DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence
Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, sin...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 5 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
22.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues. |
---|---|
AbstractList | Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues. Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues.Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues. Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software ( https://github.com/Su-informatics-lab/DSTG ) for precise interrogation of spatial organizations and functions in tissues. |
Author | Su, Jing Song, Qianqian |
Author_xml | – sequence: 1 givenname: Qianqian orcidid: 0000-0002-4455-5302 surname: Song fullname: Song, Qianqian organization: Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, USA, Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA – sequence: 2 givenname: Jing surname: Su fullname: Su, Jing organization: Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33480403$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLxDAUhYMovlfupUtBqkmbJq0LQXyD4ELdCeEmTTuRTlKTVPDfm8FRVFwlkO-ee3LOFlq1zmqE9gg-Irgpj6WRx1ICUEJX0CahnOcUV3R1cWc8rygrN9BWCC8YF5jXZB1tlCWtMcXlJnq-eHi8PslarZx9c8MUje2zMEI0MGTRgw3KmzG6uVEhayFCFmfeTf0s6z2Ms1xC0G0GPprOqMWMsVEPg-m1VXoHrXUwBL27PLfR09Xl4_lNfnd_fXt-dpcrSnnMZddIhjlXLWaV5pxhXUJTq7qiyXtNlcJNq3HTEVoBk10nC82wrBvSsqaCptxGp5-64yTnulXaJueDGL2Zg38XDoz4_WLNTPTuTdS0qApWJ4GDpYB3r5MOUcxNUOkfYLWbgihSXAWryoImdP_nru8lX5Em4PATUN6F4HX3jRAsFoWJVJhYFpZo8odWJqb03cKoGf6d-QAAHZzz |
CitedBy_id | crossref_primary_10_1186_s13073_024_01283_x crossref_primary_10_1016_j_ymeth_2024_11_002 crossref_primary_10_1093_bib_bbae082 crossref_primary_10_3389_fonc_2022_899825 crossref_primary_10_7554_eLife_88431 crossref_primary_10_1038_s42003_022_03175_5 crossref_primary_10_1089_cbr_2023_0116 crossref_primary_10_2217_fon_2023_0658 crossref_primary_10_1038_s41587_022_01273_7 crossref_primary_10_1093_bib_bbae198 crossref_primary_10_1089_cmb_2024_0532 crossref_primary_10_3389_fbinf_2023_1159381 crossref_primary_10_1038_s41467_023_43600_9 crossref_primary_10_1016_j_trac_2024_117818 crossref_primary_10_1038_s41467_023_43220_3 crossref_primary_10_1093_bib_bbac297 crossref_primary_10_52601_bpr_2024_240006 crossref_primary_10_1016_j_csbj_2022_12_001 crossref_primary_10_1016_j_csbj_2023_01_016 crossref_primary_10_1093_bfgp_elad011 crossref_primary_10_1093_bib_bbad262 crossref_primary_10_1038_s41467_023_36560_7 crossref_primary_10_1002_ctm2_696 crossref_primary_10_3389_fgene_2021_763561 crossref_primary_10_1021_acsnano_4c11505 crossref_primary_10_1186_s12943_024_02040_9 crossref_primary_10_1038_s41586_021_03634_9 crossref_primary_10_1016_j_tins_2021_11_001 crossref_primary_10_1038_s41592_023_02166_6 crossref_primary_10_1097_TP_0000000000004466 crossref_primary_10_3389_fmed_2022_850343 crossref_primary_10_1093_bib_bbac245 crossref_primary_10_1007_s12016_024_09001_6 crossref_primary_10_1016_j_neuron_2022_09_030 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_3390_biom13050767 crossref_primary_10_3390_biom15010021 crossref_primary_10_1093_nargab_lqac073 crossref_primary_10_3389_fgene_2022_1006357 crossref_primary_10_1016_j_csbj_2022_05_056 crossref_primary_10_1093_bib_bbaf109 crossref_primary_10_1038_s42003_024_07165_7 crossref_primary_10_1038_s41587_022_01272_8 crossref_primary_10_2174_1574893618666230529145130 crossref_primary_10_1186_s12967_023_04150_2 crossref_primary_10_1186_s43556_023_00144_0 crossref_primary_10_1093_bib_bbad048 crossref_primary_10_3390_cells12162042 crossref_primary_10_1093_bib_bbae130 crossref_primary_10_1186_s13000_025_01608_3 crossref_primary_10_1038_s41467_024_49445_0 crossref_primary_10_59717_j_xinn_life_2024_100105 crossref_primary_10_3389_fonc_2021_738841 crossref_primary_10_1042_BSR20221680 crossref_primary_10_1016_j_yamp_2023_01_002 crossref_primary_10_1007_s11427_024_2770_x crossref_primary_10_3390_biom14040436 crossref_primary_10_1002_smtd_202100722 crossref_primary_10_1093_bib_bbae719 crossref_primary_10_1016_j_kint_2022_01_033 crossref_primary_10_7554_eLife_88431_3 crossref_primary_10_1093_cei_uxae077 crossref_primary_10_1093_bib_bbad469 crossref_primary_10_1093_bib_bbac412 crossref_primary_10_1093_bib_bbae316 crossref_primary_10_1093_gpbjnl_qzae057 crossref_primary_10_1186_s13059_023_02879_z crossref_primary_10_1507_endocrj_EJ23_0457 crossref_primary_10_1002_smtd_202401163 crossref_primary_10_1186_s13073_023_01168_5 crossref_primary_10_1093_bib_bbae670 crossref_primary_10_3389_fsurg_2021_742443 crossref_primary_10_1016_j_ccell_2023_01_010 crossref_primary_10_1016_j_jaci_2024_11_001 crossref_primary_10_3389_fgene_2021_785290 crossref_primary_10_1038_s41467_023_36961_8 crossref_primary_10_1186_s13059_022_02653_7 crossref_primary_10_1093_nar_gkac084 crossref_primary_10_1186_s13059_024_03416_2 crossref_primary_10_1016_j_crmeth_2024_100905 crossref_primary_10_1038_s42003_023_04761_x crossref_primary_10_3389_fonc_2023_1172314 crossref_primary_10_1007_s40472_024_00450_8 crossref_primary_10_1038_s41392_022_00960_w crossref_primary_10_1016_j_cell_2023_11_003 crossref_primary_10_1016_j_cels_2022_09_002 crossref_primary_10_3389_fmolb_2021_729789 crossref_primary_10_3389_fonc_2021_775418 crossref_primary_10_1038_s41467_021_24172_y crossref_primary_10_1016_j_jgg_2024_11_009 crossref_primary_10_1214_24_AOAS1953 crossref_primary_10_1093_bib_bbae500 crossref_primary_10_1186_s12859_024_06003_1 crossref_primary_10_1093_bib_bbac563 crossref_primary_10_1080_21655979_2022_2063648 crossref_primary_10_1038_s41467_023_37168_7 crossref_primary_10_1093_bib_bbae063 crossref_primary_10_1063_5_0091135 crossref_primary_10_1186_s13073_024_01350_3 crossref_primary_10_1097_MNH_0000000000000781 crossref_primary_10_1038_s41587_021_01182_1 crossref_primary_10_1186_s13073_025_01442_8 crossref_primary_10_1186_s13059_024_03353_0 crossref_primary_10_1007_s44272_024_00018_8 crossref_primary_10_1042_ETLS20210131 crossref_primary_10_1055_a_2299_7880 crossref_primary_10_1093_bioinformatics_btac805 crossref_primary_10_1093_bfgp_elae002 crossref_primary_10_1101_gr_275224_121 crossref_primary_10_2174_1574893618666221130094050 crossref_primary_10_1002_smtd_202401107 crossref_primary_10_1016_j_cmpb_2024_108431 crossref_primary_10_1016_j_drudis_2024_103889 crossref_primary_10_1038_s41592_022_01480_9 crossref_primary_10_1093_bioadv_vbae081 crossref_primary_10_1016_j_tcb_2022_04_008 crossref_primary_10_1038_s41467_023_43629_w crossref_primary_10_1016_j_compbiomed_2023_107274 |
Cites_doi | 10.1038/nbt.2859 10.1093/biomet/58.3.433 10.1016/j.cell.2018.02.001 10.1038/nri.2017.76 10.1007/s40142-019-00177-4 10.1038/s41587-020-0469-4 10.1126/science.aad0501 10.1126/science.aaw1219 10.1016/j.cell.2019.11.025 10.1016/j.cels.2016.09.002 10.1126/science.aav9776 10.1016/j.cmet.2016.08.018 10.1101/278804 10.1109/83.988962 10.2214/AJR.19.22145 10.1101/055822 10.1016/j.cell.2018.07.028 10.1038/nplants.2017.61 10.1038/s41467-018-04724-5 10.1101/295535 10.1093/biostatistics/kxp008 10.2217/pme-2018-0145 10.1101/969931 10.1126/science.aaf2403 10.1101/131334 10.1038/nbt.4091 10.1093/nar/gkx828 10.1038/s41587-019-0392-8 10.1186/s13059-016-0947-7 10.1016/j.cell.2014.04.005 10.1093/bioinformatics/btz965 10.24963/ijcai.2020/392 10.1371/journal.pcbi.1006361 10.1101/989806 10.1038/ncomms14049 10.1158/0008-5472.CAN-18-0747 10.1038/s41586-018-0590-4 10.1002/cam4.2113 10.1126/science.aaa6090 10.1162/0899766042321814 10.1186/s13059-019-1874-1 10.1126/science.1250212 10.1101/887133 10.1038/s41593-019-0539-4 10.1038/s41586-019-1506-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. The Author(s) 2021. Published by Oxford University Press. 2021 |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. – notice: The Author(s) 2021. Published by Oxford University Press. 2021 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1093/bib/bbaa414 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC8425268 33480403 10_1093_bib_bbaa414 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 ADRIX AFXEN BCRHZ GROUPED_DOAJ M49 NPM ROX 7X8 5PM |
ID | FETCH-LOGICAL-c447t-bf9b6077cd065e7760e3a98c85446384cc09de09f145a6bffb2e60b891d695a93 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:42:55 EDT 2025 Thu Jul 10 22:26:02 EDT 2025 Wed Feb 19 02:29:24 EST 2025 Tue Jul 01 03:39:32 EDT 2025 Thu Apr 24 23:13:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | deconvolution single-cell RNA-seq graph-based artificial intelligence spatial transcriptomics |
Language | English |
License | http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-bf9b6077cd065e7760e3a98c85446384cc09de09f145a6bffb2e60b891d695a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4455-5302 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8425268 |
PMID | 33480403 |
PQID | 2480265324 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425268 proquest_miscellaneous_2480265324 pubmed_primary_33480403 crossref_primary_10_1093_bib_bbaa414 crossref_citationtrail_10_1093_bib_bbaa414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210122 |
PublicationDateYYYYMMDD | 2021-01-22 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210122 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Maniatis (2021090812140054900_ref14) 2019; 364 Tirosh (2021090812140054900_ref52) 2016; 352 Zhao (2021090812140054900_ref25) 2020 Moncada (2021090812140054900_ref13) 2020; 38 Kingma (2021090812140054900_ref34) 2019; 434 Kipf (2021090812140054900_ref37) 2016 Kettenring (2021090812140054900_ref30) 1971; 58 Lun (2021090812140054900_ref41) 2016; 17 Bendall (2021090812140054900_ref6) 2014; 157 Witten (2021090812140054900_ref33) 2009; 10 Papalexi (2021090812140054900_ref4) 2018; 18 Stickels (2021090812140054900_ref15) 2020 Hamilton (2021090812140054900_ref36) 2017 Li (2021090812140054900_ref28) 2020; 36 Song (2021090812140054900_ref29) 2020 Zheng (2021090812140054900_ref2) 2017; 8 Yip (2021090812140054900_ref42) 2017; 45 Saiselet (2021090812140054900_ref17) 2018 Elosua (2021090812140054900_ref18) 2020 Berglund (2021090812140054900_ref45) 2018; 9 Trapnell (2021090812140054900_ref7) 2014; 32 Hardoon (2021090812140054900_ref32) 2004; 16 Xin (2021090812140054900_ref56) 2016; 24 Mereu (2021090812140054900_ref35) 2020; 38 Moore (2021090812140054900_ref48) 2019; 16 Li (2021090812140054900_ref39) 2018 Tian (2021090812140054900_ref55) 2018; 14 Song (2021090812140054900_ref5) 2019; 8 Ghosh (2021090812140054900_ref47) 2020; 214 Giacomello (2021090812140054900_ref44) 2017; 3 Han (2021090812140054900_ref50) 2018; 172 Ståhl (2021090812140054900_ref8) 2016; 353 Haghverdi (2021090812140054900_ref23) 2018; 36 Zeng (2021090812140054900_ref26) 2020 Rodriques (2021090812140054900_ref16) 2019; 363 Asp (2021090812140054900_ref11) 2019; 179 Thrane (2021090812140054900_ref46) 2018; 78 Veličković (2021090812140054900_ref20) 2017 Filipp (2021090812140054900_ref49) 2019; 7 Lee (2021090812140054900_ref9) 2014; 343 Defferrard (2021090812140054900_ref21) 2016 Schaum (2021090812140054900_ref3) 2018; 562 Maynard (2021090812140054900_ref12) 2020 Grubman (2021090812140054900_ref51) 2019; 22 Fang (2021090812140054900_ref22) 2020 Song (2021090812140054900_ref24) 2020 Saunders (2021090812140054900_ref43) 2018; 174 Hodge (2021090812140054900_ref54) 2019; 573 Hafemeister (2021090812140054900_ref40) 2019; 20 Muraro (2021090812140054900_ref53) 2016; 3 Chen (2021090812140054900_ref10) 2015; 348 Yuan (2021090812140054900_ref27) 2019 Kipf (2021090812140054900_ref19) 2017 Taubin (2021090812140054900_ref38) 1995 Nielsen (2021090812140054900_ref31) 2002; 11 Song (2021090812140054900_ref1) 2020 |
References_xml | – volume: 32 start-page: 381 issue: 4 year: 2014 ident: 2021090812140054900_ref7 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat Biotechnol doi: 10.1038/nbt.2859 – year: 2017 ident: 2021090812140054900_ref20 article-title: Graph attention networks publication-title: arXiv – year: 2016 ident: 2021090812140054900_ref37 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv – volume: 58 start-page: 433 issue: 3 year: 1971 ident: 2021090812140054900_ref30 article-title: Canonical analysis of several sets of variables publication-title: Biometrika doi: 10.1093/biomet/58.3.433 – volume: 172 start-page: 1091 issue: 5 year: 2018 ident: 2021090812140054900_ref50 article-title: Mapping the mouse cell atlas by Microwell-seq publication-title: Cell doi: 10.1016/j.cell.2018.02.001 – volume: 18 start-page: 35 issue: 1 year: 2018 ident: 2021090812140054900_ref4 article-title: Single-cell RNA sequencing to explore immune cell heterogeneity publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.76 – volume: 7 start-page: 208 issue: 4 year: 2019 ident: 2021090812140054900_ref49 article-title: Opportunities for artificial intelligence in advancing precision medicine publication-title: Curr Genet Med Rep doi: 10.1007/s40142-019-00177-4 – volume: 38 start-page: 747 issue: 6 year: 2020 ident: 2021090812140054900_ref35 article-title: Benchmarking single-cell RNA-sequencing protocols for cell atlas projects publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0469-4 – volume: 352 start-page: 189 issue: 6282 year: 2016 ident: 2021090812140054900_ref52 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aad0501 – volume: 363 start-page: 1463 issue: 6434 year: 2019 ident: 2021090812140054900_ref16 article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 434 year: 2019 ident: 2021090812140054900_ref34 article-title: A method for stochastic optimization publication-title: arXiv 2014 – start-page: 351 volume-title: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques: Association for Computing Machinery year: 1995 ident: 2021090812140054900_ref38 – volume: 179 start-page: 1647 issue: 7 year: 2019 ident: 2021090812140054900_ref11 article-title: A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart publication-title: Cell doi: 10.1016/j.cell.2019.11.025 – volume: 3 start-page: 385 issue: 4 year: 2016 ident: 2021090812140054900_ref53 article-title: A single-cell transcriptome atlas of the human pancreas publication-title: Cell Syst doi: 10.1016/j.cels.2016.09.002 – volume: 364 start-page: 89 issue: 6435 year: 2019 ident: 2021090812140054900_ref14 article-title: Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis publication-title: Science doi: 10.1126/science.aav9776 – volume: 24 start-page: 608 issue: 4 year: 2016 ident: 2021090812140054900_ref56 article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.018 – volume-title: ICLR year: 2017 ident: 2021090812140054900_ref19 article-title: Semi-supervised classification with graph convolutional networks – year: 2020 ident: 2021090812140054900_ref26 article-title: Accurately clustering single-cell RNA-seq data by capturing structural relations between cells through graph convolutional network publication-title: bioRxiv doi: 10.1101/278804 – volume: 11 start-page: 293 issue: 3 year: 2002 ident: 2021090812140054900_ref31 article-title: Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data publication-title: IEEE Trans Image Process doi: 10.1109/83.988962 – volume: 214 start-page: 1137 issue: 5 year: 2020 ident: 2021090812140054900_ref47 article-title: Interpretable artificial intelligence: why and when publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.19.22145 – year: 2020 ident: 2021090812140054900_ref1 article-title: scLM: automatic detection of consensus gene clusters across multiple single-cell datasets publication-title: bioRxiv doi: 10.1101/055822 – volume: 174 start-page: 1015 issue: 4 year: 2018 ident: 2021090812140054900_ref43 article-title: Molecular diversity and specializations among the cells of the adult mouse brain publication-title: Cell doi: 10.1016/j.cell.2018.07.028 – volume: 3 issue: 6 year: 2017 ident: 2021090812140054900_ref44 article-title: Spatially resolved transcriptome profiling in model plant species publication-title: Nature Plants doi: 10.1038/nplants.2017.61 – volume: 9 start-page: 1 issue: 1 year: 2018 ident: 2021090812140054900_ref45 article-title: Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity publication-title: Nat Commun doi: 10.1038/s41467-018-04724-5 – year: 2020 ident: 2021090812140054900_ref29 article-title: scGCN: a graph convolutional networks algorithm for knowledge transfer in single cell omics publication-title: bioRxiv doi: 10.1101/295535 – volume: 10 start-page: 515 issue: 3 year: 2009 ident: 2021090812140054900_ref33 article-title: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis publication-title: Biostatistics doi: 10.1093/biostatistics/kxp008 – volume: 16 start-page: 247 issue: 3 year: 2019 ident: 2021090812140054900_ref48 article-title: Preparing next-generation scientists for biomedical big data: artificial intelligence approaches publication-title: Per Med doi: 10.2217/pme-2018-0145 – year: 2020 ident: 2021090812140054900_ref12 article-title: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex publication-title: bioRxiv doi: 10.1101/969931 – volume: 353 start-page: 78 issue: 6294 year: 2016 ident: 2021090812140054900_ref8 article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics publication-title: Science doi: 10.1126/science.aaf2403 – year: 2020 ident: 2021090812140054900_ref18 article-title: SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes publication-title: bioRxiv doi: 10.1101/131334 – volume: 36 start-page: 421 issue: 5 year: 2018 ident: 2021090812140054900_ref23 article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors publication-title: Nat Biotechnol doi: 10.1038/nbt.4091 – volume: 45 start-page: e179 issue: 22 year: 2017 ident: 2021090812140054900_ref42 article-title: Linnorm: improved statistical analysis for single cell RNA-seq expression data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx828 – volume: 38 start-page: 333 issue: 3 year: 2020 ident: 2021090812140054900_ref13 article-title: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0392-8 – volume: 17 start-page: 75 issue: 1 year: 2016 ident: 2021090812140054900_ref41 article-title: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts publication-title: Genome Biol doi: 10.1186/s13059-016-0947-7 – volume: 157 start-page: 714 issue: 3 year: 2014 ident: 2021090812140054900_ref6 article-title: Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development publication-title: Cell doi: 10.1016/j.cell.2014.04.005 – volume: 36 start-page: 2538 issue: 8 year: 2020 ident: 2021090812140054900_ref28 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume-title: IJCAI year: 2020 ident: 2021090812140054900_ref24 article-title: Communicative representation learning on attributed molecular graphs doi: 10.24963/ijcai.2020/392 – volume: 14 issue: 8 year: 2018 ident: 2021090812140054900_ref55 article-title: scPipe: a flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006361 – year: 2020 ident: 2021090812140054900_ref15 article-title: Sensitive spatial genome wide expression profiling at cellular resolution publication-title: bioRxiv doi: 10.1101/989806 – year: 2020 ident: 2021090812140054900_ref25 article-title: Identifying drug–target interactions based on graph convolutional network and deep neural network publication-title: Brief Bioinform – volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2021090812140054900_ref21 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – volume-title: Advances in Neural Information Processing Systems year: 2017 ident: 2021090812140054900_ref36 article-title: Inductive representation learning on large graphs – year: 2018 ident: 2021090812140054900_ref39 article-title: Deeper insights into graph convolutional networks for semi-supervised publication-title: Learning – volume: 8 issue: 1 year: 2017 ident: 2021090812140054900_ref2 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat Commun doi: 10.1038/ncomms14049 – volume: 78 start-page: 5970 issue: 20 year: 2018 ident: 2021090812140054900_ref46 article-title: Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-18-0747 – volume: 562 start-page: 367 issue: 7727 year: 2018 ident: 2021090812140054900_ref3 article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 8 start-page: 3072 issue: 6 year: 2019 ident: 2021090812140054900_ref5 article-title: Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq publication-title: Cancer Med doi: 10.1002/cam4.2113 – volume: 348 issue: 6233 year: 2015 ident: 2021090812140054900_ref10 article-title: Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science doi: 10.1126/science.aaa6090 – volume: 16 start-page: 2639 issue: 12 year: 2004 ident: 2021090812140054900_ref32 article-title: Canonical correlation analysis: an overview with application to learning methods publication-title: Neural Comput doi: 10.1162/0899766042321814 – volume: 20 start-page: 296 issue: 1 year: 2019 ident: 2021090812140054900_ref40 article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression publication-title: Genome Biol doi: 10.1186/s13059-019-1874-1 – volume: 343 start-page: 1360 issue: 6177 year: 2014 ident: 2021090812140054900_ref9 article-title: Highly multiplexed subcellular RNA sequencing in situ publication-title: Science doi: 10.1126/science.1250212 – year: 2019 ident: 2021090812140054900_ref27 article-title: GCNG: graph convolutional networks for inferring cell-cell interactions publication-title: bioRxiv doi: 10.1101/887133 – volume: 22 start-page: 2087 issue: 12 year: 2019 ident: 2021090812140054900_ref51 article-title: A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation publication-title: Nat Neurosci doi: 10.1038/s41593-019-0539-4 – year: 2018 ident: 2021090812140054900_ref17 article-title: Transcriptional output, cell types densities and normalization in spatial transcriptomics publication-title: bioRxiv – year: 2020 ident: 2021090812140054900_ref22 article-title: DeePaN: a deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers benefiting from immunotherapy publication-title: medRxiv – volume: 573 start-page: 61 issue: 7772 year: 2019 ident: 2021090812140054900_ref54 article-title: Conserved cell types with divergent features in human versus mouse cortex publication-title: Nature doi: 10.1038/s41586-019-1506-7 |
SSID | ssj0020781 |
Score | 2.614156 |
Snippet | Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Method Review |
Title | DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33480403 https://www.proquest.com/docview/2480265324 https://pubmed.ncbi.nlm.nih.gov/PMC8425268 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Ivgifrt-UeGePHrXNmk-fBO985DzDtku7INQmjTlCtJVryvoX-9Mmnbbu304fQklm06X_EJmJpn5DSG7MWU6FlqEtlIqZKkuQsWYCSupNbdalpxiNvLnU368YJ-W6XJTR89ll7R63_zZmlfyP6hCH-CKWbL_gOwgFDrgGfCFFhCG9loYf5hnH9GlL9Gr_eU-hacDGCTtYshBDblNATOPL_YwGHSoy-OIqkPUYSXyHNWeSKIeMXRO7nvBo65chc-62dP1yvOttqNY-bkP7v0CC-7HaNHN126l9CrSnzAkeLwQJqNDx5gJAX5mR_a8b7f0-Z1081J_V31lg-7Iq3StsdVFwWK20UT97fvpWX60ODnJs8NldpPcSsADwOIU2dly8KWRo8gljvm_4VMvQfwBCD_woqfGxhUP4nIg7MiyyO6Ru94lCN51-N4nN2zzgNzuioT-fki-IspvgwnGgcc4uIRxgBgHHuNghHGwwTgYY_yILI4Os_fHoa-JERrGRBvqSmkeCWFKsB2tEDyytFDSyBT8eiqZMZEqbaSqmKUF11WlE8sjLVVccpUWij4mO82qsU9JYMHzpopZnaJZaYwsNDVgwiW8EpLKdEbe9JOXG08Yj3VLvuVd4ALNYaZzP9MzsjsM_t7xpGwf9rpHIYd9DC-nisau1hd5wmSU8BTs-xl50qEyCMJscVA2dEbEBK9hAHKkT39p6nPHlY63zAmXz67x3efkToK5Le587QXZaX-u7UuwOFv9yq29v9RsiXI |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DSTG%3A+deconvoluting+spatial+transcriptomics+data+through+graph-based+artificial+intelligence&rft.jtitle=Briefings+in+bioinformatics&rft.au=Song%2C+Qianqian&rft.au=Su%2C+Jing&rft.date=2021-01-22&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbaa414&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |