Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study

Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergist...

Full description

Saved in:
Bibliographic Details
Published inAgricultural water management Vol. 297; p. 108816
Main Authors Zhu, Hongyan, Zheng, Bingyan, Nie, Weibo, Fei, Liangjun, Shan, Yuyang, Li, Ge, Liang, Fei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 31.05.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m3/ha and 4800 m3/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m3/ha, 5381 m3/ha, and 6090 m3/ha, respectively. In dynamic strategies, the optimized RDI4 (65% Ir (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI5 strategy (85% Ir at V6-V12 stage and 85% Ir at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m3/ha, the RDI4 strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI5 strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI5 strategy can save 49.44% of irrigation water, and the RDI4 strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Ir in R2 to R5 stages of maize growth or 85% Ir in V6 to V12 stages and 85% Ir in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha). •The AquaCrop model was locally calibrated based on a four-year field study.•The optimal static irrigation strategy in wet, normal, and dry years was given.•Slight water deficit should be applied in initial growth stage of maize.•Higher water deficit can be adjusted in the later growth stage of maize.•Soil moisture cannot be deficient in seedling, tasseling and silking stage of maize.
AbstractList Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m3/ha and 4800 m3/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m3/ha, 5381 m3/ha, and 6090 m3/ha, respectively. In dynamic strategies, the optimized RDI4 (65% Ir (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI5 strategy (85% Ir at V6-V12 stage and 85% Ir at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m3/ha, the RDI4 strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI5 strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI5 strategy can save 49.44% of irrigation water, and the RDI4 strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Ir in R2 to R5 stages of maize growth or 85% Ir in V6 to V12 stages and 85% Ir in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha).
Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m3/ha and 4800 m3/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m3/ha, 5381 m3/ha, and 6090 m3/ha, respectively. In dynamic strategies, the optimized RDI4 (65% Ir (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI5 strategy (85% Ir at V6-V12 stage and 85% Ir at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m3/ha, the RDI4 strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI5 strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI5 strategy can save 49.44% of irrigation water, and the RDI4 strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Ir in R2 to R5 stages of maize growth or 85% Ir in V6 to V12 stages and 85% Ir in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha). •The AquaCrop model was locally calibrated based on a four-year field study.•The optimal static irrigation strategy in wet, normal, and dry years was given.•Slight water deficit should be applied in initial growth stage of maize.•Higher water deficit can be adjusted in the later growth stage of maize.•Soil moisture cannot be deficient in seedling, tasseling and silking stage of maize.
Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m³/ha and 4800 m³/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m³/ha, 5381 m³/ha, and 6090 m³/ha, respectively. In dynamic strategies, the optimized RDI₄ (65% Iᵣ (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI₅ strategy (85% Iᵣ at V6-V12 stage and 85% Iᵣ at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m³/ha, the RDI₄ strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI₅ strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI₅ strategy can save 49.44% of irrigation water, and the RDI₄ strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Iᵣ in R2 to R5 stages of maize growth or 85% Iᵣ in V6 to V12 stages and 85% Iᵣ in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha).
ArticleNumber 108816
Author Shan, Yuyang
Li, Ge
Zhu, Hongyan
Fei, Liangjun
Liang, Fei
Nie, Weibo
Zheng, Bingyan
Author_xml – sequence: 1
  givenname: Hongyan
  orcidid: 0000-0002-6006-4765
  surname: Zhu
  fullname: Zhu, Hongyan
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
– sequence: 2
  givenname: Bingyan
  surname: Zheng
  fullname: Zheng, Bingyan
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
– sequence: 3
  givenname: Weibo
  surname: Nie
  fullname: Nie, Weibo
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
– sequence: 4
  givenname: Liangjun
  surname: Fei
  fullname: Fei, Liangjun
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
– sequence: 5
  givenname: Yuyang
  surname: Shan
  fullname: Shan, Yuyang
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
– sequence: 6
  givenname: Ge
  surname: Li
  fullname: Li, Ge
  organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
– sequence: 7
  givenname: Fei
  orcidid: 0000-0003-2913-6641
  surname: Liang
  fullname: Liang, Fei
  email: liangfei3326@126.com
  organization: College of Resources and Environment/Institute of Resources and Ecology, Yi Li Normal University, Yining 835000, China
BookMark eNqFkUtv1DAUhS1UJKaFX8DGSxZk6lfiZMGiGvGoVKkbkNhZN85NcJSJp7YDSn897qRiwQJWlo7Pd499zyW5mP2MhLzlbM8Zr67HPQy_IO0FEyordc2rF2THay0LIWp5QXZM6rqQWqtX5DLGkTGmmNI7Yu9PyR3dIyTnZ-p7egT3iNSF4IZNiylAwmGlbqbf3Tw6mIf39PDDzUDbld48LHAI_kRbiNjRDADt_RKKFSFkeOnW1-RlD1PEN8_nFfn26ePXw5fi7v7z7eHmrrBK6VRYAZZzqLAvhSqtaGspMb-eMWF5VWmQveINWq2AN1XLOs0bxcpOVmXf2Hx9RW63uZ2H0ZyCO0JYjQdnzoIPg4GQnJ3Q5BDQvFV112nVd6JVlShLqSXLidhgnvVum3UK_mHBmMzRRYvTBDP6JRrJs5tLUdbZKjerDT7GgP2faM7MUz1mNOd6zFM9ZqsnU81flHXpvPG8bzf9h_2wsZi3-dNhMNE6nC12LqBN-bvun_xviKGt6A
CitedBy_id crossref_primary_10_1007_s00271_025_01001_4
crossref_primary_10_1002_ird_3078
crossref_primary_10_1360_N072024_0044
crossref_primary_10_1007_s11430_024_1476_7
Cites_doi 10.1007/s00271-012-0378-5
10.1016/j.agwat.2017.02.004
10.1016/j.agwat.2022.107599
10.1016/j.scitotenv.2020.143600
10.1016/j.agwat.2020.106726
10.1016/j.agwat.2019.105687
10.1016/j.egyr.2019.08.031
10.1016/j.agwat.2008.02.008
10.1016/j.agwat.2020.106539
10.1016/j.cj.2018.10.008
10.2134/agronj2008.0218s
10.1016/j.agwat.2023.108563
10.1016/j.agwat.2018.09.047
10.1016/j.envsoft.2014.08.005
10.1016/j.agwat.2015.06.022
10.1016/j.agwat.2019.06.004
10.1016/j.agwat.2012.04.002
10.1016/0378-3774(95)01152-9
10.2134/agronj2008.0139s
10.1016/S1161-0301(02)00109-0
10.3390/agriculture12010097
10.1016/j.agwat.2021.107372
10.1016/j.agwat.2023.108205
10.3390/agriculture11100941
10.1016/j.agwat.2017.11.001
10.1016/j.advwatres.2017.04.025
10.1016/j.fcr.2019.02.009
10.1016/j.agwat.2023.108663
10.1007/s11269-015-0973-3
10.1016/j.agwat.2022.107949
10.1016/j.agwat.2021.107084
10.1016/j.agwat.2016.05.007
10.1016/j.agwat.2023.108391
10.13031/2013.42676
10.1016/S0378-3774(03)00179-3
10.1016/j.agwat.2018.11.006
10.1016/j.fcr.2022.108680
10.1016/j.fcr.2022.108510
10.1016/S0378-3774(00)00073-1
10.1016/j.agwat.2020.106575
10.1016/j.agwat.2022.107950
10.1016/j.fcr.2017.05.026
10.1016/j.agwat.2019.105925
10.1016/S1161-0301(02)00107-7
10.1016/j.agsy.2016.02.003
10.1016/j.agwat.2006.04.008
10.1111/j.1475-2743.1989.tb00755.x
10.2134/agronj2008.0029xs
10.1186/s13717-023-00429-w
10.1016/j.agwat.2021.107219
10.1016/j.agwat.2014.04.007
10.1029/1998WR900018
10.1016/j.ijdrr.2021.102126
10.1016/S0378-4290(00)00095-2
10.1016/j.agwat.2020.106660
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.agwat.2024.108816
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1873-2283
ExternalDocumentID oai_doaj_org_article_6efa71b48dd74fd2b462553730e28e9e
10_1016_j_agwat_2024_108816
S0378377424001513
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABGRD
ABJNI
ABMAC
ABQEM
ACDAQ
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
IMUCA
J1W
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
Y6R
~02
~G-
~KM
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMA
HVGLF
HZ~
R2-
SEP
SSH
VH1
WUQ
XPP
ZMT
7S9
L.6
EFKBS
ID FETCH-LOGICAL-c447t-c2ac11a6ef5245c2b833e283002c1667a3f419ec74a196b0d719405d365f9c7a3
IEDL.DBID DOA
ISSN 0378-3774
IngestDate Wed Aug 27 01:08:06 EDT 2025
Wed Jul 02 03:21:44 EDT 2025
Tue Jul 01 04:31:21 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
Sat May 11 15:33:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Regulated deficit irrigation
Irrigation strategy
Maize
Yield
AquaCrop model
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-c2ac11a6ef5245c2b833e283002c1667a3f419ec74a196b0d719405d365f9c7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6006-4765
0000-0003-2913-6641
OpenAccessLink https://doaj.org/article/6efa71b48dd74fd2b462553730e28e9e
PQID 3153713258
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_6efa71b48dd74fd2b462553730e28e9e
proquest_miscellaneous_3153713258
crossref_primary_10_1016_j_agwat_2024_108816
crossref_citationtrail_10_1016_j_agwat_2024_108816
elsevier_sciencedirect_doi_10_1016_j_agwat_2024_108816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-31
PublicationDateYYYYMMDD 2024-05-31
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-31
  day: 31
PublicationDecade 2020
PublicationTitle Agricultural water management
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Feng, Li, Wang, Wulazibieke, Cai, Kang, Yuan, Xu (bib17) 2022; 261
Umesh, Reddy, Polisgowdar, Maruthi, Satishkumar, Ayyanagoudar, Rao, Veeresh (bib50) 2022; 274
Adeboye, Schultz, Adekalu, Prasad (bib2) 2019; 213
Zhang, Shen, Ming, Xie, Jin, Liu, Hou, Xue, Chen, Zhang, Liu, Wang, Li (bib69) 2019; 7
Huang, Wang, Qi, Zhang, Xu (bib22) 2022; 282
Kang, Shi, Zhang (bib26) 2000; 67
Djaman, Irmak, Rathje, Martin, Eisenhauer (bib13) 2013; 56
Heng, Hsiao, Evett, Howell, Steduto (bib19) 2009; 101
Van Diepen, Wolf, Van Keulen, Rappoldt (bib52) 1989; 5
Yang, Fraga, Van Ieperen, Santos (bib65) 2017; 184
Zou, Zhang, Zhang, Chen, Lu, Zheng (bib73) 2017; 33
Liu, Yang (bib34) 2021; 256
Cheng, Li, Wang, Xie, Hou, Ming, Xue, Zhang, Liu, Li (bib7) 2021; 29
Dharminder, Singh, Kumar, Pramanick, Alsanie, Gaber, Hossain (bib11) 2021; 11
Guo, Olesen, Manevski, Ma (bib18) 2021; 245
Delgoda, Malano, Saleem, Halgamuge (bib10) 2017; 105
Wang, Huang, Zhan, Mohanty, Zheng, Huang, Xu (bib56) 2014; 141
Sandhu, Irmak (bib43) 2019; 223
Vanuytrecht, Raes, Steduto, Hsiao, Fereres, Heng, Vila, Moreno (bib53) 2014; 62
Wu, Yue, Guo, Xu, Huang (bib63) 2022; 266
Abrishambaf, Faria, Gomes, Vale (bib1) 2020; 6
Wang, He, Li, Zhang, Cai (bib55) 2022; 55
Martínez-Romero, López-Urrea, Montoya, Pardo, Domínguez (bib36) 2021; 258
Li, Zhou, Shen, Wang, Yang, Wu, Chen, Lei (bib33) 2024; 292
Campos, Jiménez-Bello, Alzamora (bib6) 2020; 227
Xue, Zhang, Suo, Zhang (bib64) 2013; 41
FAO, 2022. World Food and Agriculture – Statistical Yearbook 2022. Available from https://www.fao.org/documents/card/en/c/cc2211en (accessed November 8th 2023).
Wei, Ma, Liu, Zhang, Yang, Zhang (bib62) 2018; 49
Smith (bib45) 1992
Hoque, Pradhan, Ahmed, Sohel (bib20) 2021; 756
Chibarabada, Modi, Mabhaudhi (bib9) 2020; 281
Yin, Kang, Gu, Hao, Cong, Liu (bib66) 2013; 11
Zhang, Wang, Xiao, Xie, Hou, Li, Xu, Chu, Liu, Liu, Li (bib70) 2015; 23
Pandey, Maranville, Admou (bib38) 2000; 46
Tan, Wang, Zhang, Chen, Shan, Xu (bib49) 2018; 196
Li, Li, Wang, Zhang, Wang (bib31) 2023; 289
Wang, Cai, Chen, Chen (bib54) 2004; 0
Jones, Hoogenboom, Porter, Boote, Batchelor, Hunt, Wilkens, Singh, Gijsman, Ritchie (bib24) 2003; 18
Ran, Kang, Hu, Li, Du, Tong, Li, Ding, Zhou, Parsons (bib41) 2019; 234
Ahmadi, Mosallaeepour, Kamgar-Haghighi, Sepaskhah (bib4) 2015; 29
Singh, Mahapatra, Pramanick, Yadav (bib44) 2021; 244
Maniruzzaman, Talukder, Khan, Biswas, Nemes (bib35) 2015; 159
Li, Wang, Zhang, Liu, Xu, Lin, Wang, Yang, Zhang (bib32) 2019; 211
Wang, Meng, Xie, Wang, Ming, Hou, Xue, Li (bib57) 2023; 280
Ahmadi, Ghorra, Sepaskhah (bib3) 2022; 288
Hsiao, Heng, Steduto, Rojas-Lara, Raes, Fereres (bib21) 2009; 101
Steduto, Hsiao, Raes, Fereres (bib46) 2009; 101
Wang, Wu, Xiao, Huang, Hu (bib58) 2021; 245
Wang, Xue, Xie, Ming, Wang, Hou, Zhang, Li (bib60) 2022; 12
El-Hendawy, El-Lattief, Ahmed, Schmidhalter (bib15) 2008; 95
Domínguez, de Juan, Tarjuelo, Martínez, Martínez-Romero (bib14) 2012; 110
NBSC, 2022. Announcement of the National Bureau of Statistics on grain production data for 2022. Available from http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901673.html (accessed November 8th 2023).
Kaur, Hui, Riccuito, Mayes, Tian (bib28) 2023; 12
Raes, D., Steduto, P., Hsiao, T.,Fereres, E., 2022. AquaCrop Version 7.0. Reference Manual. FAO, Land and Water Division, Rome, Italy.
Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300 (9), D05109..
Stöckle, Donatelli, Nelson (bib47) 2003; 18
Sun, Liu, Zhang, Shen, Zhang (bib48) 2006; 85
Zheng, Huang, Wang, Huang, Pereira, Xu, Liu (bib72) 2013; 31
Ding, Zhou, Du, Wang, Zhang, Gao (bib12) 2022; 41
USDAFAS, 2019. Grain: World Markets and Trade. Retrieved on August, 2019. Available from https://apps.fas.usdaF.A.S.gov/psdonline/circulars/grain.pdf (accessed November 8th 2023).
Zhang, Liu, Xiao, Xie, Ming, Hou, Liu, Xu, Shen, Wang, Li (bib67) 2017; 211
Zhang, Zuo, Ma, Shi, Fan, Wu, Wang, Xue, Ben-Gal (bib71) 2023; 286
Legates, McCabe (bib29) 1999; 35
Karam, Breidy, Stephan, Rouphael (bib27) 2003; 63
Wang, Xiao, Ming, Xie, Wang, Hou, Liu, Zhang, Chen, Liu (bib59) 2021; 247
Zhang, Shen, Ming, Xie, Jin, Liu, Hou, Xue, Chen, Zhang, Liu, Wang, Li (bib68) 2019; 7
Jacovides, Kontoyiannis (bib23) 1995; 27
Pardo, Martinez-Romero, Lellis, Tarjuelo, Dominguez (bib39) 2020; 228
Wei, Jin, Cui, Ning, Fei, Wu, Zhou, Zhang, Liu, Tong (bib61) 2021; 56
Cheng, Wang, Fan, Xiang, Liu, Liao, Abdelghany, Zhang, Li (bib8) 2022; 274
Li, Guo, Singh (bib30) 2016; 144
Rashid, Jabloun, Andersen, Zhang, Olesen (bib42) 2019; 222
Kang, Hao, Du, Tong, Su, Lu, Li, Huo, Li, Ding (bib25) 2017; 179
Feng (10.1016/j.agwat.2024.108816_bib17) 2022; 261
Pandey (10.1016/j.agwat.2024.108816_bib38) 2000; 46
Campos (10.1016/j.agwat.2024.108816_bib6) 2020; 227
Chibarabada (10.1016/j.agwat.2024.108816_bib9) 2020; 281
Heng (10.1016/j.agwat.2024.108816_bib19) 2009; 101
Dharminder (10.1016/j.agwat.2024.108816_bib11) 2021; 11
Jacovides (10.1016/j.agwat.2024.108816_bib23) 1995; 27
Hoque (10.1016/j.agwat.2024.108816_bib20) 2021; 756
Hsiao (10.1016/j.agwat.2024.108816_bib21) 2009; 101
Stöckle (10.1016/j.agwat.2024.108816_bib47) 2003; 18
Martínez-Romero (10.1016/j.agwat.2024.108816_bib36) 2021; 258
10.1016/j.agwat.2024.108816_bib40
Zou (10.1016/j.agwat.2024.108816_bib73) 2017; 33
Abrishambaf (10.1016/j.agwat.2024.108816_bib1) 2020; 6
Wang (10.1016/j.agwat.2024.108816_bib55) 2022; 55
Maniruzzaman (10.1016/j.agwat.2024.108816_bib35) 2015; 159
Wang (10.1016/j.agwat.2024.108816_bib59) 2021; 247
Yin (10.1016/j.agwat.2024.108816_bib66) 2013; 11
Tan (10.1016/j.agwat.2024.108816_bib49) 2018; 196
Ran (10.1016/j.agwat.2024.108816_bib41) 2019; 234
Wang (10.1016/j.agwat.2024.108816_bib57) 2023; 280
Wu (10.1016/j.agwat.2024.108816_bib63) 2022; 266
El-Hendawy (10.1016/j.agwat.2024.108816_bib15) 2008; 95
10.1016/j.agwat.2024.108816_bib37
Wang (10.1016/j.agwat.2024.108816_bib60) 2022; 12
Djaman (10.1016/j.agwat.2024.108816_bib13) 2013; 56
Adeboye (10.1016/j.agwat.2024.108816_bib2) 2019; 213
Wang (10.1016/j.agwat.2024.108816_bib54) 2004; 0
Van Diepen (10.1016/j.agwat.2024.108816_bib52) 1989; 5
Sandhu (10.1016/j.agwat.2024.108816_bib43) 2019; 223
Smith (10.1016/j.agwat.2024.108816_bib45) 1992
Rashid (10.1016/j.agwat.2024.108816_bib42) 2019; 222
Guo (10.1016/j.agwat.2024.108816_bib18) 2021; 245
Xue (10.1016/j.agwat.2024.108816_bib64) 2013; 41
Liu (10.1016/j.agwat.2024.108816_bib34) 2021; 256
10.1016/j.agwat.2024.108816_bib5
Kaur (10.1016/j.agwat.2024.108816_bib28) 2023; 12
Li (10.1016/j.agwat.2024.108816_bib31) 2023; 289
Wei (10.1016/j.agwat.2024.108816_bib62) 2018; 49
Pardo (10.1016/j.agwat.2024.108816_bib39) 2020; 228
Domínguez (10.1016/j.agwat.2024.108816_bib14) 2012; 110
Singh (10.1016/j.agwat.2024.108816_bib44) 2021; 244
Zhang (10.1016/j.agwat.2024.108816_bib67) 2017; 211
Ahmadi (10.1016/j.agwat.2024.108816_bib4) 2015; 29
Delgoda (10.1016/j.agwat.2024.108816_bib10) 2017; 105
Kang (10.1016/j.agwat.2024.108816_bib26) 2000; 67
Huang (10.1016/j.agwat.2024.108816_bib22) 2022; 282
Kang (10.1016/j.agwat.2024.108816_bib25) 2017; 179
Wei (10.1016/j.agwat.2024.108816_bib61) 2021; 56
Zhang (10.1016/j.agwat.2024.108816_bib71) 2023; 286
Legates (10.1016/j.agwat.2024.108816_bib29) 1999; 35
Li (10.1016/j.agwat.2024.108816_bib33) 2024; 292
Sun (10.1016/j.agwat.2024.108816_bib48) 2006; 85
Ding (10.1016/j.agwat.2024.108816_bib12) 2022; 41
Zhang (10.1016/j.agwat.2024.108816_bib69) 2019; 7
Zheng (10.1016/j.agwat.2024.108816_bib72) 2013; 31
10.1016/j.agwat.2024.108816_bib16
Steduto (10.1016/j.agwat.2024.108816_bib46) 2009; 101
Vanuytrecht (10.1016/j.agwat.2024.108816_bib53) 2014; 62
Zhang (10.1016/j.agwat.2024.108816_bib70) 2015; 23
Wang (10.1016/j.agwat.2024.108816_bib58) 2021; 245
10.1016/j.agwat.2024.108816_bib51
Cheng (10.1016/j.agwat.2024.108816_bib8) 2022; 274
Jones (10.1016/j.agwat.2024.108816_bib24) 2003; 18
Karam (10.1016/j.agwat.2024.108816_bib27) 2003; 63
Li (10.1016/j.agwat.2024.108816_bib30) 2016; 144
Li (10.1016/j.agwat.2024.108816_bib32) 2019; 211
Umesh (10.1016/j.agwat.2024.108816_bib50) 2022; 274
Yang (10.1016/j.agwat.2024.108816_bib65) 2017; 184
Zhang (10.1016/j.agwat.2024.108816_bib68) 2019; 7
Ahmadi (10.1016/j.agwat.2024.108816_bib3) 2022; 288
Cheng (10.1016/j.agwat.2024.108816_bib7) 2021; 29
Wang (10.1016/j.agwat.2024.108816_bib56) 2014; 141
References_xml – volume: 23
  start-page: 117
  year: 2015
  end-page: 123
  ident: bib70
  article-title: Effect of drip irrigation on yield and water use efficiency of spring maize with high yield in Xinjiang
  publication-title: J. Maize Sci.
– volume: 31
  start-page: 995
  year: 2013
  end-page: 1008
  ident: bib72
  article-title: Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China
  publication-title: Irrig. Sci.
– volume: 282
  year: 2022
  ident: bib22
  article-title: Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study
  publication-title: Field Crops Res.
– volume: 46
  start-page: 1
  year: 2000
  end-page: 13
  ident: bib38
  article-title: Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components
  publication-title: Agric. Water Manag.
– volume: 55
  start-page: 3365
  year: 2022
  end-page: 3379
  ident: bib55
  article-title: Research on soybean irrigation schedule based on AquaCrop model
  publication-title: Sci. Agric. Sin.
– volume: 101
  start-page: 448
  year: 2009
  end-page: 459
  ident: bib21
  article-title: AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize
  publication-title: Agron. J.
– volume: 101
  start-page: 426
  year: 2009
  end-page: 437
  ident: bib46
  article-title: AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles
  publication-title: Agron. J.
– volume: 245
  year: 2021
  ident: bib18
  article-title: Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios
  publication-title: Agric. Water Manag.
– volume: 18
  start-page: 235
  year: 2003
  end-page: 265
  ident: bib24
  article-title: The DSSAT cropping system model
  publication-title: Eur. J. Agron.
– volume: 18
  start-page: 289
  year: 2003
  end-page: 307
  ident: bib47
  article-title: CropSyst, a cropping systems simulation model
  publication-title: Eur. J. Agron.
– volume: 27
  start-page: 365
  year: 1995
  end-page: 371
  ident: bib23
  article-title: Statistical procedures for the evaluation of evapotranspiration computing models
  publication-title: Agric. Water Manag.
– volume: 41
  start-page: 109
  year: 2022
  end-page: 117
  ident: bib12
  article-title: Spatiotemporal variation of groundwater table from 2016 to 2020 in Shihezi-Changji of Xinjiang
  publication-title: J. Irrig. Drain. Eng.
– volume: 211
  start-page: 137
  year: 2017
  end-page: 146
  ident: bib67
  article-title: Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China
  publication-title: Field Crops Res.
– volume: 6
  start-page: 133
  year: 2020
  end-page: 139
  ident: bib1
  article-title: Agricultural irrigation scheduling for a crop management system considering water and energy use optimization
  publication-title: Energy Rep.
– volume: 11
  start-page: 941
  year: 2021
  ident: bib11
  article-title: The use of municipal solid waste compost in combination with proper irrigation scheduling influences the productivity, microbial activity and water use efficiency of direct seeded rice
  publication-title: Agriculture
– volume: 222
  start-page: 193
  year: 2019
  end-page: 203
  ident: bib42
  article-title: Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain
  publication-title: Agric. Water Manag.
– volume: 5
  start-page: 16
  year: 1989
  end-page: 24
  ident: bib52
  article-title: WOFOST: a simulation model of crop production
  publication-title: Soil Use Manag.
– volume: 289
  year: 2023
  ident: bib31
  article-title: Drip irrigation shapes the soil bacterial communities and enhances jujube yield by regulating the soil moisture content and nutrient levels
  publication-title: Agric. Water Manag.
– volume: 63
  start-page: 125
  year: 2003
  end-page: 137
  ident: bib27
  article-title: Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon
  publication-title: Agric. Water Manag.
– reference: Raes, D., Steduto, P., Hsiao, T.,Fereres, E., 2022. AquaCrop Version 7.0. Reference Manual. FAO, Land and Water Division, Rome, Italy.
– volume: 286
  year: 2023
  ident: bib71
  article-title: Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop
  publication-title: Agric. Water Manag.
– volume: 62
  start-page: 351
  year: 2014
  end-page: 360
  ident: bib53
  article-title: AquaCrop: FAO's crop water productivity and yield response model
  publication-title: Environ. Modell. Softw.
– volume: 12
  start-page: 97
  year: 2022
  ident: bib60
  article-title: Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates
  publication-title: Agriculture
– volume: 247
  year: 2021
  ident: bib59
  article-title: Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates
  publication-title: Agric. Water Manag.
– year: 1992
  ident: bib45
  article-title: CROPWAT: A Computer Program for Irrigation Planning and Management (No. 46)
– volume: 245
  year: 2021
  ident: bib58
  article-title: Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China
  publication-title: Agric. Water Manag.
– volume: 141
  start-page: 10
  year: 2014
  end-page: 22
  ident: bib56
  article-title: Evaluation of soil water dynamics and crop yield under furrow irrigation witha two-dimensional flow and crop growth coupled model
  publication-title: Agric. Water Manag.
– volume: 12
  start-page: 17
  year: 2023
  ident: bib28
  article-title: Response patterns of simulated corn yield and soil nitrous oxide emission to precipitation change
  publication-title: Ecol. Process.
– volume: 0
  start-page: 108
  year: 2004
  end-page: 113
  ident: bib54
  article-title: Experimental study on evapotranspiration and soil evaporation in summer maize field
  publication-title: J. Hydraul. Eng.
– volume: 196
  start-page: 99
  year: 2018
  end-page: 113
  ident: bib49
  article-title: Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China
  publication-title: Agric. Water Manag.
– volume: 228
  year: 2020
  ident: bib39
  article-title: Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions
  publication-title: Agric. Water Manag.
– volume: 7
  start-page: 322
  year: 2019
  end-page: 334
  ident: bib68
  article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China
  publication-title: Crop J.
– volume: 266
  year: 2022
  ident: bib63
  article-title: Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules
  publication-title: Agric. Water Manag.
– volume: 7
  start-page: 322
  year: 2019
  end-page: 334
  ident: bib69
  article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China
  publication-title: Crop J.
– volume: 49
  start-page: 252
  year: 2018
  end-page: 260
  ident: bib62
  article-title: Effects of soil water, plant, water saving and yield increasing of maize under regulated deficit drip irrigation
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 29
  start-page: 56
  year: 2021
  end-page: 59
  ident: bib7
  article-title: Creation and thinking of China's spring maize high-yield record
  publication-title: J. Maize Sci.
– reference: Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300 (9), D05109..
– volume: 159
  start-page: 331
  year: 2015
  end-page: 340
  ident: bib35
  article-title: Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh
  publication-title: Agric. Water Manag.
– volume: 274
  year: 2022
  ident: bib50
  article-title: Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana
  publication-title: Agric. Water Manag.
– volume: 56
  start-page: 373
  year: 2013
  end-page: 393
  ident: bib13
  article-title: Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation
  publication-title: Trans. ASABE
– reference: FAO, 2022. World Food and Agriculture – Statistical Yearbook 2022. Available from https://www.fao.org/documents/card/en/c/cc2211en (accessed November 8th 2023).
– volume: 227
  year: 2020
  ident: bib6
  article-title: Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms
  publication-title: Agric. Water Manag.
– volume: 67
  start-page: 207
  year: 2000
  end-page: 214
  ident: bib26
  article-title: An improved water-use efficiency for maize grown under regulated deficit irrigation
  publication-title: Field Crops Res.
– volume: 85
  start-page: 211
  year: 2006
  end-page: 218
  ident: bib48
  article-title: Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain
  publication-title: Agric. Water Manag.
– volume: 244
  year: 2021
  ident: bib44
  article-title: Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil
  publication-title: Agric. Water Manag.
– volume: 258
  year: 2021
  ident: bib36
  article-title: Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes
  publication-title: Agric. Water Manag.
– volume: 105
  start-page: 188
  year: 2017
  end-page: 204
  ident: bib10
  article-title: A novel generic optimization method for irrigation scheduling under multiple objectives and multiple hierarchical layers in a canal network
  publication-title: Adv. Water Resour.
– volume: 213
  start-page: 1130
  year: 2019
  end-page: 1146
  ident: bib2
  article-title: Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria
  publication-title: Agric. Water Manag.
– volume: 223
  year: 2019
  ident: bib43
  article-title: Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation
  publication-title: Agric. Water Manag.
– volume: 234
  start-page: 73
  year: 2019
  end-page: 86
  ident: bib41
  article-title: Newly developed water productivity and harvest index models for maize in an arid region
  publication-title: Field Crops Res.
– volume: 184
  start-page: 178
  year: 2017
  end-page: 190
  ident: bib65
  article-title: Assessment of irrigated maize yield response to climate change scenarios in Portugal
  publication-title: Agric. Water Manag.
– volume: 179
  start-page: 5
  year: 2017
  end-page: 17
  ident: bib25
  article-title: Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice
  publication-title: Agric. Water Manag.
– volume: 274
  year: 2022
  ident: bib8
  article-title: Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies
  publication-title: Agric. Water Manag.
– volume: 288
  year: 2022
  ident: bib3
  article-title: Parameterizing the AquaCrop model for potato growth modeling in a semi-arid region
  publication-title: Field Crops Res.
– volume: 56
  year: 2021
  ident: bib61
  article-title: Quantitative assessment of soybean drought risk in Bengbu city based on disaster loss risk curve and DSSAT
  publication-title: Int. J. Disast. Risk Reduct.
– volume: 41
  start-page: 59
  year: 2013
  end-page: 65
  ident: bib64
  article-title: Effect of water deficit at different growth stages on growth, yield and water use of spring maize in Hexi area
  publication-title: J. Northwest A F. Univ. Nat. Sci. Ed.
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  ident: bib29
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
– volume: 292
  year: 2024
  ident: bib33
  article-title: Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate
  publication-title: Agric. Water Manag.
– volume: 33
  start-page: 145
  year: 2017
  end-page: 155
  ident: bib73
  article-title: Optimal drip irrigation and fertilization amount enhancing root growth and yield of spring maize in Hexi region of China
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 29
  start-page: 2837
  year: 2015
  end-page: 2853
  ident: bib4
  article-title: Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements
  publication-title: Water Resour. Manag.
– reference: NBSC, 2022. Announcement of the National Bureau of Statistics on grain production data for 2022. Available from http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901673.html (accessed November 8th 2023).
– volume: 11
  start-page: 1035
  year: 2013
  end-page: 1039
  ident: bib66
  article-title: Deficit irrigation scheduling of maize in the semi-arid area of northeast China
  publication-title: J. Food Agric. Environ.
– volume: 110
  start-page: 67
  year: 2012
  end-page: 77
  ident: bib14
  article-title: Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment
  publication-title: Agric. Water Manag.
– reference: USDAFAS, 2019. Grain: World Markets and Trade. Retrieved on August, 2019. Available from https://apps.fas.usdaF.A.S.gov/psdonline/circulars/grain.pdf (accessed November 8th 2023).
– volume: 95
  start-page: 836
  year: 2008
  end-page: 844
  ident: bib15
  article-title: Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn
  publication-title: Agric. Water Manag.
– volume: 256
  year: 2021
  ident: bib34
  article-title: Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model
  publication-title: Agric. Water Manag.
– volume: 756
  year: 2021
  ident: bib20
  article-title: Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques
  publication-title: Sci. Total Environ.
– volume: 281
  year: 2020
  ident: bib9
  article-title: Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions
  publication-title: Agric. For. Meteorol.
– volume: 261
  year: 2022
  ident: bib17
  article-title: Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China
  publication-title: Agric. Water Manag.
– volume: 280
  year: 2023
  ident: bib57
  article-title: Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize
  publication-title: Agric. Water Manag.
– volume: 144
  start-page: 46
  year: 2016
  end-page: 57
  ident: bib30
  article-title: An efficient irrigation water allocation model under uncertainty
  publication-title: Agric. Syst.
– volume: 211
  start-page: 59
  year: 2019
  end-page: 69
  ident: bib32
  article-title: Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat
  publication-title: Agric. Water Manag.
– volume: 101
  start-page: 488
  year: 2009
  end-page: 498
  ident: bib19
  article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize
  publication-title: Agron. J.
– year: 1992
  ident: 10.1016/j.agwat.2024.108816_bib45
– volume: 31
  start-page: 995
  issue: 5
  year: 2013
  ident: 10.1016/j.agwat.2024.108816_bib72
  article-title: Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-012-0378-5
– volume: 184
  start-page: 178
  year: 2017
  ident: 10.1016/j.agwat.2024.108816_bib65
  article-title: Assessment of irrigated maize yield response to climate change scenarios in Portugal
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2017.02.004
– volume: 11
  start-page: 1035
  issue: 2
  year: 2013
  ident: 10.1016/j.agwat.2024.108816_bib66
  article-title: Deficit irrigation scheduling of maize in the semi-arid area of northeast China
  publication-title: J. Food Agric. Environ.
– volume: 266
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib63
  article-title: Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2022.107599
– volume: 756
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib20
  article-title: Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143600
– ident: 10.1016/j.agwat.2024.108816_bib37
– volume: 55
  start-page: 3365
  issue: 17
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib55
  article-title: Research on soybean irrigation schedule based on AquaCrop model
  publication-title: Sci. Agric. Sin.
– volume: 247
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib59
  article-title: Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106726
– volume: 223
  year: 2019
  ident: 10.1016/j.agwat.2024.108816_bib43
  article-title: Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105687
– volume: 6
  start-page: 133
  year: 2020
  ident: 10.1016/j.agwat.2024.108816_bib1
  article-title: Agricultural irrigation scheduling for a crop management system considering water and energy use optimization
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2019.08.031
– volume: 95
  start-page: 836
  issue: 7
  year: 2008
  ident: 10.1016/j.agwat.2024.108816_bib15
  article-title: Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2008.02.008
– volume: 244
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib44
  article-title: Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106539
– volume: 7
  start-page: 322
  issue: 3
  year: 2019
  ident: 10.1016/j.agwat.2024.108816_bib68
  article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China
  publication-title: Crop J.
  doi: 10.1016/j.cj.2018.10.008
– volume: 101
  start-page: 448
  issue: 3
  year: 2009
  ident: 10.1016/j.agwat.2024.108816_bib21
  article-title: AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0218s
– volume: 289
  year: 2023
  ident: 10.1016/j.agwat.2024.108816_bib31
  article-title: Drip irrigation shapes the soil bacterial communities and enhances jujube yield by regulating the soil moisture content and nutrient levels
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108563
– volume: 211
  start-page: 59
  year: 2019
  ident: 10.1016/j.agwat.2024.108816_bib32
  article-title: Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.09.047
– volume: 62
  start-page: 351
  year: 2014
  ident: 10.1016/j.agwat.2024.108816_bib53
  article-title: AquaCrop: FAO's crop water productivity and yield response model
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2014.08.005
– volume: 159
  start-page: 331
  year: 2015
  ident: 10.1016/j.agwat.2024.108816_bib35
  article-title: Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.06.022
– volume: 222
  start-page: 193
  year: 2019
  ident: 10.1016/j.agwat.2024.108816_bib42
  article-title: Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.06.004
– volume: 110
  start-page: 67
  year: 2012
  ident: 10.1016/j.agwat.2024.108816_bib14
  article-title: Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2012.04.002
– volume: 27
  start-page: 365
  issue: 3
  year: 1995
  ident: 10.1016/j.agwat.2024.108816_bib23
  article-title: Statistical procedures for the evaluation of evapotranspiration computing models
  publication-title: Agric. Water Manag.
  doi: 10.1016/0378-3774(95)01152-9
– volume: 227
  year: 2020
  ident: 10.1016/j.agwat.2024.108816_bib6
  article-title: Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms
  publication-title: Agric. Water Manag.
– volume: 7
  start-page: 322
  issue: 3
  year: 2019
  ident: 10.1016/j.agwat.2024.108816_bib69
  article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China
  publication-title: Crop J.
  doi: 10.1016/j.cj.2018.10.008
– volume: 101
  start-page: 426
  issue: 3
  year: 2009
  ident: 10.1016/j.agwat.2024.108816_bib46
  article-title: AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0139s
– volume: 41
  start-page: 59
  issue: 5
  year: 2013
  ident: 10.1016/j.agwat.2024.108816_bib64
  article-title: Effect of water deficit at different growth stages on growth, yield and water use of spring maize in Hexi area
  publication-title: J. Northwest A F. Univ. Nat. Sci. Ed.
– volume: 33
  start-page: 145
  issue: 21
  year: 2017
  ident: 10.1016/j.agwat.2024.108816_bib73
  article-title: Optimal drip irrigation and fertilization amount enhancing root growth and yield of spring maize in Hexi region of China
  publication-title: Trans. Chin. Soc. Agric. Eng.
– volume: 18
  start-page: 289
  issue: 3-4
  year: 2003
  ident: 10.1016/j.agwat.2024.108816_bib47
  article-title: CropSyst, a cropping systems simulation model
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00109-0
– volume: 12
  start-page: 97
  issue: 1
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib60
  article-title: Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates
  publication-title: Agriculture
  doi: 10.3390/agriculture12010097
– volume: 261
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib17
  article-title: Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107372
– volume: 280
  year: 2023
  ident: 10.1016/j.agwat.2024.108816_bib57
  article-title: Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108205
– volume: 11
  start-page: 941
  issue: 10
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib11
  article-title: The use of municipal solid waste compost in combination with proper irrigation scheduling influences the productivity, microbial activity and water use efficiency of direct seeded rice
  publication-title: Agriculture
  doi: 10.3390/agriculture11100941
– volume: 196
  start-page: 99
  year: 2018
  ident: 10.1016/j.agwat.2024.108816_bib49
  article-title: Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2017.11.001
– ident: 10.1016/j.agwat.2024.108816_bib40
– volume: 105
  start-page: 188
  year: 2017
  ident: 10.1016/j.agwat.2024.108816_bib10
  article-title: A novel generic optimization method for irrigation scheduling under multiple objectives and multiple hierarchical layers in a canal network
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.04.025
– volume: 234
  start-page: 73
  year: 2019
  ident: 10.1016/j.agwat.2024.108816_bib41
  article-title: Newly developed water productivity and harvest index models for maize in an arid region
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.02.009
– volume: 292
  year: 2024
  ident: 10.1016/j.agwat.2024.108816_bib33
  article-title: Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108663
– volume: 0
  start-page: 108
  issue: 11
  year: 2004
  ident: 10.1016/j.agwat.2024.108816_bib54
  article-title: Experimental study on evapotranspiration and soil evaporation in summer maize field
  publication-title: J. Hydraul. Eng.
– volume: 29
  start-page: 2837
  issue: 8
  year: 2015
  ident: 10.1016/j.agwat.2024.108816_bib4
  article-title: Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0973-3
– volume: 274
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib8
  article-title: Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2022.107949
– volume: 256
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib34
  article-title: Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107084
– volume: 23
  start-page: 117
  issue: 4
  year: 2015
  ident: 10.1016/j.agwat.2024.108816_bib70
  article-title: Effect of drip irrigation on yield and water use efficiency of spring maize with high yield in Xinjiang
  publication-title: J. Maize Sci.
– ident: 10.1016/j.agwat.2024.108816_bib16
– volume: 179
  start-page: 5
  year: 2017
  ident: 10.1016/j.agwat.2024.108816_bib25
  article-title: Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2016.05.007
– volume: 286
  year: 2023
  ident: 10.1016/j.agwat.2024.108816_bib71
  article-title: Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2023.108391
– volume: 56
  start-page: 373
  issue: 2
  year: 2013
  ident: 10.1016/j.agwat.2024.108816_bib13
  article-title: Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation
  publication-title: Trans. ASABE
  doi: 10.13031/2013.42676
– volume: 63
  start-page: 125
  issue: 2
  year: 2003
  ident: 10.1016/j.agwat.2024.108816_bib27
  article-title: Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon
  publication-title: Agric. Water Manag.
  doi: 10.1016/S0378-3774(03)00179-3
– ident: 10.1016/j.agwat.2024.108816_bib51
– ident: 10.1016/j.agwat.2024.108816_bib5
– volume: 213
  start-page: 1130
  year: 2019
  ident: 10.1016/j.agwat.2024.108816_bib2
  article-title: Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2018.11.006
– volume: 288
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib3
  article-title: Parameterizing the AquaCrop model for potato growth modeling in a semi-arid region
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2022.108680
– volume: 282
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib22
  article-title: Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2022.108510
– volume: 46
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.agwat.2024.108816_bib38
  article-title: Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components
  publication-title: Agric. Water Manag.
  doi: 10.1016/S0378-3774(00)00073-1
– volume: 245
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib18
  article-title: Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106575
– volume: 41
  start-page: 109
  issue: 2
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib12
  article-title: Spatiotemporal variation of groundwater table from 2016 to 2020 in Shihezi-Changji of Xinjiang
  publication-title: J. Irrig. Drain. Eng.
– volume: 274
  year: 2022
  ident: 10.1016/j.agwat.2024.108816_bib50
  article-title: Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2022.107950
– volume: 211
  start-page: 137
  year: 2017
  ident: 10.1016/j.agwat.2024.108816_bib67
  article-title: Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2017.05.026
– volume: 228
  year: 2020
  ident: 10.1016/j.agwat.2024.108816_bib39
  article-title: Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2019.105925
– volume: 18
  start-page: 235
  issue: 3-4
  year: 2003
  ident: 10.1016/j.agwat.2024.108816_bib24
  article-title: The DSSAT cropping system model
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00107-7
– volume: 49
  start-page: 252
  year: 2018
  ident: 10.1016/j.agwat.2024.108816_bib62
  article-title: Effects of soil water, plant, water saving and yield increasing of maize under regulated deficit drip irrigation
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 144
  start-page: 46
  year: 2016
  ident: 10.1016/j.agwat.2024.108816_bib30
  article-title: An efficient irrigation water allocation model under uncertainty
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2016.02.003
– volume: 85
  start-page: 211
  issue: 1
  year: 2006
  ident: 10.1016/j.agwat.2024.108816_bib48
  article-title: Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2006.04.008
– volume: 5
  start-page: 16
  issue: 1
  year: 1989
  ident: 10.1016/j.agwat.2024.108816_bib52
  article-title: WOFOST: a simulation model of crop production
  publication-title: Soil Use Manag.
  doi: 10.1111/j.1475-2743.1989.tb00755.x
– volume: 101
  start-page: 488
  issue: 3
  year: 2009
  ident: 10.1016/j.agwat.2024.108816_bib19
  article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize
  publication-title: Agron. J.
  doi: 10.2134/agronj2008.0029xs
– volume: 12
  start-page: 17
  issue: 2
  year: 2023
  ident: 10.1016/j.agwat.2024.108816_bib28
  article-title: Response patterns of simulated corn yield and soil nitrous oxide emission to precipitation change
  publication-title: Ecol. Process.
  doi: 10.1186/s13717-023-00429-w
– volume: 258
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib36
  article-title: Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107219
– volume: 141
  start-page: 10
  year: 2014
  ident: 10.1016/j.agwat.2024.108816_bib56
  article-title: Evaluation of soil water dynamics and crop yield under furrow irrigation witha two-dimensional flow and crop growth coupled model
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2014.04.007
– volume: 35
  start-page: 233
  issue: 1
  year: 1999
  ident: 10.1016/j.agwat.2024.108816_bib29
  article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900018
– volume: 56
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib61
  article-title: Quantitative assessment of soybean drought risk in Bengbu city based on disaster loss risk curve and DSSAT
  publication-title: Int. J. Disast. Risk Reduct.
  doi: 10.1016/j.ijdrr.2021.102126
– volume: 281
  year: 2020
  ident: 10.1016/j.agwat.2024.108816_bib9
  article-title: Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions
  publication-title: Agric. For. Meteorol.
– volume: 67
  start-page: 207
  issue: 3
  year: 2000
  ident: 10.1016/j.agwat.2024.108816_bib26
  article-title: An improved water-use efficiency for maize grown under regulated deficit irrigation
  publication-title: Field Crops Res.
  doi: 10.1016/S0378-4290(00)00095-2
– volume: 245
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib58
  article-title: Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106660
– volume: 29
  start-page: 56
  issue: 2
  year: 2021
  ident: 10.1016/j.agwat.2024.108816_bib7
  article-title: Creation and thinking of China's spring maize high-yield record
  publication-title: J. Maize Sci.
SSID ssj0004047
Score 2.4522939
Snippet Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108816
SubjectTerms AquaCrop model
China
corn
deficit irrigation
grain yield
irrigation rates
irrigation scheduling
Irrigation strategy
irrigation water
Maize
Regulated deficit irrigation
soil water content
sustainable development
water shortages
water use efficiency
Yield
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnsoB8RTLS0biWLOJ47yOy6pVhQQcoNLerPEjq1Q0WdJdoeXAb2fGcfrg0APHTMZ2PB7PeJTxN4y9T1yNIZoCIaFOhLLWC0hcIpw1pcqNM4Wly8mfvxRn5-rTKl8dsOV0F4bSKqPtH216sNaRMo_SnG_adv4tyUqMrjC0U-T4Q-VapUrS8g9_btI8VBKKjBGzIO4JeSjkeMH6F1BCpVSUa1dR0fNb3imA-N9xUv-Y6-CDTh-xh_HwyBfj9z1mB757wh4s1kME0PBPmf2KNuAyXq7kfcMvof3teTsMAUsDaVcjHu2etx1ftd0F6sf6mIc62tzs-eLnDpZDv-Hk3xzHBsAbHFjscU_wgEb7jJ2fnnxfnolYSEFYlMhWWAk2TaHwTS5VbqWpsswT8lcibVoUJWSNSmtvSwW4IU3iyrTGg5zLirypLb5-zg67vvMvGDcUoQWp-kpVyA7gkIBL0IA3VT1jchKgthFlnIpd_NBTOtmFDlLXJHU9Sn3Gjq8bbUaQjfvZP9LKXLMSQnYg9MNaRxXROFkoU6Mq50rVOGkURnp5hgYNZ-5rP2PFtK76jsJhV-39o7-btEDjVqT_K9D5fnelM_QeGPPLvHr5v52_Ykf0NKYnvGaH22Hn3-CpZ2veBrX-C1di_1Y
  priority: 102
  providerName: Elsevier
Title Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study
URI https://dx.doi.org/10.1016/j.agwat.2024.108816
https://www.proquest.com/docview/3153713258
https://doaj.org/article/6efa71b48dd74fd2b462553730e28e9e
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4LDAgnqI8KiMxEkgc5zUWBCogYAGpm3V-pAqCFEIrVAZ-O2cnQcAAC6tjx9b5O9-dfP6OkH1fZxiicfAYZL7HlTIe-Nr3tJIJj6SWsbKPk6-u4_4dvxhEgy-lvmxOWE0PXAvuKDY5JIHkqdYJzzWTHD32KERgGpaazNjTF21eG0y1LyJ9nrQcQy6bC4avYFMnGbdZdaktb_7FDjm6_m_m6MfB7KzN2TJZatxE2quXt0JmTLlKFnvDqqHKMGtE3aC2PzbPKOkop49QvBlaVJVjzcC2l5p5dkqLkg6K8h6RMDygrmI2lVPae57ASTV6otaSaYoDgOY4sTdF9FPHO7tO7s5Ob0_6XlMywVOcJ2NPMVBBACi0iPFIMZmGobEcXz5TQRwnEOY8yIxKOKDqSV8nQYYumw7jKM8Uft4gc-WoNJuEShuLOUmalKfYHUBjA-p8DkamWYewVoBCNXzitqzFg2gTx-6Fk7qwUhe11Dvk4HPQU02n8Xv3Y7szn10tF7ZrQISIBiHiL4R0SNzuq2jcitpdwF8Vv8--16JAoNLZmxQozWjyIkK0Exjdsyjd-o8VbpMFO22dlLBD5sbVxOyirzOWXTJ7-B50yXzv_LJ_3XUg_wCZCP-N
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6FIqR4FazjuPEyYHDtlBt6YMDrbQ341dWqWiyZHdVLQf-FH-QsZMUyqEHpF79jD-PZzzK-BuE3lCbg4vGFWEqp4Qb44iilhJrtOCJtjo1_nHy8Uk6PuOfJslkDf3q38L4sMpO97c6PWjrrmTYoTmcleXwC40FeFfg2nFv-KM-g_WhW12C3zZ_f_ABNvktY_sfT_fGpEstQAznYkEMUyaKVOqKhPHEMJ3FsfNcWJSZKE2Figse5c4IrkBENbUCnH2a2DhNitxANYx7B93loC582oR3P__ElXAaspr5ryP-83qqoxBUpqaXykdwMu6D-zKfZf0vcxiyBlyziv_Yh2D09h-ije62ikctII_QmqseowejadMxdrgnyHwGpXPRvebEdYEvVPnD4bJpAnkHlM1bAtwVLis8KatzEMjpDg6Ju7Fe4dH3pdpr6hn2BtVi6KBwAROTFQCNA_3tU3R2K_A-Q-tVXblNhLV3CQOqLuMZNFfKQgHseaGczvIBYj2A0nS05j67xjfZx6-dy4C69KjLFvUB2rnqNGtZPW5uvut35qqpp-QOBXUzlZ1MSlisEpHmmbWCF5ZpDq5lEoMGhZW73A1Q2u-rvCbhMFR58-yveymQcPb9Dx1VuXo5lzGYKxHFLMme_-_gr9C98enxkTw6ODncQvd9TRsb8QKtL5qlewlXroXeDiKO0dfbPlO_AQI0Ox8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+maize+irrigation+strategy+in+Xinjiang%2C+China+by+AquaCrop+based+on+a+four-year+study&rft.jtitle=Agricultural+water+management&rft.au=Hongyan+Zhu&rft.au=Bingyan+Zheng&rft.au=Weibo+Nie&rft.au=Liangjun+Fei&rft.date=2024-05-31&rft.pub=Elsevier&rft.eissn=1873-2283&rft.volume=297&rft.spage=108816&rft_id=info:doi/10.1016%2Fj.agwat.2024.108816&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6efa71b48dd74fd2b462553730e28e9e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon