Dissecting the low catalytic capability of flavin-dependent halogenases
Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-f...
Saved in:
Published in | The Journal of biological chemistry Vol. 296; p. 100068 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2021
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I−, Br−, and Cl− but not F− to form C4a-hydroxyflavin and HOX. Our experiments revealed that I− reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications. |
---|---|
AbstractList | Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I-, Br-, and Cl- but not F- to form C4a-hydroxyflavin and HOX. Our experiments revealed that I- reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I-, Br-, and Cl- but not F- to form C4a-hydroxyflavin and HOX. Our experiments revealed that I- reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications. Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I , Br , and Cl but not F to form C4a-hydroxyflavin and HOX. Our experiments revealed that I reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications. Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I − , Br − , and Cl − but not F − to form C4a-hydroxyflavin and HOX. Our experiments revealed that I − reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower p K a compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications. Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I−, Br−, and Cl− but not F− to form C4a-hydroxyflavin and HOX. Our experiments revealed that I− reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications. |
ArticleNumber | 100068 |
Author | Visitsatthawong, Surawit Prakinee, Kridsadakorn Chenprakhon, Pirom Mulholland, Adrian Trisrivirat, Duangthip van Pée, Karl-Heinz Jaruwat, Aritsara Phintha, Aisaraphon Kantiwiriyawanitch, Chadaporn Chaiyen, Pimchai Chitnumsub, Penchit Lawan, Narin Songsungthong, Warangkhana |
Author_xml | – sequence: 1 givenname: Aisaraphon orcidid: 0000-0001-6565-998X surname: Phintha fullname: Phintha, Aisaraphon organization: Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand – sequence: 2 givenname: Kridsadakorn orcidid: 0000-0003-2421-1518 surname: Prakinee fullname: Prakinee, Kridsadakorn organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 3 givenname: Aritsara surname: Jaruwat fullname: Jaruwat, Aritsara organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand – sequence: 4 givenname: Narin surname: Lawan fullname: Lawan, Narin organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand – sequence: 5 givenname: Surawit surname: Visitsatthawong fullname: Visitsatthawong, Surawit organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 6 givenname: Chadaporn orcidid: 0000-0002-8839-5814 surname: Kantiwiriyawanitch fullname: Kantiwiriyawanitch, Chadaporn organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 7 givenname: Warangkhana surname: Songsungthong fullname: Songsungthong, Warangkhana organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand – sequence: 8 givenname: Duangthip surname: Trisrivirat fullname: Trisrivirat, Duangthip organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand – sequence: 9 givenname: Pirom orcidid: 0000-0002-5927-6920 surname: Chenprakhon fullname: Chenprakhon, Pirom organization: Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand – sequence: 10 givenname: Adrian surname: Mulholland fullname: Mulholland, Adrian organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK – sequence: 11 givenname: Karl-Heinz surname: van Pée fullname: van Pée, Karl-Heinz organization: General Biochemistry, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Dresden, Germany – sequence: 12 givenname: Penchit orcidid: 0000-0001-5920-3708 surname: Chitnumsub fullname: Chitnumsub, Penchit email: penchit@biotec.or.th organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand – sequence: 13 givenname: Pimchai orcidid: 0000-0002-8533-1604 surname: Chaiyen fullname: Chaiyen, Pimchai email: pimchai.chaiyen@vistec.ac.th organization: Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33465708$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1vEzEQxS1URNPCnRPaI5cN_pj94oBUFShIlZBQD9wsrz2bTOXYYe2kyn-PS0oFSODLWJrfezOad8ZOQgzI2EvBl4J38OZ2tMuvF0LyJRct5_CELQTvVa0a8e2ELTiXoh5k05-ys5RueXkwiGfsVClom473C3b1nlJCmymsqrzGyse7ypps_CGTLb-tGclTPlRxqiZv9hRqh1sMDkOu1sbHFQaTMD1nTyfjE754qOfs5uOHm8tP9fWXq8-XF9e1BehybQdwI0glOcLUuk7COI04KWMaqcSA1lpRSBxbCcJM4ECAaJpW9BaxdeqcvTvabnfjBp0tW8zG6-1MGzMfdDSk_-wEWutV3OtugH7oZTF4_WAwx-87TFlvKFn03gSMu6QlFFIqaFRBX_0-63HIr-MVgB8BO8eUZpweEcH1fT665KN_5qOP-RRJ-5fEUjaZ4v225P8nfHsUYjnunnDWyRIGi47mEp92kf4t_gGk4apF |
CitedBy_id | crossref_primary_10_1002_anie_202418843 crossref_primary_10_1038_s41467_021_23503_3 crossref_primary_10_1002_bit_28188 crossref_primary_10_1002_chir_23550 crossref_primary_10_1021_acsomega_4c09590 crossref_primary_10_1002_cbic_202300700 crossref_primary_10_1016_j_checat_2022_09_044 crossref_primary_10_1002_ange_202214610 crossref_primary_10_1039_D0CS01551B crossref_primary_10_1016_j_checat_2022_09_026 crossref_primary_10_3389_fmicb_2023_1099098 crossref_primary_10_1002_ange_202403858 crossref_primary_10_1016_j_jbc_2021_100952 crossref_primary_10_1021_jacs_3c05750 crossref_primary_10_1021_acs_joc_1c00526 crossref_primary_10_1002_ange_202418843 crossref_primary_10_1038_s41467_024_45593_5 crossref_primary_10_1038_s41929_022_00800_8 crossref_primary_10_1002_cbic_202400496 crossref_primary_10_1021_acscatal_2c05231 crossref_primary_10_1038_s42004_023_01083_1 crossref_primary_10_1016_j_checat_2022_07_003 crossref_primary_10_1016_j_cogsc_2023_100784 crossref_primary_10_1021_acs_accounts_4c00172 crossref_primary_10_1016_j_checat_2022_09_010 crossref_primary_10_1007_s43630_024_00670_y crossref_primary_10_1021_acs_orglett_4c04529 crossref_primary_10_1016_j_jbc_2023_105413 crossref_primary_10_1021_acs_chemrev_3c00042 crossref_primary_10_1002_anie_202403858 crossref_primary_10_1002_cbic_202300478 crossref_primary_10_1002_anie_202214610 crossref_primary_10_1039_D4CS00196F crossref_primary_10_1073_pnas_2409479122 crossref_primary_10_1021_acs_biochem_3c00222 |
Cites_doi | 10.1038/s41557-019-0349-z 10.1146/annurev-biochem-062917-012042 10.1021/jp104069t 10.1016/bs.enz.2020.05.009 10.1021/ja301056a 10.1021/acs.jpcb.7b06892 10.1107/S0021889807021206 10.1021/jm9000133 10.1002/anie.201411901 10.1107/S0907444904001544 10.1021/cr0102967 10.1021/bi701853w 10.1002/anie.201408561 10.1021/ja4088055 10.1126/science.1138275 10.1021/ci400539q 10.1107/S0907444910045749 10.1002/anie.200802466 10.1074/jbc.M512385200 10.1002/pro.3739 10.1039/b314768a 10.1002/wcms.82 10.1021/bi802331r 10.1021/acs.chemrev.7b00032 10.1021/bi9715122 10.1039/C5SC00913H 10.1021/acs.chemrev.6b00571 10.1016/j.jmgm.2018.12.011 10.1021/jp973084f 10.1021/ja0465247 10.1074/jbc.M116.774448 10.1107/S0907444904019158 10.1021/ja00360a024 10.1002/prot.340040208 10.1002/ps.1829 10.1002/1521-3773(20000703)39:13<2300::AID-ANIE2300>3.0.CO;2-I 10.1063/1.464913 10.1016/j.enzmictec.2013.02.012 10.1074/jbc.RA118.005393 10.1021/ct100578z 10.1021/bi970089u 10.1126/science.1116510 10.1002/cbic.201300780 10.1016/S0009-2614(97)00207-8 10.1021/acschembio.7b00056 10.1021/jm200644r 10.1002/1099-0739(200011)14:11<745::AID-AOC57>3.0.CO;2-H 10.1107/S0907444910007493 10.1021/bi060607d 10.1016/j.cplett.2014.06.010 10.1021/acs.accounts.6b00546 10.1107/S0021889892009944 10.1007/s11270-012-1206-5 10.1021/jacs.5b04328 10.1016/S0021-9258(17)31664-2 10.1038/s41598-017-17789-x 10.1021/acssynbio.6b00297 10.1002/ijch.198400008 10.1093/nar/gkh381 10.1038/s41467-019-09215-9 10.1016/j.jmb.2009.06.008 10.1016/j.chembiol.2015.08.014 10.1107/S0907444911001314 10.1002/prot.21627 10.1038/nmeth932 10.1021/jm3012068 10.2174/138945010790711996 10.1016/j.jmb.2016.07.003 10.1002/anie.201007896 10.1021/ci200227u 10.1517/17460441.2012.678829 10.1021/bi0621213 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.RA120.016004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC7948982 33465708 10_1074_jbc_RA120_016004 S0021925820000551 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L01386X/1 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-c94db42320e4f6d724bfbef3aa52319eccc1c44eb6241af4d414155618cee6d3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 14:10:12 EDT 2025 Fri Jul 11 10:46:24 EDT 2025 Mon Jul 21 05:35:25 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Tue Jul 01 04:11:57 EDT 2025 Fri Feb 23 02:43:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | halogenase C1 Na2S2O4 flavin monooxygenase PrnA HOBr QM/MM calculations Thal PyrH HCOONa X-ray structures HPLC FADH HOI DAD MS FAD QM/MM stopped-flow HOX NAD HOCl psFDH DMSO-d6 kinetics |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-c94db42320e4f6d724bfbef3aa52319eccc1c44eb6241af4d414155618cee6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-5927-6920 0000-0002-8839-5814 0000-0002-8533-1604 0000-0001-5920-3708 0000-0003-2421-1518 0000-0001-6565-998X |
OpenAccessLink | http://dx.doi.org/10.1074/jbc.RA120.016004 |
PMID | 33465708 |
PQID | 2479423453 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948982 proquest_miscellaneous_2479423453 pubmed_primary_33465708 crossref_primary_10_1074_jbc_RA120_016004 crossref_citationtrail_10_1074_jbc_RA120_016004 elsevier_sciencedirect_doi_10_1074_jbc_RA120_016004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Emsley, Cowtan (bib69) 2004; 60 Keller, Wage, Hohaus, Hölzer, Eichhorn, van Pée (bib16) 2000; 39 Harvey (bib62) 2004; 127 Xu, Yang, Liu, Lu, Chen, Zhu (bib9) 2014; 54 Karabencheva-Christova, Torras, Mulholland, Lodola, Christov (bib32) 2017; 7 Alonso, Beletskaya, Yus (bib10) 2002; 102 Mitchell (bib59) 2000; 14 Jeschke (bib1) 2009; 66 Bruice (bib51) 1984; 24 Dolinsky, Nielsen, McCammon, Baker (bib57) 2004; 32 Olsson, Søndergaard, Rostkowski, Jensen (bib49) 2011; 7 Agarwal, Miles, Winter, Eustáquio, El Gamal, Moore (bib18) 2017; 117 Zhan, Carpenter, Ellis (bib55) 2008; 47 Becke (bib61) 1993; 98 Lu, Shi, Wang, Yang, Yan, Luo, Jiang, Zhu (bib3) 2009; 52 Mascotti, Juri Ayub, Furnham, Thornton, Laskowski (bib17) 2016; 428 Poor, Andorfer, Lewis (bib24) 2014; 15 Frese, Sewald (bib33) 2015; 54 Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy, McNicholas, Murshudov, Pannu, Potterton, Powell (bib67) 2011; 67 Wongnate, Surawatanawong, Visitsatthawong, Sucharitakul, Scrutton, Chaiyen (bib53) 2014; 136 Dong, Flecks, Unversucht, Haupt, van Pée, Naismith (bib15) 2005; 309 Shah, Liu, Zhang, Stout, Halpert (bib5) 2017; 12 Zhu, De Laurentis, Leang, Herrmann, Ihlefeld, van Pée, Naismith (bib37) 2009; 391 Chaiyen, Brissette, Ballou, Massey (bib40) 1997; 36 Shepherd, Karthikeyan, Latham, Struck, Thompson, Menon, Styles, Levy, Leys, Micklefield (bib25) 2015; 6 Moritzer, Minges, Prior, Frese, Sewald, Niemann (bib35) 2019; 294 McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib66) 2007; 40 Wilcken, Liu, Zimmermann, Rutherford, Fersht, Joerger, Boeckler (bib6) 2012; 134 Xu, Liu, Chen, Chen, Wang, Tian, Shi, Wang, Lu, Yan, Wang, Jiang, Chen, Wang, Xu (bib8) 2011; 54 Santos-Aberturas, Dörr, Waldo, Bornscheuer (bib48) 2015; 22 Cabantous, Waldo (bib47) 2006; 3 Emsley, Lohkamp, Scott, Cowtan (bib70) 2010; 66 Wilcken, Zimmermann, Lange, Joerger, Boeckler (bib7) 2013; 56 Prongjit, Sucharitakul, Wongnate, Haltrich, Chaiyen (bib42) 2009; 48 Marcelo Zaldini, Suellen Melo, Diogo Rodrigo, Walter Filgueira de Azevedo, Ana Cristina Lima (bib4) 2010; 11 Visitsatthawong, Chenprakhon, Chaiyen, Surawatanawong (bib54) 2015; 137 Chitnumsub, Yuvaniyama, Vanichtanankul, Kamchonwongpaisan, Walkinshaw, Yuthavong (bib65) 2004; 60 Lang, Polnick, Nicke, William, Patallo, Naismith, van Pée (bib22) 2011; 50 Xu, Zhu, Lin, Shen, Chu, Hu, Tian, Mwakagenda, Bi (bib13) 2012; 223 Payne, Poor, Lewis (bib23) 2015; 54 Hartwig (bib21) 2017; 50 van der Kamp, Żurek, Manby, Harvey, Mulholland (bib46) 2010; 114 Lu, Liu, Xu, Li, Liu, Zhu (bib2) 2012; 7 Prakash, Mathew, Hoole, Esteves, Wang, Rasul, Olah (bib12) 2004; 126 Bitto, Huang, Bingman, Singh, Thorson, Phillips (bib36) 2008; 70 Brünger, Karplus (bib56) 1988; 4 Ranaghan, Morris, Masgrau, Senthilkumar, Johannissen, Scrutton, Harvey, Manby, Mulholland (bib45) 2017; 121 Sullivan, Walton, Stewart (bib64) 2013; 53 Latham, Brandenburger, Shepherd, Menon, Micklefield (bib14) 2018; 118 Belsare, Andorfer, Cardenas, Chael, Park, Lewis (bib20) 2017; 6 Murshudov, Skubak, Lebedev, Pannu, Steiner, Nicholls, Winn, Long, Vagin (bib68) 2011; 67 Sucharitakul, Chaiyen, Entsch, Ballou (bib39) 2006; 281 Werner, Knowles, Knizia, Manby, Schütz (bib63) 2012; 2 Mori, Pang, Thamban Chandrika, Garneau-Tsodikova, Tsodikov (bib30) 2019; 10 Kelly, Ikonomou, Blair, Morin, Gobas (bib11) 2007; 317 Yeh, Blasiak, Koglin, Drennan, Walsh (bib27) 2007; 46 MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos (bib58) 1998; 102 Gkotsi, Ludewig, Sharma, Connolly, Dhaliwal, Wang, Unsworth, Taylor, McLachlan, Shanahan, Naismith, Goss (bib31) 2019; 11 Lawan, Chasing, Santatiwongchai, Muangpil (bib43) 2019; 87 Yeh, Cole, Barr, Bollinger, Ballou, Walsh (bib28) 2006; 45 Eberlein, Bruice (bib50) 1983; 105 Laskowski, MacArthur, Moss, Thornton (bib71) 1993; 26 Phintha, Prakinee, Chaiyen (bib19) 2020 Hertwig, Koch (bib60) 1997; 268 Moritzer, Niemann (bib34) 2019; 28 Chaiyen, Brissette, Ballou, Massey (bib41) 1997; 36 Flecks, Patallo, Zhu, Ernyei, Seifert, Schneider, Dong, Naismith, van Pée (bib29) 2008; 47 Massey (bib52) 1994; 269 Lawan, Ranaghan, Manby, Mulholland (bib44) 2014; 608 Pimviriyakul, Thotsaporn, Sucharitakul, Chaiyen (bib38) 2017; 292 Laskowski, Swindells (bib72) 2011; 51 Andorfer, Lewis (bib26) 2018; 87 Lawan (10.1074/jbc.RA120.016004_bib43) 2019; 87 Shah (10.1074/jbc.RA120.016004_bib5) 2017; 12 Mascotti (10.1074/jbc.RA120.016004_bib17) 2016; 428 Poor (10.1074/jbc.RA120.016004_bib24) 2014; 15 Belsare (10.1074/jbc.RA120.016004_bib20) 2017; 6 Lu (10.1074/jbc.RA120.016004_bib3) 2009; 52 Chaiyen (10.1074/jbc.RA120.016004_bib40) 1997; 36 Flecks (10.1074/jbc.RA120.016004_bib29) 2008; 47 Prongjit (10.1074/jbc.RA120.016004_bib42) 2009; 48 Winn (10.1074/jbc.RA120.016004_bib67) 2011; 67 Eberlein (10.1074/jbc.RA120.016004_bib50) 1983; 105 Frese (10.1074/jbc.RA120.016004_bib33) 2015; 54 Bruice (10.1074/jbc.RA120.016004_bib51) 1984; 24 Murshudov (10.1074/jbc.RA120.016004_bib68) 2011; 67 Lang (10.1074/jbc.RA120.016004_bib22) 2011; 50 Andorfer (10.1074/jbc.RA120.016004_bib26) 2018; 87 Sucharitakul (10.1074/jbc.RA120.016004_bib39) 2006; 281 Xu (10.1074/jbc.RA120.016004_bib8) 2011; 54 Moritzer (10.1074/jbc.RA120.016004_bib34) 2019; 28 Zhu (10.1074/jbc.RA120.016004_bib37) 2009; 391 Gkotsi (10.1074/jbc.RA120.016004_bib31) 2019; 11 Hertwig (10.1074/jbc.RA120.016004_bib60) 1997; 268 Hartwig (10.1074/jbc.RA120.016004_bib21) 2017; 50 Mitchell (10.1074/jbc.RA120.016004_bib59) 2000; 14 Dong (10.1074/jbc.RA120.016004_bib15) 2005; 309 Dolinsky (10.1074/jbc.RA120.016004_bib57) 2004; 32 Chitnumsub (10.1074/jbc.RA120.016004_bib65) 2004; 60 Becke (10.1074/jbc.RA120.016004_bib61) 1993; 98 Laskowski (10.1074/jbc.RA120.016004_bib71) 1993; 26 Wongnate (10.1074/jbc.RA120.016004_bib53) 2014; 136 Emsley (10.1074/jbc.RA120.016004_bib70) 2010; 66 Pimviriyakul (10.1074/jbc.RA120.016004_bib38) 2017; 292 Xu (10.1074/jbc.RA120.016004_bib9) 2014; 54 Phintha (10.1074/jbc.RA120.016004_bib19) 2020 Brünger (10.1074/jbc.RA120.016004_bib56) 1988; 4 Harvey (10.1074/jbc.RA120.016004_bib62) 2004; 127 Santos-Aberturas (10.1074/jbc.RA120.016004_bib48) 2015; 22 Karabencheva-Christova (10.1074/jbc.RA120.016004_bib32) 2017; 7 Jeschke (10.1074/jbc.RA120.016004_bib1) 2009; 66 Mori (10.1074/jbc.RA120.016004_bib30) 2019; 10 Olsson (10.1074/jbc.RA120.016004_bib49) 2011; 7 Payne (10.1074/jbc.RA120.016004_bib23) 2015; 54 Cabantous (10.1074/jbc.RA120.016004_bib47) 2006; 3 Yeh (10.1074/jbc.RA120.016004_bib28) 2006; 45 Keller (10.1074/jbc.RA120.016004_bib16) 2000; 39 Xu (10.1074/jbc.RA120.016004_bib13) 2012; 223 Zhan (10.1074/jbc.RA120.016004_bib55) 2008; 47 Alonso (10.1074/jbc.RA120.016004_bib10) 2002; 102 van der Kamp (10.1074/jbc.RA120.016004_bib46) 2010; 114 Yeh (10.1074/jbc.RA120.016004_bib27) 2007; 46 Shepherd (10.1074/jbc.RA120.016004_bib25) 2015; 6 Wilcken (10.1074/jbc.RA120.016004_bib7) 2013; 56 Emsley (10.1074/jbc.RA120.016004_bib69) 2004; 60 Chaiyen (10.1074/jbc.RA120.016004_bib41) 1997; 36 McCoy (10.1074/jbc.RA120.016004_bib66) 2007; 40 Lu (10.1074/jbc.RA120.016004_bib2) 2012; 7 Moritzer (10.1074/jbc.RA120.016004_bib35) 2019; 294 Ranaghan (10.1074/jbc.RA120.016004_bib45) 2017; 121 MacKerell (10.1074/jbc.RA120.016004_bib58) 1998; 102 Laskowski (10.1074/jbc.RA120.016004_bib72) 2011; 51 Marcelo Zaldini (10.1074/jbc.RA120.016004_bib4) 2010; 11 Kelly (10.1074/jbc.RA120.016004_bib11) 2007; 317 Massey (10.1074/jbc.RA120.016004_bib52) 1994; 269 Lawan (10.1074/jbc.RA120.016004_bib44) 2014; 608 Agarwal (10.1074/jbc.RA120.016004_bib18) 2017; 117 Werner (10.1074/jbc.RA120.016004_bib63) 2012; 2 Prakash (10.1074/jbc.RA120.016004_bib12) 2004; 126 Latham (10.1074/jbc.RA120.016004_bib14) 2018; 118 Sullivan (10.1074/jbc.RA120.016004_bib64) 2013; 53 Visitsatthawong (10.1074/jbc.RA120.016004_bib54) 2015; 137 Bitto (10.1074/jbc.RA120.016004_bib36) 2008; 70 Wilcken (10.1074/jbc.RA120.016004_bib6) 2012; 134 |
References_xml | – volume: 47 start-page: 2221 year: 2008 end-page: 2230 ident: bib55 article-title: Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme publication-title: Biochemistry – volume: 54 start-page: 298 year: 2015 end-page: 301 ident: bib33 article-title: Enzymatic halogenation of tryptophan on a gram scale publication-title: Angew. Chem. Int. Ed. Engl. – volume: 54 start-page: 69 year: 2014 end-page: 78 ident: bib9 article-title: Halogen bond: its role beyond drug-target binding affinity for drug discovery and development publication-title: J. Chem. Inf. Model. – volume: 60 start-page: 780 year: 2004 end-page: 783 ident: bib65 article-title: Characterization, crystallization and preliminary X-ray analysis of bifunctional dihydrofolate reductase-thymidylate synthase from Plasmodium falciparum publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 10 start-page: 1255 year: 2019 ident: bib30 article-title: Unusual substrate and halide versatility of phenolic halogenase PltM publication-title: Nat. Commun. – volume: 45 start-page: 7904 year: 2006 end-page: 7912 ident: bib28 article-title: Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH publication-title: Biochemistry – volume: 268 start-page: 345 year: 1997 end-page: 351 ident: bib60 article-title: On the parameterization of the local correlation functional. What is Becke-3-LYP? publication-title: Chem. Phys. Lett. – volume: 60 start-page: 2126 year: 2004 end-page: 2132 ident: bib69 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D, Biol. Crystallogr. – volume: 121 start-page: 9785 year: 2017 end-page: 9798 ident: bib45 article-title: QM/MM modeling of the rate-limiting proton transfer step in the deamination of tryptamine by aromatic amine dehydrogenase publication-title: J. Phys. Chem. B. – volume: 14 start-page: 745 year: 2000 end-page: 746 ident: bib59 article-title: A Chemist's Guide to Density Functional Theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, Germany, 2000. x + 294 pages. £70 ISBN 3-527-29918-1 publication-title: Appl. Organometal. Chem. – volume: 54 start-page: 5607 year: 2011 end-page: 5611 ident: bib8 article-title: Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors publication-title: J. Med. Chem. – volume: 28 start-page: 2112 year: 2019 end-page: 2118 ident: bib34 article-title: Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled publication-title: Protein Sci. – volume: 6 start-page: 416 year: 2017 end-page: 420 ident: bib20 article-title: A simple combinatorial codon mutagenesis method for targeted protein engineering publication-title: ACS Synth. Biol. – volume: 53 start-page: 70 year: 2013 end-page: 77 ident: bib64 article-title: Library construction and evaluation for site saturation mutagenesis publication-title: Enzyme Microb. Technol. – volume: 105 start-page: 6685 year: 1983 end-page: 6697 ident: bib50 article-title: The chemistry of a 1,5-diblocked flavin. 2. Proton and electron transfer steps in the reaction of dihydroflavins with oxygen publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 2951 year: 2011 end-page: 2953 ident: bib22 article-title: Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis publication-title: Angew. Chem. Int. Ed. Engl. – volume: 102 start-page: 3586 year: 1998 end-page: 3616 ident: bib58 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B. – volume: 281 start-page: 17044 year: 2006 end-page: 17053 ident: bib39 article-title: Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from acinetobacter baumannii publication-title: J. Biol. Chem. – volume: 66 start-page: 10 year: 2009 end-page: 27 ident: bib1 article-title: The unique role of halogen substituents in the design of modern agrochemicals publication-title: Pest Manag. Sci. – volume: 269 start-page: 22459 year: 1994 end-page: 22462 ident: bib52 article-title: Activation of molecular oxygen by flavins and flavoproteins publication-title: J. Biol. Chem. – volume: 2 start-page: 242 year: 2012 end-page: 253 ident: bib63 article-title: Molpro: a general-purpose quantum chemistry program package publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: bib66 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. – volume: 309 start-page: 2216 year: 2005 end-page: 2219 ident: bib15 article-title: Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination publication-title: Science – volume: 36 start-page: 13856 year: 1997 end-page: 13864 ident: bib41 article-title: Reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase with N-Methyl-5-hydroxynicotinic acid: studies on the mode of binding, and protonation status of the substrate publication-title: Biochemistry – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib70 article-title: Features and development of coot publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 126 start-page: 15770 year: 2004 end-page: 15776 ident: bib12 article-title: N-Halosuccinimide/BF3−H2O, efficient electrophilic halogenating systems for aromatics publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1286 year: 2014 end-page: 1289 ident: bib24 article-title: Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution publication-title: Chembiochem – volume: 46 start-page: 1284 year: 2007 end-page: 1292 ident: bib27 article-title: Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases publication-title: Biochemistry – volume: 118 start-page: 232 year: 2018 end-page: 269 ident: bib14 article-title: Development of halogenase enzymes for use in synthesis publication-title: Chem. Rev. – volume: 7 start-page: 17395 year: 2017 ident: bib32 article-title: Mechanistic insights into the reaction of chlorination of tryptophan catalyzed by tryptophan 7-halogenase publication-title: Sci. Rep. – volume: 51 start-page: 2778 year: 2011 end-page: 2786 ident: bib72 article-title: LigPlot+: multiple ligand–protein interaction diagrams for drug discovery publication-title: J. Chem. Inf. Model. – volume: 317 start-page: 236 year: 2007 ident: bib11 article-title: Food web-specific biomagnification of persistent organic pollutants publication-title: Science – volume: 294 start-page: 2529 year: 2019 end-page: 2542 ident: bib35 article-title: Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal publication-title: J. Biol. Chem. – volume: 98 start-page: 5648 year: 1993 end-page: 5652 ident: bib61 article-title: Density-functional thermochemistry. III. The role of exact exchange publication-title: J. Chem. Phys. – volume: 137 start-page: 9363 year: 2015 end-page: 9374 ident: bib54 article-title: Mechanism of oxygen activation in a flavin-dependent monooxygenase: a nearly barrierless formation of C4a-hydroperoxyflavin via proton-coupled electron transfer publication-title: J. Am. Chem. Soc. – volume: 32 start-page: W665 year: 2004 end-page: W667 ident: bib57 article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. – volume: 117 start-page: 5619 year: 2017 end-page: 5674 ident: bib18 article-title: Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse publication-title: Chem. Rev. – volume: 114 start-page: 11303 year: 2010 end-page: 11314 ident: bib46 article-title: Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase publication-title: J. Phys. Chem. B. – volume: 36 start-page: 8060 year: 1997 end-page: 8070 ident: bib40 article-title: Unusual mechanism of oxygen atom transfer and product rearrangement in the catalytic reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase publication-title: Biochemistry – volume: 26 start-page: 283 year: 1993 end-page: 291 ident: bib71 article-title: PROCHECK: a program to check the stereochemical quality of protein structures publication-title: J. Appl. Crystallogr. – volume: 56 start-page: 1363 year: 2013 end-page: 1388 ident: bib7 article-title: Principles and applications of halogen bonding in medicinal chemistry and chemical biology publication-title: J. Med. Chem. – volume: 67 start-page: 355 year: 2011 end-page: 367 ident: bib68 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 7 start-page: 525 year: 2011 end-page: 537 ident: bib49 article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions publication-title: J. Chem. Theor. Comput. – volume: 391 start-page: 74 year: 2009 end-page: 85 ident: bib37 article-title: Structural insights into regioselectivity in the enzymatic chlorination of tryptophan publication-title: J. Mol. Biol. – volume: 47 start-page: 9533 year: 2008 end-page: 9536 ident: bib29 article-title: New insights into the mechanism of enzymatic chlorination of tryptophan publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 845 year: 2006 end-page: 854 ident: bib47 article-title: and publication-title: Nat. Methods – volume: 11 start-page: 303 year: 2010 end-page: 314 ident: bib4 article-title: Halogen atoms in the modern medicinal chemistry: hints for the drug design publication-title: Curr. Drug Targets – volume: 4 start-page: 148 year: 1988 end-page: 156 ident: bib56 article-title: Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison publication-title: Proteins – volume: 52 start-page: 2854 year: 2009 end-page: 2862 ident: bib3 article-title: Halogen bonding-a novel interaction for rational drug design? publication-title: J. Med. Chem. – volume: 134 start-page: 6810 year: 2012 end-page: 6818 ident: bib6 article-title: Halogen-enriched fragment libraries as leads for drug rescue of mutant p53 publication-title: J. Am. Chem. Soc. – volume: 292 start-page: 4818 year: 2017 end-page: 4832 ident: bib38 article-title: Kinetic mechanism of the dechlorinating flavin-dependent monooxygenase HadA publication-title: J. Biol. Chem. – start-page: 327 year: 2020 end-page: 364 ident: bib19 article-title: Chapter Eleven - structures, mechanisms and applications of flavin-dependent halogenases publication-title: The Enzymes – volume: 50 start-page: 549 year: 2017 end-page: 555 ident: bib21 article-title: Catalyst-controlled site-selective bond activation publication-title: Acc. Chem. Res. – volume: 87 start-page: 250 year: 2019 end-page: 256 ident: bib43 article-title: QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis publication-title: J. Mol. Graph. Model. – volume: 87 start-page: 159 year: 2018 end-page: 185 ident: bib26 article-title: Understanding and improving the activity of flavin-dependent halogenases via random and targeted mutagenesis publication-title: Annu. Rev. Biochem. – volume: 11 start-page: 1091 year: 2019 end-page: 1097 ident: bib31 article-title: A marine viral halogenase that iodinates diverse substrates publication-title: Nat. Chem. – volume: 428 start-page: 3131 year: 2016 end-page: 3146 ident: bib17 article-title: Chopping and changing: the evolution of the flavin-dependent monooxygenases publication-title: J. Mol. Biol. – volume: 12 start-page: 1204 year: 2017 end-page: 1210 ident: bib5 article-title: Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity publication-title: ACS Chem. Biol. – volume: 223 start-page: 4429 year: 2012 end-page: 4436 ident: bib13 article-title: formation of volatile halogenated by-products during the chlorination of Oxytetracycline publication-title: Water Air Soil Pollut. – volume: 67 start-page: 235 year: 2011 end-page: 242 ident: bib67 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. – volume: 70 start-page: 289 year: 2008 end-page: 293 ident: bib36 article-title: The structure of flavin-dependent tryptophan 7-halogenase RebH publication-title: Proteins – volume: 127 start-page: 165 year: 2004 end-page: 177 ident: bib62 article-title: Spin-forbidden CO ligand recombination in myoglobin publication-title: Faraday Discuss. – volume: 54 start-page: 4226 year: 2015 end-page: 4230 ident: bib23 article-title: Directed evolution of RebH for site-selective halogenation of large biologically active molecules publication-title: Angew. Chem. Int. Ed. Engl. – volume: 608 start-page: 380 year: 2014 end-page: 385 ident: bib44 article-title: Comparison of DFT and publication-title: Chem. Phys. Lett. – volume: 22 start-page: 1406 year: 2015 end-page: 1414 ident: bib48 article-title: In-depth high-throughput screening of protein engineering libraries by split-GFP direct crude cell extract data normalization publication-title: Chem. Biol. – volume: 24 start-page: 54 year: 1984 end-page: 61 ident: bib51 article-title: Oxygen-flavin chemistry publication-title: Isr. J. Chem. – volume: 39 start-page: 2300 year: 2000 end-page: 2302 ident: bib16 article-title: Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens publication-title: Angew. Chem. Int. Ed. Engl. – volume: 136 start-page: 241 year: 2014 end-page: 253 ident: bib53 article-title: Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 4009 year: 2002 end-page: 4092 ident: bib10 article-title: Metal-mediated reductive hydrodehalogenation of organic halides publication-title: Chem. Rev. – volume: 48 start-page: 4170 year: 2009 end-page: 4180 ident: bib42 article-title: Kinetic mechanism of pyranose 2-oxidase from trametes multicolor publication-title: Biochemistry – volume: 6 start-page: 3454 year: 2015 end-page: 3460 ident: bib25 article-title: Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes publication-title: Chem. Sci. – volume: 7 start-page: 375 year: 2012 end-page: 383 ident: bib2 article-title: Halogen bonding for rational drug design and new drug discovery publication-title: Expert Opin. Drug Discov. – volume: 11 start-page: 1091 year: 2019 ident: 10.1074/jbc.RA120.016004_bib31 article-title: A marine viral halogenase that iodinates diverse substrates publication-title: Nat. Chem. doi: 10.1038/s41557-019-0349-z – volume: 87 start-page: 159 year: 2018 ident: 10.1074/jbc.RA120.016004_bib26 article-title: Understanding and improving the activity of flavin-dependent halogenases via random and targeted mutagenesis publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062917-012042 – volume: 114 start-page: 11303 year: 2010 ident: 10.1074/jbc.RA120.016004_bib46 article-title: Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase publication-title: J. Phys. Chem. B. doi: 10.1021/jp104069t – start-page: 327 year: 2020 ident: 10.1074/jbc.RA120.016004_bib19 article-title: Chapter Eleven - structures, mechanisms and applications of flavin-dependent halogenases doi: 10.1016/bs.enz.2020.05.009 – volume: 134 start-page: 6810 year: 2012 ident: 10.1074/jbc.RA120.016004_bib6 article-title: Halogen-enriched fragment libraries as leads for drug rescue of mutant p53 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja301056a – volume: 121 start-page: 9785 year: 2017 ident: 10.1074/jbc.RA120.016004_bib45 article-title: Ab Initio QM/MM modeling of the rate-limiting proton transfer step in the deamination of tryptamine by aromatic amine dehydrogenase publication-title: J. Phys. Chem. B. doi: 10.1021/acs.jpcb.7b06892 – volume: 40 start-page: 658 year: 2007 ident: 10.1074/jbc.RA120.016004_bib66 article-title: Phaser crystallographic software publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807021206 – volume: 52 start-page: 2854 year: 2009 ident: 10.1074/jbc.RA120.016004_bib3 article-title: Halogen bonding-a novel interaction for rational drug design? publication-title: J. Med. Chem. doi: 10.1021/jm9000133 – volume: 54 start-page: 4226 year: 2015 ident: 10.1074/jbc.RA120.016004_bib23 article-title: Directed evolution of RebH for site-selective halogenation of large biologically active molecules publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201411901 – volume: 60 start-page: 780 year: 2004 ident: 10.1074/jbc.RA120.016004_bib65 article-title: Characterization, crystallization and preliminary X-ray analysis of bifunctional dihydrofolate reductase-thymidylate synthase from Plasmodium falciparum publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444904001544 – volume: 102 start-page: 4009 year: 2002 ident: 10.1074/jbc.RA120.016004_bib10 article-title: Metal-mediated reductive hydrodehalogenation of organic halides publication-title: Chem. Rev. doi: 10.1021/cr0102967 – volume: 47 start-page: 2221 year: 2008 ident: 10.1074/jbc.RA120.016004_bib55 article-title: Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme publication-title: Biochemistry doi: 10.1021/bi701853w – volume: 54 start-page: 298 year: 2015 ident: 10.1074/jbc.RA120.016004_bib33 article-title: Enzymatic halogenation of tryptophan on a gram scale publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201408561 – volume: 136 start-page: 241 year: 2014 ident: 10.1074/jbc.RA120.016004_bib53 article-title: Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4088055 – volume: 317 start-page: 236 year: 2007 ident: 10.1074/jbc.RA120.016004_bib11 article-title: Food web-specific biomagnification of persistent organic pollutants publication-title: Science doi: 10.1126/science.1138275 – volume: 54 start-page: 69 year: 2014 ident: 10.1074/jbc.RA120.016004_bib9 article-title: Halogen bond: its role beyond drug-target binding affinity for drug discovery and development publication-title: J. Chem. Inf. Model. doi: 10.1021/ci400539q – volume: 67 start-page: 235 year: 2011 ident: 10.1074/jbc.RA120.016004_bib67 article-title: Overview of the CCP4 suite and current developments publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910045749 – volume: 47 start-page: 9533 year: 2008 ident: 10.1074/jbc.RA120.016004_bib29 article-title: New insights into the mechanism of enzymatic chlorination of tryptophan publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200802466 – volume: 281 start-page: 17044 year: 2006 ident: 10.1074/jbc.RA120.016004_bib39 article-title: Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from acinetobacter baumannii publication-title: J. Biol. Chem. doi: 10.1074/jbc.M512385200 – volume: 28 start-page: 2112 year: 2019 ident: 10.1074/jbc.RA120.016004_bib34 article-title: Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled publication-title: Protein Sci. doi: 10.1002/pro.3739 – volume: 127 start-page: 165 year: 2004 ident: 10.1074/jbc.RA120.016004_bib62 article-title: Spin-forbidden CO ligand recombination in myoglobin publication-title: Faraday Discuss. doi: 10.1039/b314768a – volume: 2 start-page: 242 year: 2012 ident: 10.1074/jbc.RA120.016004_bib63 article-title: Molpro: a general-purpose quantum chemistry program package publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.82 – volume: 48 start-page: 4170 year: 2009 ident: 10.1074/jbc.RA120.016004_bib42 article-title: Kinetic mechanism of pyranose 2-oxidase from trametes multicolor publication-title: Biochemistry doi: 10.1021/bi802331r – volume: 118 start-page: 232 year: 2018 ident: 10.1074/jbc.RA120.016004_bib14 article-title: Development of halogenase enzymes for use in synthesis publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00032 – volume: 36 start-page: 13856 year: 1997 ident: 10.1074/jbc.RA120.016004_bib41 article-title: Reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase with N-Methyl-5-hydroxynicotinic acid: studies on the mode of binding, and protonation status of the substrate publication-title: Biochemistry doi: 10.1021/bi9715122 – volume: 6 start-page: 3454 year: 2015 ident: 10.1074/jbc.RA120.016004_bib25 article-title: Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes publication-title: Chem. Sci. doi: 10.1039/C5SC00913H – volume: 117 start-page: 5619 year: 2017 ident: 10.1074/jbc.RA120.016004_bib18 article-title: Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00571 – volume: 87 start-page: 250 year: 2019 ident: 10.1074/jbc.RA120.016004_bib43 article-title: QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis publication-title: J. Mol. Graph. Model. doi: 10.1016/j.jmgm.2018.12.011 – volume: 102 start-page: 3586 year: 1998 ident: 10.1074/jbc.RA120.016004_bib58 article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins publication-title: J. Phys. Chem. B. doi: 10.1021/jp973084f – volume: 126 start-page: 15770 year: 2004 ident: 10.1074/jbc.RA120.016004_bib12 article-title: N-Halosuccinimide/BF3−H2O, efficient electrophilic halogenating systems for aromatics publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0465247 – volume: 292 start-page: 4818 year: 2017 ident: 10.1074/jbc.RA120.016004_bib38 article-title: Kinetic mechanism of the dechlorinating flavin-dependent monooxygenase HadA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.774448 – volume: 60 start-page: 2126 year: 2004 ident: 10.1074/jbc.RA120.016004_bib69 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D, Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 105 start-page: 6685 year: 1983 ident: 10.1074/jbc.RA120.016004_bib50 article-title: The chemistry of a 1,5-diblocked flavin. 2. Proton and electron transfer steps in the reaction of dihydroflavins with oxygen publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00360a024 – volume: 4 start-page: 148 year: 1988 ident: 10.1074/jbc.RA120.016004_bib56 article-title: Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison publication-title: Proteins doi: 10.1002/prot.340040208 – volume: 66 start-page: 10 year: 2009 ident: 10.1074/jbc.RA120.016004_bib1 article-title: The unique role of halogen substituents in the design of modern agrochemicals publication-title: Pest Manag. Sci. doi: 10.1002/ps.1829 – volume: 39 start-page: 2300 year: 2000 ident: 10.1074/jbc.RA120.016004_bib16 article-title: Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/1521-3773(20000703)39:13<2300::AID-ANIE2300>3.0.CO;2-I – volume: 98 start-page: 5648 year: 1993 ident: 10.1074/jbc.RA120.016004_bib61 article-title: Density-functional thermochemistry. III. The role of exact exchange publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 53 start-page: 70 year: 2013 ident: 10.1074/jbc.RA120.016004_bib64 article-title: Library construction and evaluation for site saturation mutagenesis publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2013.02.012 – volume: 294 start-page: 2529 year: 2019 ident: 10.1074/jbc.RA120.016004_bib35 article-title: Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.005393 – volume: 7 start-page: 525 year: 2011 ident: 10.1074/jbc.RA120.016004_bib49 article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions publication-title: J. Chem. Theor. Comput. doi: 10.1021/ct100578z – volume: 36 start-page: 8060 year: 1997 ident: 10.1074/jbc.RA120.016004_bib40 article-title: Unusual mechanism of oxygen atom transfer and product rearrangement in the catalytic reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase publication-title: Biochemistry doi: 10.1021/bi970089u – volume: 309 start-page: 2216 year: 2005 ident: 10.1074/jbc.RA120.016004_bib15 article-title: Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination publication-title: Science doi: 10.1126/science.1116510 – volume: 15 start-page: 1286 year: 2014 ident: 10.1074/jbc.RA120.016004_bib24 article-title: Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution publication-title: Chembiochem doi: 10.1002/cbic.201300780 – volume: 268 start-page: 345 year: 1997 ident: 10.1074/jbc.RA120.016004_bib60 article-title: On the parameterization of the local correlation functional. What is Becke-3-LYP? publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)00207-8 – volume: 12 start-page: 1204 year: 2017 ident: 10.1074/jbc.RA120.016004_bib5 article-title: Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00056 – volume: 54 start-page: 5607 year: 2011 ident: 10.1074/jbc.RA120.016004_bib8 article-title: Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm200644r – volume: 14 start-page: 745 year: 2000 ident: 10.1074/jbc.RA120.016004_bib59 article-title: A Chemist's Guide to Density Functional Theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, Germany, 2000. x + 294 pages. £70 ISBN 3-527-29918-1 publication-title: Appl. Organometal. Chem. doi: 10.1002/1099-0739(200011)14:11<745::AID-AOC57>3.0.CO;2-H – volume: 66 start-page: 486 year: 2010 ident: 10.1074/jbc.RA120.016004_bib70 article-title: Features and development of coot publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910007493 – volume: 45 start-page: 7904 year: 2006 ident: 10.1074/jbc.RA120.016004_bib28 article-title: Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH publication-title: Biochemistry doi: 10.1021/bi060607d – volume: 608 start-page: 380 year: 2014 ident: 10.1074/jbc.RA120.016004_bib44 article-title: Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.06.010 – volume: 50 start-page: 549 year: 2017 ident: 10.1074/jbc.RA120.016004_bib21 article-title: Catalyst-controlled site-selective bond activation publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00546 – volume: 26 start-page: 283 year: 1993 ident: 10.1074/jbc.RA120.016004_bib71 article-title: PROCHECK: a program to check the stereochemical quality of protein structures publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892009944 – volume: 223 start-page: 4429 year: 2012 ident: 10.1074/jbc.RA120.016004_bib13 article-title: formation of volatile halogenated by-products during the chlorination of Oxytetracycline publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1206-5 – volume: 137 start-page: 9363 year: 2015 ident: 10.1074/jbc.RA120.016004_bib54 article-title: Mechanism of oxygen activation in a flavin-dependent monooxygenase: a nearly barrierless formation of C4a-hydroperoxyflavin via proton-coupled electron transfer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04328 – volume: 269 start-page: 22459 year: 1994 ident: 10.1074/jbc.RA120.016004_bib52 article-title: Activation of molecular oxygen by flavins and flavoproteins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31664-2 – volume: 7 start-page: 17395 year: 2017 ident: 10.1074/jbc.RA120.016004_bib32 article-title: Mechanistic insights into the reaction of chlorination of tryptophan catalyzed by tryptophan 7-halogenase publication-title: Sci. Rep. doi: 10.1038/s41598-017-17789-x – volume: 6 start-page: 416 year: 2017 ident: 10.1074/jbc.RA120.016004_bib20 article-title: A simple combinatorial codon mutagenesis method for targeted protein engineering publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00297 – volume: 24 start-page: 54 year: 1984 ident: 10.1074/jbc.RA120.016004_bib51 article-title: Oxygen-flavin chemistry publication-title: Isr. J. Chem. doi: 10.1002/ijch.198400008 – volume: 32 start-page: W665 year: 2004 ident: 10.1074/jbc.RA120.016004_bib57 article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh381 – volume: 10 start-page: 1255 year: 2019 ident: 10.1074/jbc.RA120.016004_bib30 article-title: Unusual substrate and halide versatility of phenolic halogenase PltM publication-title: Nat. Commun. doi: 10.1038/s41467-019-09215-9 – volume: 391 start-page: 74 year: 2009 ident: 10.1074/jbc.RA120.016004_bib37 article-title: Structural insights into regioselectivity in the enzymatic chlorination of tryptophan publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.06.008 – volume: 22 start-page: 1406 year: 2015 ident: 10.1074/jbc.RA120.016004_bib48 article-title: In-depth high-throughput screening of protein engineering libraries by split-GFP direct crude cell extract data normalization publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2015.08.014 – volume: 67 start-page: 355 year: 2011 ident: 10.1074/jbc.RA120.016004_bib68 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444911001314 – volume: 70 start-page: 289 year: 2008 ident: 10.1074/jbc.RA120.016004_bib36 article-title: The structure of flavin-dependent tryptophan 7-halogenase RebH publication-title: Proteins doi: 10.1002/prot.21627 – volume: 3 start-page: 845 year: 2006 ident: 10.1074/jbc.RA120.016004_bib47 article-title: In vivo and in vitro protein solubility assays using split GFP publication-title: Nat. Methods doi: 10.1038/nmeth932 – volume: 56 start-page: 1363 year: 2013 ident: 10.1074/jbc.RA120.016004_bib7 article-title: Principles and applications of halogen bonding in medicinal chemistry and chemical biology publication-title: J. Med. Chem. doi: 10.1021/jm3012068 – volume: 11 start-page: 303 year: 2010 ident: 10.1074/jbc.RA120.016004_bib4 article-title: Halogen atoms in the modern medicinal chemistry: hints for the drug design publication-title: Curr. Drug Targets doi: 10.2174/138945010790711996 – volume: 428 start-page: 3131 year: 2016 ident: 10.1074/jbc.RA120.016004_bib17 article-title: Chopping and changing: the evolution of the flavin-dependent monooxygenases publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.07.003 – volume: 50 start-page: 2951 year: 2011 ident: 10.1074/jbc.RA120.016004_bib22 article-title: Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201007896 – volume: 51 start-page: 2778 year: 2011 ident: 10.1074/jbc.RA120.016004_bib72 article-title: LigPlot+: multiple ligand–protein interaction diagrams for drug discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200227u – volume: 7 start-page: 375 year: 2012 ident: 10.1074/jbc.RA120.016004_bib2 article-title: Halogen bonding for rational drug design and new drug discovery publication-title: Expert Opin. Drug Discov. doi: 10.1517/17460441.2012.678829 – volume: 46 start-page: 1284 year: 2007 ident: 10.1074/jbc.RA120.016004_bib27 article-title: Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases publication-title: Biochemistry doi: 10.1021/bi0621213 |
SSID | ssj0000491 |
Score | 2.5134923 |
Snippet | Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100068 |
SubjectTerms | Catalysis Crystallography, X-Ray flavin monooxygenase Flavin-Adenine Dinucleotide - metabolism Flavins - metabolism halogenase Halogenation Hydrogen Peroxide - metabolism Kinetics Models, Molecular Oxidoreductases - metabolism Protein Conformation QM/MM calculations stopped-flow X-ray structures |
Title | Dissecting the low catalytic capability of flavin-dependent halogenases |
URI | https://dx.doi.org/10.1074/jbc.RA120.016004 https://www.ncbi.nlm.nih.gov/pubmed/33465708 https://www.proquest.com/docview/2479423453 https://pubmed.ncbi.nlm.nih.gov/PMC7948982 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEA9yftAvonc-1scRQQSR7rVN-vq4nI_j1ENlhf1WkjTFxbWVbtfl_OudSfranh56X0ppkiZkJpNJZuY3hDyLPBnmWaKdPM9cOKB4HOQgDxzYmrWXMx1LA-L64Sw8-cJPF8Gid7c10SW1nKpff4wruQpV4RvQFaNk_4Oy3U_hA7wDfeEJFIbnP9H4FRrTVd1GPK3K7UtzHXOOKKwKtkHj-Wps6PlK_FwWTpvztsYkKiX8GDax9VBB7UPFjJJqMZosikibGm5gSChqay-aLdcCka97m_7HCtNcWS8fECTZWmTiW1l15aei2myFxTyoljU2b4vei629lT2Dc3wxvJbwvdG1RBcvs-POaR1CfAvWPtVW5IISiPEEi6FM9m2a2wvyHRQelO9STT_PPN-dIj6eTV88Qs1GI7SHPWEokhtgkP11H04SKArffeoB5eGAZJMqNgNrLNnQz9G4l79pLhdPJmMH24HGMr9NbjVUpDPLN3fINV3sk4NZIery-zl9To3zr7Gq7JMbxy11D8jbnq0osBUFtqIdW9GerWiZ0zFb0QFb3SXzN6_nxydOk2_DUZxHtaMSnkk03Lua52EW-VzmUudMiABOAQksduVBTQ3Ll3si5xn3UB0NvRg0rTBj98heURb6AaEx0wELlEgC6XImeeImfiyUiJXSrsyCCTlqpzJVDRY9pkRZpcYnIuIpTH5qJj-1kz8hL7oWPywOyyV1WUudtNEjrX6YAhtd0uppS8gUJhztZqLQ5Wad-piFwWc8YBNy3xK2GwNjHJ3H4gmJdkjeVUD49t2SYvnVwLjDT-Mk9h9eabSPyM1-1T0me3W10U9APa7loblWOjRs_htPXr5n |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissecting+the+low+catalytic+capability+of+flavin-dependent+halogenases&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Phintha%2C+Aisaraphon&rft.au=Prakinee%2C+Kridsadakorn&rft.au=Jaruwat%2C+Aritsara&rft.au=Lawan%2C+Narin&rft.date=2021-01-01&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=296&rft_id=info:doi/10.1074%2Fjbc.RA120.016004&rft.externalDocID=S0021925820000551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |