ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions

Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and funct...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 137; no. 21; pp. 2958 - 2969
Main Authors Germic, Nina, Hosseini, Aref, Stojkov, Darko, Oberson, Kevin, Claus, Meike, Benarafa, Charaf, Calzavarini, Sara, Angelillo-Scherrer, Anne, Arnold, Isabelle C., Müller, Anne, Riether, Carsten, Yousefi, Shida, Simon, Hans-Uwe
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.05.2021
American Society of Hematology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses. •Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions.•Effector functions of ATG5-deficient mouse and human eosinophils are enhanced under in vivo conditions. [Display omitted]
AbstractList Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.
Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses. •Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions.•Effector functions of ATG5-deficient mouse and human eosinophils are enhanced under in vivo conditions. [Display omitted]
Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions. Effector functions of ATG5-deficient mouse and human eosinophils are enhanced under in vivo conditions. Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5 eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5 eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5 eoΔ Il5 tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5 -knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5 -knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5 eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium . Evidence for increased degranulation of ATG5 low -expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.
Eosinophils are white blood cells contributing to the regulation of immunity and they are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available about the role of autophagy in eosinophil differentiation and functions. In order to study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and in an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions, but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also seen in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils demonstrated augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter (C.) rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5 which controls the amplitude of overall antibacterial eosinophil immune responses.
Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In contrast to other cells of the immune system, no information is available regarding the role of autophagy in eosinophil differentiation and functions. To study the autophagic pathway in eosinophils, we generated conditional knockout mice in which Atg5 is deleted within the eosinophil lineage only (designated Atg5eoΔ mice). Eosinophilia was provoked by crossbreeding Atg5eoΔ mice with Il5 (IL-5) overexpressing transgenic mice (designated Atg5eoΔIl5tg mice). Deletion of Atg5 in eosinophils resulted in a dramatic reduction in the number of mature eosinophils in blood and an increase of immature eosinophils in the bone marrow. Atg5-knockout eosinophil precursors exhibited reduced proliferation under both in vitro and in vivo conditions but no increased cell death. Moreover, reduced differentiation of eosinophils in the absence of Atg5 was also observed in mouse and human models of chronic eosinophilic leukemia. Atg5-knockout blood eosinophils exhibited augmented levels of degranulation and bacterial killing in vitro. Moreover, in an experimental in vivo model, we observed that Atg5eoΔ mice achieve better clearance of the local and systemic bacterial infection with Citrobacter rodentium. Evidence for increased degranulation of ATG5low-expressing human eosinophils was also obtained in both tissues and blood. Taken together, mouse and human eosinophil hematopoiesis and effector functions are regulated by ATG5, which controls the amplitude of overall antibacterial eosinophil immune responses.
Author Hosseini, Aref
Calzavarini, Sara
Benarafa, Charaf
Riether, Carsten
Müller, Anne
Yousefi, Shida
Oberson, Kevin
Germic, Nina
Stojkov, Darko
Simon, Hans-Uwe
Claus, Meike
Arnold, Isabelle C.
Angelillo-Scherrer, Anne
Author_xml – sequence: 1
  givenname: Nina
  orcidid: 0000-0001-8592-8067
  surname: Germic
  fullname: Germic, Nina
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
– sequence: 2
  givenname: Aref
  orcidid: 0000-0003-3703-2009
  surname: Hosseini
  fullname: Hosseini, Aref
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
– sequence: 3
  givenname: Darko
  orcidid: 0000-0001-9243-3759
  surname: Stojkov
  fullname: Stojkov, Darko
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
– sequence: 4
  givenname: Kevin
  surname: Oberson
  fullname: Oberson, Kevin
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
– sequence: 5
  givenname: Meike
  surname: Claus
  fullname: Claus, Meike
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
– sequence: 6
  givenname: Charaf
  orcidid: 0000-0002-2049-7769
  surname: Benarafa
  fullname: Benarafa, Charaf
  organization: Institute of Virology and Immunology, Mittelhäusern, Switzerland
– sequence: 7
  givenname: Sara
  orcidid: 0000-0002-7494-2995
  surname: Calzavarini
  fullname: Calzavarini, Sara
  organization: Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
– sequence: 8
  givenname: Anne
  orcidid: 0000-0003-2872-4863
  surname: Angelillo-Scherrer
  fullname: Angelillo-Scherrer, Anne
  organization: Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
– sequence: 9
  givenname: Isabelle C.
  orcidid: 0000-0001-8679-9666
  surname: Arnold
  fullname: Arnold, Isabelle C.
  organization: Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland
– sequence: 10
  givenname: Anne
  orcidid: 0000-0002-1368-8276
  surname: Müller
  fullname: Müller, Anne
  organization: Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland
– sequence: 11
  givenname: Carsten
  orcidid: 0000-0001-7512-513X
  surname: Riether
  fullname: Riether, Carsten
  organization: Tumor Immunology, Department for Biomedical Research
– sequence: 12
  givenname: Shida
  orcidid: 0000-0002-9855-4305
  surname: Yousefi
  fullname: Yousefi, Shida
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
– sequence: 13
  givenname: Hans-Uwe
  orcidid: 0000-0002-9404-7736
  surname: Simon
  fullname: Simon, Hans-Uwe
  email: hus@pki.unibe.ch
  organization: Institute of Pharmacology, University of Bern, Bern, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33598715$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrFTEUDlKxt9W9K5mlm6lJJpmHC6EUW4WCm7oOycmJ98jc5JrMFPz3pt62PkA3JxzO9yDfd8KOYorI2EvBz4QY5Rs3p-TPJJecizrGJ2wjtBxbXpcjtuGc962aBnHMTkr5WkGqk_oZO-46PY2D0Bt2eX5zpZt9Tru0YGkwFYppnwgLlcatS0NxS46Wx9OW5gZDQFhSbsIaYaEUy3P2NNi54Iv795R9vnx_c_Ghvf509fHi_LoFpYalBcv7wXMI0uug3DCNCjphQaPqHKK3DhQXQTppg_MwgYc-gHY61P-pcexO2buD7n51O_SAccl2NvtMO5u_m2TJ_HmJtDVf0q0ZRc81V1Xg9b1ATt9WLIvZUQGcZxsxrcVINQned2LiFfrqd69Hk4fwKqA_ACCnUjIGA7TYuzyqNc1GcHPXkvnZkvnVUiXyv4gP2v-hvD1QsKZ7S5hNAcII6CnXLoxP9G_yD7eQq94
CitedBy_id crossref_primary_10_1007_s00281_021_00860_1
crossref_primary_10_1080_15548627_2022_2042783
crossref_primary_10_1182_blood_2023021055
crossref_primary_10_1080_15548627_2023_2254664
crossref_primary_10_3390_cells12111553
crossref_primary_10_3390_cells11111821
crossref_primary_10_1128_iai_00175_24
crossref_primary_10_1111_all_15751
crossref_primary_10_1016_j_jep_2024_119125
crossref_primary_10_1126_scisignal_abm0517
crossref_primary_10_3390_cells13231936
crossref_primary_10_1002_adhm_202405085
crossref_primary_10_3389_fimmu_2023_1156086
crossref_primary_10_1016_j_celrep_2024_114084
crossref_primary_10_3390_ijms22137091
crossref_primary_10_3389_fimmu_2023_1331151
crossref_primary_10_1080_27694127_2022_2119743
crossref_primary_10_3390_ijms25116098
Cites_doi 10.1084/jem.20081756
10.1007/978-1-4939-1016-8_26
10.1016/j.immuni.2014.02.014
10.1084/jem.20020170
10.1038/cdd.2014.169
10.1016/j.celrep.2016.04.082
10.1038/ni.3225
10.1038/ni.1981
10.1016/j.jaci.2012.07.025
10.1016/j.immuni.2017.08.005
10.1038/s41598-018-25358-z
10.1084/jem.20050548
10.4049/jimmunol.1600611
10.1016/S1074-7613(00)80414-8
10.1074/jbc.M109.042671
10.1189/jlb.0213089
10.1111/imm.12790
10.1146/annurev-cellbio-092910-154005
10.1016/j.celrep.2015.08.019
10.1002/eji.201747227
10.1111/all.12570
10.1016/j.cell.2019.05.026
10.4049/jimmunol.158.3.1332
10.4161/auto.5474
10.4049/jimmunol.165.4.2198
10.1016/j.jaci.2010.12.1078
10.1016/j.jaci.2003.08.015
10.1038/nature03029
10.1038/26506
10.1182/blood.V91.6.2126
10.1038/nature04724
10.1371/journal.pone.0033454
10.4161/auto.23484
10.1056/NEJMoa025217
10.1182/blood.V99.11.4039
10.1038/cddis.2016.74
10.1073/pnas.1707792114
10.1093/emboj/19.21.5720
10.1038/nm.1855
10.1101/gad.12.15.2403
10.1038/ni.3412
10.4049/jimmunol.165.7.4069
10.1084/jem.20020656
10.1182/blood-2009-12-261339
10.1182/blood.V66.6.1233.1233
10.1038/ajg.2015.404
10.1159/000504847
10.1038/cdd.2016.73
10.1016/j.celrep.2016.04.002
10.1002/jcp.28966
10.1189/jlb.3A1015-480R
10.1101/gad.12.15.2413
10.1038/s41418-019-0295-8
10.1016/j.lfs.2006.12.016
10.1084/jem.20172049
10.1182/blood-2003-07-2479
10.4049/jimmunol.1000446
10.1016/j.jaci.2007.02.010
10.1016/j.immuni.2009.12.006
10.1182/blood-2005-08-3153
10.1038/ni.2757
10.1080/15548627.2015.1009787
10.1189/jlb.1106686
10.1073/pnas.1210500109
10.1165/rcmb.2014-0097OC
10.1074/jbc.M204777200
10.2741/3514
10.4049/jimmunol.181.6.4004
10.1007/s00277-012-1653-5
10.4049/jimmunol.1302241
10.1083/jcb.152.4.657
10.1126/scisignal.aag2791
10.1182/blood.2018872218
10.1016/j.cell.2011.10.026
ContentType Journal Article
Copyright 2021 American Society of Hematology
Copyright © 2021 American Society of Hematology.
2021 by The American Society of Hematology.
2021 by The American Society of Hematology 2021
Copyright_xml – notice: 2021 American Society of Hematology
– notice: Copyright © 2021 American Society of Hematology.
– notice: 2021 by The American Society of Hematology.
– notice: 2021 by The American Society of Hematology 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1182/blood.2020010208
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
Anatomy & Physiology
EISSN 1528-0020
EndPage 2969
ExternalDocumentID PMC8160504
33598715
10_1182_blood_2020010208
S0006497121003608
Genre Journal Article
GroupedDBID ---
-~X
.55
1CY
23N
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6J9
AAEDW
AAXUO
ABOCM
ABVKL
ACGFO
ADBBV
AENEX
AFOSN
AHPSJ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
EX3
F5P
FDB
FRP
GS5
GX1
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
OK1
P2P
R.V
RHF
RHI
ROL
SJN
THE
TR2
TWZ
W2D
W8F
WH7
WOQ
WOW
X7M
YHG
YKV
ZA5
0R~
AALRI
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFETI
AFPUW
AGCQF
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c447t-ca067d0cf2d5f4b7984c31ac5e43beedabc401f2b2afbdc9cdc6fc5b5f0104883
ISSN 0006-4971
1528-0020
IngestDate Thu Aug 21 18:30:02 EDT 2025
Fri Jul 11 07:38:32 EDT 2025
Thu Apr 03 06:58:14 EDT 2025
Tue Jul 01 00:19:35 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
Fri Feb 23 02:47:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Copyright © 2021 American Society of Hematology.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-ca067d0cf2d5f4b7984c31ac5e43beedabc401f2b2afbdc9cdc6fc5b5f0104883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9243-3759
0000-0001-7512-513X
0000-0003-3703-2009
0000-0003-2872-4863
0000-0002-9855-4305
0000-0002-9404-7736
0000-0002-2049-7769
0000-0002-1368-8276
0000-0001-8592-8067
0000-0002-7494-2995
0000-0001-8679-9666
OpenAccessLink https://ashpublications.org/blood/article-pdf/137/21/2958/1807856/bloodbld2020010208.pdf
PMID 33598715
PQID 2491063190
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8160504
proquest_miscellaneous_2491063190
pubmed_primary_33598715
crossref_citationtrail_10_1182_blood_2020010208
crossref_primary_10_1182_blood_2020010208
elsevier_sciencedirect_doi_10_1182_blood_2020010208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-27
PublicationDateYYYYMMDD 2021-05-27
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington, DC
PublicationTitle Blood
PublicationTitleAlternate Blood
PublicationYear 2021
Publisher Elsevier Inc
American Society of Hematology
Publisher_xml – name: Elsevier Inc
– name: American Society of Hematology
References Tian, Hua, Xia (bib14) 2015; 52
Nerlov, McNagny, Döderlein, Kowenz-Leutz, Graf (bib8) 1998; 12
Lee, Mattei, Steinberg (bib27) 2010; 32
Hirasawa, Shimizu, Takahashi (bib5) 2002; 195
Lee, McGarry, Larson, Horton, Kristensen, Lee (bib36) 1997; 158
Loi, Müller, Steinbach (bib28) 2016; 15
Yang, Büsche, Ganser, Li (bib49) 2013; 92
Ushio, Ueno, Kojima (bib72) 2011; 127
Cools, Quentmeier, Huntly (bib58) 2004; 103
Mizushima, Komatsu (bib17) 2011; 147
Rožman, Yousefi, Oberson, Kaufmann, Benarafa, Simon (bib21) 2015; 22
Simon, Yousefi, Germic (bib1) 2020; 181
Ishihara, Takahashi, Kaneko (bib59) 2007; 80
Simon, Radonjic-Hösli, Straumann, Yousefi, Simon (bib60) 2015; 70
de Bruin, Buitenhuis, van der Sluijs, van Gisbergen, Boon, Nolte (bib13) 2010; 116
Conway, Kuballa, Khor (bib20) 2013; 9
Simon, Weber, Becker, Zilberman, Blaser, Levi-Schaffer (bib71) 2000; 165
Saito, Bourinbaiar, Ginsburg (bib57) 1985; 66
Doyle, Jacobsen, Ochkur (bib34) 2013; 94
Merves, Whelan, Benitez (bib31) 2016; 111
Adachi, Choudhury, Stafford, Sur, Alam (bib43) 2000; 165
Dyer, Moser, Czapiga, Siegel, Percopo, Rosenberg (bib41) 2008; 181
Yoshida, Ikuta, Sugaya (bib39) 1996; 4
Yamada, Cancelas, Rothenberg (bib50) 2014; 1178
Mori, Iwasaki, Kohno (bib2) 2009; 206
Riffelmacher, Clarke, Richter (bib22) 2017; 47
Miller, Zhao, Stephenson (bib19) 2008; 4
Castillo, Dekonenko, Arko-Mensah (bib25) 2012; 109
Simon, Friis, Tait, Ryan (bib62) 2017; 10
Mizushima, Yoshimori, Ohsumi (bib18) 2011; 27
Drissen, Buza-Vidas, Woll (bib63) 2016; 17
Sarma, Takeda, Yaseen (bib42) 2010; 46
van Dijk, Caldenhoven, Raaijmakers, Lammers, Koenderman, de Groot (bib7) 1998; 91
Arnold, Artola-Borán, Tallón de Lara (bib56) 2018; 215
Yu, Cantor, Yang (bib4) 2002; 195
Hara, Nakamura, Matsui (bib33) 2006; 441
Kuma, Hatano, Matsui (bib37) 2004; 432
Du, Stankiewicz, Liu (bib9) 2002; 277
Bettigole, Lis, Adoro (bib10) 2015; 16
Voehringer, van Rooijen, Locksley (bib38) 2007; 81
Chu, Fröhlich, Steinhauser (bib66) 2011; 12
Silveira, Antunes, Kaiber (bib32) 2020; 235
Iwasaki, Mizuno, Mayfield (bib3) 2005; 201
Stoeckle, Geering, Yousefi (bib12) 2016; 23
Mahmudi-Azer, Downey, Moqbel (bib54) 2002; 99
Germic, Stojkov, Oberson, Yousefi, Simon (bib35) 2017; 152
Mizushima, Yamamoto, Hatano (bib45) 2001; 152
Liu, Zhao, Ilyas (bib24) 2015; 11
Wong, Doyle, Lee, Jelinek (bib65) 2014; 192
Cools, DeAngelo, Gotlib (bib52) 2003; 348
Kabeya, Mizushima, Ueno (bib46) 2000; 19
O'Sullivan, Geary, Weizman (bib23) 2016; 15
Lee, Jacobsen, Ochkur (bib48) 2012; 130
Hunter, Wang, Eubank, Baran, Nana-Sinkam, Marsh (bib69) 2009; 14
Johnston, Hsu, Krier-Burris (bib40) 2016; 197
Martinez-Moczygemba, Huston (bib11) 2003; 112
Yamada, Rothenberg, Lee (bib51) 2006; 107
Legrand, Driss, Delbeke (bib74) 2010; 185
Carmo, Bonjour, Ueki (bib53) 2016; 100
Bhattacharya, Wei, Shin (bib73) 2015; 12
Xia, Hua, Jin (bib16) 2016; 7
Martin, Gupta, Jyothula (bib30) 2012; 7
Ben Baruch-Morgenstern, Shik, Moshkovits (bib15) 2014; 15
Simon, Simon (bib61) 2007; 119
Mack, Stein, Rome (bib64) 2019; 133
Chu, Beller, Rausch (bib67) 2014; 40
Haberland, Ackermann, Ipseiz (bib68) 2018; 48
Köster, Upadhyay, Chandra (bib26) 2017; 114
Roca, Varsos, Sud, Craig, Ying, Pienta (bib70) 2009; 284
Mizushima, Noda, Yoshimori (bib44) 1998; 395
Germic, Frangez, Yousefi, Simon (bib29) 2019; 26
Yousefi, Gold, Andina (bib55) 2008; 14
Zhu, Xia, Li (bib47) 2018; 8
Nerlov, Graf (bib6) 1998; 12
Galluzzi, Green (bib75) 2019; 177
Simon (2021052715230753400_B61) 2007; 119
Mahmudi-Azer (2021052715230753400_B54) 2002; 99
Haberland (2021052715230753400_B68) 2018; 48
Köster (2021052715230753400_B26) 2017; 114
Xia (2021052715230753400_B16) 2016; 7
Lee (2021052715230753400_B27) 2010; 32
Chu (2021052715230753400_B67) 2014; 40
Legrand (2021052715230753400_B74) 2010; 185
Mori (2021052715230753400_B2) 2009; 206
Conway (2021052715230753400_B20) 2013; 9
van Dijk (2021052715230753400_B7) 1998; 91
Merves (2021052715230753400_B31) 2016; 111
Galluzzi (2021052715230753400_B75) 2019; 177
Yamada (2021052715230753400_B51) 2006; 107
Chu (2021052715230753400_B66) 2011; 12
Castillo (2021052715230753400_B25) 2012; 109
Martin (2021052715230753400_B30) 2012; 7
Doyle (2021052715230753400_B34) 2013; 94
Loi (2021052715230753400_B28) 2016; 15
Nerlov (2021052715230753400_B8) 1998; 12
O’Sullivan (2021052715230753400_B23) 2016; 15
Mizushima (2021052715230753400_B18) 2011; 27
Hara (2021052715230753400_B33) 2006; 441
Mizushima (2021052715230753400_B44) 1998; 395
Cools (2021052715230753400_B58) 2004; 103
Yu (2021052715230753400_B4) 2002; 195
Silveira (2021052715230753400_B32) 2020; 235
Tian (2021052715230753400_B14) 2015; 52
Kuma (2021052715230753400_B37) 2004; 432
Mizushima (2021052715230753400_B45) 2001; 152
Drissen (2021052715230753400_B63) 2016; 17
Dyer (2021052715230753400_B41) 2008; 181
Simon (2021052715230753400_B1) 2020; 181
Ushio (2021052715230753400_B72) 2011; 127
Germic (2021052715230753400_B29) 2019; 26
Miller (2021052715230753400_B19) 2008; 4
Du (2021052715230753400_B9) 2002; 277
Saito (2021052715230753400_B57) 1985; 66
Adachi (2021052715230753400_B43) 2000; 165
Mack (2021052715230753400_B64) 2019; 133
Voehringer (2021052715230753400_B38) 2007; 81
Arnold (2021052715230753400_B56) 2018; 215
Lee (2021052715230753400_B48) 2012; 130
Simon (2021052715230753400_B60) 2015; 70
Lee (2021052715230753400_B36) 1997; 158
Mizushima (2021052715230753400_B17) 2011; 147
Bhattacharya (2021052715230753400_B73) 2015; 12
de Bruin (2021052715230753400_B13) 2010; 116
Johnston (2021052715230753400_B40) 2016; 197
Ben Baruch-Morgenstern (2021052715230753400_B15) 2014; 15
Cools (2021052715230753400_B52) 2003; 348
Zhu (2021052715230753400_B47) 2018; 8
Simon (2021052715230753400_B62) 2017; 10
Kabeya (2021052715230753400_B46) 2000; 19
Roca (2021052715230753400_B70) 2009; 284
Rožman (2021052715230753400_B21) 2015; 22
Hunter (2021052715230753400_B69) 2009; 14
Liu (2021052715230753400_B24) 2015; 11
Yang (2021052715230753400_B49) 2013; 92
Yoshida (2021052715230753400_B39) 1996; 4
Bettigole (2021052715230753400_B10) 2015; 16
Yousefi (2021052715230753400_B55) 2008; 14
Carmo (2021052715230753400_B53) 2016; 100
Wong (2021052715230753400_B65) 2014; 192
Simon (2021052715230753400_B71) 2000; 165
Ishihara (2021052715230753400_B59) 2007; 80
Germic (2021052715230753400_B35) 2017; 152
Iwasaki (2021052715230753400_B3) 2005; 201
Yamada (2021052715230753400_B50) 2014; 1178
Sarma (2021052715230753400_B42) 2010; 46
Nerlov (2021052715230753400_B6) 1998; 12
Stoeckle (2021052715230753400_B12) 2016; 23
Martinez-Moczygemba (2021052715230753400_B11) 2003; 112
Hirasawa (2021052715230753400_B5) 2002; 195
Riffelmacher (2021052715230753400_B22) 2017; 47
References_xml – volume: 107
  start-page: 4071
  year: 2006
  end-page: 4079
  ident: bib51
  article-title: The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease
  publication-title: Blood
– volume: 127
  start-page: 1267
  year: 2011
  ident: bib72
  article-title: Crucial role for autophagy in degranulation of mast cells
  publication-title: J Allergy Clin Immunol
– volume: 14
  start-page: 4079
  year: 2009
  end-page: 4102
  ident: bib69
  article-title: Survival of monocytes and macrophages and their role in health and disease
  publication-title: Front Biosci
– volume: 23
  start-page: 1961
  year: 2016
  end-page: 1972
  ident: bib12
  article-title: RhoH is a negative regulator of eosinophilopoiesis
  publication-title: Cell Death Differ
– volume: 206
  start-page: 183
  year: 2009
  end-page: 193
  ident: bib2
  article-title: Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor
  publication-title: J Exp Med
– volume: 12
  start-page: 2413
  year: 1998
  end-page: 2423
  ident: bib8
  article-title: Distinct C/EBP functions are required for eosinophil lineage commitment and maturation
  publication-title: Genes Dev
– volume: 165
  start-page: 4069
  year: 2000
  end-page: 4075
  ident: bib71
  article-title: Eosinophils maintain their capacity to signal and release eosinophil cationic protein upon repetitive stimulation with the same agonist
  publication-title: J Immunol
– volume: 1178
  start-page: 309
  year: 2014
  end-page: 320
  ident: bib50
  article-title: Murine models of eosinophilic leukemia: a model of FIP1L1-PDGFRα initiated chronic eosinophilic leukemia/systemic mastocytosis
  publication-title: Methods Mol Biol
– volume: 19
  start-page: 5720
  year: 2000
  end-page: 5728
  ident: bib46
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J
– volume: 7
  start-page: e2175
  year: 2016
  ident: bib16
  article-title: Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2 [published correction appears in
  publication-title: Cell Death Dis
– volume: 66
  start-page: 1233
  year: 1985
  end-page: 1240
  ident: bib57
  article-title: Establishment and characterization of a new human eosinophilic leukemia cell line
  publication-title: Blood
– volume: 201
  start-page: 1891
  year: 2005
  end-page: 1897
  ident: bib3
  article-title: Identification of eosinophil lineage-committed progenitors in the murine bone marrow
  publication-title: J Exp Med
– volume: 99
  start-page: 4039
  year: 2002
  end-page: 4047
  ident: bib54
  article-title: Translocation of the tetraspanin CD63 in association with human eosinophil mediator release
  publication-title: Blood
– volume: 195
  start-page: 1387
  year: 2002
  end-page: 1395
  ident: bib4
  article-title: Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo
  publication-title: J Exp Med
– volume: 12
  start-page: 151
  year: 2011
  end-page: 159
  ident: bib66
  article-title: Eosinophils are required for the maintenance of plasma cells in the bone marrow
  publication-title: Nat Immunol
– volume: 9
  start-page: 528
  year: 2013
  end-page: 537
  ident: bib20
  article-title: ATG5 regulates plasma cell differentiation
  publication-title: Autophagy
– volume: 103
  start-page: 2802
  year: 2004
  end-page: 2805
  ident: bib58
  article-title: The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia
  publication-title: Blood
– volume: 235
  start-page: 267
  year: 2020
  end-page: 280
  ident: bib32
  article-title: Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model
  publication-title: J Cell Physiol
– volume: 15
  start-page: 1076
  year: 2016
  end-page: 1087
  ident: bib28
  article-title: Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8
  publication-title: Cell Rep
– volume: 26
  start-page: 703
  year: 2019
  end-page: 714
  ident: bib29
  article-title: Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells
  publication-title: Cell Death Differ
– volume: 7
  start-page: e33454
  year: 2012
  ident: bib30
  article-title: Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma
  publication-title: PLoS One
– volume: 70
  start-page: 443
  year: 2015
  end-page: 452
  ident: bib60
  article-title: Active eosinophilic esophagitis is characterized by epithelial barrier defects and eosinophil extracellular trap formation
  publication-title: Allergy
– volume: 11
  start-page: 271
  year: 2015
  end-page: 284
  ident: bib24
  article-title: Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization
  publication-title: Autophagy
– volume: 16
  start-page: 829
  year: 2015
  end-page: 837
  ident: bib10
  article-title: The transcription factor XBP1 is selectively required for eosinophil differentiation
  publication-title: Nat Immunol
– volume: 46
  start-page: 2195
  year: 2010
  ident: bib42
  article-title: Colony forming cell (CFC) assay for human hematopoietic cells
  publication-title: J Vis Exp
– volume: 22
  start-page: 445
  year: 2015
  end-page: 456
  ident: bib21
  article-title: The generation of neutrophils in the bone marrow is controlled by autophagy
  publication-title: Cell Death Differ
– volume: 181
  start-page: 11
  year: 2020
  end-page: 23
  ident: bib1
  article-title: The cellular functions of eosinophils: Collegium Internationale Allergologicum (CIA) update 2020
  publication-title: Int Arch Allergy Immunol
– volume: 4
  start-page: 309
  year: 2008
  end-page: 314
  ident: bib19
  article-title: The autophagy gene ATG5 plays an essential role in B lymphocyte development
  publication-title: Autophagy
– volume: 152
  start-page: 517
  year: 2017
  end-page: 525
  ident: bib35
  article-title: Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation
  publication-title: Immunology
– volume: 17
  start-page: 666
  year: 2016
  end-page: 676
  ident: bib63
  article-title: Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing
  publication-title: Nat Immunol
– volume: 14
  start-page: 949
  year: 2008
  end-page: 953
  ident: bib55
  article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense
  publication-title: Nat Med
– volume: 152
  start-page: 657
  year: 2001
  end-page: 668
  ident: bib45
  article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
  publication-title: J Cell Biol
– volume: 27
  start-page: 107
  year: 2011
  end-page: 132
  ident: bib18
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu Rev Cell Dev Biol
– volume: 80
  start-page: 1213
  year: 2007
  end-page: 1220
  ident: bib59
  article-title: Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors
  publication-title: Life Sci
– volume: 192
  start-page: 3548
  year: 2014
  end-page: 3558
  ident: bib65
  article-title: Eosinophils regulate peripheral B cell numbers in both mice and humans
  publication-title: J Immunol
– volume: 52
  start-page: 459
  year: 2015
  end-page: 470
  ident: bib14
  article-title: Exogenous interleukin-17A inhibits eosinophil differentiation and alleviates allergic airway inflammation
  publication-title: Am J Respir Cell Mol Biol
– volume: 109
  start-page: E3168
  year: 2012
  end-page: E3176
  ident: bib25
  article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
  publication-title: Proc Natl Acad Sci U S A
– volume: 15
  start-page: 36
  year: 2014
  end-page: 44
  ident: bib15
  article-title: Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development
  publication-title: Nat Immunol
– volume: 197
  start-page: 3445
  year: 2016
  end-page: 3453
  ident: bib40
  article-title: IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis
  publication-title: J Immunol
– volume: 133
  start-page: 2413
  year: 2019
  end-page: 2426
  ident: bib64
  article-title: Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program
  publication-title: Blood
– volume: 114
  start-page: E8711
  year: 2017
  end-page: E8720
  ident: bib26
  article-title: is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA [published correction appears in
  publication-title: Proc Natl Acad Sci U S A
– volume: 112
  start-page: 653
  year: 2003
  end-page: 665, quiz 666
  ident: bib11
  article-title: Biology of common β receptor-signaling cytokines: IL-3, IL-5, and GM-CSF
  publication-title: J Allergy Clin Immunol
– volume: 441
  start-page: 885
  year: 2006
  end-page: 889
  ident: bib33
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature
– volume: 32
  start-page: 227
  year: 2010
  end-page: 239
  ident: bib27
  article-title: In vivo requirement for Atg5 in antigen presentation by dendritic cells
  publication-title: Immunity
– volume: 92
  start-page: 587
  year: 2013
  end-page: 594
  ident: bib49
  article-title: Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects
  publication-title: Ann Hematol
– volume: 158
  start-page: 1332
  year: 1997
  end-page: 1344
  ident: bib36
  article-title: Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies
  publication-title: J Immunol
– volume: 94
  start-page: 17
  year: 2013
  end-page: 24
  ident: bib34
  article-title: Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils
  publication-title: J Leukoc Biol
– volume: 111
  start-page: 151
  year: 2016
  end-page: 153
  ident: bib31
  article-title: ATG7 gene expression as a novel tissue biomarker in eosinophilic esophagitis
  publication-title: Am J Gastroenterol
– volume: 215
  start-page: 2055
  year: 2018
  end-page: 2072
  ident: bib56
  article-title: Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation
  publication-title: J Exp Med
– volume: 177
  start-page: 1682
  year: 2019
  end-page: 1699
  ident: bib75
  article-title: Autophagy-independent functions of the autophagy machinery
  publication-title: Cell
– volume: 91
  start-page: 2126
  year: 1998
  end-page: 2132
  ident: bib7
  article-title: The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene
  publication-title: Blood
– volume: 15
  start-page: 1910
  year: 2016
  end-page: 1919
  ident: bib23
  article-title: Atg5 is essential for the development and survival of innate lymphocytes
  publication-title: Cell Rep
– volume: 395
  start-page: 395
  year: 1998
  end-page: 398
  ident: bib44
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature
– volume: 10
  start-page: 2791
  year: 2017
  ident: bib62
  article-title: Retrograde signaling from autophagy modulates stress responses
  publication-title: Sci Signal
– volume: 147
  start-page: 728
  year: 2011
  end-page: 741
  ident: bib17
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
– volume: 81
  start-page: 1434
  year: 2007
  end-page: 1444
  ident: bib38
  article-title: Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages
  publication-title: J Leukoc Biol
– volume: 432
  start-page: 1032
  year: 2004
  end-page: 1036
  ident: bib37
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
– volume: 119
  start-page: 1291
  year: 2007
  end-page: 1300, NaN-1302
  ident: bib61
  article-title: Eosinophilic disorders
  publication-title: J Allergy Clin Immunol
– volume: 48
  start-page: 822
  year: 2018
  end-page: 828
  ident: bib68
  article-title: Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow
  publication-title: Eur J Immunol
– volume: 348
  start-page: 1201
  year: 2003
  end-page: 1214
  ident: bib52
  article-title: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome
  publication-title: N Engl J Med
– volume: 185
  start-page: 7443
  year: 2010
  end-page: 7451
  ident: bib74
  article-title: Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells
  publication-title: J Immunol
– volume: 4
  start-page: 483
  year: 1996
  end-page: 494
  ident: bib39
  article-title: Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R α-deficient mice
  publication-title: Immunity
– volume: 181
  start-page: 4004
  year: 2008
  end-page: 4009
  ident: bib41
  article-title: Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow
  publication-title: J Immunol
– volume: 40
  start-page: 582
  year: 2014
  end-page: 593
  ident: bib67
  article-title: Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis
  publication-title: Immunity
– volume: 47
  start-page: 466
  year: 2017
  end-page: 480.e5
  ident: bib22
  article-title: Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation
  publication-title: Immunity
– volume: 284
  start-page: 34342
  year: 2009
  end-page: 34354
  ident: bib70
  article-title: CCL2 and interleukin-6 promote survival of human CD11b
  publication-title: J Biol Chem
– volume: 12
  start-page: 2403
  year: 1998
  end-page: 2412
  ident: bib6
  article-title: PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors
  publication-title: Genes Dev
– volume: 8
  start-page: 6883
  year: 2018
  ident: bib47
  article-title: mTOR complexes differentially orchestrates eosinophil development in allergy
  publication-title: Sci Rep
– volume: 12
  start-page: 1731
  year: 2015
  end-page: 1739
  ident: bib73
  article-title: Autophagy is required for neutrophil-mediated inflammation
  publication-title: Cell Rep
– volume: 277
  start-page: 43481
  year: 2002
  end-page: 43494
  ident: bib9
  article-title: Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein
  publication-title: J Biol Chem
– volume: 100
  start-page: 391
  year: 2016
  end-page: 401
  ident: bib53
  article-title: CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils
  publication-title: J Leukoc Biol
– volume: 130
  start-page: 572
  year: 2012
  end-page: 584
  ident: bib48
  article-title: Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red.”
  publication-title: J Allergy Clin Immunol
– volume: 165
  start-page: 2198
  year: 2000
  end-page: 2204
  ident: bib43
  article-title: The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions
  publication-title: J Immunol
– volume: 116
  start-page: 2559
  year: 2010
  end-page: 2569
  ident: bib13
  article-title: Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-γ
  publication-title: Blood
– volume: 195
  start-page: 1379
  year: 2002
  end-page: 1386
  ident: bib5
  article-title: Essential and instructive roles of GATA factors in eosinophil development
  publication-title: J Exp Med
– volume: 206
  start-page: 183
  issue: 1
  year: 2009
  ident: 2021052715230753400_B2
  article-title: Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor
  publication-title: J Exp Med
  doi: 10.1084/jem.20081756
– volume: 1178
  start-page: 309
  year: 2014
  ident: 2021052715230753400_B50
  article-title: Murine models of eosinophilic leukemia: a model of FIP1L1-PDGFRα initiated chronic eosinophilic leukemia/systemic mastocytosis
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-1016-8_26
– volume: 40
  start-page: 582
  issue: 4
  year: 2014
  ident: 2021052715230753400_B67
  article-title: Eosinophils promote generation and maintenance of immunoglobulin-A-expressing plasma cells and contribute to gut immune homeostasis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.02.014
– volume: 195
  start-page: 1379
  issue: 11
  year: 2002
  ident: 2021052715230753400_B5
  article-title: Essential and instructive roles of GATA factors in eosinophil development
  publication-title: J Exp Med
  doi: 10.1084/jem.20020170
– volume: 22
  start-page: 445
  issue: 3
  year: 2015
  ident: 2021052715230753400_B21
  article-title: The generation of neutrophils in the bone marrow is controlled by autophagy
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2014.169
– volume: 15
  start-page: 1910
  issue: 9
  year: 2016
  ident: 2021052715230753400_B23
  article-title: Atg5 is essential for the development and survival of innate lymphocytes
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.04.082
– volume: 16
  start-page: 829
  issue: 8
  year: 2015
  ident: 2021052715230753400_B10
  article-title: The transcription factor XBP1 is selectively required for eosinophil differentiation
  publication-title: Nat Immunol
  doi: 10.1038/ni.3225
– volume: 12
  start-page: 151
  issue: 2
  year: 2011
  ident: 2021052715230753400_B66
  article-title: Eosinophils are required for the maintenance of plasma cells in the bone marrow
  publication-title: Nat Immunol
  doi: 10.1038/ni.1981
– volume: 130
  start-page: 572
  issue: 3
  year: 2012
  ident: 2021052715230753400_B48
  article-title: Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red.”
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2012.07.025
– volume: 47
  start-page: 466
  issue: 3
  year: 2017
  ident: 2021052715230753400_B22
  article-title: Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.08.005
– volume: 8
  start-page: 6883
  issue: 1
  year: 2018
  ident: 2021052715230753400_B47
  article-title: mTOR complexes differentially orchestrates eosinophil development in allergy
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25358-z
– volume: 201
  start-page: 1891
  issue: 12
  year: 2005
  ident: 2021052715230753400_B3
  article-title: Identification of eosinophil lineage-committed progenitors in the murine bone marrow
  publication-title: J Exp Med
  doi: 10.1084/jem.20050548
– volume: 197
  start-page: 3445
  issue: 9
  year: 2016
  ident: 2021052715230753400_B40
  article-title: IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1600611
– volume: 4
  start-page: 483
  issue: 5
  year: 1996
  ident: 2021052715230753400_B39
  article-title: Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R α-deficient mice
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80414-8
– volume: 284
  start-page: 34342
  issue: 49
  year: 2009
  ident: 2021052715230753400_B70
  article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.042671
– volume: 94
  start-page: 17
  issue: 1
  year: 2013
  ident: 2021052715230753400_B34
  article-title: Homologous recombination into the eosinophil peroxidase locus generates a strain of mice expressing Cre recombinase exclusively in eosinophils
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0213089
– volume: 152
  start-page: 517
  issue: 3
  year: 2017
  ident: 2021052715230753400_B35
  article-title: Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation
  publication-title: Immunology
  doi: 10.1111/imm.12790
– volume: 27
  start-page: 107
  issue: 1
  year: 2011
  ident: 2021052715230753400_B18
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 12
  start-page: 1731
  issue: 11
  year: 2015
  ident: 2021052715230753400_B73
  article-title: Autophagy is required for neutrophil-mediated inflammation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.08.019
– volume: 48
  start-page: 822
  issue: 5
  year: 2018
  ident: 2021052715230753400_B68
  article-title: Eosinophils are not essential for maintenance of murine plasma cells in the bone marrow
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201747227
– volume: 70
  start-page: 443
  issue: 4
  year: 2015
  ident: 2021052715230753400_B60
  article-title: Active eosinophilic esophagitis is characterized by epithelial barrier defects and eosinophil extracellular trap formation
  publication-title: Allergy
  doi: 10.1111/all.12570
– volume: 177
  start-page: 1682
  issue: 7
  year: 2019
  ident: 2021052715230753400_B75
  article-title: Autophagy-independent functions of the autophagy machinery
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.026
– volume: 46
  start-page: 2195
  issue: 46
  year: 2010
  ident: 2021052715230753400_B42
  article-title: Colony forming cell (CFC) assay for human hematopoietic cells
  publication-title: J Vis Exp
– volume: 158
  start-page: 1332
  issue: 3
  year: 1997
  ident: 2021052715230753400_B36
  article-title: Expression of IL-5 in thymocytes/T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.3.1332
– volume: 4
  start-page: 309
  issue: 3
  year: 2008
  ident: 2021052715230753400_B19
  article-title: The autophagy gene ATG5 plays an essential role in B lymphocyte development
  publication-title: Autophagy
  doi: 10.4161/auto.5474
– volume: 165
  start-page: 2198
  issue: 4
  year: 2000
  ident: 2021052715230753400_B43
  article-title: The differential role of extracellular signal-regulated kinases and p38 mitogen-activated protein kinase in eosinophil functions
  publication-title: J Immunol
  doi: 10.4049/jimmunol.165.4.2198
– volume: 127
  start-page: 1267
  issue: 5
  year: 2011
  ident: 2021052715230753400_B72
  article-title: Crucial role for autophagy in degranulation of mast cells
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2010.12.1078
– volume: 112
  start-page: 653
  issue: 4
  year: 2003
  ident: 2021052715230753400_B11
  article-title: Biology of common β receptor-signaling cytokines: IL-3, IL-5, and GM-CSF
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2003.08.015
– volume: 432
  start-page: 1032
  issue: 7020
  year: 2004
  ident: 2021052715230753400_B37
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 395
  start-page: 395
  issue: 6700
  year: 1998
  ident: 2021052715230753400_B44
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature
  doi: 10.1038/26506
– volume: 91
  start-page: 2126
  issue: 6
  year: 1998
  ident: 2021052715230753400_B7
  article-title: The role of transcription factor PU.1 in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene
  publication-title: Blood
  doi: 10.1182/blood.V91.6.2126
– volume: 441
  start-page: 885
  issue: 7095
  year: 2006
  ident: 2021052715230753400_B33
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature
  doi: 10.1038/nature04724
– volume: 7
  start-page: e33454
  issue: 4
  year: 2012
  ident: 2021052715230753400_B30
  article-title: Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033454
– volume: 9
  start-page: 528
  issue: 4
  year: 2013
  ident: 2021052715230753400_B20
  article-title: ATG5 regulates plasma cell differentiation
  publication-title: Autophagy
  doi: 10.4161/auto.23484
– volume: 348
  start-page: 1201
  issue: 13
  year: 2003
  ident: 2021052715230753400_B52
  article-title: A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa025217
– volume: 99
  start-page: 4039
  issue: 11
  year: 2002
  ident: 2021052715230753400_B54
  article-title: Translocation of the tetraspanin CD63 in association with human eosinophil mediator release
  publication-title: Blood
  doi: 10.1182/blood.V99.11.4039
– volume: 7
  start-page: e2175
  issue: 4
  year: 2016
  ident: 2021052715230753400_B16
  article-title: Eosinophil differentiation in the bone marrow is promoted by protein tyrosine phosphatase SHP2 [published correction appears in Cell Death Differ. 2019;26(9):1859-1860]
  publication-title: Cell Death Dis
  doi: 10.1038/cddis.2016.74
– volume: 114
  start-page: E8711
  issue: 41
  year: 2017
  ident: 2021052715230753400_B26
  article-title: Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA [published correction appears in Proc Natl Acad Sci U S A. 2017;114(45):E9752]
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1707792114
– volume: 19
  start-page: 5720
  issue: 21
  year: 2000
  ident: 2021052715230753400_B46
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J
  doi: 10.1093/emboj/19.21.5720
– volume: 14
  start-page: 949
  issue: 9
  year: 2008
  ident: 2021052715230753400_B55
  article-title: Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense
  publication-title: Nat Med
  doi: 10.1038/nm.1855
– volume: 12
  start-page: 2403
  issue: 15
  year: 1998
  ident: 2021052715230753400_B6
  article-title: PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors
  publication-title: Genes Dev
  doi: 10.1101/gad.12.15.2403
– volume: 17
  start-page: 666
  issue: 6
  year: 2016
  ident: 2021052715230753400_B63
  article-title: Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing
  publication-title: Nat Immunol
  doi: 10.1038/ni.3412
– volume: 165
  start-page: 4069
  issue: 7
  year: 2000
  ident: 2021052715230753400_B71
  article-title: Eosinophils maintain their capacity to signal and release eosinophil cationic protein upon repetitive stimulation with the same agonist
  publication-title: J Immunol
  doi: 10.4049/jimmunol.165.7.4069
– volume: 195
  start-page: 1387
  issue: 11
  year: 2002
  ident: 2021052715230753400_B4
  article-title: Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo
  publication-title: J Exp Med
  doi: 10.1084/jem.20020656
– volume: 116
  start-page: 2559
  issue: 14
  year: 2010
  ident: 2021052715230753400_B13
  article-title: Eosinophil differentiation in the bone marrow is inhibited by T cell-derived IFN-γ
  publication-title: Blood
  doi: 10.1182/blood-2009-12-261339
– volume: 66
  start-page: 1233
  issue: 6
  year: 1985
  ident: 2021052715230753400_B57
  article-title: Establishment and characterization of a new human eosinophilic leukemia cell line
  publication-title: Blood
  doi: 10.1182/blood.V66.6.1233.1233
– volume: 111
  start-page: 151
  issue: 1
  year: 2016
  ident: 2021052715230753400_B31
  article-title: ATG7 gene expression as a novel tissue biomarker in eosinophilic esophagitis
  publication-title: Am J Gastroenterol
  doi: 10.1038/ajg.2015.404
– volume: 181
  start-page: 11
  issue: 1
  year: 2020
  ident: 2021052715230753400_B1
  article-title: The cellular functions of eosinophils: Collegium Internationale Allergologicum (CIA) update 2020
  publication-title: Int Arch Allergy Immunol
  doi: 10.1159/000504847
– volume: 23
  start-page: 1961
  issue: 12
  year: 2016
  ident: 2021052715230753400_B12
  article-title: RhoH is a negative regulator of eosinophilopoiesis
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2016.73
– volume: 15
  start-page: 1076
  issue: 5
  year: 2016
  ident: 2021052715230753400_B28
  article-title: Macroautophagy proteins control MHC class I levels on dendritic cells and shape anti-viral CD8+ T cell responses
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.04.002
– volume: 235
  start-page: 267
  issue: 1
  year: 2020
  ident: 2021052715230753400_B32
  article-title: Autophagy induces eosinophil extracellular traps formation and allergic airway inflammation in a murine asthma model
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.28966
– volume: 100
  start-page: 391
  issue: 2
  year: 2016
  ident: 2021052715230753400_B53
  article-title: CD63 is tightly associated with intracellular, secretory events chaperoning piecemeal degranulation and compound exocytosis in human eosinophils
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.3A1015-480R
– volume: 12
  start-page: 2413
  issue: 15
  year: 1998
  ident: 2021052715230753400_B8
  article-title: Distinct C/EBP functions are required for eosinophil lineage commitment and maturation
  publication-title: Genes Dev
  doi: 10.1101/gad.12.15.2413
– volume: 26
  start-page: 703
  issue: 4
  year: 2019
  ident: 2021052715230753400_B29
  article-title: Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-019-0295-8
– volume: 80
  start-page: 1213
  issue: 13
  year: 2007
  ident: 2021052715230753400_B59
  article-title: Differentiation of eosinophilic leukemia EoL-1 cells into eosinophils induced by histone deacetylase inhibitors
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2006.12.016
– volume: 215
  start-page: 2055
  issue: 8
  year: 2018
  ident: 2021052715230753400_B56
  article-title: Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation
  publication-title: J Exp Med
  doi: 10.1084/jem.20172049
– volume: 103
  start-page: 2802
  issue: 7
  year: 2004
  ident: 2021052715230753400_B58
  article-title: The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia
  publication-title: Blood
  doi: 10.1182/blood-2003-07-2479
– volume: 185
  start-page: 7443
  issue: 12
  year: 2010
  ident: 2021052715230753400_B74
  article-title: Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1000446
– volume: 119
  start-page: 1291
  issue: 6
  year: 2007
  ident: 2021052715230753400_B61
  article-title: Eosinophilic disorders
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2007.02.010
– volume: 32
  start-page: 227
  issue: 2
  year: 2010
  ident: 2021052715230753400_B27
  article-title: In vivo requirement for Atg5 in antigen presentation by dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.12.006
– volume: 107
  start-page: 4071
  issue: 10
  year: 2006
  ident: 2021052715230753400_B51
  article-title: The FIP1L1-PDGFRA fusion gene cooperates with IL-5 to induce murine hypereosinophilic syndrome (HES)/chronic eosinophilic leukemia (CEL)-like disease
  publication-title: Blood
  doi: 10.1182/blood-2005-08-3153
– volume: 15
  start-page: 36
  issue: 1
  year: 2014
  ident: 2021052715230753400_B15
  article-title: Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development
  publication-title: Nat Immunol
  doi: 10.1038/ni.2757
– volume: 11
  start-page: 271
  issue: 2
  year: 2015
  ident: 2021052715230753400_B24
  article-title: Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1009787
– volume: 81
  start-page: 1434
  issue: 6
  year: 2007
  ident: 2021052715230753400_B38
  article-title: Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.1106686
– volume: 109
  start-page: E3168
  issue: 46
  year: 2012
  ident: 2021052715230753400_B25
  article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1210500109
– volume: 52
  start-page: 459
  issue: 4
  year: 2015
  ident: 2021052715230753400_B14
  article-title: Exogenous interleukin-17A inhibits eosinophil differentiation and alleviates allergic airway inflammation
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2014-0097OC
– volume: 277
  start-page: 43481
  issue: 45
  year: 2002
  ident: 2021052715230753400_B9
  article-title: Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M204777200
– volume: 14
  start-page: 4079
  issue: 14
  year: 2009
  ident: 2021052715230753400_B69
  article-title: Survival of monocytes and macrophages and their role in health and disease
  publication-title: Front Biosci
  doi: 10.2741/3514
– volume: 181
  start-page: 4004
  issue: 6
  year: 2008
  ident: 2021052715230753400_B41
  article-title: Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.6.4004
– volume: 92
  start-page: 587
  issue: 5
  year: 2013
  ident: 2021052715230753400_B49
  article-title: Morphology and quantitative composition of hematopoietic cells in murine bone marrow and spleen of healthy subjects
  publication-title: Ann Hematol
  doi: 10.1007/s00277-012-1653-5
– volume: 192
  start-page: 3548
  issue: 8
  year: 2014
  ident: 2021052715230753400_B65
  article-title: Eosinophils regulate peripheral B cell numbers in both mice and humans
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1302241
– volume: 152
  start-page: 657
  issue: 4
  year: 2001
  ident: 2021052715230753400_B45
  article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.152.4.657
– volume: 10
  start-page: 2791
  issue: 468
  year: 2017
  ident: 2021052715230753400_B62
  article-title: Retrograde signaling from autophagy modulates stress responses
  publication-title: Sci Signal
  doi: 10.1126/scisignal.aag2791
– volume: 133
  start-page: 2413
  issue: 22
  year: 2019
  ident: 2021052715230753400_B64
  article-title: Trib1 regulates eosinophil lineage commitment and identity by restraining the neutrophil program
  publication-title: Blood
  doi: 10.1182/blood.2018872218
– volume: 147
  start-page: 728
  issue: 4
  year: 2011
  ident: 2021052715230753400_B17
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
SSID ssj0014325
Score 2.449944
Snippet Eosinophils are white blood cells that contribute to the regulation of immunity and are involved in the pathogenesis of numerous inflammatory diseases. In...
Eosinophils are white blood cells contributing to the regulation of immunity and they are involved in the pathogenesis of numerous inflammatory diseases. In...
Eosinophil differentiation is delayed and reduced in the absence of ATG5 under both physiological and leukemic conditions. Effector functions of ATG5-deficient...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2958
SubjectTerms Phagocytes, Granulocytes, and Myelopoiesis
Title ATG5 promotes eosinopoiesis but inhibits eosinophil effector functions
URI https://dx.doi.org/10.1182/blood.2020010208
https://www.ncbi.nlm.nih.gov/pubmed/33598715
https://www.proquest.com/docview/2491063190
https://pubmed.ncbi.nlm.nih.gov/PMC8160504
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgiLEXBB2DcpOREBIq2RLHufSxTLAKNCSkTtpbFDu2WtbFVZdOgl_P8S1ZyzYBL1GUW6t8X-xzfM75DkJvhwmlImXwpcUpD2CUjGBPsADmBirgc4qGQq9DHn9Lxyf0y2ly2vVzNNUlDdvnv66tK_kfVOEY4KqrZP8B2fahcAD2AV_YAsKw_SuMR5OjRGdYwesWFwOhwO9XCwW-rxUOYCut_z-dMR0ccGens7nL4VDLgZ7UugU7H9qdu_7xJi1H58pwS5m6HcHHMLOKmWkGNRjBFNsu0zTqx5m6tLnyyzPVruAyY9fbOqBLp_XtlhpIpKPktnJ_X7jhUetZh6Z87ZrBN9diribhHhxvYuTqjGhDcwWLxbkBI9bKgZmt5NwQvPan7qJ7BGx_3Zbi6_cuNERjkvh4c04ONn9uB237B9xkavzpSmxmxF4xMSaP0EPnG-CRBfoxuiPqHtod1WWjzn_id9hk65owSA_d_-j3Hhz6nn09tH3sUiV20ZEmB_bkwGvk-ICBGthTA3fUwJ4auKXGE3Ty-dPkcBy4rhkBpzRrAl6CAVKFXJIqkZRlw5zyOCp5ImjMwCIqGQefWhJGSskqPuQVTyVPWCK1a57n8R7aqlUtniHMwHjOqYxIJgmtZFWCcy2IVqSrKh4S0UcH_gUX3EnK684m88K4ljkpDDpFh04fvW_vWFg5lVuujT1mhTMHrZlXAOFuueuNh7eAl6_DX2Ut1OqiIBRM4xSmnLCPnlq42__gKdNH2RoR2gu0Cvv6mXo2NWrseZSGSUif3_jMF2in-5heoq1muRKvwJJt2GvD7N82wJ8o
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATG5+promotes+eosinopoiesis%2C+but+inhibits+eosinophil+effector+functions&rft.jtitle=Blood&rft.au=Germic%2C+Nina&rft.au=Hosseini%2C+Aref&rft.au=Stojkov%2C+Darko&rft.au=Oberson%2C+Kevin&rft.date=2021-05-27&rft.eissn=1528-0020&rft_id=info:doi/10.1182%2Fblood.2020010208&rft_id=info%3Apmid%2F33598715&rft.externalDocID=33598715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon