DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence

Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, sin...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 5
Main Authors Song, Qianqian, Su, Jing
Format Journal Article
LanguageEnglish
Published England Oxford University Press 22.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues.
AbstractList Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues.
Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues.Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software (https://github.com/Su-informatics-lab/DSTG) for precise interrogation of spatial organizations and functions in tissues.
Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of cells within each spot, which is particularly important to understand tissue cytoarchitectures and functions. However, for such ST data, since a spot is usually larger than an individual cell, gene expressions measured at each spot are from a mixture of cells with heterogenous cell types. Therefore, ST data at each spot needs to be disentangled so as to reveal the cell compositions at that spatial spot. In this study, we propose a novel method, named deconvoluting spatial transcriptomics data through graph-based convolutional networks (DSTG), to accurately deconvolute the observed gene expressions at each spot and recover its cell constitutions, thus achieving high-level segmentation and revealing spatial architecture of cellular heterogeneity within tissues. DSTG not only demonstrates superior performance on synthetic spatial data generated from different protocols, but also effectively identifies spatial compositions of cells in mouse cortex layer, hippocampus slice and pancreatic tumor tissues. In conclusion, DSTG accurately uncovers the cell states and subpopulations based on spatial localization. DSTG is available as a ready-to-use open source software ( https://github.com/Su-informatics-lab/DSTG ) for precise interrogation of spatial organizations and functions in tissues.
Author Su, Jing
Song, Qianqian
Author_xml – sequence: 1
  givenname: Qianqian
  orcidid: 0000-0002-4455-5302
  surname: Song
  fullname: Song, Qianqian
  organization: Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston Salem, NC 27157, USA, Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
– sequence: 2
  givenname: Jing
  surname: Su
  fullname: Su, Jing
  organization: Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33480403$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLxDAUhYMovlfupUtBqkmbJq0LQXyD4ELdCeEmTTuRTlKTVPDfm8FRVFwlkO-ee3LOFlq1zmqE9gg-Irgpj6WRx1ICUEJX0CahnOcUV3R1cWc8rygrN9BWCC8YF5jXZB1tlCWtMcXlJnq-eHi8PslarZx9c8MUje2zMEI0MGTRgw3KmzG6uVEhayFCFmfeTf0s6z2Ms1xC0G0GPprOqMWMsVEPg-m1VXoHrXUwBL27PLfR09Xl4_lNfnd_fXt-dpcrSnnMZddIhjlXLWaV5pxhXUJTq7qiyXtNlcJNq3HTEVoBk10nC82wrBvSsqaCptxGp5-64yTnulXaJueDGL2Zg38XDoz4_WLNTPTuTdS0qApWJ4GDpYB3r5MOUcxNUOkfYLWbgihSXAWryoImdP_nru8lX5Em4PATUN6F4HX3jRAsFoWJVJhYFpZo8odWJqb03cKoGf6d-QAAHZzz
CitedBy_id crossref_primary_10_1186_s13073_024_01283_x
crossref_primary_10_1016_j_ymeth_2024_11_002
crossref_primary_10_1093_bib_bbae082
crossref_primary_10_3389_fonc_2022_899825
crossref_primary_10_7554_eLife_88431
crossref_primary_10_1038_s42003_022_03175_5
crossref_primary_10_1089_cbr_2023_0116
crossref_primary_10_2217_fon_2023_0658
crossref_primary_10_1038_s41587_022_01273_7
crossref_primary_10_1093_bib_bbae198
crossref_primary_10_1089_cmb_2024_0532
crossref_primary_10_3389_fbinf_2023_1159381
crossref_primary_10_1038_s41467_023_43600_9
crossref_primary_10_1016_j_trac_2024_117818
crossref_primary_10_1038_s41467_023_43220_3
crossref_primary_10_1093_bib_bbac297
crossref_primary_10_52601_bpr_2024_240006
crossref_primary_10_1016_j_csbj_2022_12_001
crossref_primary_10_1016_j_csbj_2023_01_016
crossref_primary_10_1093_bfgp_elad011
crossref_primary_10_1093_bib_bbad262
crossref_primary_10_1038_s41467_023_36560_7
crossref_primary_10_1002_ctm2_696
crossref_primary_10_3389_fgene_2021_763561
crossref_primary_10_1021_acsnano_4c11505
crossref_primary_10_1186_s12943_024_02040_9
crossref_primary_10_1038_s41586_021_03634_9
crossref_primary_10_1016_j_tins_2021_11_001
crossref_primary_10_1038_s41592_023_02166_6
crossref_primary_10_1097_TP_0000000000004466
crossref_primary_10_3389_fmed_2022_850343
crossref_primary_10_1093_bib_bbac245
crossref_primary_10_1007_s12016_024_09001_6
crossref_primary_10_1016_j_neuron_2022_09_030
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_3390_biom13050767
crossref_primary_10_3390_biom15010021
crossref_primary_10_1093_nargab_lqac073
crossref_primary_10_3389_fgene_2022_1006357
crossref_primary_10_1016_j_csbj_2022_05_056
crossref_primary_10_1093_bib_bbaf109
crossref_primary_10_1038_s42003_024_07165_7
crossref_primary_10_1038_s41587_022_01272_8
crossref_primary_10_2174_1574893618666230529145130
crossref_primary_10_1186_s12967_023_04150_2
crossref_primary_10_1186_s43556_023_00144_0
crossref_primary_10_1093_bib_bbad048
crossref_primary_10_3390_cells12162042
crossref_primary_10_1093_bib_bbae130
crossref_primary_10_1186_s13000_025_01608_3
crossref_primary_10_1038_s41467_024_49445_0
crossref_primary_10_59717_j_xinn_life_2024_100105
crossref_primary_10_3389_fonc_2021_738841
crossref_primary_10_1042_BSR20221680
crossref_primary_10_1016_j_yamp_2023_01_002
crossref_primary_10_1007_s11427_024_2770_x
crossref_primary_10_3390_biom14040436
crossref_primary_10_1002_smtd_202100722
crossref_primary_10_1093_bib_bbae719
crossref_primary_10_1016_j_kint_2022_01_033
crossref_primary_10_7554_eLife_88431_3
crossref_primary_10_1093_cei_uxae077
crossref_primary_10_1093_bib_bbad469
crossref_primary_10_1093_bib_bbac412
crossref_primary_10_1093_bib_bbae316
crossref_primary_10_1093_gpbjnl_qzae057
crossref_primary_10_1186_s13059_023_02879_z
crossref_primary_10_1507_endocrj_EJ23_0457
crossref_primary_10_1002_smtd_202401163
crossref_primary_10_1186_s13073_023_01168_5
crossref_primary_10_1093_bib_bbae670
crossref_primary_10_3389_fsurg_2021_742443
crossref_primary_10_1016_j_ccell_2023_01_010
crossref_primary_10_1016_j_jaci_2024_11_001
crossref_primary_10_3389_fgene_2021_785290
crossref_primary_10_1038_s41467_023_36961_8
crossref_primary_10_1186_s13059_022_02653_7
crossref_primary_10_1093_nar_gkac084
crossref_primary_10_1186_s13059_024_03416_2
crossref_primary_10_1016_j_crmeth_2024_100905
crossref_primary_10_1038_s42003_023_04761_x
crossref_primary_10_3389_fonc_2023_1172314
crossref_primary_10_1007_s40472_024_00450_8
crossref_primary_10_1038_s41392_022_00960_w
crossref_primary_10_1016_j_cell_2023_11_003
crossref_primary_10_1016_j_cels_2022_09_002
crossref_primary_10_3389_fmolb_2021_729789
crossref_primary_10_3389_fonc_2021_775418
crossref_primary_10_1038_s41467_021_24172_y
crossref_primary_10_1016_j_jgg_2024_11_009
crossref_primary_10_1214_24_AOAS1953
crossref_primary_10_1093_bib_bbae500
crossref_primary_10_1186_s12859_024_06003_1
crossref_primary_10_1093_bib_bbac563
crossref_primary_10_1080_21655979_2022_2063648
crossref_primary_10_1038_s41467_023_37168_7
crossref_primary_10_1093_bib_bbae063
crossref_primary_10_1063_5_0091135
crossref_primary_10_1186_s13073_024_01350_3
crossref_primary_10_1097_MNH_0000000000000781
crossref_primary_10_1038_s41587_021_01182_1
crossref_primary_10_1186_s13073_025_01442_8
crossref_primary_10_1186_s13059_024_03353_0
crossref_primary_10_1007_s44272_024_00018_8
crossref_primary_10_1042_ETLS20210131
crossref_primary_10_1055_a_2299_7880
crossref_primary_10_1093_bioinformatics_btac805
crossref_primary_10_1093_bfgp_elae002
crossref_primary_10_1101_gr_275224_121
crossref_primary_10_2174_1574893618666221130094050
crossref_primary_10_1002_smtd_202401107
crossref_primary_10_1016_j_cmpb_2024_108431
crossref_primary_10_1016_j_drudis_2024_103889
crossref_primary_10_1038_s41592_022_01480_9
crossref_primary_10_1093_bioadv_vbae081
crossref_primary_10_1016_j_tcb_2022_04_008
crossref_primary_10_1038_s41467_023_43629_w
crossref_primary_10_1016_j_compbiomed_2023_107274
Cites_doi 10.1038/nbt.2859
10.1093/biomet/58.3.433
10.1016/j.cell.2018.02.001
10.1038/nri.2017.76
10.1007/s40142-019-00177-4
10.1038/s41587-020-0469-4
10.1126/science.aad0501
10.1126/science.aaw1219
10.1016/j.cell.2019.11.025
10.1016/j.cels.2016.09.002
10.1126/science.aav9776
10.1016/j.cmet.2016.08.018
10.1101/278804
10.1109/83.988962
10.2214/AJR.19.22145
10.1101/055822
10.1016/j.cell.2018.07.028
10.1038/nplants.2017.61
10.1038/s41467-018-04724-5
10.1101/295535
10.1093/biostatistics/kxp008
10.2217/pme-2018-0145
10.1101/969931
10.1126/science.aaf2403
10.1101/131334
10.1038/nbt.4091
10.1093/nar/gkx828
10.1038/s41587-019-0392-8
10.1186/s13059-016-0947-7
10.1016/j.cell.2014.04.005
10.1093/bioinformatics/btz965
10.24963/ijcai.2020/392
10.1371/journal.pcbi.1006361
10.1101/989806
10.1038/ncomms14049
10.1158/0008-5472.CAN-18-0747
10.1038/s41586-018-0590-4
10.1002/cam4.2113
10.1126/science.aaa6090
10.1162/0899766042321814
10.1186/s13059-019-1874-1
10.1126/science.1250212
10.1101/887133
10.1038/s41593-019-0539-4
10.1038/s41586-019-1506-7
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press.
The Author(s) 2021. Published by Oxford University Press. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press.
– notice: The Author(s) 2021. Published by Oxford University Press. 2021
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bib/bbaa414
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC8425268
33480403
10_1093_bib_bbaa414
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ADRIX
AFXEN
BCRHZ
GROUPED_DOAJ
M49
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c447t-bf9b6077cd065e7760e3a98c85446384cc09de09f145a6bffb2e60b891d695a93
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:42:55 EDT 2025
Thu Jul 10 22:26:02 EDT 2025
Wed Feb 19 02:29:24 EST 2025
Tue Jul 01 03:39:32 EDT 2025
Thu Apr 24 23:13:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deconvolution
single-cell RNA-seq
graph-based artificial intelligence
spatial transcriptomics
Language English
License http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-bf9b6077cd065e7760e3a98c85446384cc09de09f145a6bffb2e60b891d695a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4455-5302
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8425268
PMID 33480403
PQID 2480265324
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8425268
proquest_miscellaneous_2480265324
pubmed_primary_33480403
crossref_primary_10_1093_bib_bbaa414
crossref_citationtrail_10_1093_bib_bbaa414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210122
PublicationDateYYYYMMDD 2021-01-22
PublicationDate_xml – month: 1
  year: 2021
  text: 20210122
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Maniatis (2021090812140054900_ref14) 2019; 364
Tirosh (2021090812140054900_ref52) 2016; 352
Zhao (2021090812140054900_ref25) 2020
Moncada (2021090812140054900_ref13) 2020; 38
Kingma (2021090812140054900_ref34) 2019; 434
Kipf (2021090812140054900_ref37) 2016
Kettenring (2021090812140054900_ref30) 1971; 58
Lun (2021090812140054900_ref41) 2016; 17
Bendall (2021090812140054900_ref6) 2014; 157
Witten (2021090812140054900_ref33) 2009; 10
Papalexi (2021090812140054900_ref4) 2018; 18
Stickels (2021090812140054900_ref15) 2020
Hamilton (2021090812140054900_ref36) 2017
Li (2021090812140054900_ref28) 2020; 36
Song (2021090812140054900_ref29) 2020
Zheng (2021090812140054900_ref2) 2017; 8
Yip (2021090812140054900_ref42) 2017; 45
Saiselet (2021090812140054900_ref17) 2018
Elosua (2021090812140054900_ref18) 2020
Berglund (2021090812140054900_ref45) 2018; 9
Trapnell (2021090812140054900_ref7) 2014; 32
Hardoon (2021090812140054900_ref32) 2004; 16
Xin (2021090812140054900_ref56) 2016; 24
Mereu (2021090812140054900_ref35) 2020; 38
Moore (2021090812140054900_ref48) 2019; 16
Li (2021090812140054900_ref39) 2018
Tian (2021090812140054900_ref55) 2018; 14
Song (2021090812140054900_ref5) 2019; 8
Ghosh (2021090812140054900_ref47) 2020; 214
Giacomello (2021090812140054900_ref44) 2017; 3
Han (2021090812140054900_ref50) 2018; 172
Ståhl (2021090812140054900_ref8) 2016; 353
Haghverdi (2021090812140054900_ref23) 2018; 36
Zeng (2021090812140054900_ref26) 2020
Rodriques (2021090812140054900_ref16) 2019; 363
Asp (2021090812140054900_ref11) 2019; 179
Thrane (2021090812140054900_ref46) 2018; 78
Veličković (2021090812140054900_ref20) 2017
Filipp (2021090812140054900_ref49) 2019; 7
Lee (2021090812140054900_ref9) 2014; 343
Defferrard (2021090812140054900_ref21) 2016
Schaum (2021090812140054900_ref3) 2018; 562
Maynard (2021090812140054900_ref12) 2020
Grubman (2021090812140054900_ref51) 2019; 22
Fang (2021090812140054900_ref22) 2020
Song (2021090812140054900_ref24) 2020
Saunders (2021090812140054900_ref43) 2018; 174
Hodge (2021090812140054900_ref54) 2019; 573
Hafemeister (2021090812140054900_ref40) 2019; 20
Muraro (2021090812140054900_ref53) 2016; 3
Chen (2021090812140054900_ref10) 2015; 348
Yuan (2021090812140054900_ref27) 2019
Kipf (2021090812140054900_ref19) 2017
Taubin (2021090812140054900_ref38) 1995
Nielsen (2021090812140054900_ref31) 2002; 11
Song (2021090812140054900_ref1) 2020
References_xml – volume: 32
  start-page: 381
  issue: 4
  year: 2014
  ident: 2021090812140054900_ref7
  article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2859
– year: 2017
  ident: 2021090812140054900_ref20
  article-title: Graph attention networks
  publication-title: arXiv
– year: 2016
  ident: 2021090812140054900_ref37
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv
– volume: 58
  start-page: 433
  issue: 3
  year: 1971
  ident: 2021090812140054900_ref30
  article-title: Canonical analysis of several sets of variables
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.433
– volume: 172
  start-page: 1091
  issue: 5
  year: 2018
  ident: 2021090812140054900_ref50
  article-title: Mapping the mouse cell atlas by Microwell-seq
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.001
– volume: 18
  start-page: 35
  issue: 1
  year: 2018
  ident: 2021090812140054900_ref4
  article-title: Single-cell RNA sequencing to explore immune cell heterogeneity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.76
– volume: 7
  start-page: 208
  issue: 4
  year: 2019
  ident: 2021090812140054900_ref49
  article-title: Opportunities for artificial intelligence in advancing precision medicine
  publication-title: Curr Genet Med Rep
  doi: 10.1007/s40142-019-00177-4
– volume: 38
  start-page: 747
  issue: 6
  year: 2020
  ident: 2021090812140054900_ref35
  article-title: Benchmarking single-cell RNA-sequencing protocols for cell atlas projects
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0469-4
– volume: 352
  start-page: 189
  issue: 6282
  year: 2016
  ident: 2021090812140054900_ref52
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aad0501
– volume: 363
  start-page: 1463
  issue: 6434
  year: 2019
  ident: 2021090812140054900_ref16
  article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 434
  year: 2019
  ident: 2021090812140054900_ref34
  article-title: A method for stochastic optimization
  publication-title: arXiv 2014
– start-page: 351
  volume-title: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques: Association for Computing Machinery
  year: 1995
  ident: 2021090812140054900_ref38
– volume: 179
  start-page: 1647
  issue: 7
  year: 2019
  ident: 2021090812140054900_ref11
  article-title: A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.025
– volume: 3
  start-page: 385
  issue: 4
  year: 2016
  ident: 2021090812140054900_ref53
  article-title: A single-cell transcriptome atlas of the human pancreas
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.09.002
– volume: 364
  start-page: 89
  issue: 6435
  year: 2019
  ident: 2021090812140054900_ref14
  article-title: Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis
  publication-title: Science
  doi: 10.1126/science.aav9776
– volume: 24
  start-page: 608
  issue: 4
  year: 2016
  ident: 2021090812140054900_ref56
  article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.018
– volume-title: ICLR
  year: 2017
  ident: 2021090812140054900_ref19
  article-title: Semi-supervised classification with graph convolutional networks
– year: 2020
  ident: 2021090812140054900_ref26
  article-title: Accurately clustering single-cell RNA-seq data by capturing structural relations between cells through graph convolutional network
  publication-title: bioRxiv
  doi: 10.1101/278804
– volume: 11
  start-page: 293
  issue: 3
  year: 2002
  ident: 2021090812140054900_ref31
  article-title: Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.988962
– volume: 214
  start-page: 1137
  issue: 5
  year: 2020
  ident: 2021090812140054900_ref47
  article-title: Interpretable artificial intelligence: why and when
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.19.22145
– year: 2020
  ident: 2021090812140054900_ref1
  article-title: scLM: automatic detection of consensus gene clusters across multiple single-cell datasets
  publication-title: bioRxiv
  doi: 10.1101/055822
– volume: 174
  start-page: 1015
  issue: 4
  year: 2018
  ident: 2021090812140054900_ref43
  article-title: Molecular diversity and specializations among the cells of the adult mouse brain
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.028
– volume: 3
  issue: 6
  year: 2017
  ident: 2021090812140054900_ref44
  article-title: Spatially resolved transcriptome profiling in model plant species
  publication-title: Nature Plants
  doi: 10.1038/nplants.2017.61
– volume: 9
  start-page: 1
  issue: 1
  year: 2018
  ident: 2021090812140054900_ref45
  article-title: Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04724-5
– year: 2020
  ident: 2021090812140054900_ref29
  article-title: scGCN: a graph convolutional networks algorithm for knowledge transfer in single cell omics
  publication-title: bioRxiv
  doi: 10.1101/295535
– volume: 10
  start-page: 515
  issue: 3
  year: 2009
  ident: 2021090812140054900_ref33
  article-title: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp008
– volume: 16
  start-page: 247
  issue: 3
  year: 2019
  ident: 2021090812140054900_ref48
  article-title: Preparing next-generation scientists for biomedical big data: artificial intelligence approaches
  publication-title: Per Med
  doi: 10.2217/pme-2018-0145
– year: 2020
  ident: 2021090812140054900_ref12
  article-title: Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex
  publication-title: bioRxiv
  doi: 10.1101/969931
– volume: 353
  start-page: 78
  issue: 6294
  year: 2016
  ident: 2021090812140054900_ref8
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
– year: 2020
  ident: 2021090812140054900_ref18
  article-title: SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes
  publication-title: bioRxiv
  doi: 10.1101/131334
– volume: 36
  start-page: 421
  issue: 5
  year: 2018
  ident: 2021090812140054900_ref23
  article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4091
– volume: 45
  start-page: e179
  issue: 22
  year: 2017
  ident: 2021090812140054900_ref42
  article-title: Linnorm: improved statistical analysis for single cell RNA-seq expression data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx828
– volume: 38
  start-page: 333
  issue: 3
  year: 2020
  ident: 2021090812140054900_ref13
  article-title: Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0392-8
– volume: 17
  start-page: 75
  issue: 1
  year: 2016
  ident: 2021090812140054900_ref41
  article-title: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0947-7
– volume: 157
  start-page: 714
  issue: 3
  year: 2014
  ident: 2021090812140054900_ref6
  article-title: Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.005
– volume: 36
  start-page: 2538
  issue: 8
  year: 2020
  ident: 2021090812140054900_ref28
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume-title: IJCAI
  year: 2020
  ident: 2021090812140054900_ref24
  article-title: Communicative representation learning on attributed molecular graphs
  doi: 10.24963/ijcai.2020/392
– volume: 14
  issue: 8
  year: 2018
  ident: 2021090812140054900_ref55
  article-title: scPipe: a flexible R/Bioconductor preprocessing pipeline for single-cell RNA-sequencing data
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006361
– year: 2020
  ident: 2021090812140054900_ref15
  article-title: Sensitive spatial genome wide expression profiling at cellular resolution
  publication-title: bioRxiv
  doi: 10.1101/989806
– year: 2020
  ident: 2021090812140054900_ref25
  article-title: Identifying drug–target interactions based on graph convolutional network and deep neural network
  publication-title: Brief Bioinform
– volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2021090812140054900_ref21
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: 2021090812140054900_ref36
  article-title: Inductive representation learning on large graphs
– year: 2018
  ident: 2021090812140054900_ref39
  article-title: Deeper insights into graph convolutional networks for semi-supervised
  publication-title: Learning
– volume: 8
  issue: 1
  year: 2017
  ident: 2021090812140054900_ref2
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms14049
– volume: 78
  start-page: 5970
  issue: 20
  year: 2018
  ident: 2021090812140054900_ref46
  article-title: Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage III cutaneous malignant melanoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-18-0747
– volume: 562
  start-page: 367
  issue: 7727
  year: 2018
  ident: 2021090812140054900_ref3
  article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 8
  start-page: 3072
  issue: 6
  year: 2019
  ident: 2021090812140054900_ref5
  article-title: Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq
  publication-title: Cancer Med
  doi: 10.1002/cam4.2113
– volume: 348
  issue: 6233
  year: 2015
  ident: 2021090812140054900_ref10
  article-title: Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– volume: 16
  start-page: 2639
  issue: 12
  year: 2004
  ident: 2021090812140054900_ref32
  article-title: Canonical correlation analysis: an overview with application to learning methods
  publication-title: Neural Comput
  doi: 10.1162/0899766042321814
– volume: 20
  start-page: 296
  issue: 1
  year: 2019
  ident: 2021090812140054900_ref40
  article-title: Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
  publication-title: Genome Biol
  doi: 10.1186/s13059-019-1874-1
– volume: 343
  start-page: 1360
  issue: 6177
  year: 2014
  ident: 2021090812140054900_ref9
  article-title: Highly multiplexed subcellular RNA sequencing in situ
  publication-title: Science
  doi: 10.1126/science.1250212
– year: 2019
  ident: 2021090812140054900_ref27
  article-title: GCNG: graph convolutional networks for inferring cell-cell interactions
  publication-title: bioRxiv
  doi: 10.1101/887133
– volume: 22
  start-page: 2087
  issue: 12
  year: 2019
  ident: 2021090812140054900_ref51
  article-title: A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-019-0539-4
– year: 2018
  ident: 2021090812140054900_ref17
  article-title: Transcriptional output, cell types densities and normalization in spatial transcriptomics
  publication-title: bioRxiv
– year: 2020
  ident: 2021090812140054900_ref22
  article-title: DeePaN: a deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers benefiting from immunotherapy
  publication-title: medRxiv
– volume: 573
  start-page: 61
  issue: 7772
  year: 2019
  ident: 2021090812140054900_ref54
  article-title: Conserved cell types with divergent features in human versus mouse cortex
  publication-title: Nature
  doi: 10.1038/s41586-019-1506-7
SSID ssj0020781
Score 2.614156
Snippet Recent development of spatial transcriptomics (ST) is capable of associating spatial information at different spots in the tissue section with RNA abundance of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Method Review
Title DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence
URI https://www.ncbi.nlm.nih.gov/pubmed/33480403
https://www.proquest.com/docview/2480265324
https://pubmed.ncbi.nlm.nih.gov/PMC8425268
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA96Ivgifrt-UeGePHrXNmk-fBO985DzDtku7INQmjTlCtJVryvoX-9Mmnbbu304fQklm06X_EJmJpn5DSG7MWU6FlqEtlIqZKkuQsWYCSupNbdalpxiNvLnU368YJ-W6XJTR89ll7R63_zZmlfyP6hCH-CKWbL_gOwgFDrgGfCFFhCG9loYf5hnH9GlL9Gr_eU-hacDGCTtYshBDblNATOPL_YwGHSoy-OIqkPUYSXyHNWeSKIeMXRO7nvBo65chc-62dP1yvOttqNY-bkP7v0CC-7HaNHN126l9CrSnzAkeLwQJqNDx5gJAX5mR_a8b7f0-Z1081J_V31lg-7Iq3StsdVFwWK20UT97fvpWX60ODnJs8NldpPcSsADwOIU2dly8KWRo8gljvm_4VMvQfwBCD_woqfGxhUP4nIg7MiyyO6Ru94lCN51-N4nN2zzgNzuioT-fki-IspvgwnGgcc4uIRxgBgHHuNghHGwwTgYY_yILI4Os_fHoa-JERrGRBvqSmkeCWFKsB2tEDyytFDSyBT8eiqZMZEqbaSqmKUF11WlE8sjLVVccpUWij4mO82qsU9JYMHzpopZnaJZaYwsNDVgwiW8EpLKdEbe9JOXG08Yj3VLvuVd4ALNYaZzP9MzsjsM_t7xpGwf9rpHIYd9DC-nisau1hd5wmSU8BTs-xl50qEyCMJscVA2dEbEBK9hAHKkT39p6nPHlY63zAmXz67x3efkToK5Le587QXZaX-u7UuwOFv9yq29v9RsiXI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DSTG%3A+deconvoluting+spatial+transcriptomics+data+through+graph-based+artificial+intelligence&rft.jtitle=Briefings+in+bioinformatics&rft.au=Song%2C+Qianqian&rft.au=Su%2C+Jing&rft.date=2021-01-22&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1093%2Fbib%2Fbbaa414&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon