Dissecting the low catalytic capability of flavin-dependent halogenases

Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-f...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 296; p. 100068
Main Authors Phintha, Aisaraphon, Prakinee, Kridsadakorn, Jaruwat, Aritsara, Lawan, Narin, Visitsatthawong, Surawit, Kantiwiriyawanitch, Chadaporn, Songsungthong, Warangkhana, Trisrivirat, Duangthip, Chenprakhon, Pirom, Mulholland, Adrian, van Pée, Karl-Heinz, Chitnumsub, Penchit, Chaiyen, Pimchai
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2021
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I−, Br−, and Cl− but not F− to form C4a-hydroxyflavin and HOX. Our experiments revealed that I− reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.
AbstractList Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I-, Br-, and Cl- but not F- to form C4a-hydroxyflavin and HOX. Our experiments revealed that I- reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I-, Br-, and Cl- but not F- to form C4a-hydroxyflavin and HOX. Our experiments revealed that I- reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.
Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I , Br , and Cl but not F to form C4a-hydroxyflavin and HOX. Our experiments revealed that I reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.
Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I − , Br − , and Cl − but not F − to form C4a-hydroxyflavin and HOX. Our experiments revealed that I − reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower p K a compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.
Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency. Here, we investigated the reaction mechanisms and structures of tryptophan 6-halogenase (Thal) from Streptomyces albogriseolus using stopped-flow, rapid-quench flow, quantum/mechanics molecular mechanics calculations, crystallography, and detection of intermediate (hypohalous acid [HOX]) liberation. We found that the key flavin intermediate, C4a-hydroperoxyflavin (C4aOOH-FAD), formed by Thal and other FDHs (tryptophan 7-halogenase [PrnA] and tryptophan 5-halogenase [PyrH]), can react with I−, Br−, and Cl− but not F− to form C4a-hydroxyflavin and HOX. Our experiments revealed that I− reacts with C4aOOH-FAD the fastest with the lowest energy barrier and have shown for the first time that a significant amount of the HOX formed leaks out as free HOX. This leakage is probably a major cause of low product coupling ratios in all FDHs. Site-saturation mutagenesis of Lys79 showed that changing Lys79 to any other amino acid resulted in an inactive enzyme. However, the levels of liberated HOX of these variants are all similar, implying that Lys79 probably does not form a chloramine or bromamine intermediate as previously proposed. Computational calculations revealed that Lys79 has an abnormally lower pKa compared with other Lys residues, implying that the catalytic Lys may act as a proton donor in catalysis. Analysis of new X-ray structures of Thal also explains why premixing of FDHs with reduced flavin adenine dinucleotide generally results in abolishment of C4aOOH-FAD formation. These findings reveal the hidden factors restricting FDHs capability which should be useful for future development of FDHs applications.
ArticleNumber 100068
Author Visitsatthawong, Surawit
Prakinee, Kridsadakorn
Chenprakhon, Pirom
Mulholland, Adrian
Trisrivirat, Duangthip
van Pée, Karl-Heinz
Jaruwat, Aritsara
Phintha, Aisaraphon
Kantiwiriyawanitch, Chadaporn
Chaiyen, Pimchai
Chitnumsub, Penchit
Lawan, Narin
Songsungthong, Warangkhana
Author_xml – sequence: 1
  givenname: Aisaraphon
  orcidid: 0000-0001-6565-998X
  surname: Phintha
  fullname: Phintha, Aisaraphon
  organization: Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
– sequence: 2
  givenname: Kridsadakorn
  orcidid: 0000-0003-2421-1518
  surname: Prakinee
  fullname: Prakinee, Kridsadakorn
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 3
  givenname: Aritsara
  surname: Jaruwat
  fullname: Jaruwat, Aritsara
  organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand
– sequence: 4
  givenname: Narin
  surname: Lawan
  fullname: Lawan, Narin
  organization: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
– sequence: 5
  givenname: Surawit
  surname: Visitsatthawong
  fullname: Visitsatthawong, Surawit
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 6
  givenname: Chadaporn
  orcidid: 0000-0002-8839-5814
  surname: Kantiwiriyawanitch
  fullname: Kantiwiriyawanitch, Chadaporn
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 7
  givenname: Warangkhana
  surname: Songsungthong
  fullname: Songsungthong, Warangkhana
  organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand
– sequence: 8
  givenname: Duangthip
  surname: Trisrivirat
  fullname: Trisrivirat, Duangthip
  organization: School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
– sequence: 9
  givenname: Pirom
  orcidid: 0000-0002-5927-6920
  surname: Chenprakhon
  fullname: Chenprakhon, Pirom
  organization: Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand
– sequence: 10
  givenname: Adrian
  surname: Mulholland
  fullname: Mulholland, Adrian
  organization: Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
– sequence: 11
  givenname: Karl-Heinz
  surname: van Pée
  fullname: van Pée, Karl-Heinz
  organization: General Biochemistry, Faculty of Chemistry and Food Chemistry, Technical University of Dresden, Dresden, Germany
– sequence: 12
  givenname: Penchit
  orcidid: 0000-0001-5920-3708
  surname: Chitnumsub
  fullname: Chitnumsub, Penchit
  email: penchit@biotec.or.th
  organization: Biomolecular Analysis and Application Research Team, National Center for Genetic Engineering and Biotechnology, Klong Luang, Pathumthani, Thailand
– sequence: 13
  givenname: Pimchai
  orcidid: 0000-0002-8533-1604
  surname: Chaiyen
  fullname: Chaiyen, Pimchai
  email: pimchai.chaiyen@vistec.ac.th
  organization: Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33465708$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1vEzEQxS1URNPCnRPaI5cN_pj94oBUFShIlZBQD9wsrz2bTOXYYe2kyn-PS0oFSODLWJrfezOad8ZOQgzI2EvBl4J38OZ2tMuvF0LyJRct5_CELQTvVa0a8e2ELTiXoh5k05-ys5RueXkwiGfsVClom473C3b1nlJCmymsqrzGyse7ypps_CGTLb-tGclTPlRxqiZv9hRqh1sMDkOu1sbHFQaTMD1nTyfjE754qOfs5uOHm8tP9fWXq8-XF9e1BehybQdwI0glOcLUuk7COI04KWMaqcSA1lpRSBxbCcJM4ECAaJpW9BaxdeqcvTvabnfjBp0tW8zG6-1MGzMfdDSk_-wEWutV3OtugH7oZTF4_WAwx-87TFlvKFn03gSMu6QlFFIqaFRBX_0-63HIr-MVgB8BO8eUZpweEcH1fT665KN_5qOP-RRJ-5fEUjaZ4v225P8nfHsUYjnunnDWyRIGi47mEp92kf4t_gGk4apF
CitedBy_id crossref_primary_10_1002_anie_202418843
crossref_primary_10_1038_s41467_021_23503_3
crossref_primary_10_1002_bit_28188
crossref_primary_10_1002_chir_23550
crossref_primary_10_1021_acsomega_4c09590
crossref_primary_10_1002_cbic_202300700
crossref_primary_10_1016_j_checat_2022_09_044
crossref_primary_10_1002_ange_202214610
crossref_primary_10_1039_D0CS01551B
crossref_primary_10_1016_j_checat_2022_09_026
crossref_primary_10_3389_fmicb_2023_1099098
crossref_primary_10_1002_ange_202403858
crossref_primary_10_1016_j_jbc_2021_100952
crossref_primary_10_1021_jacs_3c05750
crossref_primary_10_1021_acs_joc_1c00526
crossref_primary_10_1002_ange_202418843
crossref_primary_10_1038_s41467_024_45593_5
crossref_primary_10_1038_s41929_022_00800_8
crossref_primary_10_1002_cbic_202400496
crossref_primary_10_1021_acscatal_2c05231
crossref_primary_10_1038_s42004_023_01083_1
crossref_primary_10_1016_j_checat_2022_07_003
crossref_primary_10_1016_j_cogsc_2023_100784
crossref_primary_10_1021_acs_accounts_4c00172
crossref_primary_10_1016_j_checat_2022_09_010
crossref_primary_10_1007_s43630_024_00670_y
crossref_primary_10_1021_acs_orglett_4c04529
crossref_primary_10_1016_j_jbc_2023_105413
crossref_primary_10_1021_acs_chemrev_3c00042
crossref_primary_10_1002_anie_202403858
crossref_primary_10_1002_cbic_202300478
crossref_primary_10_1002_anie_202214610
crossref_primary_10_1039_D4CS00196F
crossref_primary_10_1073_pnas_2409479122
crossref_primary_10_1021_acs_biochem_3c00222
Cites_doi 10.1038/s41557-019-0349-z
10.1146/annurev-biochem-062917-012042
10.1021/jp104069t
10.1016/bs.enz.2020.05.009
10.1021/ja301056a
10.1021/acs.jpcb.7b06892
10.1107/S0021889807021206
10.1021/jm9000133
10.1002/anie.201411901
10.1107/S0907444904001544
10.1021/cr0102967
10.1021/bi701853w
10.1002/anie.201408561
10.1021/ja4088055
10.1126/science.1138275
10.1021/ci400539q
10.1107/S0907444910045749
10.1002/anie.200802466
10.1074/jbc.M512385200
10.1002/pro.3739
10.1039/b314768a
10.1002/wcms.82
10.1021/bi802331r
10.1021/acs.chemrev.7b00032
10.1021/bi9715122
10.1039/C5SC00913H
10.1021/acs.chemrev.6b00571
10.1016/j.jmgm.2018.12.011
10.1021/jp973084f
10.1021/ja0465247
10.1074/jbc.M116.774448
10.1107/S0907444904019158
10.1021/ja00360a024
10.1002/prot.340040208
10.1002/ps.1829
10.1002/1521-3773(20000703)39:13<2300::AID-ANIE2300>3.0.CO;2-I
10.1063/1.464913
10.1016/j.enzmictec.2013.02.012
10.1074/jbc.RA118.005393
10.1021/ct100578z
10.1021/bi970089u
10.1126/science.1116510
10.1002/cbic.201300780
10.1016/S0009-2614(97)00207-8
10.1021/acschembio.7b00056
10.1021/jm200644r
10.1002/1099-0739(200011)14:11<745::AID-AOC57>3.0.CO;2-H
10.1107/S0907444910007493
10.1021/bi060607d
10.1016/j.cplett.2014.06.010
10.1021/acs.accounts.6b00546
10.1107/S0021889892009944
10.1007/s11270-012-1206-5
10.1021/jacs.5b04328
10.1016/S0021-9258(17)31664-2
10.1038/s41598-017-17789-x
10.1021/acssynbio.6b00297
10.1002/ijch.198400008
10.1093/nar/gkh381
10.1038/s41467-019-09215-9
10.1016/j.jmb.2009.06.008
10.1016/j.chembiol.2015.08.014
10.1107/S0907444911001314
10.1002/prot.21627
10.1038/nmeth932
10.1021/jm3012068
10.2174/138945010790711996
10.1016/j.jmb.2016.07.003
10.1002/anie.201007896
10.1021/ci200227u
10.1517/17460441.2012.678829
10.1021/bi0621213
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.RA120.016004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC7948982
33465708
10_1074_jbc_RA120_016004
S0021925820000551
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L01386X/1
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-c94db42320e4f6d724bfbef3aa52319eccc1c44eb6241af4d414155618cee6d3
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 14:10:12 EDT 2025
Fri Jul 11 10:46:24 EDT 2025
Mon Jul 21 05:35:25 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Tue Jul 01 04:11:57 EDT 2025
Fri Feb 23 02:43:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords halogenase
C1
Na2S2O4
flavin monooxygenase
PrnA
HOBr
QM/MM calculations
Thal
PyrH
HCOONa
X-ray structures
HPLC
FADH
HOI
DAD
MS
FAD
QM/MM
stopped-flow
HOX
NAD
HOCl
psFDH
DMSO-d6
kinetics
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-c94db42320e4f6d724bfbef3aa52319eccc1c44eb6241af4d414155618cee6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-5927-6920
0000-0002-8839-5814
0000-0002-8533-1604
0000-0001-5920-3708
0000-0003-2421-1518
0000-0001-6565-998X
OpenAccessLink http://dx.doi.org/10.1074/jbc.RA120.016004
PMID 33465708
PQID 2479423453
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948982
proquest_miscellaneous_2479423453
pubmed_primary_33465708
crossref_primary_10_1074_jbc_RA120_016004
crossref_citationtrail_10_1074_jbc_RA120_016004
elsevier_sciencedirect_doi_10_1074_jbc_RA120_016004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2021
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Emsley, Cowtan (bib69) 2004; 60
Keller, Wage, Hohaus, Hölzer, Eichhorn, van Pée (bib16) 2000; 39
Harvey (bib62) 2004; 127
Xu, Yang, Liu, Lu, Chen, Zhu (bib9) 2014; 54
Karabencheva-Christova, Torras, Mulholland, Lodola, Christov (bib32) 2017; 7
Alonso, Beletskaya, Yus (bib10) 2002; 102
Mitchell (bib59) 2000; 14
Jeschke (bib1) 2009; 66
Bruice (bib51) 1984; 24
Dolinsky, Nielsen, McCammon, Baker (bib57) 2004; 32
Olsson, Søndergaard, Rostkowski, Jensen (bib49) 2011; 7
Agarwal, Miles, Winter, Eustáquio, El Gamal, Moore (bib18) 2017; 117
Zhan, Carpenter, Ellis (bib55) 2008; 47
Becke (bib61) 1993; 98
Lu, Shi, Wang, Yang, Yan, Luo, Jiang, Zhu (bib3) 2009; 52
Mascotti, Juri Ayub, Furnham, Thornton, Laskowski (bib17) 2016; 428
Poor, Andorfer, Lewis (bib24) 2014; 15
Frese, Sewald (bib33) 2015; 54
Winn, Ballard, Cowtan, Dodson, Emsley, Evans, Keegan, Krissinel, Leslie, McCoy, McNicholas, Murshudov, Pannu, Potterton, Powell (bib67) 2011; 67
Wongnate, Surawatanawong, Visitsatthawong, Sucharitakul, Scrutton, Chaiyen (bib53) 2014; 136
Dong, Flecks, Unversucht, Haupt, van Pée, Naismith (bib15) 2005; 309
Shah, Liu, Zhang, Stout, Halpert (bib5) 2017; 12
Zhu, De Laurentis, Leang, Herrmann, Ihlefeld, van Pée, Naismith (bib37) 2009; 391
Chaiyen, Brissette, Ballou, Massey (bib40) 1997; 36
Shepherd, Karthikeyan, Latham, Struck, Thompson, Menon, Styles, Levy, Leys, Micklefield (bib25) 2015; 6
Moritzer, Minges, Prior, Frese, Sewald, Niemann (bib35) 2019; 294
McCoy, Grosse-Kunstleve, Adams, Winn, Storoni, Read (bib66) 2007; 40
Wilcken, Liu, Zimmermann, Rutherford, Fersht, Joerger, Boeckler (bib6) 2012; 134
Xu, Liu, Chen, Chen, Wang, Tian, Shi, Wang, Lu, Yan, Wang, Jiang, Chen, Wang, Xu (bib8) 2011; 54
Santos-Aberturas, Dörr, Waldo, Bornscheuer (bib48) 2015; 22
Cabantous, Waldo (bib47) 2006; 3
Emsley, Lohkamp, Scott, Cowtan (bib70) 2010; 66
Wilcken, Zimmermann, Lange, Joerger, Boeckler (bib7) 2013; 56
Prongjit, Sucharitakul, Wongnate, Haltrich, Chaiyen (bib42) 2009; 48
Marcelo Zaldini, Suellen Melo, Diogo Rodrigo, Walter Filgueira de Azevedo, Ana Cristina Lima (bib4) 2010; 11
Visitsatthawong, Chenprakhon, Chaiyen, Surawatanawong (bib54) 2015; 137
Chitnumsub, Yuvaniyama, Vanichtanankul, Kamchonwongpaisan, Walkinshaw, Yuthavong (bib65) 2004; 60
Lang, Polnick, Nicke, William, Patallo, Naismith, van Pée (bib22) 2011; 50
Xu, Zhu, Lin, Shen, Chu, Hu, Tian, Mwakagenda, Bi (bib13) 2012; 223
Payne, Poor, Lewis (bib23) 2015; 54
Hartwig (bib21) 2017; 50
van der Kamp, Żurek, Manby, Harvey, Mulholland (bib46) 2010; 114
Lu, Liu, Xu, Li, Liu, Zhu (bib2) 2012; 7
Prakash, Mathew, Hoole, Esteves, Wang, Rasul, Olah (bib12) 2004; 126
Bitto, Huang, Bingman, Singh, Thorson, Phillips (bib36) 2008; 70
Brünger, Karplus (bib56) 1988; 4
Ranaghan, Morris, Masgrau, Senthilkumar, Johannissen, Scrutton, Harvey, Manby, Mulholland (bib45) 2017; 121
Sullivan, Walton, Stewart (bib64) 2013; 53
Latham, Brandenburger, Shepherd, Menon, Micklefield (bib14) 2018; 118
Belsare, Andorfer, Cardenas, Chael, Park, Lewis (bib20) 2017; 6
Murshudov, Skubak, Lebedev, Pannu, Steiner, Nicholls, Winn, Long, Vagin (bib68) 2011; 67
Sucharitakul, Chaiyen, Entsch, Ballou (bib39) 2006; 281
Werner, Knowles, Knizia, Manby, Schütz (bib63) 2012; 2
Mori, Pang, Thamban Chandrika, Garneau-Tsodikova, Tsodikov (bib30) 2019; 10
Kelly, Ikonomou, Blair, Morin, Gobas (bib11) 2007; 317
Yeh, Blasiak, Koglin, Drennan, Walsh (bib27) 2007; 46
MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, Joseph-McCarthy, Kuchnir, Kuczera, Lau, Mattos (bib58) 1998; 102
Gkotsi, Ludewig, Sharma, Connolly, Dhaliwal, Wang, Unsworth, Taylor, McLachlan, Shanahan, Naismith, Goss (bib31) 2019; 11
Lawan, Chasing, Santatiwongchai, Muangpil (bib43) 2019; 87
Yeh, Cole, Barr, Bollinger, Ballou, Walsh (bib28) 2006; 45
Eberlein, Bruice (bib50) 1983; 105
Laskowski, MacArthur, Moss, Thornton (bib71) 1993; 26
Phintha, Prakinee, Chaiyen (bib19) 2020
Hertwig, Koch (bib60) 1997; 268
Moritzer, Niemann (bib34) 2019; 28
Chaiyen, Brissette, Ballou, Massey (bib41) 1997; 36
Flecks, Patallo, Zhu, Ernyei, Seifert, Schneider, Dong, Naismith, van Pée (bib29) 2008; 47
Massey (bib52) 1994; 269
Lawan, Ranaghan, Manby, Mulholland (bib44) 2014; 608
Pimviriyakul, Thotsaporn, Sucharitakul, Chaiyen (bib38) 2017; 292
Laskowski, Swindells (bib72) 2011; 51
Andorfer, Lewis (bib26) 2018; 87
Lawan (10.1074/jbc.RA120.016004_bib43) 2019; 87
Shah (10.1074/jbc.RA120.016004_bib5) 2017; 12
Mascotti (10.1074/jbc.RA120.016004_bib17) 2016; 428
Poor (10.1074/jbc.RA120.016004_bib24) 2014; 15
Belsare (10.1074/jbc.RA120.016004_bib20) 2017; 6
Lu (10.1074/jbc.RA120.016004_bib3) 2009; 52
Chaiyen (10.1074/jbc.RA120.016004_bib40) 1997; 36
Flecks (10.1074/jbc.RA120.016004_bib29) 2008; 47
Prongjit (10.1074/jbc.RA120.016004_bib42) 2009; 48
Winn (10.1074/jbc.RA120.016004_bib67) 2011; 67
Eberlein (10.1074/jbc.RA120.016004_bib50) 1983; 105
Frese (10.1074/jbc.RA120.016004_bib33) 2015; 54
Bruice (10.1074/jbc.RA120.016004_bib51) 1984; 24
Murshudov (10.1074/jbc.RA120.016004_bib68) 2011; 67
Lang (10.1074/jbc.RA120.016004_bib22) 2011; 50
Andorfer (10.1074/jbc.RA120.016004_bib26) 2018; 87
Sucharitakul (10.1074/jbc.RA120.016004_bib39) 2006; 281
Xu (10.1074/jbc.RA120.016004_bib8) 2011; 54
Moritzer (10.1074/jbc.RA120.016004_bib34) 2019; 28
Zhu (10.1074/jbc.RA120.016004_bib37) 2009; 391
Gkotsi (10.1074/jbc.RA120.016004_bib31) 2019; 11
Hertwig (10.1074/jbc.RA120.016004_bib60) 1997; 268
Hartwig (10.1074/jbc.RA120.016004_bib21) 2017; 50
Mitchell (10.1074/jbc.RA120.016004_bib59) 2000; 14
Dong (10.1074/jbc.RA120.016004_bib15) 2005; 309
Dolinsky (10.1074/jbc.RA120.016004_bib57) 2004; 32
Chitnumsub (10.1074/jbc.RA120.016004_bib65) 2004; 60
Becke (10.1074/jbc.RA120.016004_bib61) 1993; 98
Laskowski (10.1074/jbc.RA120.016004_bib71) 1993; 26
Wongnate (10.1074/jbc.RA120.016004_bib53) 2014; 136
Emsley (10.1074/jbc.RA120.016004_bib70) 2010; 66
Pimviriyakul (10.1074/jbc.RA120.016004_bib38) 2017; 292
Xu (10.1074/jbc.RA120.016004_bib9) 2014; 54
Phintha (10.1074/jbc.RA120.016004_bib19) 2020
Brünger (10.1074/jbc.RA120.016004_bib56) 1988; 4
Harvey (10.1074/jbc.RA120.016004_bib62) 2004; 127
Santos-Aberturas (10.1074/jbc.RA120.016004_bib48) 2015; 22
Karabencheva-Christova (10.1074/jbc.RA120.016004_bib32) 2017; 7
Jeschke (10.1074/jbc.RA120.016004_bib1) 2009; 66
Mori (10.1074/jbc.RA120.016004_bib30) 2019; 10
Olsson (10.1074/jbc.RA120.016004_bib49) 2011; 7
Payne (10.1074/jbc.RA120.016004_bib23) 2015; 54
Cabantous (10.1074/jbc.RA120.016004_bib47) 2006; 3
Yeh (10.1074/jbc.RA120.016004_bib28) 2006; 45
Keller (10.1074/jbc.RA120.016004_bib16) 2000; 39
Xu (10.1074/jbc.RA120.016004_bib13) 2012; 223
Zhan (10.1074/jbc.RA120.016004_bib55) 2008; 47
Alonso (10.1074/jbc.RA120.016004_bib10) 2002; 102
van der Kamp (10.1074/jbc.RA120.016004_bib46) 2010; 114
Yeh (10.1074/jbc.RA120.016004_bib27) 2007; 46
Shepherd (10.1074/jbc.RA120.016004_bib25) 2015; 6
Wilcken (10.1074/jbc.RA120.016004_bib7) 2013; 56
Emsley (10.1074/jbc.RA120.016004_bib69) 2004; 60
Chaiyen (10.1074/jbc.RA120.016004_bib41) 1997; 36
McCoy (10.1074/jbc.RA120.016004_bib66) 2007; 40
Lu (10.1074/jbc.RA120.016004_bib2) 2012; 7
Moritzer (10.1074/jbc.RA120.016004_bib35) 2019; 294
Ranaghan (10.1074/jbc.RA120.016004_bib45) 2017; 121
MacKerell (10.1074/jbc.RA120.016004_bib58) 1998; 102
Laskowski (10.1074/jbc.RA120.016004_bib72) 2011; 51
Marcelo Zaldini (10.1074/jbc.RA120.016004_bib4) 2010; 11
Kelly (10.1074/jbc.RA120.016004_bib11) 2007; 317
Massey (10.1074/jbc.RA120.016004_bib52) 1994; 269
Lawan (10.1074/jbc.RA120.016004_bib44) 2014; 608
Agarwal (10.1074/jbc.RA120.016004_bib18) 2017; 117
Werner (10.1074/jbc.RA120.016004_bib63) 2012; 2
Prakash (10.1074/jbc.RA120.016004_bib12) 2004; 126
Latham (10.1074/jbc.RA120.016004_bib14) 2018; 118
Sullivan (10.1074/jbc.RA120.016004_bib64) 2013; 53
Visitsatthawong (10.1074/jbc.RA120.016004_bib54) 2015; 137
Bitto (10.1074/jbc.RA120.016004_bib36) 2008; 70
Wilcken (10.1074/jbc.RA120.016004_bib6) 2012; 134
References_xml – volume: 47
  start-page: 2221
  year: 2008
  end-page: 2230
  ident: bib55
  article-title: Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme
  publication-title: Biochemistry
– volume: 54
  start-page: 298
  year: 2015
  end-page: 301
  ident: bib33
  article-title: Enzymatic halogenation of tryptophan on a gram scale
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 54
  start-page: 69
  year: 2014
  end-page: 78
  ident: bib9
  article-title: Halogen bond: its role beyond drug-target binding affinity for drug discovery and development
  publication-title: J. Chem. Inf. Model.
– volume: 60
  start-page: 780
  year: 2004
  end-page: 783
  ident: bib65
  article-title: Characterization, crystallization and preliminary X-ray analysis of bifunctional dihydrofolate reductase-thymidylate synthase from Plasmodium falciparum
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 10
  start-page: 1255
  year: 2019
  ident: bib30
  article-title: Unusual substrate and halide versatility of phenolic halogenase PltM
  publication-title: Nat. Commun.
– volume: 45
  start-page: 7904
  year: 2006
  end-page: 7912
  ident: bib28
  article-title: Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH
  publication-title: Biochemistry
– volume: 268
  start-page: 345
  year: 1997
  end-page: 351
  ident: bib60
  article-title: On the parameterization of the local correlation functional. What is Becke-3-LYP?
  publication-title: Chem. Phys. Lett.
– volume: 60
  start-page: 2126
  year: 2004
  end-page: 2132
  ident: bib69
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D, Biol. Crystallogr.
– volume: 121
  start-page: 9785
  year: 2017
  end-page: 9798
  ident: bib45
  article-title: QM/MM modeling of the rate-limiting proton transfer step in the deamination of tryptamine by aromatic amine dehydrogenase
  publication-title: J. Phys. Chem. B.
– volume: 14
  start-page: 745
  year: 2000
  end-page: 746
  ident: bib59
  article-title: A Chemist's Guide to Density Functional Theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, Germany, 2000. x + 294 pages. £70 ISBN 3-527-29918-1
  publication-title: Appl. Organometal. Chem.
– volume: 54
  start-page: 5607
  year: 2011
  end-page: 5611
  ident: bib8
  article-title: Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors
  publication-title: J. Med. Chem.
– volume: 28
  start-page: 2112
  year: 2019
  end-page: 2118
  ident: bib34
  article-title: Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled
  publication-title: Protein Sci.
– volume: 6
  start-page: 416
  year: 2017
  end-page: 420
  ident: bib20
  article-title: A simple combinatorial codon mutagenesis method for targeted protein engineering
  publication-title: ACS Synth. Biol.
– volume: 53
  start-page: 70
  year: 2013
  end-page: 77
  ident: bib64
  article-title: Library construction and evaluation for site saturation mutagenesis
  publication-title: Enzyme Microb. Technol.
– volume: 105
  start-page: 6685
  year: 1983
  end-page: 6697
  ident: bib50
  article-title: The chemistry of a 1,5-diblocked flavin. 2. Proton and electron transfer steps in the reaction of dihydroflavins with oxygen
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 2951
  year: 2011
  end-page: 2953
  ident: bib22
  article-title: Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 102
  start-page: 3586
  year: 1998
  end-page: 3616
  ident: bib58
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B.
– volume: 281
  start-page: 17044
  year: 2006
  end-page: 17053
  ident: bib39
  article-title: Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from acinetobacter baumannii
  publication-title: J. Biol. Chem.
– volume: 66
  start-page: 10
  year: 2009
  end-page: 27
  ident: bib1
  article-title: The unique role of halogen substituents in the design of modern agrochemicals
  publication-title: Pest Manag. Sci.
– volume: 269
  start-page: 22459
  year: 1994
  end-page: 22462
  ident: bib52
  article-title: Activation of molecular oxygen by flavins and flavoproteins
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 242
  year: 2012
  end-page: 253
  ident: bib63
  article-title: Molpro: a general-purpose quantum chemistry program package
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: bib66
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Crystallogr.
– volume: 309
  start-page: 2216
  year: 2005
  end-page: 2219
  ident: bib15
  article-title: Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination
  publication-title: Science
– volume: 36
  start-page: 13856
  year: 1997
  end-page: 13864
  ident: bib41
  article-title: Reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase with N-Methyl-5-hydroxynicotinic acid:  studies on the mode of binding, and protonation status of the substrate
  publication-title: Biochemistry
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: bib70
  article-title: Features and development of coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 126
  start-page: 15770
  year: 2004
  end-page: 15776
  ident: bib12
  article-title: N-Halosuccinimide/BF3−H2O, efficient electrophilic halogenating systems for aromatics
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1286
  year: 2014
  end-page: 1289
  ident: bib24
  article-title: Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution
  publication-title: Chembiochem
– volume: 46
  start-page: 1284
  year: 2007
  end-page: 1292
  ident: bib27
  article-title: Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases
  publication-title: Biochemistry
– volume: 118
  start-page: 232
  year: 2018
  end-page: 269
  ident: bib14
  article-title: Development of halogenase enzymes for use in synthesis
  publication-title: Chem. Rev.
– volume: 7
  start-page: 17395
  year: 2017
  ident: bib32
  article-title: Mechanistic insights into the reaction of chlorination of tryptophan catalyzed by tryptophan 7-halogenase
  publication-title: Sci. Rep.
– volume: 51
  start-page: 2778
  year: 2011
  end-page: 2786
  ident: bib72
  article-title: LigPlot+: multiple ligand–protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
– volume: 317
  start-page: 236
  year: 2007
  ident: bib11
  article-title: Food web-specific biomagnification of persistent organic pollutants
  publication-title: Science
– volume: 294
  start-page: 2529
  year: 2019
  end-page: 2542
  ident: bib35
  article-title: Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal
  publication-title: J. Biol. Chem.
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  ident: bib61
  article-title: Density-functional thermochemistry. III. The role of exact exchange
  publication-title: J. Chem. Phys.
– volume: 137
  start-page: 9363
  year: 2015
  end-page: 9374
  ident: bib54
  article-title: Mechanism of oxygen activation in a flavin-dependent monooxygenase: a nearly barrierless formation of C4a-hydroperoxyflavin via proton-coupled electron transfer
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: W665
  year: 2004
  end-page: W667
  ident: bib57
  article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
– volume: 117
  start-page: 5619
  year: 2017
  end-page: 5674
  ident: bib18
  article-title: Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse
  publication-title: Chem. Rev.
– volume: 114
  start-page: 11303
  year: 2010
  end-page: 11314
  ident: bib46
  article-title: Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase
  publication-title: J. Phys. Chem. B.
– volume: 36
  start-page: 8060
  year: 1997
  end-page: 8070
  ident: bib40
  article-title: Unusual mechanism of oxygen atom transfer and product rearrangement in the catalytic reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase
  publication-title: Biochemistry
– volume: 26
  start-page: 283
  year: 1993
  end-page: 291
  ident: bib71
  article-title: PROCHECK: a program to check the stereochemical quality of protein structures
  publication-title: J. Appl. Crystallogr.
– volume: 56
  start-page: 1363
  year: 2013
  end-page: 1388
  ident: bib7
  article-title: Principles and applications of halogen bonding in medicinal chemistry and chemical biology
  publication-title: J. Med. Chem.
– volume: 67
  start-page: 355
  year: 2011
  end-page: 367
  ident: bib68
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 7
  start-page: 525
  year: 2011
  end-page: 537
  ident: bib49
  article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions
  publication-title: J. Chem. Theor. Comput.
– volume: 391
  start-page: 74
  year: 2009
  end-page: 85
  ident: bib37
  article-title: Structural insights into regioselectivity in the enzymatic chlorination of tryptophan
  publication-title: J. Mol. Biol.
– volume: 47
  start-page: 9533
  year: 2008
  end-page: 9536
  ident: bib29
  article-title: New insights into the mechanism of enzymatic chlorination of tryptophan
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 3
  start-page: 845
  year: 2006
  end-page: 854
  ident: bib47
  article-title: and
  publication-title: Nat. Methods
– volume: 11
  start-page: 303
  year: 2010
  end-page: 314
  ident: bib4
  article-title: Halogen atoms in the modern medicinal chemistry: hints for the drug design
  publication-title: Curr. Drug Targets
– volume: 4
  start-page: 148
  year: 1988
  end-page: 156
  ident: bib56
  article-title: Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison
  publication-title: Proteins
– volume: 52
  start-page: 2854
  year: 2009
  end-page: 2862
  ident: bib3
  article-title: Halogen bonding-a novel interaction for rational drug design?
  publication-title: J. Med. Chem.
– volume: 134
  start-page: 6810
  year: 2012
  end-page: 6818
  ident: bib6
  article-title: Halogen-enriched fragment libraries as leads for drug rescue of mutant p53
  publication-title: J. Am. Chem. Soc.
– volume: 292
  start-page: 4818
  year: 2017
  end-page: 4832
  ident: bib38
  article-title: Kinetic mechanism of the dechlorinating flavin-dependent monooxygenase HadA
  publication-title: J. Biol. Chem.
– start-page: 327
  year: 2020
  end-page: 364
  ident: bib19
  article-title: Chapter Eleven - structures, mechanisms and applications of flavin-dependent halogenases
  publication-title: The Enzymes
– volume: 50
  start-page: 549
  year: 2017
  end-page: 555
  ident: bib21
  article-title: Catalyst-controlled site-selective bond activation
  publication-title: Acc. Chem. Res.
– volume: 87
  start-page: 250
  year: 2019
  end-page: 256
  ident: bib43
  article-title: QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis
  publication-title: J. Mol. Graph. Model.
– volume: 87
  start-page: 159
  year: 2018
  end-page: 185
  ident: bib26
  article-title: Understanding and improving the activity of flavin-dependent halogenases via random and targeted mutagenesis
  publication-title: Annu. Rev. Biochem.
– volume: 11
  start-page: 1091
  year: 2019
  end-page: 1097
  ident: bib31
  article-title: A marine viral halogenase that iodinates diverse substrates
  publication-title: Nat. Chem.
– volume: 428
  start-page: 3131
  year: 2016
  end-page: 3146
  ident: bib17
  article-title: Chopping and changing: the evolution of the flavin-dependent monooxygenases
  publication-title: J. Mol. Biol.
– volume: 12
  start-page: 1204
  year: 2017
  end-page: 1210
  ident: bib5
  article-title: Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity
  publication-title: ACS Chem. Biol.
– volume: 223
  start-page: 4429
  year: 2012
  end-page: 4436
  ident: bib13
  article-title: formation of volatile halogenated by-products during the chlorination of Oxytetracycline
  publication-title: Water Air Soil Pollut.
– volume: 67
  start-page: 235
  year: 2011
  end-page: 242
  ident: bib67
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
– volume: 70
  start-page: 289
  year: 2008
  end-page: 293
  ident: bib36
  article-title: The structure of flavin-dependent tryptophan 7-halogenase RebH
  publication-title: Proteins
– volume: 127
  start-page: 165
  year: 2004
  end-page: 177
  ident: bib62
  article-title: Spin-forbidden CO ligand recombination in myoglobin
  publication-title: Faraday Discuss.
– volume: 54
  start-page: 4226
  year: 2015
  end-page: 4230
  ident: bib23
  article-title: Directed evolution of RebH for site-selective halogenation of large biologically active molecules
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 608
  start-page: 380
  year: 2014
  end-page: 385
  ident: bib44
  article-title: Comparison of DFT and
  publication-title: Chem. Phys. Lett.
– volume: 22
  start-page: 1406
  year: 2015
  end-page: 1414
  ident: bib48
  article-title: In-depth high-throughput screening of protein engineering libraries by split-GFP direct crude cell extract data normalization
  publication-title: Chem. Biol.
– volume: 24
  start-page: 54
  year: 1984
  end-page: 61
  ident: bib51
  article-title: Oxygen-flavin chemistry
  publication-title: Isr. J. Chem.
– volume: 39
  start-page: 2300
  year: 2000
  end-page: 2302
  ident: bib16
  article-title: Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 136
  start-page: 241
  year: 2014
  end-page: 253
  ident: bib53
  article-title: Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 4009
  year: 2002
  end-page: 4092
  ident: bib10
  article-title: Metal-mediated reductive hydrodehalogenation of organic halides
  publication-title: Chem. Rev.
– volume: 48
  start-page: 4170
  year: 2009
  end-page: 4180
  ident: bib42
  article-title: Kinetic mechanism of pyranose 2-oxidase from trametes multicolor
  publication-title: Biochemistry
– volume: 6
  start-page: 3454
  year: 2015
  end-page: 3460
  ident: bib25
  article-title: Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes
  publication-title: Chem. Sci.
– volume: 7
  start-page: 375
  year: 2012
  end-page: 383
  ident: bib2
  article-title: Halogen bonding for rational drug design and new drug discovery
  publication-title: Expert Opin. Drug Discov.
– volume: 11
  start-page: 1091
  year: 2019
  ident: 10.1074/jbc.RA120.016004_bib31
  article-title: A marine viral halogenase that iodinates diverse substrates
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0349-z
– volume: 87
  start-page: 159
  year: 2018
  ident: 10.1074/jbc.RA120.016004_bib26
  article-title: Understanding and improving the activity of flavin-dependent halogenases via random and targeted mutagenesis
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-062917-012042
– volume: 114
  start-page: 11303
  year: 2010
  ident: 10.1074/jbc.RA120.016004_bib46
  article-title: Testing high-level QM/MM methods for modeling enzyme reactions: acetyl-CoA deprotonation in citrate synthase
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp104069t
– start-page: 327
  year: 2020
  ident: 10.1074/jbc.RA120.016004_bib19
  article-title: Chapter Eleven - structures, mechanisms and applications of flavin-dependent halogenases
  doi: 10.1016/bs.enz.2020.05.009
– volume: 134
  start-page: 6810
  year: 2012
  ident: 10.1074/jbc.RA120.016004_bib6
  article-title: Halogen-enriched fragment libraries as leads for drug rescue of mutant p53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301056a
– volume: 121
  start-page: 9785
  year: 2017
  ident: 10.1074/jbc.RA120.016004_bib45
  article-title: Ab Initio QM/MM modeling of the rate-limiting proton transfer step in the deamination of tryptamine by aromatic amine dehydrogenase
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/acs.jpcb.7b06892
– volume: 40
  start-page: 658
  year: 2007
  ident: 10.1074/jbc.RA120.016004_bib66
  article-title: Phaser crystallographic software
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889807021206
– volume: 52
  start-page: 2854
  year: 2009
  ident: 10.1074/jbc.RA120.016004_bib3
  article-title: Halogen bonding-a novel interaction for rational drug design?
  publication-title: J. Med. Chem.
  doi: 10.1021/jm9000133
– volume: 54
  start-page: 4226
  year: 2015
  ident: 10.1074/jbc.RA120.016004_bib23
  article-title: Directed evolution of RebH for site-selective halogenation of large biologically active molecules
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201411901
– volume: 60
  start-page: 780
  year: 2004
  ident: 10.1074/jbc.RA120.016004_bib65
  article-title: Characterization, crystallization and preliminary X-ray analysis of bifunctional dihydrofolate reductase-thymidylate synthase from Plasmodium falciparum
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444904001544
– volume: 102
  start-page: 4009
  year: 2002
  ident: 10.1074/jbc.RA120.016004_bib10
  article-title: Metal-mediated reductive hydrodehalogenation of organic halides
  publication-title: Chem. Rev.
  doi: 10.1021/cr0102967
– volume: 47
  start-page: 2221
  year: 2008
  ident: 10.1074/jbc.RA120.016004_bib55
  article-title: Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme
  publication-title: Biochemistry
  doi: 10.1021/bi701853w
– volume: 54
  start-page: 298
  year: 2015
  ident: 10.1074/jbc.RA120.016004_bib33
  article-title: Enzymatic halogenation of tryptophan on a gram scale
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201408561
– volume: 136
  start-page: 241
  year: 2014
  ident: 10.1074/jbc.RA120.016004_bib53
  article-title: Proton-coupled electron transfer and adduct configuration are important for C4a-hydroperoxyflavin formation and stabilization in a flavoenzyme
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4088055
– volume: 317
  start-page: 236
  year: 2007
  ident: 10.1074/jbc.RA120.016004_bib11
  article-title: Food web-specific biomagnification of persistent organic pollutants
  publication-title: Science
  doi: 10.1126/science.1138275
– volume: 54
  start-page: 69
  year: 2014
  ident: 10.1074/jbc.RA120.016004_bib9
  article-title: Halogen bond: its role beyond drug-target binding affinity for drug discovery and development
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci400539q
– volume: 67
  start-page: 235
  year: 2011
  ident: 10.1074/jbc.RA120.016004_bib67
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910045749
– volume: 47
  start-page: 9533
  year: 2008
  ident: 10.1074/jbc.RA120.016004_bib29
  article-title: New insights into the mechanism of enzymatic chlorination of tryptophan
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.200802466
– volume: 281
  start-page: 17044
  year: 2006
  ident: 10.1074/jbc.RA120.016004_bib39
  article-title: Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from acinetobacter baumannii
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M512385200
– volume: 28
  start-page: 2112
  year: 2019
  ident: 10.1074/jbc.RA120.016004_bib34
  article-title: Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled
  publication-title: Protein Sci.
  doi: 10.1002/pro.3739
– volume: 127
  start-page: 165
  year: 2004
  ident: 10.1074/jbc.RA120.016004_bib62
  article-title: Spin-forbidden CO ligand recombination in myoglobin
  publication-title: Faraday Discuss.
  doi: 10.1039/b314768a
– volume: 2
  start-page: 242
  year: 2012
  ident: 10.1074/jbc.RA120.016004_bib63
  article-title: Molpro: a general-purpose quantum chemistry program package
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.82
– volume: 48
  start-page: 4170
  year: 2009
  ident: 10.1074/jbc.RA120.016004_bib42
  article-title: Kinetic mechanism of pyranose 2-oxidase from trametes multicolor
  publication-title: Biochemistry
  doi: 10.1021/bi802331r
– volume: 118
  start-page: 232
  year: 2018
  ident: 10.1074/jbc.RA120.016004_bib14
  article-title: Development of halogenase enzymes for use in synthesis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00032
– volume: 36
  start-page: 13856
  year: 1997
  ident: 10.1074/jbc.RA120.016004_bib41
  article-title: Reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase with N-Methyl-5-hydroxynicotinic acid:  studies on the mode of binding, and protonation status of the substrate
  publication-title: Biochemistry
  doi: 10.1021/bi9715122
– volume: 6
  start-page: 3454
  year: 2015
  ident: 10.1074/jbc.RA120.016004_bib25
  article-title: Extending the biocatalytic scope of regiocomplementary flavin-dependent halogenase enzymes
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00913H
– volume: 117
  start-page: 5619
  year: 2017
  ident: 10.1074/jbc.RA120.016004_bib18
  article-title: Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00571
– volume: 87
  start-page: 250
  year: 2019
  ident: 10.1074/jbc.RA120.016004_bib43
  article-title: QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2018.12.011
– volume: 102
  start-page: 3586
  year: 1998
  ident: 10.1074/jbc.RA120.016004_bib58
  article-title: All-atom empirical potential for molecular modeling and dynamics studies of proteins
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp973084f
– volume: 126
  start-page: 15770
  year: 2004
  ident: 10.1074/jbc.RA120.016004_bib12
  article-title: N-Halosuccinimide/BF3−H2O, efficient electrophilic halogenating systems for aromatics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0465247
– volume: 292
  start-page: 4818
  year: 2017
  ident: 10.1074/jbc.RA120.016004_bib38
  article-title: Kinetic mechanism of the dechlorinating flavin-dependent monooxygenase HadA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.774448
– volume: 60
  start-page: 2126
  year: 2004
  ident: 10.1074/jbc.RA120.016004_bib69
  article-title: Coot: model-building tools for molecular graphics
  publication-title: Acta Crystallogr. D, Biol. Crystallogr.
  doi: 10.1107/S0907444904019158
– volume: 105
  start-page: 6685
  year: 1983
  ident: 10.1074/jbc.RA120.016004_bib50
  article-title: The chemistry of a 1,5-diblocked flavin. 2. Proton and electron transfer steps in the reaction of dihydroflavins with oxygen
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00360a024
– volume: 4
  start-page: 148
  year: 1988
  ident: 10.1074/jbc.RA120.016004_bib56
  article-title: Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison
  publication-title: Proteins
  doi: 10.1002/prot.340040208
– volume: 66
  start-page: 10
  year: 2009
  ident: 10.1074/jbc.RA120.016004_bib1
  article-title: The unique role of halogen substituents in the design of modern agrochemicals
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.1829
– volume: 39
  start-page: 2300
  year: 2000
  ident: 10.1074/jbc.RA120.016004_bib16
  article-title: Purification and partial characterization of tryptophan 7-halogenase (PrnA) from Pseudomonas fluorescens
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/1521-3773(20000703)39:13<2300::AID-ANIE2300>3.0.CO;2-I
– volume: 98
  start-page: 5648
  year: 1993
  ident: 10.1074/jbc.RA120.016004_bib61
  article-title: Density-functional thermochemistry. III. The role of exact exchange
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 53
  start-page: 70
  year: 2013
  ident: 10.1074/jbc.RA120.016004_bib64
  article-title: Library construction and evaluation for site saturation mutagenesis
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2013.02.012
– volume: 294
  start-page: 2529
  year: 2019
  ident: 10.1074/jbc.RA120.016004_bib35
  article-title: Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.005393
– volume: 7
  start-page: 525
  year: 2011
  ident: 10.1074/jbc.RA120.016004_bib49
  article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions
  publication-title: J. Chem. Theor. Comput.
  doi: 10.1021/ct100578z
– volume: 36
  start-page: 8060
  year: 1997
  ident: 10.1074/jbc.RA120.016004_bib40
  article-title: Unusual mechanism of oxygen atom transfer and product rearrangement in the catalytic reaction of 2-Methyl-3-hydroxypyridine-5-carboxylic acid oxygenase
  publication-title: Biochemistry
  doi: 10.1021/bi970089u
– volume: 309
  start-page: 2216
  year: 2005
  ident: 10.1074/jbc.RA120.016004_bib15
  article-title: Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination
  publication-title: Science
  doi: 10.1126/science.1116510
– volume: 15
  start-page: 1286
  year: 2014
  ident: 10.1074/jbc.RA120.016004_bib24
  article-title: Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution
  publication-title: Chembiochem
  doi: 10.1002/cbic.201300780
– volume: 268
  start-page: 345
  year: 1997
  ident: 10.1074/jbc.RA120.016004_bib60
  article-title: On the parameterization of the local correlation functional. What is Becke-3-LYP?
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(97)00207-8
– volume: 12
  start-page: 1204
  year: 2017
  ident: 10.1074/jbc.RA120.016004_bib5
  article-title: Halogen-π interactions in the cytochrome P450 active site: structural insights into human CYP2B6 substrate selectivity
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b00056
– volume: 54
  start-page: 5607
  year: 2011
  ident: 10.1074/jbc.RA120.016004_bib8
  article-title: Utilization of halogen bond in lead optimization: a case study of rational design of potent phosphodiesterase type 5 (PDE5) inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm200644r
– volume: 14
  start-page: 745
  year: 2000
  ident: 10.1074/jbc.RA120.016004_bib59
  article-title: A Chemist's Guide to Density Functional Theory. Wolfram Koch and Max C. Holthausen. Wiley–VCH, Weinheim, Germany, 2000. x + 294 pages. £70 ISBN 3-527-29918-1
  publication-title: Appl. Organometal. Chem.
  doi: 10.1002/1099-0739(200011)14:11<745::AID-AOC57>3.0.CO;2-H
– volume: 66
  start-page: 486
  year: 2010
  ident: 10.1074/jbc.RA120.016004_bib70
  article-title: Features and development of coot
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910007493
– volume: 45
  start-page: 7904
  year: 2006
  ident: 10.1074/jbc.RA120.016004_bib28
  article-title: Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH
  publication-title: Biochemistry
  doi: 10.1021/bi060607d
– volume: 608
  start-page: 380
  year: 2014
  ident: 10.1074/jbc.RA120.016004_bib44
  article-title: Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2014.06.010
– volume: 50
  start-page: 549
  year: 2017
  ident: 10.1074/jbc.RA120.016004_bib21
  article-title: Catalyst-controlled site-selective bond activation
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00546
– volume: 26
  start-page: 283
  year: 1993
  ident: 10.1074/jbc.RA120.016004_bib71
  article-title: PROCHECK: a program to check the stereochemical quality of protein structures
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892009944
– volume: 223
  start-page: 4429
  year: 2012
  ident: 10.1074/jbc.RA120.016004_bib13
  article-title: formation of volatile halogenated by-products during the chlorination of Oxytetracycline
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-012-1206-5
– volume: 137
  start-page: 9363
  year: 2015
  ident: 10.1074/jbc.RA120.016004_bib54
  article-title: Mechanism of oxygen activation in a flavin-dependent monooxygenase: a nearly barrierless formation of C4a-hydroperoxyflavin via proton-coupled electron transfer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04328
– volume: 269
  start-page: 22459
  year: 1994
  ident: 10.1074/jbc.RA120.016004_bib52
  article-title: Activation of molecular oxygen by flavins and flavoproteins
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)31664-2
– volume: 7
  start-page: 17395
  year: 2017
  ident: 10.1074/jbc.RA120.016004_bib32
  article-title: Mechanistic insights into the reaction of chlorination of tryptophan catalyzed by tryptophan 7-halogenase
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17789-x
– volume: 6
  start-page: 416
  year: 2017
  ident: 10.1074/jbc.RA120.016004_bib20
  article-title: A simple combinatorial codon mutagenesis method for targeted protein engineering
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00297
– volume: 24
  start-page: 54
  year: 1984
  ident: 10.1074/jbc.RA120.016004_bib51
  article-title: Oxygen-flavin chemistry
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.198400008
– volume: 32
  start-page: W665
  year: 2004
  ident: 10.1074/jbc.RA120.016004_bib57
  article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh381
– volume: 10
  start-page: 1255
  year: 2019
  ident: 10.1074/jbc.RA120.016004_bib30
  article-title: Unusual substrate and halide versatility of phenolic halogenase PltM
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09215-9
– volume: 391
  start-page: 74
  year: 2009
  ident: 10.1074/jbc.RA120.016004_bib37
  article-title: Structural insights into regioselectivity in the enzymatic chlorination of tryptophan
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.06.008
– volume: 22
  start-page: 1406
  year: 2015
  ident: 10.1074/jbc.RA120.016004_bib48
  article-title: In-depth high-throughput screening of protein engineering libraries by split-GFP direct crude cell extract data normalization
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2015.08.014
– volume: 67
  start-page: 355
  year: 2011
  ident: 10.1074/jbc.RA120.016004_bib68
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444911001314
– volume: 70
  start-page: 289
  year: 2008
  ident: 10.1074/jbc.RA120.016004_bib36
  article-title: The structure of flavin-dependent tryptophan 7-halogenase RebH
  publication-title: Proteins
  doi: 10.1002/prot.21627
– volume: 3
  start-page: 845
  year: 2006
  ident: 10.1074/jbc.RA120.016004_bib47
  article-title: In vivo and in vitro protein solubility assays using split GFP
  publication-title: Nat. Methods
  doi: 10.1038/nmeth932
– volume: 56
  start-page: 1363
  year: 2013
  ident: 10.1074/jbc.RA120.016004_bib7
  article-title: Principles and applications of halogen bonding in medicinal chemistry and chemical biology
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3012068
– volume: 11
  start-page: 303
  year: 2010
  ident: 10.1074/jbc.RA120.016004_bib4
  article-title: Halogen atoms in the modern medicinal chemistry: hints for the drug design
  publication-title: Curr. Drug Targets
  doi: 10.2174/138945010790711996
– volume: 428
  start-page: 3131
  year: 2016
  ident: 10.1074/jbc.RA120.016004_bib17
  article-title: Chopping and changing: the evolution of the flavin-dependent monooxygenases
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.07.003
– volume: 50
  start-page: 2951
  year: 2011
  ident: 10.1074/jbc.RA120.016004_bib22
  article-title: Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201007896
– volume: 51
  start-page: 2778
  year: 2011
  ident: 10.1074/jbc.RA120.016004_bib72
  article-title: LigPlot+: multiple ligand–protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200227u
– volume: 7
  start-page: 375
  year: 2012
  ident: 10.1074/jbc.RA120.016004_bib2
  article-title: Halogen bonding for rational drug design and new drug discovery
  publication-title: Expert Opin. Drug Discov.
  doi: 10.1517/17460441.2012.678829
– volume: 46
  start-page: 1284
  year: 2007
  ident: 10.1074/jbc.RA120.016004_bib27
  article-title: Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases
  publication-title: Biochemistry
  doi: 10.1021/bi0621213
SSID ssj0000491
Score 2.5134923
Snippet Although flavin-dependent halogenases (FDHs) are attractive biocatalysts, their practical applications are limited because of their low catalytic efficiency....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100068
SubjectTerms Catalysis
Crystallography, X-Ray
flavin monooxygenase
Flavin-Adenine Dinucleotide - metabolism
Flavins - metabolism
halogenase
Halogenation
Hydrogen Peroxide - metabolism
Kinetics
Models, Molecular
Oxidoreductases - metabolism
Protein Conformation
QM/MM calculations
stopped-flow
X-ray structures
Title Dissecting the low catalytic capability of flavin-dependent halogenases
URI https://dx.doi.org/10.1074/jbc.RA120.016004
https://www.ncbi.nlm.nih.gov/pubmed/33465708
https://www.proquest.com/docview/2479423453
https://pubmed.ncbi.nlm.nih.gov/PMC7948982
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEA9yftAvonc-1scRQQSR7rVN-vq4nI_j1ENlhf1WkjTFxbWVbtfl_OudSfranh56X0ppkiZkJpNJZuY3hDyLPBnmWaKdPM9cOKB4HOQgDxzYmrWXMx1LA-L64Sw8-cJPF8Gid7c10SW1nKpff4wruQpV4RvQFaNk_4Oy3U_hA7wDfeEJFIbnP9H4FRrTVd1GPK3K7UtzHXOOKKwKtkHj-Wps6PlK_FwWTpvztsYkKiX8GDax9VBB7UPFjJJqMZosikibGm5gSChqay-aLdcCka97m_7HCtNcWS8fECTZWmTiW1l15aei2myFxTyoljU2b4vei629lT2Dc3wxvJbwvdG1RBcvs-POaR1CfAvWPtVW5IISiPEEi6FM9m2a2wvyHRQelO9STT_PPN-dIj6eTV88Qs1GI7SHPWEokhtgkP11H04SKArffeoB5eGAZJMqNgNrLNnQz9G4l79pLhdPJmMH24HGMr9NbjVUpDPLN3fINV3sk4NZIery-zl9To3zr7Gq7JMbxy11D8jbnq0osBUFtqIdW9GerWiZ0zFb0QFb3SXzN6_nxydOk2_DUZxHtaMSnkk03Lua52EW-VzmUudMiABOAQksduVBTQ3Ll3si5xn3UB0NvRg0rTBj98heURb6AaEx0wELlEgC6XImeeImfiyUiJXSrsyCCTlqpzJVDRY9pkRZpcYnIuIpTH5qJj-1kz8hL7oWPywOyyV1WUudtNEjrX6YAhtd0uppS8gUJhztZqLQ5Wad-piFwWc8YBNy3xK2GwNjHJ3H4gmJdkjeVUD49t2SYvnVwLjDT-Mk9h9eabSPyM1-1T0me3W10U9APa7loblWOjRs_htPXr5n
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissecting+the+low+catalytic+capability+of+flavin-dependent+halogenases&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Phintha%2C+Aisaraphon&rft.au=Prakinee%2C+Kridsadakorn&rft.au=Jaruwat%2C+Aritsara&rft.au=Lawan%2C+Narin&rft.date=2021-01-01&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=296&rft_id=info:doi/10.1074%2Fjbc.RA120.016004&rft.externalDocID=S0021925820000551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon