1016/j.celrep.2016.04.002 – volume: 235 start-page: 267 issue: 1 year: 2020 ident: 2021052715230753400_B32 article-title: Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model publication-title: J Cell Physiol doi: 10.1002/jcp.28966 – volume: 100 start-page: 391 issue: 2 year: 2016 ident: 2021052715230753400_B53 article-title: CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils publication-title: J Leukoc Biol doi: 10.1189/jlb.3A1015-480R – volume: 12 start-page: 2413 issue: 15 year: 1998 ident: 2021052715230753400_B8 article-title: Distinct C/EBP functions are required for eosinophil lineage commitment and maturation publication-title: Genes Dev doi: 10.1101/gad.12.15.2413 – volume: 26 start-page: 703 issue: 4 year: 2019 ident: 2021052715230753400_B29 article-title: Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells publication-title: Cell Death Differ doi: 10.1038/s41418-019-0295-8 – volume: 80 start-page: 1213 issue: 13 year: 2007 ident: 2021052715230753400_B59 article-title: Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors publication-title: Life Sci doi: 10.1016/j.lfs.2006.12.016 – volume: 215 start-page: 2055 issue: 8 year: 2018 ident: 2021052715230753400_B56 article-title: Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation publication-title: J Exp Med doi: 10.1084/jem.20172049 – volume: 103 start-page: 2802 issue: 7 year: 2004 ident: 2021052715230753400_B58 article-title: The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia publication-title: Blood doi: 10.1182/blood-2003-07-2479 – volume: 185 start-page: 7443 issue: 12 year: 2010 ident: 2021052715230753400_B74 article-title: Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells publication-title: J Immunol doi: 10.4049/jimmunol.1000446 – volume: 119 start-page: 1291 issue: 6 year: 2007 ident: 2021052715230753400_B61 article-title: Eosinophilic disorders publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2007.02.010 – volume: 32 start-page: 227 issue: 2 year: 2010 ident: 2021052715230753400_B27 article-title: In vivo requirement for Atg5 in antigen presentation by dendritic cells publication-title: Immunity doi: 10.1016/j.immuni.2009.12.006 – volume: 107 start-page: 4071 issue: 10 year: 2006 ident: 2021052715230753400_B51 article-title: The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease publication-title: Blood doi: 10.1182/blood-2005-08-3153 – volume: 15 start-page: 36 issue: 1 year: 2014 ident: 2021052715230753400_B15 article-title: Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development publication-title: Nat Immunol doi: 10.1038/ni.2757 – volume: 11 start-page: 271 issue: 2 year: 2015 ident: 2021052715230753400_B24 article-title: Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization publication-title: Autophagy doi: 10.1080/15548627.2015.1009787 – volume: 81 start-page: 1434 issue: 6 year: 2007 ident: 2021052715230753400_B38 article-title: Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages publication-title: J Leukoc Biol doi: 10.1189/jlb.1106686 – volume: 109 start-page: E3168 issue: 46 year: 2012 ident: 2021052715230753400_B25 article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1210500109 – volume: 52 start-page: 459 issue: 4 year: 2015 ident: 2021052715230753400_B14 article-title: Exogenous interleukin-17A inhibits eosinophil differentiation and alleviates allergic airway inflammation publication-title: Am J Respir Cell Mol Biol doi: 10.1165/rcmb.2014-0097OC – volume: 277 start-page: 43481 issue: 45 year: 2002 ident: 2021052715230753400_B9 article-title: Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein publication-title: J Biol Chem doi: 10.1074/jbc.M204777200 – volume: 14 start-page: 4079 issue: 14 year: 2009 ident: 2021052715230753400_B69 article-title: Survival of monocytes and macrophages and their role in health and disease publication-title: Front Biosci doi: 10.2741/3514 – volume: 181 start-page: 4004 issue: 6 year: 2008 ident: 2021052715230753400_B41 article-title: Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow publication-title: J Immunol doi: 10.4049/jimmunol.181.6.4004 – volume: 92 start-page: 587 issue: 5 year: 2013 ident: 2021052715230753400_B49 article-title: Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects publication-title: Ann Hematol doi: 10.1007/s00277-012-1653-5 – volume: 192 start-page: 3548 issue: 8 year: 2014 ident: 2021052715230753400_B65 article-title: Eosinophils regulate peripheral B cell numbers in both mice and humans publication-title: J Immunol doi: 10.4049/jimmunol.1302241 – volume: 152 start-page: 657 issue: 4 year: 2001 ident: 2021052715230753400_B45 article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells publication-title: J Cell Biol doi: 10.1083/jcb.152.4.657 – volume: 10 start-page: 2791 issue: 468 year: 2017 ident: 2021052715230753400_B62 article-title: Retrograde signaling from autophagy modulates stress responses publication-title: Sci Signal doi: 10.1126/scisignal.aag2791 – volume: 133 start-page: 2413 issue: 22 year: 2019 ident: 2021052715230753400_B64 article-title: Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program publication-title: Blood doi: 10.1182/blood.2018872218 – volume: 147 start-page: 728 issue: 4 year: 2011 ident: 2021052715230753400_B17 article-title: Autophagy: renovation of cells and tissues publication-title: Cell doi: 10.1016/j.cell.2011.10.026 |
SSID | ssj0014325 |
Score | 2.449944 |
Snippet | Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In... Eosinophils are white blood cells contributing to the regulation of immunity and they are involved in the pathogenesis of numerous inflammatory diseases. In... Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions. Effector functions of ATG5-deficient... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2958 |
SubjectTerms | Phagocytes, Granulocytes, and Myelopoiesis |
Title | ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions |
URI | https://dx.doi.org/10.1182/blood.2020010208 https://www.ncbi.nlm.nih.gov/pubmed/33598715 https://www.proquest.com/docview/2491063190 https://pubmed.ncbi.nlm.nih.gov/PMC8160504 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgiLEXBB2DcpOREBIq2RLHufSxTLAKNCSkTtpbFDu2WtbFVZdOgl_P8S1ZyzYBL1GUW6t8X-xzfM75DkJvhwmlImXwpcUpD2CUjGBPsADmBirgc4qGQq9DHn9Lxyf0y2ly2vVzNNUlDdvnv66tK_kfVOEY4KqrZP8B2fahcAD2AV_YAsKw_SuMR5OjRGdYwesWFwOhwO9XCwW-rxUOYCut_z-dMR0ccGens7nL4VDLgZ7UugU7H9qdu_7xJi1H58pwS5m6HcHHMLOKmWkGNRjBFNsu0zTqx5m6tLnyyzPVruAyY9fbOqBLp_XtlhpIpKPktnJ_X7jhUetZh6Z87ZrBN9diribhHhxvYuTqjGhDcwWLxbkBI9bKgZmt5NwQvPan7qJ7BGx_3Zbi6_cuNERjkvh4c04ONn9uB237B9xkavzpSmxmxF4xMSaP0EPnG-CRBfoxuiPqHtod1WWjzn_id9hk65owSA_d_-j3Hhz6nn09tH3sUiV20ZEmB_bkwGvk-ICBGthTA3fUwJ4auKXGE3Ty-dPkcBy4rhkBpzRrAl6CAVKFXJIqkZRlw5zyOCp5ImjMwCIqGQefWhJGSskqPuQVTyVPWCK1a57n8R7aqlUtniHMwHjOqYxIJgmtZFWCcy2IVqSrKh4S0UcH_gUX3EnK684m88K4ljkpDDpFh04fvW_vWFg5lVuujT1mhTMHrZlXAOFuueuNh7eAl6_DX2Ut1OqiIBRM4xSmnLCPnlq42__gKdNH2RoR2gu0Cvv6mXo2NWrseZSGSUif3_jMF2in-5heoq1muRKvwJJt2GvD7N82wJ8o |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATG5+promotes+eosinopoiesis%2C+but+inhibits+eosinophil+effector+functions&rft.jtitle=Blood&rft.au=Germic%2C+Nina&rft.au=Hosseini%2C+Aref&rft.au=Stojkov%2C+Darko&rft.au=Oberson%2C+Kevin&rft.date=2021-05-27&rft.eissn=1528-0020&rft_id=info:doi/10.1182%2Fblood.2020010208&rft_id=info%3Apmid%2F33598715&rft.externalDocID=33598715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon |