Spherical autoregressive models, with application to distributional and compositional time series
We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are situated may be finite-dimensional or infinite-dimensional, where in the latter case we consider the Hilbert sphere. Spherical time series arise...
Saved in:
Published in | Journal of econometrics Vol. 239; no. 2; p. 105389 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4076 1872-6895 |
DOI | 10.1016/j.jeconom.2022.12.008 |
Cover
Abstract | We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are situated may be finite-dimensional or infinite-dimensional, where in the latter case we consider the Hilbert sphere. Spherical time series arise in various settings. We focus here on distributional and compositional time series. Applying a square root transformation to the densities of the observations of a distributional time series maps the distributional observations to the Hilbert sphere, equipped with the Fisher–Rao metric. Likewise, applying a square root transformation to the components of the observations of a compositional time series maps the compositional observations to a finite-dimensional sphere, equipped with the geodesic metric on spheres. The challenge in modeling such time series lies in the intrinsic non-linearity of spheres and Hilbert spheres, where conventional arithmetic operations such as addition or scalar multiplication are no longer available. To address this difficulty, we consider rotation operators to map observations on the sphere. Specifically, we introduce a class of skew-symmetric operators such that the associated exponential operators are rotation operators that for each given pair of points on the sphere map the first point of the pair to the second point of the pair. We exploit the fact that the space of skew-symmetric operators is Hilbertian to develop autoregressive modeling of geometric differences that correspond to rotations of spherical and distributional time series. Differences expressed in terms of rotations can be taken between the Fréchet mean and the observations or between consecutive observations of the time series. We derive theoretical properties of the ensuing autoregressive models and showcase these approaches with several motivating data. These include a time series of yearly observations of bivariate distributions of the minimum/maximum temperatures for a period of 120 days during each summer for the years 1990-2018 at Los Angeles (LAX) and John F. Kennedy (JFK) international airports. A second data application concerns a compositional time series with annual observations of compositions of energy sources for power generation in the U.S.. |
---|---|
AbstractList | We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are situated may be finite-dimensional or infinite-dimensional, where in the latter case we consider the Hilbert sphere. Spherical time series arise in various settings. We focus here on distributional and compositional time series. Applying a square root transformation to the densities of the observations of a distributional time series maps the distributional observations to the Hilbert sphere, equipped with the Fisher–Rao metric. Likewise, applying a square root transformation to the components of the observations of a compositional time series maps the compositional observations to a finite-dimensional sphere, equipped with the geodesic metric on spheres. The challenge in modeling such time series lies in the intrinsic non-linearity of spheres and Hilbert spheres, where conventional arithmetic operations such as addition or scalar multiplication are no longer available. To address this difficulty, we consider rotation operators to map observations on the sphere. Specifically, we introduce a class of skew-symmetric operators such that the associated exponential operators are rotation operators that for each given pair of points on the sphere map the first point of the pair to the second point of the pair. We exploit the fact that the space of skew-symmetric operators is Hilbertian to develop autoregressive modeling of geometric differences that correspond to rotations of spherical and distributional time series. Differences expressed in terms of rotations can be taken between the Fréchet mean and the observations or between consecutive observations of the time series. We derive theoretical properties of the ensuing autoregressive models and showcase these approaches with several motivating data. These include a time series of yearly observations of bivariate distributions of the minimum/maximum temperatures for a period of 120 days during each summer for the years 1990-2018 at Los Angeles (LAX) and John F. Kennedy (JFK) international airports. A second data application concerns a compositional time series with annual observations of compositions of energy sources for power generation in the U.S.. |
ArticleNumber | 105389 |
Author | Zhu, Changbo Müller, Hans-Georg |
Author_xml | – sequence: 1 givenname: Changbo surname: Zhu fullname: Zhu, Changbo organization: Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA – sequence: 2 givenname: Hans-Georg surname: Müller fullname: Müller, Hans-Georg email: hgmueller@ucdavis.edu organization: Department of Statistics, University of California, Davis, Davis, CA 95616, USA |
BookMark | eNqFkE1Lw0AQhhepYFv9CUKOHkzcryQbPIgUv6DgQT0vm92J3ZJk4-624r83tT156WmY4X1emGeGJr3rAaFLgjOCSXGzztagXe-6jGJKM0IzjMUJmhJR0rQQVT5BU8wwTzkuizM0C2GNMc65YFOk3oYVeKtVm6hNdB4-PYRgt5B0zkAbrpNvG1eJGoZ2DEXr-iS6xNgQva03u31H9ibRrhtcsIdLtB0kYSyGcI5OG9UGuDjMOfp4fHhfPKfL16eXxf0y1ZyXMa3rChdFUQldGcGgEbWqGCOcYK6FampOeVNwU7OSa14WdEwRbnKdG1yqRuRsjq72vYN3XxsIUXY2aGhb1YPbBEkF45SUjFdj9HYf1d6F4KGR2sa_56JXtpUEy51YuZYHsXInVhIqR7Ejnf-jB2875X-Ocnd7btQKWwteBm2h12CsBx2lcfZIwy_WvJo7 |
CitedBy_id | crossref_primary_10_1142_S2196888824500234 crossref_primary_10_1214_24_AOS2368 crossref_primary_10_1214_24_EJS2218 crossref_primary_10_1093_biomet_asad069 crossref_primary_10_1002_hbm_26271 |
Cites_doi | 10.1093/biomet/90.3.655 10.1214/16-AOS1492 10.1371/journal.pone.0002928 10.2307/2370903 10.1214/aos/1176350041 10.1112/blms/bdw020 10.1214/21-EJS1942 10.1016/j.csda.2015.07.007 10.18637/jss.v027.i04 10.1214/aos/1024691089 10.1214/20-AOS1971 10.1002/mana.19911530125 10.1080/01621459.2017.1421542 10.1214/17-AOS1660 10.1080/01621459.2014.892881 10.1080/01621459.2020.1752219 10.1111/anzs.12073 10.1214/aos/1176347017 10.1111/jtsa.12590 10.1111/j.1467-9868.2010.00766.x 10.1214/15-AOS1363 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jeconom.2022.12.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1872-6895 |
ExternalDocumentID | 10_1016_j_jeconom_2022_12_008 S0304407623000209 |
GrantInformation_xml | – fundername: NSF grantid: DMS-2014626 funderid: http://dx.doi.org/10.13039/100003187 – fundername: NIH Echo grantid: UH3OD023313 |
GroupedDBID | --K --M --Z -DZ -~X .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29K 3R3 4.4 41~ 457 4G. 5GY 5VS 63O 6I. 6P2 7-5 71M 8P~ 9JN 9JO AABCJ AABNK AACTN AAEDT AAEDW AAFFL AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AAXUO AAYOK ABAOU ABEFU ABEHJ ABFNM ABFRF ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACHQT ACNCT ACRLP ACROA ADBBV ADEZE ADFHU ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AETEA AEYQN AFFNX AFKWA AFODL AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HMJ HVGLF HZ~ H~9 IHE IXIXF J1W K-O KOM LPU LY5 M26 M41 MHUIS MO0 MS~ MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SCU SDF SDG SDP SEB SEE SES SEW SME SPC SPCBC SSB SSF SSW SSZ T5K TAE TN5 U5U UHB UQL VH1 WUQ YK3 YQT YYP ZCG ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c447t-bb9066698c9d83ef8ba93314104c8afb424f64db374c47629d814d5c5d07af853 |
IEDL.DBID | AIKHN |
ISSN | 0304-4076 |
IngestDate | Fri Sep 05 03:38:43 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 Tue Jul 01 02:35:57 EDT 2025 Sat Mar 02 16:00:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Random objects Fisher–Rao metric Skew-symmetric operators Time series analysis Rotation |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-bb9066698c9d83ef8ba93314104c8afb424f64db374c47629d814d5c5d07af853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0304407623000209 |
PQID | 2834217349 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2834217349 crossref_citationtrail_10_1016_j_jeconom_2022_12_008 crossref_primary_10_1016_j_jeconom_2022_12_008 elsevier_sciencedirect_doi_10_1016_j_jeconom_2022_12_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of econometrics |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Petersen, Liu, Divani (b26) 2021; 49 Zhu, Müller (b35) 2021 Villani (b33) 2009 Hron, Menafoglio, Templ, Hruzova, Filzmoser (b19) 2016; 94 Kim (b20) 1998; 26 Dai, Müller (b11) 2018; 46 Pfaff (b28) 2008; 27 Rosenthal, Wu, Klassen, Srivastava (b29) 2014; 109 Shi, Li, Cai (b32) 2021; 116 Bauer, Bruveris, Michor (b2) 2016; 48 Petersen, Müller (b27) 2016; 44 Scealy, Welsh (b31) 2014; 56 Friedrich (b16) 1991; 153 Müller (b24) 2016; 44 Chang (b8) 1989; 17 Aitchison (b1) 1986 Bosq (b4) 2000 Marzio, Panzera, Taylor (b23) 2019; 114 Chang (b7) 1986; 14 Zhang, Kokoszka, Petersen (b34) 2022; 43 Fan, Yao (b14) 2017 Felicísimo, Muñoz, González-Solis (b15) 2008; 3 Scealy, Welsh (b30) 2011; 73 Mardia (b21) 2014 Martin (b22) 1932; 54 Gajardo, Carroll, Chen, Dai, Fan, Hadjipantelis, Han, Ji, Müller, Wang (b17) 2021 Burago, Burago, Ivanov (b6) 2001 Gallier, Xu (b18) 2003; 18 Fan, Yao (b13) 2003 Pegoraro, Beraha (b25) 2022; 23 Brockwell, Davis (b5) 1991 Dai (b10) 2022; 16 Chen, Lin, Müller (b9) 2021 Downs (b12) 2003; 90 Bhatia, Katz (b3) 2021; September 16 Hron (10.1016/j.jeconom.2022.12.008_b19) 2016; 94 Kim (10.1016/j.jeconom.2022.12.008_b20) 1998; 26 Scealy (10.1016/j.jeconom.2022.12.008_b30) 2011; 73 Zhu (10.1016/j.jeconom.2022.12.008_b35) 2021 Scealy (10.1016/j.jeconom.2022.12.008_b31) 2014; 56 Dai (10.1016/j.jeconom.2022.12.008_b10) 2022; 16 Shi (10.1016/j.jeconom.2022.12.008_b32) 2021; 116 Zhang (10.1016/j.jeconom.2022.12.008_b34) 2022; 43 Petersen (10.1016/j.jeconom.2022.12.008_b26) 2021; 49 Aitchison (10.1016/j.jeconom.2022.12.008_b1) 1986 Pfaff (10.1016/j.jeconom.2022.12.008_b28) 2008; 27 Gallier (10.1016/j.jeconom.2022.12.008_b18) 2003; 18 Petersen (10.1016/j.jeconom.2022.12.008_b27) 2016; 44 Downs (10.1016/j.jeconom.2022.12.008_b12) 2003; 90 Felicísimo (10.1016/j.jeconom.2022.12.008_b15) 2008; 3 Fan (10.1016/j.jeconom.2022.12.008_b14) 2017 Bosq (10.1016/j.jeconom.2022.12.008_b4) 2000 Chang (10.1016/j.jeconom.2022.12.008_b7) 1986; 14 Fan (10.1016/j.jeconom.2022.12.008_b13) 2003 Bauer (10.1016/j.jeconom.2022.12.008_b2) 2016; 48 Bhatia (10.1016/j.jeconom.2022.12.008_b3) 2021; September 16 Villani (10.1016/j.jeconom.2022.12.008_b33) 2009 Marzio (10.1016/j.jeconom.2022.12.008_b23) 2019; 114 Chang (10.1016/j.jeconom.2022.12.008_b8) 1989; 17 Friedrich (10.1016/j.jeconom.2022.12.008_b16) 1991; 153 Gajardo (10.1016/j.jeconom.2022.12.008_b17) 2021 Brockwell (10.1016/j.jeconom.2022.12.008_b5) 1991 Rosenthal (10.1016/j.jeconom.2022.12.008_b29) 2014; 109 Chen (10.1016/j.jeconom.2022.12.008_b9) 2021 Martin (10.1016/j.jeconom.2022.12.008_b22) 1932; 54 Dai (10.1016/j.jeconom.2022.12.008_b11) 2018; 46 Mardia (10.1016/j.jeconom.2022.12.008_b21) 2014 Müller (10.1016/j.jeconom.2022.12.008_b24) 2016; 44 Pegoraro (10.1016/j.jeconom.2022.12.008_b25) 2022; 23 Burago (10.1016/j.jeconom.2022.12.008_b6) 2001 |
References_xml | – volume: 54 start-page: 579 year: 1932 end-page: 631 ident: b22 article-title: On infinite orthogonal matrices publication-title: Amer. J. Math. – volume: 44 start-page: 1867 year: 2016 end-page: 1887 ident: b24 article-title: Peter hall, functional data analysis and random objects publication-title: Ann. Stat. – year: 1991 ident: b5 article-title: Time Series: Theory and Methods – volume: 27 year: 2008 ident: b28 article-title: VAR, SVAR and SVEC models: Implementation within R package vars publication-title: J. Stat. Softw. – volume: 44 start-page: 183 year: 2016 end-page: 218 ident: b27 article-title: Functional data analysis for density functions by transformation to a Hilbert space publication-title: Ann. Stat. – volume: 90 start-page: 655 year: 2003 end-page: 668 ident: b12 article-title: Spherical regression publication-title: Biometrika – year: 2003 ident: b13 article-title: Nonlinear Time Series: Nonparametric and Parametric Methods – volume: 18 start-page: 10 year: 2003 end-page: 20 ident: b18 article-title: Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices publication-title: Int. J. Robot. Autom. – volume: 48 start-page: 499 year: 2016 end-page: 506 ident: b2 article-title: Uniqueness of the Fisher–Rao metric on the space of smooth densities publication-title: Bull. Lond. Math. Soc. – volume: 3 year: 2008 ident: b15 article-title: Ocean surface winds drive dynamics of transoceanic aerial movements publication-title: PLoS One – volume: 94 start-page: 330 year: 2016 end-page: 350 ident: b19 article-title: Simplicial principal component analysis for density functions in Bayes spaces publication-title: Comput. Stat. Data Anal. – volume: 109 start-page: 1615 year: 2014 end-page: 1624 ident: b29 article-title: Spherical regression models using projective linear transformations publication-title: J. Amer. Statist. Assoc. – year: 2014 ident: b21 article-title: Statistics of Directional Data – year: 2021 ident: b35 article-title: Autoregressive optimal transport models – volume: 49 start-page: 590 year: 2021 end-page: 611 ident: b26 article-title: Wasserstein F-tests and confidence bands for the Fréchet regression of density response curves publication-title: Ann. Stat. – volume: 14 start-page: 907 year: 1986 end-page: 924 ident: b7 article-title: Spherical regression publication-title: Ann. Statist. – volume: 56 start-page: 145 year: 2014 end-page: 169 ident: b31 article-title: Colours and cocktails: Compositional data analysis publication-title: Aust. N. Z. J. Stat. – volume: 17 start-page: 293 year: 1989 end-page: 306 ident: b8 article-title: Spherical regression with errors in variables publication-title: Ann. Statist. – volume: 46 start-page: 3334 year: 2018 end-page: 3361 ident: b11 article-title: Principal component analysis for functional data on Riemannian manifolds and spheres publication-title: Ann. Stat. – volume: 153 start-page: 273 year: 1991 end-page: 296 ident: b16 article-title: Die Fisher-Information und symplektische Strukturen publication-title: Math. Nachr. – year: 2000 ident: b4 article-title: Linear Processes in Function Spaces: Theory and Applications – start-page: 1 year: 2021 end-page: 14 ident: b9 article-title: Wasserstein regression publication-title: J. Amer. Statist. Assoc. – volume: 114 start-page: 466 year: 2019 end-page: 476 ident: b23 article-title: Nonparametric rotations for sphere-sphere regression publication-title: J. Amer. Statist. Assoc. – year: 2001 ident: b6 article-title: A Course in Metric Geometry – volume: 26 start-page: 1083 year: 1998 end-page: 1102 ident: b20 article-title: Deconvolution density estimation on SO(N) publication-title: Ann. Statist. – volume: 73 start-page: 351 year: 2011 end-page: 375 ident: b30 article-title: Regression for compositional data by using distributions defined on the hypersphere publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) – volume: 43 start-page: 30 year: 2022 end-page: 52 ident: b34 article-title: Wasserstein autoregressive models for density time series publication-title: J. Time Series Anal. – volume: September 16 start-page: A12 year: 2021 ident: b3 article-title: Why we are experiencing so many unusually hot summer nights publication-title: N.Y. Times – year: 2009 ident: b33 article-title: Optimal Transport: Old and New – year: 1986 ident: b1 article-title: The Statistical Analysis of Compositional Data – volume: 16 start-page: 700 year: 2022 end-page: 736 ident: b10 article-title: Statistical inference on the Hilbert sphere with application to random densities publication-title: Electron. J. Stat. – volume: 116 start-page: 1953 year: 2021 end-page: 1964 ident: b32 article-title: Spherical regression under mismatch corruption with application to automated knowledge translation publication-title: J. Amer. Statist. Assoc. – year: 2017 ident: b14 article-title: The Elements of Financial Econometrics – year: 2021 ident: b17 article-title: fdapace: Functional data analysis and empirical dynamics – volume: 23 year: 2022 ident: b25 article-title: Projected statistical methods for distributional data on the real line with the Wasserstein metric publication-title: J. Mach. Learn. Res. – volume: 90 start-page: 655 issue: 3 year: 2003 ident: 10.1016/j.jeconom.2022.12.008_b12 article-title: Spherical regression publication-title: Biometrika doi: 10.1093/biomet/90.3.655 – volume: September 16 start-page: A12 year: 2021 ident: 10.1016/j.jeconom.2022.12.008_b3 article-title: Why we are experiencing so many unusually hot summer nights publication-title: N.Y. Times – year: 1991 ident: 10.1016/j.jeconom.2022.12.008_b5 – volume: 44 start-page: 1867 year: 2016 ident: 10.1016/j.jeconom.2022.12.008_b24 article-title: Peter hall, functional data analysis and random objects publication-title: Ann. Stat. doi: 10.1214/16-AOS1492 – year: 2001 ident: 10.1016/j.jeconom.2022.12.008_b6 – volume: 3 issue: 8 year: 2008 ident: 10.1016/j.jeconom.2022.12.008_b15 article-title: Ocean surface winds drive dynamics of transoceanic aerial movements publication-title: PLoS One doi: 10.1371/journal.pone.0002928 – volume: 54 start-page: 579 issue: 3 year: 1932 ident: 10.1016/j.jeconom.2022.12.008_b22 article-title: On infinite orthogonal matrices publication-title: Amer. J. Math. doi: 10.2307/2370903 – start-page: 1 year: 2021 ident: 10.1016/j.jeconom.2022.12.008_b9 article-title: Wasserstein regression publication-title: J. Amer. Statist. Assoc. – year: 2021 ident: 10.1016/j.jeconom.2022.12.008_b35 – volume: 14 start-page: 907 issue: 3 year: 1986 ident: 10.1016/j.jeconom.2022.12.008_b7 article-title: Spherical regression publication-title: Ann. Statist. doi: 10.1214/aos/1176350041 – volume: 48 start-page: 499 issue: 3 year: 2016 ident: 10.1016/j.jeconom.2022.12.008_b2 article-title: Uniqueness of the Fisher–Rao metric on the space of smooth densities publication-title: Bull. Lond. Math. Soc. doi: 10.1112/blms/bdw020 – year: 2017 ident: 10.1016/j.jeconom.2022.12.008_b14 – year: 2000 ident: 10.1016/j.jeconom.2022.12.008_b4 – volume: 16 start-page: 700 issue: 1 year: 2022 ident: 10.1016/j.jeconom.2022.12.008_b10 article-title: Statistical inference on the Hilbert sphere with application to random densities publication-title: Electron. J. Stat. doi: 10.1214/21-EJS1942 – year: 2021 ident: 10.1016/j.jeconom.2022.12.008_b17 – volume: 94 start-page: 330 year: 2016 ident: 10.1016/j.jeconom.2022.12.008_b19 article-title: Simplicial principal component analysis for density functions in Bayes spaces publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2015.07.007 – volume: 27 issue: 4 year: 2008 ident: 10.1016/j.jeconom.2022.12.008_b28 article-title: VAR, SVAR and SVEC models: Implementation within R package vars publication-title: J. Stat. Softw. doi: 10.18637/jss.v027.i04 – volume: 26 start-page: 1083 issue: 3 year: 1998 ident: 10.1016/j.jeconom.2022.12.008_b20 article-title: Deconvolution density estimation on SO(N) publication-title: Ann. Statist. doi: 10.1214/aos/1024691089 – volume: 49 start-page: 590 issue: 1 year: 2021 ident: 10.1016/j.jeconom.2022.12.008_b26 article-title: Wasserstein F-tests and confidence bands for the Fréchet regression of density response curves publication-title: Ann. Stat. doi: 10.1214/20-AOS1971 – volume: 23 year: 2022 ident: 10.1016/j.jeconom.2022.12.008_b25 article-title: Projected statistical methods for distributional data on the real line with the Wasserstein metric publication-title: J. Mach. Learn. Res. – volume: 153 start-page: 273 issue: 1 year: 1991 ident: 10.1016/j.jeconom.2022.12.008_b16 article-title: Die Fisher-Information und symplektische Strukturen publication-title: Math. Nachr. doi: 10.1002/mana.19911530125 – volume: 114 start-page: 466 issue: 525 year: 2019 ident: 10.1016/j.jeconom.2022.12.008_b23 article-title: Nonparametric rotations for sphere-sphere regression publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2017.1421542 – volume: 46 start-page: 3334 year: 2018 ident: 10.1016/j.jeconom.2022.12.008_b11 article-title: Principal component analysis for functional data on Riemannian manifolds and spheres publication-title: Ann. Stat. doi: 10.1214/17-AOS1660 – volume: 109 start-page: 1615 issue: 508 year: 2014 ident: 10.1016/j.jeconom.2022.12.008_b29 article-title: Spherical regression models using projective linear transformations publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2014.892881 – volume: 116 start-page: 1953 issue: 536 year: 2021 ident: 10.1016/j.jeconom.2022.12.008_b32 article-title: Spherical regression under mismatch corruption with application to automated knowledge translation publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2020.1752219 – volume: 56 start-page: 145 issue: 2 year: 2014 ident: 10.1016/j.jeconom.2022.12.008_b31 article-title: Colours and cocktails: Compositional data analysis publication-title: Aust. N. Z. J. Stat. doi: 10.1111/anzs.12073 – year: 1986 ident: 10.1016/j.jeconom.2022.12.008_b1 – volume: 18 start-page: 10 issue: 1 year: 2003 ident: 10.1016/j.jeconom.2022.12.008_b18 article-title: Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices publication-title: Int. J. Robot. Autom. – year: 2014 ident: 10.1016/j.jeconom.2022.12.008_b21 – volume: 17 start-page: 293 issue: 1 year: 1989 ident: 10.1016/j.jeconom.2022.12.008_b8 article-title: Spherical regression with errors in variables publication-title: Ann. Statist. doi: 10.1214/aos/1176347017 – volume: 43 start-page: 30 issue: 1 year: 2022 ident: 10.1016/j.jeconom.2022.12.008_b34 article-title: Wasserstein autoregressive models for density time series publication-title: J. Time Series Anal. doi: 10.1111/jtsa.12590 – year: 2009 ident: 10.1016/j.jeconom.2022.12.008_b33 – volume: 73 start-page: 351 issue: 3 year: 2011 ident: 10.1016/j.jeconom.2022.12.008_b30 article-title: Regression for compositional data by using distributions defined on the hypersphere publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2010.00766.x – volume: 44 start-page: 183 issue: 1 year: 2016 ident: 10.1016/j.jeconom.2022.12.008_b27 article-title: Functional data analysis for density functions by transformation to a Hilbert space publication-title: Ann. Stat. doi: 10.1214/15-AOS1363 – year: 2003 ident: 10.1016/j.jeconom.2022.12.008_b13 |
SSID | ssj0005483 |
Score | 2.4714901 |
Snippet | We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105389 |
SubjectTerms | arithmetics econometrics energy Fisher–Rao metric geometry power generation Random objects Rotation Skew-symmetric operators summer Time series analysis |
Title | Spherical autoregressive models, with application to distributional and compositional time series |
URI | https://dx.doi.org/10.1016/j.jeconom.2022.12.008 https://www.proquest.com/docview/2834217349 |
Volume | 239 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_m9qA-iJ_4TQQf7ba21y55FFGmsr2o4FtI0xQc0g03X_3bvWtTvxAEHxtyoeSS-8jd_Q7gdGBQhYbud4RxP8C0j4FSJgwiScpOpmFoK-zO0TgdPuDNY_LYgoumFobTKr3sr2V6Ja39SM_vZm_29NS746AeuSOkv6t4mlqCThSrNGlD5_z6djj-zPTAGo2T5gdM8FnI05t0J64qACZPMYqqh0FuNPm7ivohrCsNdLUOa950FOf1321Ay5WbsNxUFs83YXX0gcFKXytsR9YwzFtg7hg-gBkiDKMWuMrNJkknqlY48zPBD7LiSzhbLKYiZ1Rd3xCLKctccAq6z_OiEe5ML_gQu_k2PFxd3l8MA99dIbCIg0WQZYp9FyWtymXsCpkZFcec9olWmiLDCIsU8yweoEXaZZoVYp7YJO8PTEFafgfa5bR0uyAMslorrKI1MevnkiYk5Jq51ElrM9wDbDZUWw89zh0wnnWTYzbRng-a-aDDSBMf9qD7QTarsTf-IpANt_S3Q6RJP_xFetJwV9MF46iJKd30da7J_kLy22JU-_9f_gBW6AvrdO9DaC9eXt0RWTOL7BiWum_hsT-z7xlv9QU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8Be4A9IMaGVhjMSDyStkkuif04oaHCKC-0Em-W4zgSFUqrtX3d386d4zA2ISHxGMcXRT77Pnx3vwM4Kwyq2ND5TjAdRpgPMVLKxFEiSdnJPI6tx-4c3-ajKV7fZ_cbcNHVwnBaZZD9rUz30jqMDMJqDhYPD4M7DuqRO0L628fT1CZ8wCwtOK-v_-dFnge2WJw0O-Lpf8t4BrP-zPnyX_ITk8RfC3KbydcV1H-i2uufyz3YDYaj-NH-2yfYcM0-bHd1xct9-Dh-RmClpx22IlsQ5s9g7hg8gNkhDGMWOO9kk5wTvhHO8lzwdax4EcwWq7moGFM3tMNiyqYSnIAesrxohPvSC97CbvkFppc_JxejKPRWiCxisYrKUrHnoqRVlUxdLUuj0pSTPtFKU5eYYJ1jVaYFWqQ1plkxVpnNqmFhatLxB7DVzBv3FYRBVmq1VfRNLIeVpAkZOWYud9LaEnuA3YJqG4DHuf_Fo-4yzGY68EEzH3ScaOJDD_rPZIsWeeMtAtlxS_-zhTRph7dITzvuajpeHDMxjZuvl5qsLySvLUV1-P7Pf4ft0WR8o2-ubn8dwQ69wTbx-xtsrX6v3THZNavyxO_bJzFA9dA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spherical+autoregressive+models%2C+with+application+to+distributional+and+compositional+time+series&rft.jtitle=Journal+of+econometrics&rft.au=Zhu%2C+Changbo&rft.au=M%C3%BCller%2C+Hans-Georg&rft.date=2024-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4076&rft.eissn=1872-6895&rft.volume=239&rft.issue=2&rft_id=info:doi/10.1016%2Fj.jeconom.2022.12.008&rft.externalDocID=S0304407623000209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4076&client=summon |