Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study
Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergist...
Saved in:
Published in | Agricultural water management Vol. 297; p. 108816 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
31.05.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m3/ha and 4800 m3/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m3/ha, 5381 m3/ha, and 6090 m3/ha, respectively. In dynamic strategies, the optimized RDI4 (65% Ir (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI5 strategy (85% Ir at V6-V12 stage and 85% Ir at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m3/ha, the RDI4 strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI5 strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI5 strategy can save 49.44% of irrigation water, and the RDI4 strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Ir in R2 to R5 stages of maize growth or 85% Ir in V6 to V12 stages and 85% Ir in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha).
•The AquaCrop model was locally calibrated based on a four-year field study.•The optimal static irrigation strategy in wet, normal, and dry years was given.•Slight water deficit should be applied in initial growth stage of maize.•Higher water deficit can be adjusted in the later growth stage of maize.•Soil moisture cannot be deficient in seedling, tasseling and silking stage of maize. |
---|---|
AbstractList | Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m3/ha and 4800 m3/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m3/ha, 5381 m3/ha, and 6090 m3/ha, respectively. In dynamic strategies, the optimized RDI4 (65% Ir (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI5 strategy (85% Ir at V6-V12 stage and 85% Ir at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m3/ha, the RDI4 strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI5 strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI5 strategy can save 49.44% of irrigation water, and the RDI4 strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Ir in R2 to R5 stages of maize growth or 85% Ir in V6 to V12 stages and 85% Ir in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha). Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m3/ha and 4800 m3/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m3/ha, 5381 m3/ha, and 6090 m3/ha, respectively. In dynamic strategies, the optimized RDI4 (65% Ir (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI5 strategy (85% Ir at V6-V12 stage and 85% Ir at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m3/ha, the RDI4 strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI5 strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI5 strategy can save 49.44% of irrigation water, and the RDI4 strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Ir in R2 to R5 stages of maize growth or 85% Ir in V6 to V12 stages and 85% Ir in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha). •The AquaCrop model was locally calibrated based on a four-year field study.•The optimal static irrigation strategy in wet, normal, and dry years was given.•Slight water deficit should be applied in initial growth stage of maize.•Higher water deficit can be adjusted in the later growth stage of maize.•Soil moisture cannot be deficient in seedling, tasseling and silking stage of maize. Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction between grain demand and water resource constraints, it is particularly important to explore appropriate irrigation strategy so as to synergistically increase grain yield and water use efficiency (WUE). The AquaCrop model were locally calibrated to simulate optimal irrigation amount for different hydrological years using a four-year field measurements (from 2017 to 2020) of maize with two irrigation levels (2400 m³/ha and 4800 m³/ha) in Shihezi, Xinjiang, China. On this basis, regulated deficit irrigation (RDI) strategies were optimized based on the variation of water consumption and soil water content (SWC) during the maize growth period. Results suggest that the optimal irrigation amount under static strategy (fixed proportion irrigation in growing season) in the wet, normal, and dry years was 4733 m³/ha, 5381 m³/ha, and 6090 m³/ha, respectively. In dynamic strategies, the optimized RDI₄ (65% Iᵣ (the amount of water required for each irrigation interval) at R2-R5 stage) and RDI₅ strategy (85% Iᵣ at V6-V12 stage and 85% Iᵣ at R2-R5 stage) can save irrigation water while maintaining high yield. Under the premise of basically maintaining high yield (18Mg/ha), compared with each year's irrigation amount of 4800 m³/ha, the RDI₄ strategy can reduce the irrigation amount by 4.33% in 2017; although the irrigation amount was slightly increased by 2.77% under the RDI₅ strategy in 2018, the yield could be increased by 3.65%; in 2019, the RDI₅ strategy can save 49.44% of irrigation water, and the RDI₄ strategy will save 24.13% of irrigation water in 2020. From this study, it is recommended that a single irrigation amount of 65% Iᵣ in R2 to R5 stages of maize growth or 85% Iᵣ in V6 to V12 stages and 85% Iᵣ in R2 to R5 stages can save irrigation water while maintaining high yield (18 Mg/ha). |
ArticleNumber | 108816 |
Author | Shan, Yuyang Li, Ge Zhu, Hongyan Fei, Liangjun Liang, Fei Nie, Weibo Zheng, Bingyan |
Author_xml | – sequence: 1 givenname: Hongyan orcidid: 0000-0002-6006-4765 surname: Zhu fullname: Zhu, Hongyan organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China – sequence: 2 givenname: Bingyan surname: Zheng fullname: Zheng, Bingyan organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China – sequence: 3 givenname: Weibo surname: Nie fullname: Nie, Weibo organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China – sequence: 4 givenname: Liangjun surname: Fei fullname: Fei, Liangjun organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China – sequence: 5 givenname: Yuyang surname: Shan fullname: Shan, Yuyang organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China – sequence: 6 givenname: Ge surname: Li fullname: Li, Ge organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China – sequence: 7 givenname: Fei orcidid: 0000-0003-2913-6641 surname: Liang fullname: Liang, Fei email: liangfei3326@126.com organization: College of Resources and Environment/Institute of Resources and Ecology, Yi Li Normal University, Yining 835000, China |
BookMark | eNqFkUtv1DAUhS1UJKaFX8DGSxZk6lfiZMGiGvGoVKkbkNhZN85NcJSJp7YDSn897qRiwQJWlo7Pd499zyW5mP2MhLzlbM8Zr67HPQy_IO0FEyordc2rF2THay0LIWp5QXZM6rqQWqtX5DLGkTGmmNI7Yu9PyR3dIyTnZ-p7egT3iNSF4IZNiylAwmGlbqbf3Tw6mIf39PDDzUDbld48LHAI_kRbiNjRDADt_RKKFSFkeOnW1-RlD1PEN8_nFfn26ePXw5fi7v7z7eHmrrBK6VRYAZZzqLAvhSqtaGspMb-eMWF5VWmQveINWq2AN1XLOs0bxcpOVmXf2Hx9RW63uZ2H0ZyCO0JYjQdnzoIPg4GQnJ3Q5BDQvFV112nVd6JVlShLqSXLidhgnvVum3UK_mHBmMzRRYvTBDP6JRrJs5tLUdbZKjerDT7GgP2faM7MUz1mNOd6zFM9ZqsnU81flHXpvPG8bzf9h_2wsZi3-dNhMNE6nC12LqBN-bvun_xviKGt6A |
CitedBy_id | crossref_primary_10_1007_s00271_025_01001_4 crossref_primary_10_1002_ird_3078 crossref_primary_10_1360_N072024_0044 crossref_primary_10_1007_s11430_024_1476_7 |
Cites_doi | 10.1007/s00271-012-0378-5 10.1016/j.agwat.2017.02.004 10.1016/j.agwat.2022.107599 10.1016/j.scitotenv.2020.143600 10.1016/j.agwat.2020.106726 10.1016/j.agwat.2019.105687 10.1016/j.egyr.2019.08.031 10.1016/j.agwat.2008.02.008 10.1016/j.agwat.2020.106539 10.1016/j.cj.2018.10.008 10.2134/agronj2008.0218s 10.1016/j.agwat.2023.108563 10.1016/j.agwat.2018.09.047 10.1016/j.envsoft.2014.08.005 10.1016/j.agwat.2015.06.022 10.1016/j.agwat.2019.06.004 10.1016/j.agwat.2012.04.002 10.1016/0378-3774(95)01152-9 10.2134/agronj2008.0139s 10.1016/S1161-0301(02)00109-0 10.3390/agriculture12010097 10.1016/j.agwat.2021.107372 10.1016/j.agwat.2023.108205 10.3390/agriculture11100941 10.1016/j.agwat.2017.11.001 10.1016/j.advwatres.2017.04.025 10.1016/j.fcr.2019.02.009 10.1016/j.agwat.2023.108663 10.1007/s11269-015-0973-3 10.1016/j.agwat.2022.107949 10.1016/j.agwat.2021.107084 10.1016/j.agwat.2016.05.007 10.1016/j.agwat.2023.108391 10.13031/2013.42676 10.1016/S0378-3774(03)00179-3 10.1016/j.agwat.2018.11.006 10.1016/j.fcr.2022.108680 10.1016/j.fcr.2022.108510 10.1016/S0378-3774(00)00073-1 10.1016/j.agwat.2020.106575 10.1016/j.agwat.2022.107950 10.1016/j.fcr.2017.05.026 10.1016/j.agwat.2019.105925 10.1016/S1161-0301(02)00107-7 10.1016/j.agsy.2016.02.003 10.1016/j.agwat.2006.04.008 10.1111/j.1475-2743.1989.tb00755.x 10.2134/agronj2008.0029xs 10.1186/s13717-023-00429-w 10.1016/j.agwat.2021.107219 10.1016/j.agwat.2014.04.007 10.1029/1998WR900018 10.1016/j.ijdrr.2021.102126 10.1016/S0378-4290(00)00095-2 10.1016/j.agwat.2020.106660 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.agwat.2024.108816 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1873-2283 |
ExternalDocumentID | oai_doaj_org_article_6efa71b48dd74fd2b462553730e28e9e 10_1016_j_agwat_2024_108816 S0378377424001513 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABGRD ABJNI ABMAC ABQEM ACDAQ ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE IMUCA J1W KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K Y6R ~02 ~G- ~KM AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMA HVGLF HZ~ R2- SEP SSH VH1 WUQ XPP ZMT 7S9 L.6 EFKBS |
ID | FETCH-LOGICAL-c447t-c2ac11a6ef5245c2b833e283002c1667a3f419ec74a196b0d719405d365f9c7a3 |
IEDL.DBID | DOA |
ISSN | 0378-3774 |
IngestDate | Wed Aug 27 01:08:06 EDT 2025 Wed Jul 02 03:21:44 EDT 2025 Tue Jul 01 04:31:21 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 Sat May 11 15:33:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Regulated deficit irrigation Irrigation strategy Maize Yield AquaCrop model |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-c2ac11a6ef5245c2b833e283002c1667a3f419ec74a196b0d719405d365f9c7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6006-4765 0000-0003-2913-6641 |
OpenAccessLink | https://doaj.org/article/6efa71b48dd74fd2b462553730e28e9e |
PQID | 3153713258 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6efa71b48dd74fd2b462553730e28e9e proquest_miscellaneous_3153713258 crossref_primary_10_1016_j_agwat_2024_108816 crossref_citationtrail_10_1016_j_agwat_2024_108816 elsevier_sciencedirect_doi_10_1016_j_agwat_2024_108816 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-31 |
PublicationDateYYYYMMDD | 2024-05-31 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Agricultural water management |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Feng, Li, Wang, Wulazibieke, Cai, Kang, Yuan, Xu (bib17) 2022; 261 Umesh, Reddy, Polisgowdar, Maruthi, Satishkumar, Ayyanagoudar, Rao, Veeresh (bib50) 2022; 274 Adeboye, Schultz, Adekalu, Prasad (bib2) 2019; 213 Zhang, Shen, Ming, Xie, Jin, Liu, Hou, Xue, Chen, Zhang, Liu, Wang, Li (bib69) 2019; 7 Huang, Wang, Qi, Zhang, Xu (bib22) 2022; 282 Kang, Shi, Zhang (bib26) 2000; 67 Djaman, Irmak, Rathje, Martin, Eisenhauer (bib13) 2013; 56 Heng, Hsiao, Evett, Howell, Steduto (bib19) 2009; 101 Van Diepen, Wolf, Van Keulen, Rappoldt (bib52) 1989; 5 Yang, Fraga, Van Ieperen, Santos (bib65) 2017; 184 Zou, Zhang, Zhang, Chen, Lu, Zheng (bib73) 2017; 33 Liu, Yang (bib34) 2021; 256 Cheng, Li, Wang, Xie, Hou, Ming, Xue, Zhang, Liu, Li (bib7) 2021; 29 Dharminder, Singh, Kumar, Pramanick, Alsanie, Gaber, Hossain (bib11) 2021; 11 Guo, Olesen, Manevski, Ma (bib18) 2021; 245 Delgoda, Malano, Saleem, Halgamuge (bib10) 2017; 105 Wang, Huang, Zhan, Mohanty, Zheng, Huang, Xu (bib56) 2014; 141 Sandhu, Irmak (bib43) 2019; 223 Vanuytrecht, Raes, Steduto, Hsiao, Fereres, Heng, Vila, Moreno (bib53) 2014; 62 Wu, Yue, Guo, Xu, Huang (bib63) 2022; 266 Abrishambaf, Faria, Gomes, Vale (bib1) 2020; 6 Wang, He, Li, Zhang, Cai (bib55) 2022; 55 Martínez-Romero, López-Urrea, Montoya, Pardo, Domínguez (bib36) 2021; 258 Li, Zhou, Shen, Wang, Yang, Wu, Chen, Lei (bib33) 2024; 292 Campos, Jiménez-Bello, Alzamora (bib6) 2020; 227 Xue, Zhang, Suo, Zhang (bib64) 2013; 41 FAO, 2022. World Food and Agriculture – Statistical Yearbook 2022. Available from https://www.fao.org/documents/card/en/c/cc2211en (accessed November 8th 2023). Wei, Ma, Liu, Zhang, Yang, Zhang (bib62) 2018; 49 Smith (bib45) 1992 Hoque, Pradhan, Ahmed, Sohel (bib20) 2021; 756 Chibarabada, Modi, Mabhaudhi (bib9) 2020; 281 Yin, Kang, Gu, Hao, Cong, Liu (bib66) 2013; 11 Zhang, Wang, Xiao, Xie, Hou, Li, Xu, Chu, Liu, Liu, Li (bib70) 2015; 23 Pandey, Maranville, Admou (bib38) 2000; 46 Tan, Wang, Zhang, Chen, Shan, Xu (bib49) 2018; 196 Li, Li, Wang, Zhang, Wang (bib31) 2023; 289 Wang, Cai, Chen, Chen (bib54) 2004; 0 Jones, Hoogenboom, Porter, Boote, Batchelor, Hunt, Wilkens, Singh, Gijsman, Ritchie (bib24) 2003; 18 Ran, Kang, Hu, Li, Du, Tong, Li, Ding, Zhou, Parsons (bib41) 2019; 234 Ahmadi, Mosallaeepour, Kamgar-Haghighi, Sepaskhah (bib4) 2015; 29 Singh, Mahapatra, Pramanick, Yadav (bib44) 2021; 244 Maniruzzaman, Talukder, Khan, Biswas, Nemes (bib35) 2015; 159 Li, Wang, Zhang, Liu, Xu, Lin, Wang, Yang, Zhang (bib32) 2019; 211 Wang, Meng, Xie, Wang, Ming, Hou, Xue, Li (bib57) 2023; 280 Ahmadi, Ghorra, Sepaskhah (bib3) 2022; 288 Hsiao, Heng, Steduto, Rojas-Lara, Raes, Fereres (bib21) 2009; 101 Steduto, Hsiao, Raes, Fereres (bib46) 2009; 101 Wang, Wu, Xiao, Huang, Hu (bib58) 2021; 245 Wang, Xue, Xie, Ming, Wang, Hou, Zhang, Li (bib60) 2022; 12 El-Hendawy, El-Lattief, Ahmed, Schmidhalter (bib15) 2008; 95 Domínguez, de Juan, Tarjuelo, Martínez, Martínez-Romero (bib14) 2012; 110 NBSC, 2022. Announcement of the National Bureau of Statistics on grain production data for 2022. Available from http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901673.html (accessed November 8th 2023). Kaur, Hui, Riccuito, Mayes, Tian (bib28) 2023; 12 Raes, D., Steduto, P., Hsiao, T.,Fereres, E., 2022. AquaCrop Version 7.0. Reference Manual. FAO, Land and Water Division, Rome, Italy. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300 (9), D05109.. Stöckle, Donatelli, Nelson (bib47) 2003; 18 Sun, Liu, Zhang, Shen, Zhang (bib48) 2006; 85 Zheng, Huang, Wang, Huang, Pereira, Xu, Liu (bib72) 2013; 31 Ding, Zhou, Du, Wang, Zhang, Gao (bib12) 2022; 41 USDAFAS, 2019. Grain: World Markets and Trade. Retrieved on August, 2019. Available from https://apps.fas.usdaF.A.S.gov/psdonline/circulars/grain.pdf (accessed November 8th 2023). Zhang, Liu, Xiao, Xie, Ming, Hou, Liu, Xu, Shen, Wang, Li (bib67) 2017; 211 Zhang, Zuo, Ma, Shi, Fan, Wu, Wang, Xue, Ben-Gal (bib71) 2023; 286 Legates, McCabe (bib29) 1999; 35 Karam, Breidy, Stephan, Rouphael (bib27) 2003; 63 Wang, Xiao, Ming, Xie, Wang, Hou, Liu, Zhang, Chen, Liu (bib59) 2021; 247 Zhang, Shen, Ming, Xie, Jin, Liu, Hou, Xue, Chen, Zhang, Liu, Wang, Li (bib68) 2019; 7 Jacovides, Kontoyiannis (bib23) 1995; 27 Pardo, Martinez-Romero, Lellis, Tarjuelo, Dominguez (bib39) 2020; 228 Wei, Jin, Cui, Ning, Fei, Wu, Zhou, Zhang, Liu, Tong (bib61) 2021; 56 Cheng, Wang, Fan, Xiang, Liu, Liao, Abdelghany, Zhang, Li (bib8) 2022; 274 Li, Guo, Singh (bib30) 2016; 144 Rashid, Jabloun, Andersen, Zhang, Olesen (bib42) 2019; 222 Kang, Hao, Du, Tong, Su, Lu, Li, Huo, Li, Ding (bib25) 2017; 179 Feng (10.1016/j.agwat.2024.108816_bib17) 2022; 261 Pandey (10.1016/j.agwat.2024.108816_bib38) 2000; 46 Campos (10.1016/j.agwat.2024.108816_bib6) 2020; 227 Chibarabada (10.1016/j.agwat.2024.108816_bib9) 2020; 281 Heng (10.1016/j.agwat.2024.108816_bib19) 2009; 101 Dharminder (10.1016/j.agwat.2024.108816_bib11) 2021; 11 Jacovides (10.1016/j.agwat.2024.108816_bib23) 1995; 27 Hoque (10.1016/j.agwat.2024.108816_bib20) 2021; 756 Hsiao (10.1016/j.agwat.2024.108816_bib21) 2009; 101 Stöckle (10.1016/j.agwat.2024.108816_bib47) 2003; 18 Martínez-Romero (10.1016/j.agwat.2024.108816_bib36) 2021; 258 10.1016/j.agwat.2024.108816_bib40 Zou (10.1016/j.agwat.2024.108816_bib73) 2017; 33 Abrishambaf (10.1016/j.agwat.2024.108816_bib1) 2020; 6 Wang (10.1016/j.agwat.2024.108816_bib55) 2022; 55 Maniruzzaman (10.1016/j.agwat.2024.108816_bib35) 2015; 159 Wang (10.1016/j.agwat.2024.108816_bib59) 2021; 247 Yin (10.1016/j.agwat.2024.108816_bib66) 2013; 11 Tan (10.1016/j.agwat.2024.108816_bib49) 2018; 196 Ran (10.1016/j.agwat.2024.108816_bib41) 2019; 234 Wang (10.1016/j.agwat.2024.108816_bib57) 2023; 280 Wu (10.1016/j.agwat.2024.108816_bib63) 2022; 266 El-Hendawy (10.1016/j.agwat.2024.108816_bib15) 2008; 95 10.1016/j.agwat.2024.108816_bib37 Wang (10.1016/j.agwat.2024.108816_bib60) 2022; 12 Djaman (10.1016/j.agwat.2024.108816_bib13) 2013; 56 Adeboye (10.1016/j.agwat.2024.108816_bib2) 2019; 213 Wang (10.1016/j.agwat.2024.108816_bib54) 2004; 0 Van Diepen (10.1016/j.agwat.2024.108816_bib52) 1989; 5 Sandhu (10.1016/j.agwat.2024.108816_bib43) 2019; 223 Smith (10.1016/j.agwat.2024.108816_bib45) 1992 Rashid (10.1016/j.agwat.2024.108816_bib42) 2019; 222 Guo (10.1016/j.agwat.2024.108816_bib18) 2021; 245 Xue (10.1016/j.agwat.2024.108816_bib64) 2013; 41 Liu (10.1016/j.agwat.2024.108816_bib34) 2021; 256 10.1016/j.agwat.2024.108816_bib5 Kaur (10.1016/j.agwat.2024.108816_bib28) 2023; 12 Li (10.1016/j.agwat.2024.108816_bib31) 2023; 289 Wei (10.1016/j.agwat.2024.108816_bib62) 2018; 49 Pardo (10.1016/j.agwat.2024.108816_bib39) 2020; 228 Domínguez (10.1016/j.agwat.2024.108816_bib14) 2012; 110 Singh (10.1016/j.agwat.2024.108816_bib44) 2021; 244 Zhang (10.1016/j.agwat.2024.108816_bib67) 2017; 211 Ahmadi (10.1016/j.agwat.2024.108816_bib4) 2015; 29 Delgoda (10.1016/j.agwat.2024.108816_bib10) 2017; 105 Kang (10.1016/j.agwat.2024.108816_bib26) 2000; 67 Huang (10.1016/j.agwat.2024.108816_bib22) 2022; 282 Kang (10.1016/j.agwat.2024.108816_bib25) 2017; 179 Wei (10.1016/j.agwat.2024.108816_bib61) 2021; 56 Zhang (10.1016/j.agwat.2024.108816_bib71) 2023; 286 Legates (10.1016/j.agwat.2024.108816_bib29) 1999; 35 Li (10.1016/j.agwat.2024.108816_bib33) 2024; 292 Sun (10.1016/j.agwat.2024.108816_bib48) 2006; 85 Ding (10.1016/j.agwat.2024.108816_bib12) 2022; 41 Zhang (10.1016/j.agwat.2024.108816_bib69) 2019; 7 Zheng (10.1016/j.agwat.2024.108816_bib72) 2013; 31 10.1016/j.agwat.2024.108816_bib16 Steduto (10.1016/j.agwat.2024.108816_bib46) 2009; 101 Vanuytrecht (10.1016/j.agwat.2024.108816_bib53) 2014; 62 Zhang (10.1016/j.agwat.2024.108816_bib70) 2015; 23 Wang (10.1016/j.agwat.2024.108816_bib58) 2021; 245 10.1016/j.agwat.2024.108816_bib51 Cheng (10.1016/j.agwat.2024.108816_bib8) 2022; 274 Jones (10.1016/j.agwat.2024.108816_bib24) 2003; 18 Karam (10.1016/j.agwat.2024.108816_bib27) 2003; 63 Li (10.1016/j.agwat.2024.108816_bib30) 2016; 144 Li (10.1016/j.agwat.2024.108816_bib32) 2019; 211 Umesh (10.1016/j.agwat.2024.108816_bib50) 2022; 274 Yang (10.1016/j.agwat.2024.108816_bib65) 2017; 184 Zhang (10.1016/j.agwat.2024.108816_bib68) 2019; 7 Ahmadi (10.1016/j.agwat.2024.108816_bib3) 2022; 288 Cheng (10.1016/j.agwat.2024.108816_bib7) 2021; 29 Wang (10.1016/j.agwat.2024.108816_bib56) 2014; 141 |
References_xml | – volume: 23 start-page: 117 year: 2015 end-page: 123 ident: bib70 article-title: Effect of drip irrigation on yield and water use efficiency of spring maize with high yield in Xinjiang publication-title: J. Maize Sci. – volume: 31 start-page: 995 year: 2013 end-page: 1008 ident: bib72 article-title: Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China publication-title: Irrig. Sci. – volume: 282 year: 2022 ident: bib22 article-title: Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study publication-title: Field Crops Res. – volume: 46 start-page: 1 year: 2000 end-page: 13 ident: bib38 article-title: Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components publication-title: Agric. Water Manag. – volume: 55 start-page: 3365 year: 2022 end-page: 3379 ident: bib55 article-title: Research on soybean irrigation schedule based on AquaCrop model publication-title: Sci. Agric. Sin. – volume: 101 start-page: 448 year: 2009 end-page: 459 ident: bib21 article-title: AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize publication-title: Agron. J. – volume: 101 start-page: 426 year: 2009 end-page: 437 ident: bib46 article-title: AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles publication-title: Agron. J. – volume: 245 year: 2021 ident: bib18 article-title: Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios publication-title: Agric. Water Manag. – volume: 18 start-page: 235 year: 2003 end-page: 265 ident: bib24 article-title: The DSSAT cropping system model publication-title: Eur. J. Agron. – volume: 18 start-page: 289 year: 2003 end-page: 307 ident: bib47 article-title: CropSyst, a cropping systems simulation model publication-title: Eur. J. Agron. – volume: 27 start-page: 365 year: 1995 end-page: 371 ident: bib23 article-title: Statistical procedures for the evaluation of evapotranspiration computing models publication-title: Agric. Water Manag. – volume: 41 start-page: 109 year: 2022 end-page: 117 ident: bib12 article-title: Spatiotemporal variation of groundwater table from 2016 to 2020 in Shihezi-Changji of Xinjiang publication-title: J. Irrig. Drain. Eng. – volume: 211 start-page: 137 year: 2017 end-page: 146 ident: bib67 article-title: Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China publication-title: Field Crops Res. – volume: 6 start-page: 133 year: 2020 end-page: 139 ident: bib1 article-title: Agricultural irrigation scheduling for a crop management system considering water and energy use optimization publication-title: Energy Rep. – volume: 11 start-page: 941 year: 2021 ident: bib11 article-title: The use of municipal solid waste compost in combination with proper irrigation scheduling influences the productivity, microbial activity and water use efficiency of direct seeded rice publication-title: Agriculture – volume: 222 start-page: 193 year: 2019 end-page: 203 ident: bib42 article-title: Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain publication-title: Agric. Water Manag. – volume: 5 start-page: 16 year: 1989 end-page: 24 ident: bib52 article-title: WOFOST: a simulation model of crop production publication-title: Soil Use Manag. – volume: 289 year: 2023 ident: bib31 article-title: Drip irrigation shapes the soil bacterial communities and enhances jujube yield by regulating the soil moisture content and nutrient levels publication-title: Agric. Water Manag. – volume: 63 start-page: 125 year: 2003 end-page: 137 ident: bib27 article-title: Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon publication-title: Agric. Water Manag. – reference: Raes, D., Steduto, P., Hsiao, T.,Fereres, E., 2022. AquaCrop Version 7.0. Reference Manual. FAO, Land and Water Division, Rome, Italy. – volume: 286 year: 2023 ident: bib71 article-title: Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop publication-title: Agric. Water Manag. – volume: 62 start-page: 351 year: 2014 end-page: 360 ident: bib53 article-title: AquaCrop: FAO's crop water productivity and yield response model publication-title: Environ. Modell. Softw. – volume: 12 start-page: 97 year: 2022 ident: bib60 article-title: Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates publication-title: Agriculture – volume: 247 year: 2021 ident: bib59 article-title: Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates publication-title: Agric. Water Manag. – year: 1992 ident: bib45 article-title: CROPWAT: A Computer Program for Irrigation Planning and Management (No. 46) – volume: 245 year: 2021 ident: bib58 article-title: Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China publication-title: Agric. Water Manag. – volume: 141 start-page: 10 year: 2014 end-page: 22 ident: bib56 article-title: Evaluation of soil water dynamics and crop yield under furrow irrigation witha two-dimensional flow and crop growth coupled model publication-title: Agric. Water Manag. – volume: 12 start-page: 17 year: 2023 ident: bib28 article-title: Response patterns of simulated corn yield and soil nitrous oxide emission to precipitation change publication-title: Ecol. Process. – volume: 0 start-page: 108 year: 2004 end-page: 113 ident: bib54 article-title: Experimental study on evapotranspiration and soil evaporation in summer maize field publication-title: J. Hydraul. Eng. – volume: 196 start-page: 99 year: 2018 end-page: 113 ident: bib49 article-title: Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China publication-title: Agric. Water Manag. – volume: 228 year: 2020 ident: bib39 article-title: Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions publication-title: Agric. Water Manag. – volume: 7 start-page: 322 year: 2019 end-page: 334 ident: bib68 article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China publication-title: Crop J. – volume: 266 year: 2022 ident: bib63 article-title: Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules publication-title: Agric. Water Manag. – volume: 7 start-page: 322 year: 2019 end-page: 334 ident: bib69 article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China publication-title: Crop J. – volume: 49 start-page: 252 year: 2018 end-page: 260 ident: bib62 article-title: Effects of soil water, plant, water saving and yield increasing of maize under regulated deficit drip irrigation publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 29 start-page: 56 year: 2021 end-page: 59 ident: bib7 article-title: Creation and thinking of China's spring maize high-yield record publication-title: J. Maize Sci. – reference: Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300 (9), D05109.. – volume: 159 start-page: 331 year: 2015 end-page: 340 ident: bib35 article-title: Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh publication-title: Agric. Water Manag. – volume: 274 year: 2022 ident: bib50 article-title: Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana publication-title: Agric. Water Manag. – volume: 56 start-page: 373 year: 2013 end-page: 393 ident: bib13 article-title: Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation publication-title: Trans. ASABE – reference: FAO, 2022. World Food and Agriculture – Statistical Yearbook 2022. Available from https://www.fao.org/documents/card/en/c/cc2211en (accessed November 8th 2023). – volume: 227 year: 2020 ident: bib6 article-title: Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms publication-title: Agric. Water Manag. – volume: 67 start-page: 207 year: 2000 end-page: 214 ident: bib26 article-title: An improved water-use efficiency for maize grown under regulated deficit irrigation publication-title: Field Crops Res. – volume: 85 start-page: 211 year: 2006 end-page: 218 ident: bib48 article-title: Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain publication-title: Agric. Water Manag. – volume: 244 year: 2021 ident: bib44 article-title: Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil publication-title: Agric. Water Manag. – volume: 258 year: 2021 ident: bib36 article-title: Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes publication-title: Agric. Water Manag. – volume: 105 start-page: 188 year: 2017 end-page: 204 ident: bib10 article-title: A novel generic optimization method for irrigation scheduling under multiple objectives and multiple hierarchical layers in a canal network publication-title: Adv. Water Resour. – volume: 213 start-page: 1130 year: 2019 end-page: 1146 ident: bib2 article-title: Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria publication-title: Agric. Water Manag. – volume: 223 year: 2019 ident: bib43 article-title: Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation publication-title: Agric. Water Manag. – volume: 234 start-page: 73 year: 2019 end-page: 86 ident: bib41 article-title: Newly developed water productivity and harvest index models for maize in an arid region publication-title: Field Crops Res. – volume: 184 start-page: 178 year: 2017 end-page: 190 ident: bib65 article-title: Assessment of irrigated maize yield response to climate change scenarios in Portugal publication-title: Agric. Water Manag. – volume: 179 start-page: 5 year: 2017 end-page: 17 ident: bib25 article-title: Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice publication-title: Agric. Water Manag. – volume: 274 year: 2022 ident: bib8 article-title: Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies publication-title: Agric. Water Manag. – volume: 288 year: 2022 ident: bib3 article-title: Parameterizing the AquaCrop model for potato growth modeling in a semi-arid region publication-title: Field Crops Res. – volume: 56 year: 2021 ident: bib61 article-title: Quantitative assessment of soybean drought risk in Bengbu city based on disaster loss risk curve and DSSAT publication-title: Int. J. Disast. Risk Reduct. – volume: 41 start-page: 59 year: 2013 end-page: 65 ident: bib64 article-title: Effect of water deficit at different growth stages on growth, yield and water use of spring maize in Hexi area publication-title: J. Northwest A F. Univ. Nat. Sci. Ed. – volume: 35 start-page: 233 year: 1999 end-page: 241 ident: bib29 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. – volume: 292 year: 2024 ident: bib33 article-title: Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate publication-title: Agric. Water Manag. – volume: 33 start-page: 145 year: 2017 end-page: 155 ident: bib73 article-title: Optimal drip irrigation and fertilization amount enhancing root growth and yield of spring maize in Hexi region of China publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 29 start-page: 2837 year: 2015 end-page: 2853 ident: bib4 article-title: Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements publication-title: Water Resour. Manag. – reference: NBSC, 2022. Announcement of the National Bureau of Statistics on grain production data for 2022. Available from http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901673.html (accessed November 8th 2023). – volume: 11 start-page: 1035 year: 2013 end-page: 1039 ident: bib66 article-title: Deficit irrigation scheduling of maize in the semi-arid area of northeast China publication-title: J. Food Agric. Environ. – volume: 110 start-page: 67 year: 2012 end-page: 77 ident: bib14 article-title: Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment publication-title: Agric. Water Manag. – reference: USDAFAS, 2019. Grain: World Markets and Trade. Retrieved on August, 2019. Available from https://apps.fas.usdaF.A.S.gov/psdonline/circulars/grain.pdf (accessed November 8th 2023). – volume: 95 start-page: 836 year: 2008 end-page: 844 ident: bib15 article-title: Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn publication-title: Agric. Water Manag. – volume: 256 year: 2021 ident: bib34 article-title: Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model publication-title: Agric. Water Manag. – volume: 756 year: 2021 ident: bib20 article-title: Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques publication-title: Sci. Total Environ. – volume: 281 year: 2020 ident: bib9 article-title: Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions publication-title: Agric. For. Meteorol. – volume: 261 year: 2022 ident: bib17 article-title: Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China publication-title: Agric. Water Manag. – volume: 280 year: 2023 ident: bib57 article-title: Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize publication-title: Agric. Water Manag. – volume: 144 start-page: 46 year: 2016 end-page: 57 ident: bib30 article-title: An efficient irrigation water allocation model under uncertainty publication-title: Agric. Syst. – volume: 211 start-page: 59 year: 2019 end-page: 69 ident: bib32 article-title: Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat publication-title: Agric. Water Manag. – volume: 101 start-page: 488 year: 2009 end-page: 498 ident: bib19 article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize publication-title: Agron. J. – year: 1992 ident: 10.1016/j.agwat.2024.108816_bib45 – volume: 31 start-page: 995 issue: 5 year: 2013 ident: 10.1016/j.agwat.2024.108816_bib72 article-title: Effects of water deficits on growth, yield and water productivity of drip-irrigated onion (Allium cepa L.) in an arid region of Northwest China publication-title: Irrig. Sci. doi: 10.1007/s00271-012-0378-5 – volume: 184 start-page: 178 year: 2017 ident: 10.1016/j.agwat.2024.108816_bib65 article-title: Assessment of irrigated maize yield response to climate change scenarios in Portugal publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2017.02.004 – volume: 11 start-page: 1035 issue: 2 year: 2013 ident: 10.1016/j.agwat.2024.108816_bib66 article-title: Deficit irrigation scheduling of maize in the semi-arid area of northeast China publication-title: J. Food Agric. Environ. – volume: 266 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib63 article-title: Improving the AquaCrop model to achieve direct simulation of evapotranspiration under nitrogen stress and joint simulation-optimization of irrigation and fertilizer schedules publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.107599 – volume: 756 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib20 article-title: Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143600 – ident: 10.1016/j.agwat.2024.108816_bib37 – volume: 55 start-page: 3365 issue: 17 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib55 article-title: Research on soybean irrigation schedule based on AquaCrop model publication-title: Sci. Agric. Sin. – volume: 247 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib59 article-title: Grain yields and evapotranspiration dynamics of drip-irrigated maize under high plant density across arid to semi-humid climates publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106726 – volume: 223 year: 2019 ident: 10.1016/j.agwat.2024.108816_bib43 article-title: Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105687 – volume: 6 start-page: 133 year: 2020 ident: 10.1016/j.agwat.2024.108816_bib1 article-title: Agricultural irrigation scheduling for a crop management system considering water and energy use optimization publication-title: Energy Rep. doi: 10.1016/j.egyr.2019.08.031 – volume: 95 start-page: 836 issue: 7 year: 2008 ident: 10.1016/j.agwat.2024.108816_bib15 article-title: Irrigation rate and plant density effects on yield and water use efficiency of drip-irrigated corn publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2008.02.008 – volume: 244 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib44 article-title: Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106539 – volume: 7 start-page: 322 issue: 3 year: 2019 ident: 10.1016/j.agwat.2024.108816_bib68 article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China publication-title: Crop J. doi: 10.1016/j.cj.2018.10.008 – volume: 101 start-page: 448 issue: 3 year: 2009 ident: 10.1016/j.agwat.2024.108816_bib21 article-title: AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize publication-title: Agron. J. doi: 10.2134/agronj2008.0218s – volume: 289 year: 2023 ident: 10.1016/j.agwat.2024.108816_bib31 article-title: Drip irrigation shapes the soil bacterial communities and enhances jujube yield by regulating the soil moisture content and nutrient levels publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108563 – volume: 211 start-page: 59 year: 2019 ident: 10.1016/j.agwat.2024.108816_bib32 article-title: Optimized micro-sprinkling irrigation scheduling improves grain yield by increasing the uptake and utilization of water and nitrogen during grain filling in winter wheat publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.09.047 – volume: 62 start-page: 351 year: 2014 ident: 10.1016/j.agwat.2024.108816_bib53 article-title: AquaCrop: FAO's crop water productivity and yield response model publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2014.08.005 – volume: 159 start-page: 331 year: 2015 ident: 10.1016/j.agwat.2024.108816_bib35 article-title: Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.06.022 – volume: 222 start-page: 193 year: 2019 ident: 10.1016/j.agwat.2024.108816_bib42 article-title: Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.06.004 – volume: 110 start-page: 67 year: 2012 ident: 10.1016/j.agwat.2024.108816_bib14 article-title: Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2012.04.002 – volume: 27 start-page: 365 issue: 3 year: 1995 ident: 10.1016/j.agwat.2024.108816_bib23 article-title: Statistical procedures for the evaluation of evapotranspiration computing models publication-title: Agric. Water Manag. doi: 10.1016/0378-3774(95)01152-9 – volume: 227 year: 2020 ident: 10.1016/j.agwat.2024.108816_bib6 article-title: Real-time energy optimization of irrigation scheduling by parallel multi-objective genetic algorithms publication-title: Agric. Water Manag. – volume: 7 start-page: 322 issue: 3 year: 2019 ident: 10.1016/j.agwat.2024.108816_bib69 article-title: Using irrigation intervals to optimize water-use efficiency and maize yield in Xinjiang, northwest China publication-title: Crop J. doi: 10.1016/j.cj.2018.10.008 – volume: 101 start-page: 426 issue: 3 year: 2009 ident: 10.1016/j.agwat.2024.108816_bib46 article-title: AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles publication-title: Agron. J. doi: 10.2134/agronj2008.0139s – volume: 41 start-page: 59 issue: 5 year: 2013 ident: 10.1016/j.agwat.2024.108816_bib64 article-title: Effect of water deficit at different growth stages on growth, yield and water use of spring maize in Hexi area publication-title: J. Northwest A F. Univ. Nat. Sci. Ed. – volume: 33 start-page: 145 issue: 21 year: 2017 ident: 10.1016/j.agwat.2024.108816_bib73 article-title: Optimal drip irrigation and fertilization amount enhancing root growth and yield of spring maize in Hexi region of China publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 18 start-page: 289 issue: 3-4 year: 2003 ident: 10.1016/j.agwat.2024.108816_bib47 article-title: CropSyst, a cropping systems simulation model publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00109-0 – volume: 12 start-page: 97 issue: 1 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib60 article-title: Assessing Growth and Water Productivity for Drip-Irrigated Maize under High Plant Density in Arid to Semi-Humid Climates publication-title: Agriculture doi: 10.3390/agriculture12010097 – volume: 261 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib17 article-title: Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107372 – volume: 280 year: 2023 ident: 10.1016/j.agwat.2024.108816_bib57 article-title: Optimizing deficit irrigation and regulated deficit irrigation methods increases water productivity in maize publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108205 – volume: 11 start-page: 941 issue: 10 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib11 article-title: The use of municipal solid waste compost in combination with proper irrigation scheduling influences the productivity, microbial activity and water use efficiency of direct seeded rice publication-title: Agriculture doi: 10.3390/agriculture11100941 – volume: 196 start-page: 99 year: 2018 ident: 10.1016/j.agwat.2024.108816_bib49 article-title: Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2017.11.001 – ident: 10.1016/j.agwat.2024.108816_bib40 – volume: 105 start-page: 188 year: 2017 ident: 10.1016/j.agwat.2024.108816_bib10 article-title: A novel generic optimization method for irrigation scheduling under multiple objectives and multiple hierarchical layers in a canal network publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.04.025 – volume: 234 start-page: 73 year: 2019 ident: 10.1016/j.agwat.2024.108816_bib41 article-title: Newly developed water productivity and harvest index models for maize in an arid region publication-title: Field Crops Res. doi: 10.1016/j.fcr.2019.02.009 – volume: 292 year: 2024 ident: 10.1016/j.agwat.2024.108816_bib33 article-title: Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108663 – volume: 0 start-page: 108 issue: 11 year: 2004 ident: 10.1016/j.agwat.2024.108816_bib54 article-title: Experimental study on evapotranspiration and soil evaporation in summer maize field publication-title: J. Hydraul. Eng. – volume: 29 start-page: 2837 issue: 8 year: 2015 ident: 10.1016/j.agwat.2024.108816_bib4 article-title: Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0973-3 – volume: 274 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib8 article-title: Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.107949 – volume: 256 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib34 article-title: Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107084 – volume: 23 start-page: 117 issue: 4 year: 2015 ident: 10.1016/j.agwat.2024.108816_bib70 article-title: Effect of drip irrigation on yield and water use efficiency of spring maize with high yield in Xinjiang publication-title: J. Maize Sci. – ident: 10.1016/j.agwat.2024.108816_bib16 – volume: 179 start-page: 5 year: 2017 ident: 10.1016/j.agwat.2024.108816_bib25 article-title: Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2016.05.007 – volume: 286 year: 2023 ident: 10.1016/j.agwat.2024.108816_bib71 article-title: Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2023.108391 – volume: 56 start-page: 373 issue: 2 year: 2013 ident: 10.1016/j.agwat.2024.108816_bib13 article-title: Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation publication-title: Trans. ASABE doi: 10.13031/2013.42676 – volume: 63 start-page: 125 issue: 2 year: 2003 ident: 10.1016/j.agwat.2024.108816_bib27 article-title: Evapotranspiration, yield and water use efficiency of drip irrigated corn in the Bekaa Valley of Lebanon publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(03)00179-3 – ident: 10.1016/j.agwat.2024.108816_bib51 – ident: 10.1016/j.agwat.2024.108816_bib5 – volume: 213 start-page: 1130 year: 2019 ident: 10.1016/j.agwat.2024.108816_bib2 article-title: Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2018.11.006 – volume: 288 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib3 article-title: Parameterizing the AquaCrop model for potato growth modeling in a semi-arid region publication-title: Field Crops Res. doi: 10.1016/j.fcr.2022.108680 – volume: 282 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib22 article-title: Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study publication-title: Field Crops Res. doi: 10.1016/j.fcr.2022.108510 – volume: 46 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.agwat.2024.108816_bib38 article-title: Deficit irrigation and nitrogen effects on maize in a Sahelian environment: I. Grain yield and yield components publication-title: Agric. Water Manag. doi: 10.1016/S0378-3774(00)00073-1 – volume: 245 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib18 article-title: Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106575 – volume: 41 start-page: 109 issue: 2 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib12 article-title: Spatiotemporal variation of groundwater table from 2016 to 2020 in Shihezi-Changji of Xinjiang publication-title: J. Irrig. Drain. Eng. – volume: 274 year: 2022 ident: 10.1016/j.agwat.2024.108816_bib50 article-title: Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.107950 – volume: 211 start-page: 137 year: 2017 ident: 10.1016/j.agwat.2024.108816_bib67 article-title: Optimizing water use efficiency and economic return of super high yield spring maize under drip irrigation and plastic mulching in arid areas of China publication-title: Field Crops Res. doi: 10.1016/j.fcr.2017.05.026 – volume: 228 year: 2020 ident: 10.1016/j.agwat.2024.108816_bib39 article-title: Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2019.105925 – volume: 18 start-page: 235 issue: 3-4 year: 2003 ident: 10.1016/j.agwat.2024.108816_bib24 article-title: The DSSAT cropping system model publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00107-7 – volume: 49 start-page: 252 year: 2018 ident: 10.1016/j.agwat.2024.108816_bib62 article-title: Effects of soil water, plant, water saving and yield increasing of maize under regulated deficit drip irrigation publication-title: Trans. Chin. Soc. Agric. Mach. – volume: 144 start-page: 46 year: 2016 ident: 10.1016/j.agwat.2024.108816_bib30 article-title: An efficient irrigation water allocation model under uncertainty publication-title: Agric. Syst. doi: 10.1016/j.agsy.2016.02.003 – volume: 85 start-page: 211 issue: 1 year: 2006 ident: 10.1016/j.agwat.2024.108816_bib48 article-title: Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2006.04.008 – volume: 5 start-page: 16 issue: 1 year: 1989 ident: 10.1016/j.agwat.2024.108816_bib52 article-title: WOFOST: a simulation model of crop production publication-title: Soil Use Manag. doi: 10.1111/j.1475-2743.1989.tb00755.x – volume: 101 start-page: 488 issue: 3 year: 2009 ident: 10.1016/j.agwat.2024.108816_bib19 article-title: Validating the FAO AquaCrop model for irrigated and water deficient field maize publication-title: Agron. J. doi: 10.2134/agronj2008.0029xs – volume: 12 start-page: 17 issue: 2 year: 2023 ident: 10.1016/j.agwat.2024.108816_bib28 article-title: Response patterns of simulated corn yield and soil nitrous oxide emission to precipitation change publication-title: Ecol. Process. doi: 10.1186/s13717-023-00429-w – volume: 258 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib36 article-title: Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107219 – volume: 141 start-page: 10 year: 2014 ident: 10.1016/j.agwat.2024.108816_bib56 article-title: Evaluation of soil water dynamics and crop yield under furrow irrigation witha two-dimensional flow and crop growth coupled model publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2014.04.007 – volume: 35 start-page: 233 issue: 1 year: 1999 ident: 10.1016/j.agwat.2024.108816_bib29 article-title: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour. Res. doi: 10.1029/1998WR900018 – volume: 56 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib61 article-title: Quantitative assessment of soybean drought risk in Bengbu city based on disaster loss risk curve and DSSAT publication-title: Int. J. Disast. Risk Reduct. doi: 10.1016/j.ijdrr.2021.102126 – volume: 281 year: 2020 ident: 10.1016/j.agwat.2024.108816_bib9 article-title: Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions publication-title: Agric. For. Meteorol. – volume: 67 start-page: 207 issue: 3 year: 2000 ident: 10.1016/j.agwat.2024.108816_bib26 article-title: An improved water-use efficiency for maize grown under regulated deficit irrigation publication-title: Field Crops Res. doi: 10.1016/S0378-4290(00)00095-2 – volume: 245 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib58 article-title: Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106660 – volume: 29 start-page: 56 issue: 2 year: 2021 ident: 10.1016/j.agwat.2024.108816_bib7 article-title: Creation and thinking of China's spring maize high-yield record publication-title: J. Maize Sci. |
SSID | ssj0004047 |
Score | 2.4522939 |
Snippet | Global water scarcity has become a non-negligible problem that threatens the sustainable development of agriculture. In order to alleviate the contradiction... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108816 |
SubjectTerms | AquaCrop model China corn deficit irrigation grain yield irrigation rates irrigation scheduling Irrigation strategy irrigation water Maize Regulated deficit irrigation soil water content sustainable development water shortages water use efficiency Yield |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqnsoB8RTLS0biWLOJ47yOy6pVhQQcoNLerPEjq1Q0WdJdoeXAb2fGcfrg0APHTMZ2PB7PeJTxN4y9T1yNIZoCIaFOhLLWC0hcIpw1pcqNM4Wly8mfvxRn5-rTKl8dsOV0F4bSKqPtH216sNaRMo_SnG_adv4tyUqMrjC0U-T4Q-VapUrS8g9_btI8VBKKjBGzIO4JeSjkeMH6F1BCpVSUa1dR0fNb3imA-N9xUv-Y6-CDTh-xh_HwyBfj9z1mB757wh4s1kME0PBPmf2KNuAyXq7kfcMvof3teTsMAUsDaVcjHu2etx1ftd0F6sf6mIc62tzs-eLnDpZDv-Hk3xzHBsAbHFjscU_wgEb7jJ2fnnxfnolYSEFYlMhWWAk2TaHwTS5VbqWpsswT8lcibVoUJWSNSmtvSwW4IU3iyrTGg5zLirypLb5-zg67vvMvGDcUoQWp-kpVyA7gkIBL0IA3VT1jchKgthFlnIpd_NBTOtmFDlLXJHU9Sn3Gjq8bbUaQjfvZP9LKXLMSQnYg9MNaRxXROFkoU6Mq50rVOGkURnp5hgYNZ-5rP2PFtK76jsJhV-39o7-btEDjVqT_K9D5fnelM_QeGPPLvHr5v52_Ykf0NKYnvGaH22Hn3-CpZ2veBrX-C1di_1Y priority: 102 providerName: Elsevier |
Title | Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study |
URI | https://dx.doi.org/10.1016/j.agwat.2024.108816 https://www.proquest.com/docview/3153713258 https://doaj.org/article/6efa71b48dd74fd2b462553730e28e9e |
Volume | 297 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4LDAgnqI8KiMxEkgc5zUWBCogYAGpm3V-pAqCFEIrVAZ-O2cnQcAAC6tjx9b5O9-dfP6OkH1fZxiicfAYZL7HlTIe-Nr3tJIJj6SWsbKPk6-u4_4dvxhEgy-lvmxOWE0PXAvuKDY5JIHkqdYJzzWTHD32KERgGpaazNjTF21eG0y1LyJ9nrQcQy6bC4avYFMnGbdZdaktb_7FDjm6_m_m6MfB7KzN2TJZatxE2quXt0JmTLlKFnvDqqHKMGtE3aC2PzbPKOkop49QvBlaVJVjzcC2l5p5dkqLkg6K8h6RMDygrmI2lVPae57ASTV6otaSaYoDgOY4sTdF9FPHO7tO7s5Ob0_6XlMywVOcJ2NPMVBBACi0iPFIMZmGobEcXz5TQRwnEOY8yIxKOKDqSV8nQYYumw7jKM8Uft4gc-WoNJuEShuLOUmalKfYHUBjA-p8DkamWYewVoBCNXzitqzFg2gTx-6Fk7qwUhe11Dvk4HPQU02n8Xv3Y7szn10tF7ZrQISIBiHiL4R0SNzuq2jcitpdwF8Vv8--16JAoNLZmxQozWjyIkK0Exjdsyjd-o8VbpMFO22dlLBD5sbVxOyirzOWXTJ7-B50yXzv_LJ_3XUg_wCZCP-N |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6FIqR4FazjuPEyYHDtlBt6YMDrbQ341dWqWiyZHdVLQf-FH-QsZMUyqEHpF79jD-PZzzK-BuE3lCbg4vGFWEqp4Qb44iilhJrtOCJtjo1_nHy8Uk6PuOfJslkDf3q38L4sMpO97c6PWjrrmTYoTmcleXwC40FeFfg2nFv-KM-g_WhW12C3zZ_f_ABNvktY_sfT_fGpEstQAznYkEMUyaKVOqKhPHEMJ3FsfNcWJSZKE2Figse5c4IrkBENbUCnH2a2DhNitxANYx7B93loC582oR3P__ElXAaspr5ryP-83qqoxBUpqaXykdwMu6D-zKfZf0vcxiyBlyziv_Yh2D09h-ije62ikctII_QmqseowejadMxdrgnyHwGpXPRvebEdYEvVPnD4bJpAnkHlM1bAtwVLis8KatzEMjpDg6Ju7Fe4dH3pdpr6hn2BtVi6KBwAROTFQCNA_3tU3R2K_A-Q-tVXblNhLV3CQOqLuMZNFfKQgHseaGczvIBYj2A0nS05j67xjfZx6-dy4C69KjLFvUB2rnqNGtZPW5uvut35qqpp-QOBXUzlZ1MSlisEpHmmbWCF5ZpDq5lEoMGhZW73A1Q2u-rvCbhMFR58-yveymQcPb9Dx1VuXo5lzGYKxHFLMme_-_gr9C98enxkTw6ODncQvd9TRsb8QKtL5qlewlXroXeDiKO0dfbPlO_AQI0Ox8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+maize+irrigation+strategy+in+Xinjiang%2C+China+by+AquaCrop+based+on+a+four-year+study&rft.jtitle=Agricultural+water+management&rft.au=Hongyan+Zhu&rft.au=Bingyan+Zheng&rft.au=Weibo+Nie&rft.au=Liangjun+Fei&rft.date=2024-05-31&rft.pub=Elsevier&rft.eissn=1873-2283&rft.volume=297&rft.spage=108816&rft_id=info:doi/10.1016%2Fj.agwat.2024.108816&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6efa71b48dd74fd2b462553730e28e9e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3774&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3774&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3774&client=summon |