Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency

Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of l...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 129; no. 3; pp. 287 - 302
Main Authors Hayes, Patrick E, Adem, Getnet D, Pariasca-Tanaka, Juan, Wissuwa, Matthias
Format Journal Article
LanguageEnglish
Published England Oxford University Press 11.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE. Three high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass. Low investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves. Lipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.
AbstractList Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE.BACKGROUND AND AIMSPhosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE.Three high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass.METHODSThree high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass.Low investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves.KEY RESULTSLow investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves.Lipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.CONCLUSIONSLipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.
Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food production, particularly in low-input systems. A critical aspect of PUE in plants, and one that remains poorly understood, is the investment of leaf P in different chemical P fractions (nucleic acid-P, lipid-P, inorganic-P, metabolite-P and residual-P). The overarching objective of this study was to understand how these key P fractions influence PUE. Three high-PUE and two low-PUE rice genotypes were grown in hydroponics with contrasting P supplies. We measured PUE, total P, P fractions, photosynthesis and biomass. Low investment in lipid-P was strongly associated with increased photosynthetic PUE (PPUE), achieved by reducing total leaf P concentration while maintaining rapid photosynthetic rates. All low-P plants exhibited a low investment in inorganic-P and lipid-P, but not nucleic acid-P. In addition, whole-plant PUE was strongly associated with reduced total P concentration, increased biomass and increased preferential allocation of resources to the youngest mature leaves. Lipid remodelling has been shown in rice before, but we show for the first time that reduced lipid-P investment improves PUE in rice without reducing photosynthesis. This presents a novel pathway for increasing PUE by targeting varieties with reduced lipid-P investment. This will benefit rice production in low-P soils and in areas where fertilizer use is limited, improving global food security by reducing P fertilizer demands and food production costs.
Author Wissuwa, Matthias
Adem, Getnet D
Hayes, Patrick E
Pariasca-Tanaka, Juan
AuthorAffiliation 1 Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences , Tsukuba, Ibaraki , Japan
2 School of Biological Sciences, The University of Western Australia , Perth, Western Australia , Australia
AuthorAffiliation_xml – name: 2 School of Biological Sciences, The University of Western Australia , Perth, Western Australia , Australia
– name: 1 Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences , Tsukuba, Ibaraki , Japan
Author_xml – sequence: 1
  givenname: Patrick E
  orcidid: 0000-0001-7554-4588
  surname: Hayes
  fullname: Hayes, Patrick E
  organization: Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
– sequence: 2
  givenname: Getnet D
  surname: Adem
  fullname: Adem, Getnet D
  organization: Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
– sequence: 3
  givenname: Juan
  surname: Pariasca-Tanaka
  fullname: Pariasca-Tanaka, Juan
  organization: Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
– sequence: 4
  givenname: Matthias
  orcidid: 0000-0003-3505-9398
  surname: Wissuwa
  fullname: Wissuwa, Matthias
  organization: Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34875007$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LAzEQhoMo2qon77JHQdbme7MXQYpfUPCiXkM2TTSyTWqSFfz3plqLiodMYOaZd4Z5x2DbB28AOELwDMGWTFToJgutOkTEFhiVFKsFbuE2GEECWd0QTvfAOKUXCCHmLdoFe4SKhkHYjMDjzChbLZ9DKi8OqbJR6eyCV6tQOV9Fp02VQzX4uYkpKz8v2WyiV_2PvnpIpjLWOu2M1-8HYMeqPpnD9b8PHq4u76c39ezu-nZ6Mas1pU2uNZ8L2yrBqEWQ8pYxQjDmmjIuOtZqrK3tMO2UwQ2HijIrBGKNpYpgogkl--D8S3c5dAsz18bnqHq5jG6h4rsMysnfFe-e5VN4k0IQxikvAidrgRheB5OyXLikTd8rb8KQJOZQIIIYxwU9_jlrM-T7mAU4_QJ0DClFYzcIgnJllSxWybVVhUZ_aO3y59XLoq7_t-cD7KCatA
CitedBy_id crossref_primary_10_1016_j_rsci_2024_02_009
crossref_primary_10_1007_s11104_022_05655_3
crossref_primary_10_1111_nph_20015
crossref_primary_10_1007_s11104_022_05464_8
crossref_primary_10_1038_s41598_022_13709_w
crossref_primary_10_3390_ijms252111673
crossref_primary_10_1016_j_sajb_2025_02_028
crossref_primary_10_1093_jpe_rtae064
crossref_primary_10_3389_fmicb_2024_1425034
crossref_primary_10_1007_s42976_024_00597_1
crossref_primary_10_1016_j_still_2023_105915
crossref_primary_10_1007_s42729_023_01541_8
crossref_primary_10_3390_plants14010004
crossref_primary_10_3389_fpls_2022_1005991
crossref_primary_10_1007_s11032_024_01494_5
crossref_primary_10_1080_01904167_2024_2380486
crossref_primary_10_1093_jxb_erac519
crossref_primary_10_1016_j_fecs_2024_100241
crossref_primary_10_1111_nph_19513
crossref_primary_10_1111_tpj_16057
crossref_primary_10_1093_jxb_erae427
crossref_primary_10_1007_s11104_023_06001_x
crossref_primary_10_1007_s11104_024_06774_9
crossref_primary_10_1111_nph_18588
crossref_primary_10_1093_treephys_tpad138
crossref_primary_10_1016_j_fecs_2024_100265
crossref_primary_10_1111_pce_15038
crossref_primary_10_1007_s11104_024_06898_y
crossref_primary_10_1016_j_cpb_2024_100323
crossref_primary_10_1016_j_cj_2024_12_022
crossref_primary_10_1016_j_envexpbot_2024_105653
Cites_doi 10.2503/jjshs.63.611
10.1093/jxb/erz156
10.1007/s10725-005-5481-7
10.1007/s11120-007-9203-z
10.1111/j.1469-8137.2012.04190.x
10.1104/pp.59.6.1146
10.1038/nmeth.2019
10.1111/ppl.12699
10.1111/j.1469-8137.2012.04285.x
10.1002/9781118958841.ch7
10.1111/j.1365-313X.2007.03363.x
10.18637/jss.v070.i01
10.1104/pp.89.4.1331
10.1007/978-1-4419-0318-1
10.1104/pp.111.175414
10.1094/MPMI-23-7-0915
10.1080/01904168309363161
10.1111/j.1365-3040.2008.01851.x
10.1111/pce.12754
10.1002/ece3.861
10.1073/pnas.180320497
10.1104/pp.43.8.1309
10.1007/s11104-015-2565-7
10.1039/AN9830800361
10.3389/fpls.2013.00536
10.1016/j.geoderma.2018.11.036
10.1002/bimj.200810425
10.1111/j.1365-2745.2011.01805.x
10.1111/j.1442-9993.1993.tb00438.x
10.1111/pce.13772
10.1016/j.resconrec.2011.09.009
10.1111/1365-2435.13252
10.1111/j.1365-313X.2010.04142.x
10.1111/pce.12240
10.1016/j.plantsci.2017.05.008
10.1093/jxb/eru535
10.1111/pce.13777
10.1371/journal.pone.0124215
10.1046/j.1469-8137.2003.00695.x
10.1093/jxb/erh111
10.1071/BT9770571
10.1016/j.pbi.2004.03.001
10.1111/nph.15910
10.1016/S1360-1385(01)02222-1
10.1007/s11104-020-04567-4
10.2307/1937083
10.1111/tpj.13423
10.1371/journal.pone.0241842
10.1002/jsfa.4532
10.21105/joss.01686
10.1111/j.1399-3054.1982.tb00264.x
10.1007/BF00193988
10.1104/pp.110.153270
10.1016/S1360-1385(01)02216-6
10.1007/s10333-005-0031-5
10.1016/j.plantsci.2010.06.007
10.1038/s41598-018-28800-4
10.1371/journal.pone.0187521
10.1093/aob/mcab013
10.1093/jxb/erw115
10.1111/j.2041-210X.2011.00153.x
10.1007/s11104-020-04657-3
10.1111/j.1461-0248.2009.01310.x
10.1017/S1464793106007007
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/aob/mcab138
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 302
ExternalDocumentID PMC8835646
34875007
10_1093_aob_mcab138
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAXTN
AAYXX
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
O-L
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TCN
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-c6d8f9a854f104695533226c4568b59c2cffb24bae2760a45f88157f4a323c343
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 18:39:55 EDT 2025
Fri Jul 11 11:40:58 EDT 2025
Mon Jul 21 05:45:32 EDT 2025
Tue Jul 01 03:04:17 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords lipid remodelling
phosphorus fractionation
phosphorus-use efficiency (PUE)
photosynthetic phosphorus-use efficiency (PPUE)
Oryza sativa (rice)
Inorganic P
phospholipids
phosphorus
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-c6d8f9a854f104695533226c4568b59c2cffb24bae2760a45f88157f4a323c343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7554-4588
0000-0003-3505-9398
OpenAccessLink https://academic.oup.com/aob/article-pdf/129/3/287/42500083/mcab138.pdf
PMID 34875007
PQID 2608131562
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8835646
proquest_miscellaneous_2608131562
pubmed_primary_34875007
crossref_primary_10_1093_aob_mcab138
crossref_citationtrail_10_1093_aob_mcab138
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-11
PublicationDateYYYYMMDD 2022-02-11
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-11
  day: 11
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: US
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Barrow (2022021117352257800_CIT0002) 1977; 25
Raven (2022021117352257800_CIT0046) 2013; 4
Hurley (2022021117352257800_CIT0026) 2010; 153
Adem (2022021117352257800_CIT0001) 2020; 15
Saito (2022021117352257800_CIT0050) 2019; 338
Warton (2022021117352257800_CIT0065) 2012; 3
Sulpice (2022021117352257800_CIT0054) 2014; 37
Vu (2022021117352257800_CIT0061) 2011
Kedrowski (2022021117352257800_CIT0031) 1983; 6
Frentzen (2022021117352257800_CIT0016) 2004; 7
Graves (2022021117352257800_CIT0017) 2015
Lenth (2022021117352257800_CIT0034) 2020
Lynch (2022021117352257800_CIT0035) 2011; 156
Shane (2022021117352257800_CIT0052) 2004; 55
Flis (2022021117352257800_CIT0015) 2016; 39
Nestler (2022021117352257800_CIT0041) 2016; 67
Josse (2022021117352257800_CIT0028) 2016; 70
Motomizu (2022021117352257800_CIT0040) 1983; 108
Hidaka (2022021117352257800_CIT0023) 2011; 99
Chapin (2022021117352257800_CIT0007) 1982; 54
Heldt (2022021117352257800_CIT0021) 1977; 59
McQuillan (2022021117352257800_CIT0037) 2020; 454
Heuer (2022021117352257800_CIT0022) 2017; 90
Jeong (2022021117352257800_CIT0027) 2017; 12
Han (2022021117352257800_CIT0018) 2021; 128
Takagi (2022021117352257800_CIT0055) 2020; 43
Brinch-Pedersen (2022021117352257800_CIT0006) 2002; 7
Pinheiro (2022021117352257800_CIT0044) 2000
Cooper (2022021117352257800_CIT0010) 2011; 57
Stitt (2022021117352257800_CIT0053) 2010; 61
Tawaraya (2022021117352257800_CIT0056) 2018; 163
Cowan (2022021117352257800_CIT0011) 2006; 48
Vance (2022021117352257800_CIT0058) 2003; 157
R Core Team. (2022021117352257800_CIT0048) 2020
Yan (2022021117352257800_CIT0069) 2019; 223
Kanda (2022021117352257800_CIT0029) 1994; 63
Zhang (2022021117352257800_CIT0071) 2018; 8
Wang (2022021117352257800_CIT0063) 2010; 179
Matzek (2022021117352257800_CIT0036) 2009; 12
Hayes (2022021117352257800_CIT0020) 2019; 70
Pinheiro (2022021117352257800_CIT0045) 2020
Kassambara (2022021117352257800_CIT0030) 2020
Pant (2022021117352257800_CIT0042) 2008; 53
Dörmann (2022021117352257800_CIT0013) 2002; 7
Wissuwa (2022021117352257800_CIT0068) 2015; 10
Clarke (2022021117352257800_CIT0009) 1993; 18
Branscheid (2022021117352257800_CIT0005) 2010; 23
Pant (2022021117352257800_CIT0043) 2015; 66
Schindelin (2022021117352257800_CIT0051) 2012; 9
Watanabe (2022021117352257800_CIT0066) 2020; 43
Bieleski (2022021117352257800_CIT0004) 1968; 43
Fixen (2022021117352257800_CIT0014) 2012; 92
Hidaka (2022021117352257800_CIT0024) 2013; 3
Wickham (2022021117352257800_CIT0067) 2019; 4
Bassham (2022021117352257800_CIT0003) 2017; 262
Lauer (2022021117352257800_CIT0033) 1989; 89
Veneklaas (2022021117352257800_CIT0060) 2012; 195
Hothorn (2022021117352257800_CIT0025) 2008; 50
Härtel (2022021117352257800_CIT0019) 2000; 97
Crous (2022021117352257800_CIT0012) 2020; 454
Yoshida (2022021117352257800_CIT0070) 1976
Rose (2022021117352257800_CIT0049) 2016; 401
Raven (2022021117352257800_CIT0047) 2015
Chapin (2022021117352257800_CIT0008) 1983; 64
Van Nguyen (2022021117352257800_CIT0059) 2006; 4
Mo (2022021117352257800_CIT0039) 2019; 33
Lambers (2022021117352257800_CIT0032) 2012; 196
Tjellström (2022021117352257800_CIT0057) 2008; 31
Wada (2022021117352257800_CIT0062) 2007; 92
Mimura (2022021117352257800_CIT0038) 1990; 180
Warton (2022021117352257800_CIT0064) 2006; 81
References_xml – volume: 63
  start-page: 611
  year: 1994
  ident: 2022021117352257800_CIT0029
  article-title: Effect of low root temperature on ribonucleic acid concentrations in figleaf gourd and cucumber roots differing in tolerance to chilling temperature
  publication-title: Journal of the Japanese Society for Horticultural Science
  doi: 10.2503/jjshs.63.611
– volume: 70
  start-page: 3995
  year: 2019
  ident: 2022021117352257800_CIT0020
  article-title: Calcium modulates leaf cell-specific phosphorus allocation in Proteaceae from south-western Australia
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erz156
– volume: 48
  start-page: 97
  year: 2006
  ident: 2022021117352257800_CIT0011
  article-title: Phospholipids as plant growth regulators
  publication-title: Plant Growth Regulation
  doi: 10.1007/s10725-005-5481-7
– volume: 92
  start-page: 205
  year: 2007
  ident: 2022021117352257800_CIT0062
  article-title: The essential role of phosphatidylglycerol in photosynthesis
  publication-title: Photosynthesis Research
  doi: 10.1007/s11120-007-9203-z
– volume: 195
  start-page: 306
  year: 2012
  ident: 2022021117352257800_CIT0060
  article-title: Opportunities for improving phosphorus-use efficiency in crop plants
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2012.04190.x
– volume: 59
  start-page: 1146
  year: 1977
  ident: 2022021117352257800_CIT0021
  article-title: Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts
  publication-title: Plant Physiology
  doi: 10.1104/pp.59.6.1146
– volume: 9
  start-page: 676
  year: 2012
  ident: 2022021117352257800_CIT0051
  article-title: Fiji: an open source platform for biological image analysis
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2019
– volume: 163
  start-page: 297
  year: 2018
  ident: 2022021117352257800_CIT0056
  article-title: Ancient rice cultivar extensively replaces phospholipids with non-phosphorus glycolipid under phosphorus deficiency
  publication-title: Physiologia Plantarum
  doi: 10.1111/ppl.12699
– volume: 196
  start-page: 1098
  year: 2012
  ident: 2022021117352257800_CIT0032
  article-title: Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2012.04285.x
– start-page: 187
  volume-title: Annual plant reviews volume 48
  year: 2015
  ident: 2022021117352257800_CIT0047
  article-title: Interactions between nitrogen and phosphorus metabolism
  doi: 10.1002/9781118958841.ch7
– volume: 53
  start-page: 731
  year: 2008
  ident: 2022021117352257800_CIT0042
  article-title: MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2007.03363.x
– volume: 70
  start-page: 1
  year: 2016
  ident: 2022021117352257800_CIT0028
  article-title: missMDA: a package for handling missing values in multivariate data analysis
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v070.i01
– volume: 89
  start-page: 1331
  year: 1989
  ident: 2022021117352257800_CIT0033
  article-title: 31P-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as affected by phosphate nutrition 1
  publication-title: Plant Physiology
  doi: 10.1104/pp.89.4.1331
– volume-title: Mixed-effects models in S and S-PLUS
  year: 2000
  ident: 2022021117352257800_CIT0044
  doi: 10.1007/978-1-4419-0318-1
– volume: 156
  start-page: 1041
  year: 2011
  ident: 2022021117352257800_CIT0035
  article-title: Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.175414
– volume: 23
  start-page: 915
  year: 2010
  ident: 2022021117352257800_CIT0005
  article-title: Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-23-7-0915
– volume-title: R: A language and environment for statistical computing
  year: 2020
  ident: 2022021117352257800_CIT0048
– volume: 6
  start-page: 989
  year: 1983
  ident: 2022021117352257800_CIT0031
  article-title: Extraction and analysis of nitrogen, phosphorus and carbon fractions in plant material
  publication-title: Journal of Plant Nutrition
  doi: 10.1080/01904168309363161
– volume: 31
  start-page: 1388
  year: 2008
  ident: 2022021117352257800_CIT0057
  article-title: Membrane phospholipids as a phosphate reserve: the dynamic nature of phospholipid-to-digalactosyl diacylglycerol exchange in higher plants
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2008.01851.x
– volume: 39
  start-page: 1955
  year: 2016
  ident: 2022021117352257800_CIT0015
  article-title: Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12754
– volume: 3
  start-page: 4872
  year: 2013
  ident: 2022021117352257800_CIT0024
  article-title: Relationship between photosynthetic phosphorus-use efficiency and foliar phosphorus fractions in tropical tree species
  publication-title: Ecology and Evolution
  doi: 10.1002/ece3.861
– volume-title: multcompView: visualisations of paired comparisons
  year: 2015
  ident: 2022021117352257800_CIT0017
– volume: 97
  start-page: 10649
  year: 2000
  ident: 2022021117352257800_CIT0019
  article-title: DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.180320497
– volume: 43
  start-page: 1309
  year: 1968
  ident: 2022021117352257800_CIT0004
  article-title: Effect of phosphorus deficiency on levels of phosphorus compounds in Spirodela
  publication-title: Plant Physiology
  doi: 10.1104/pp.43.8.1309
– volume-title: Laboratory manual for physiological studies of rice
  year: 1976
  ident: 2022021117352257800_CIT0070
– volume: 401
  start-page: 79
  year: 2016
  ident: 2022021117352257800_CIT0049
  article-title: Screening for internal phosphorus utilisation efficiency: comparison of genotypes at equal shoot P content is critical
  publication-title: Plant and Soil
  doi: 10.1007/s11104-015-2565-7
– volume-title: nlme: linear and nonlinear mixed effects models
  year: 2020
  ident: 2022021117352257800_CIT0045
– volume: 108
  start-page: 361
  year: 1983
  ident: 2022021117352257800_CIT0040
  article-title: Spectrophotometric determination of phosphate in river water with molybdate and malachite green
  publication-title: Analyst
  doi: 10.1039/AN9830800361
– volume: 4
  start-page: 536
  year: 2013
  ident: 2022021117352257800_CIT0046
  article-title: RNA function and phosphorus use by photosynthetic organisms
  publication-title: Frontiers in Plant Science
  doi: 10.3389/fpls.2013.00536
– volume: 338
  start-page: 546
  year: 2019
  ident: 2022021117352257800_CIT0050
  article-title: Yield-limiting macronutrients for rice in sub-Saharan Africa
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.036
– volume-title: emmeans: estimated marginal means, aka least-squares means
  year: 2020
  ident: 2022021117352257800_CIT0034
– volume: 50
  start-page: 346
  year: 2008
  ident: 2022021117352257800_CIT0025
  article-title: Simultaneous inference in general parametric models
  publication-title: Biometrical Journal
  doi: 10.1002/bimj.200810425
– volume: 99
  start-page: 849
  year: 2011
  ident: 2022021117352257800_CIT0023
  article-title: Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo: foliar P fractions along soil P availability
  publication-title: Journal of Ecology
  doi: 10.1111/j.1365-2745.2011.01805.x
– volume: 18
  start-page: 117
  year: 1993
  ident: 2022021117352257800_CIT0009
  article-title: Non-parametric multivariate analyses of changes in community structure
  publication-title: Australian Journal of Ecology
  doi: 10.1111/j.1442-9993.1993.tb00438.x
– volume: 43
  start-page: 2033
  year: 2020
  ident: 2022021117352257800_CIT0055
  article-title: Phosphorus toxicity disrupts Rubisco activation and reactive oxygen species defence systems by phytic acid accumulation in leaves
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13772
– volume: 57
  start-page: 78
  year: 2011
  ident: 2022021117352257800_CIT0010
  article-title: The future distribution and production of global phosphate rock reserves
  publication-title: Resources, Conservation and Recycling
  doi: 10.1016/j.resconrec.2011.09.009
– volume: 33
  start-page: 503
  year: 2019
  ident: 2022021117352257800_CIT0039
  article-title: Foliar phosphorus fractions reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability
  publication-title: Functional Ecology
  doi: 10.1111/1365-2435.13252
– volume: 61
  start-page: 1067
  year: 2010
  ident: 2022021117352257800_CIT0053
  article-title: Arabidopsis and primary photosynthetic metabolism – more than the icing on the cake
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2010.04142.x
– volume: 37
  start-page: 1276
  year: 2014
  ident: 2022021117352257800_CIT0054
  article-title: Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.12240
– volume: 262
  start-page: 169
  year: 2017
  ident: 2022021117352257800_CIT0003
  article-title: Degradation of cytosolic ribosomes by autophagy-related pathways
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2017.05.008
– volume: 66
  start-page: 1907
  year: 2015
  ident: 2022021117352257800_CIT0043
  article-title: The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eru535
– volume: 43
  start-page: 2066
  year: 2020
  ident: 2022021117352257800_CIT0066
  article-title: Metabolomic markers and physiological adaptations for high phosphate utilization efficiency in rice
  publication-title: Plant, Cell & Environment
  doi: 10.1111/pce.13777
– volume: 10
  start-page: e0124215
  year: 2015
  ident: 2022021117352257800_CIT0068
  article-title: Unmasking novel loci for internal phosphorus utilization efficiency in rice germplasm through genome-wide association analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0124215
– volume: 157
  start-page: 423
  year: 2003
  ident: 2022021117352257800_CIT0058
  article-title: Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.2003.00695.x
– volume: 55
  start-page: 1033
  year: 2004
  ident: 2022021117352257800_CIT0052
  article-title: Tissue and cellular phosphorus storage during development of phosphorus toxicity in Hakea prostrata (Proteaceae)
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erh111
– volume: 25
  start-page: 571
  year: 1977
  ident: 2022021117352257800_CIT0002
  article-title: Phosphorus uptake and utilization by tree seedlings
  publication-title: Australian Journal of Botany
  doi: 10.1071/BT9770571
– volume: 7
  start-page: 270
  year: 2004
  ident: 2022021117352257800_CIT0016
  article-title: Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2004.03.001
– volume: 223
  start-page: 1621
  year: 2019
  ident: 2022021117352257800_CIT0069
  article-title: Responses of foliar phosphorus fractions to soil age are diverse along a two-million-year dune chronosequence
  publication-title: New Phytologist
  doi: 10.1111/nph.15910
– volume: 7
  start-page: 118
  year: 2002
  ident: 2022021117352257800_CIT0006
  article-title: Engineering crop plants: getting a handle on phosphate
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(01)02222-1
– volume-title: ggbiplot: a ggplot2 based biplot
  year: 2011
  ident: 2022021117352257800_CIT0061
– volume: 454
  start-page: 57
  year: 2020
  ident: 2022021117352257800_CIT0037
  article-title: Partitioning of phosphorus between biochemical and storage compounds in leaves follows a consistent pattern across four Australian genera growing in native settings
  publication-title: Plant and Soil
  doi: 10.1007/s11104-020-04567-4
– volume: 64
  start-page: 376
  year: 1983
  ident: 2022021117352257800_CIT0008
  article-title: Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees
  publication-title: Ecology
  doi: 10.2307/1937083
– volume: 90
  start-page: 868
  year: 2017
  ident: 2022021117352257800_CIT0022
  article-title: Improving phosphorus use efficiency: a complex trait with emerging opportunities
  publication-title: The Plant Journal
  doi: 10.1111/tpj.13423
– volume: 15
  start-page: e0241842
  year: 2020
  ident: 2022021117352257800_CIT0001
  article-title: Genetic and physiological traits for internal phosphorus utilization efficiency in rice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0241842
– volume: 92
  start-page: 1001
  year: 2012
  ident: 2022021117352257800_CIT0014
  article-title: World fertilizer nutrient reserves: a view to the future
  publication-title: Journal of the Science of Food and Agriculture
  doi: 10.1002/jsfa.4532
– volume: 4
  start-page: 1686
  year: 2019
  ident: 2022021117352257800_CIT0067
  article-title: Welcome to the tidyverse
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01686
– volume: 54
  start-page: 309
  year: 1982
  ident: 2022021117352257800_CIT0007
  article-title: Mild phosphorus stress in barley and a related low-phosphorus-adapted barleygrass: phosphorus fractions and phosphate absorption in relation to growth
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1982.tb00264.x
– volume: 180
  start-page: 139
  year: 1990
  ident: 2022021117352257800_CIT0038
  article-title: Phosphate transport across biomembranes and cytosolic phosphate homeostasis in barley leaves
  publication-title: Planta
  doi: 10.1007/BF00193988
– volume: 153
  start-page: 1112
  year: 2010
  ident: 2022021117352257800_CIT0026
  article-title: The dual-targeted purple acid phosphatase isozyme AtPAP26 is essential for efficient acclimation of arabidopsis to nutritional phosphate deprivation
  publication-title: Plant Physiology
  doi: 10.1104/pp.110.153270
– volume: 7
  start-page: 112
  year: 2002
  ident: 2022021117352257800_CIT0013
  article-title: Galactolipids rule in seed plants
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(01)02216-6
– volume: 4
  start-page: 1
  year: 2006
  ident: 2022021117352257800_CIT0059
  article-title: Meeting the challenges of global rice production
  publication-title: Paddy and Water Environment
  doi: 10.1007/s10333-005-0031-5
– volume: 179
  start-page: 302
  year: 2010
  ident: 2022021117352257800_CIT0063
  article-title: Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops?
  publication-title: Plant Science
  doi: 10.1016/j.plantsci.2010.06.007
– volume: 8
  start-page: 10455
  year: 2018
  ident: 2022021117352257800_CIT0071
  article-title: Photosynthesis of subtropical forest species from different successional status in relation to foliar nutrients and phosphorus fractions
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-28800-4
– volume: 12
  start-page: e0187521
  year: 2017
  ident: 2022021117352257800_CIT0027
  article-title: Remobilisation of phosphorus fractions in rice flag leaves during grain filling: implications for photosynthesis and grain yields
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0187521
– volume: 128
  start-page: 419
  year: 2021
  ident: 2022021117352257800_CIT0018
  article-title: Foliar nutrient allocation patterns in Banksia attenuata and Banksia sessilis differing in growth rate and adaptation to low-phosphorus habitats
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcab013
– volume: 67
  start-page: 3699
  year: 2016
  ident: 2022021117352257800_CIT0041
  article-title: Root hair formation in rice (Oryza sativa L.) differs between root types and is altered in artificial growth conditions
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erw115
– volume: 3
  start-page: 257
  year: 2012
  ident: 2022021117352257800_CIT0065
  article-title: smatr 3 – an R package for estimation and inference about allometric lines
  publication-title: Methods in Ecology and Evolution
  doi: 10.1111/j.2041-210X.2011.00153.x
– volume-title: factoextra: extract and visualize the results of multivariate data analyses
  year: 2020
  ident: 2022021117352257800_CIT0030
– volume: 454
  start-page: 77
  year: 2020
  ident: 2022021117352257800_CIT0012
  article-title: Probing the inner sanctum of leaf phosphorus: measuring the fractions of leaf P
  publication-title: Plant and Soil
  doi: 10.1007/s11104-020-04657-3
– volume: 12
  start-page: 765
  year: 2009
  ident: 2022021117352257800_CIT0036
  article-title: N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2009.01310.x
– volume: 81
  start-page: 259
  year: 2006
  ident: 2022021117352257800_CIT0064
  article-title: Bivariate line-fitting methods for allometry
  publication-title: Biological Reviews
  doi: 10.1017/S1464793106007007
SSID ssj0002691
Score 2.5167847
Snippet Phosphorus (P) availability is often limiting for rice (Oryza sativa) production. Improving internal P-use efficiency (PUE) is crucial to sustainable food...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 287
SubjectTerms Fertilizers
Original
Oryza - metabolism
Phosphorus - metabolism
Photosynthesis
Plant Leaves - metabolism
Title Leaf phosphorus fractionation in rice to understand internal phosphorus-use efficiency
URI https://www.ncbi.nlm.nih.gov/pubmed/34875007
https://www.proquest.com/docview/2608131562
https://pubmed.ncbi.nlm.nih.gov/PMC8835646
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagQ2gviDvlJiPtiSmssZ3EeWyBaUKAeOhgb5Ht2Go0mlRNIgS_nuM4l6YbEvBQq8rFlvx9PvmO7XOM0BFXaawpMZ6RceixkHFPaB14ga9BHfBQptLGDn_6HJ6dsw8XwcVedEkl36hf18aV_A-qcA1wtVGy_4BsXylcgP-AL5SAMJR_hfFHLczxZlWU8NvW5bHZujAF0e1gtBmDrLqs-xCWJj9EI0GH97y6bDZ2ZM04H63zDvmVZVF1dqMxWD93U_xfDgEN81Sv3WR7letq2FD8BZxyUSrhLUUuLt0O3Xqg5jdLgB_ChQ9V1SoTowkJ8GXt8SiOH9oZUZBtnl2gHVnZdmIj2_XCnc10X9wrttzluRKFhHKthPRdGpgdXDfrBlhqna6ZOzx3L3l2d-smOiDgR5AJOpgv3i1O-481CWO_DduE9k6gtZO2rUN0u3t7rFmuOCL7-2l3BMryLrrTehZ47mhyD93Q-X10a9HA9gB9tVzBA-Z4xBWc5dhyBVcFHriCO67gMVfwwJWH6Pz0_fLtmdeeqeEpxqLKU2HKTSx4wIxd3Y8DkPugwBXoaC6DWBFljCRMCk2icCZYYDj3g8gwQQlVlNFHaJIXuX6CcMxSolksqJXhKY2kpmlAZtLMOAx8LqbodddriWoTzttzT74nbuMDTaC3k7a3p-iof3jj8qxc_9irrvsTsIN2cUvkuqjLBPxy7lMf5PwUPXZw9BV1OE5RNAKqf8DmWB_fybNVk2udg4cSsvDpH-t8hg6HQfAcTaptrV-ATq3ky5ZrvwHH8ZsU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leaf+phosphorus+fractionation+in+rice+to+understand+internal+phosphorus-use+efficiency&rft.jtitle=Annals+of+botany&rft.au=Hayes%2C+Patrick+E&rft.au=Adem%2C+Getnet+D&rft.au=Pariasca-Tanaka%2C+Juan&rft.au=Wissuwa%2C+Matthias&rft.date=2022-02-11&rft.eissn=1095-8290&rft.volume=129&rft.issue=3&rft.spage=287&rft_id=info:doi/10.1093%2Faob%2Fmcab138&rft_id=info%3Apmid%2F34875007&rft.externalDocID=34875007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon