Spherical autoregressive models, with application to distributional and compositional time series

We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are situated may be finite-dimensional or infinite-dimensional, where in the latter case we consider the Hilbert sphere. Spherical time series arise...

Full description

Saved in:
Bibliographic Details
Published inJournal of econometrics Vol. 239; no. 2; p. 105389
Main Authors Zhu, Changbo, Müller, Hans-Georg
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2024
Subjects
Online AccessGet full text
ISSN0304-4076
1872-6895
DOI10.1016/j.jeconom.2022.12.008

Cover

Abstract We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are situated may be finite-dimensional or infinite-dimensional, where in the latter case we consider the Hilbert sphere. Spherical time series arise in various settings. We focus here on distributional and compositional time series. Applying a square root transformation to the densities of the observations of a distributional time series maps the distributional observations to the Hilbert sphere, equipped with the Fisher–Rao metric. Likewise, applying a square root transformation to the components of the observations of a compositional time series maps the compositional observations to a finite-dimensional sphere, equipped with the geodesic metric on spheres. The challenge in modeling such time series lies in the intrinsic non-linearity of spheres and Hilbert spheres, where conventional arithmetic operations such as addition or scalar multiplication are no longer available. To address this difficulty, we consider rotation operators to map observations on the sphere. Specifically, we introduce a class of skew-symmetric operators such that the associated exponential operators are rotation operators that for each given pair of points on the sphere map the first point of the pair to the second point of the pair. We exploit the fact that the space of skew-symmetric operators is Hilbertian to develop autoregressive modeling of geometric differences that correspond to rotations of spherical and distributional time series. Differences expressed in terms of rotations can be taken between the Fréchet mean and the observations or between consecutive observations of the time series. We derive theoretical properties of the ensuing autoregressive models and showcase these approaches with several motivating data. These include a time series of yearly observations of bivariate distributions of the minimum/maximum temperatures for a period of 120 days during each summer for the years 1990-2018 at Los Angeles (LAX) and John F. Kennedy (JFK) international airports. A second data application concerns a compositional time series with annual observations of compositions of energy sources for power generation in the U.S..
AbstractList We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are situated may be finite-dimensional or infinite-dimensional, where in the latter case we consider the Hilbert sphere. Spherical time series arise in various settings. We focus here on distributional and compositional time series. Applying a square root transformation to the densities of the observations of a distributional time series maps the distributional observations to the Hilbert sphere, equipped with the Fisher–Rao metric. Likewise, applying a square root transformation to the components of the observations of a compositional time series maps the compositional observations to a finite-dimensional sphere, equipped with the geodesic metric on spheres. The challenge in modeling such time series lies in the intrinsic non-linearity of spheres and Hilbert spheres, where conventional arithmetic operations such as addition or scalar multiplication are no longer available. To address this difficulty, we consider rotation operators to map observations on the sphere. Specifically, we introduce a class of skew-symmetric operators such that the associated exponential operators are rotation operators that for each given pair of points on the sphere map the first point of the pair to the second point of the pair. We exploit the fact that the space of skew-symmetric operators is Hilbertian to develop autoregressive modeling of geometric differences that correspond to rotations of spherical and distributional time series. Differences expressed in terms of rotations can be taken between the Fréchet mean and the observations or between consecutive observations of the time series. We derive theoretical properties of the ensuing autoregressive models and showcase these approaches with several motivating data. These include a time series of yearly observations of bivariate distributions of the minimum/maximum temperatures for a period of 120 days during each summer for the years 1990-2018 at Los Angeles (LAX) and John F. Kennedy (JFK) international airports. A second data application concerns a compositional time series with annual observations of compositions of energy sources for power generation in the U.S..
ArticleNumber 105389
Author Zhu, Changbo
Müller, Hans-Georg
Author_xml – sequence: 1
  givenname: Changbo
  surname: Zhu
  fullname: Zhu, Changbo
  organization: Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
– sequence: 2
  givenname: Hans-Georg
  surname: Müller
  fullname: Müller, Hans-Georg
  email: hgmueller@ucdavis.edu
  organization: Department of Statistics, University of California, Davis, Davis, CA 95616, USA
BookMark eNqFkE1Lw0AQhhepYFv9CUKOHkzcryQbPIgUv6DgQT0vm92J3ZJk4-624r83tT156WmY4X1emGeGJr3rAaFLgjOCSXGzztagXe-6jGJKM0IzjMUJmhJR0rQQVT5BU8wwTzkuizM0C2GNMc65YFOk3oYVeKtVm6hNdB4-PYRgt5B0zkAbrpNvG1eJGoZ2DEXr-iS6xNgQva03u31H9ibRrhtcsIdLtB0kYSyGcI5OG9UGuDjMOfp4fHhfPKfL16eXxf0y1ZyXMa3rChdFUQldGcGgEbWqGCOcYK6FampOeVNwU7OSa14WdEwRbnKdG1yqRuRsjq72vYN3XxsIUXY2aGhb1YPbBEkF45SUjFdj9HYf1d6F4KGR2sa_56JXtpUEy51YuZYHsXInVhIqR7Ejnf-jB2875X-Ocnd7btQKWwteBm2h12CsBx2lcfZIwy_WvJo7
CitedBy_id crossref_primary_10_1142_S2196888824500234
crossref_primary_10_1214_24_AOS2368
crossref_primary_10_1214_24_EJS2218
crossref_primary_10_1093_biomet_asad069
crossref_primary_10_1002_hbm_26271
Cites_doi 10.1093/biomet/90.3.655
10.1214/16-AOS1492
10.1371/journal.pone.0002928
10.2307/2370903
10.1214/aos/1176350041
10.1112/blms/bdw020
10.1214/21-EJS1942
10.1016/j.csda.2015.07.007
10.18637/jss.v027.i04
10.1214/aos/1024691089
10.1214/20-AOS1971
10.1002/mana.19911530125
10.1080/01621459.2017.1421542
10.1214/17-AOS1660
10.1080/01621459.2014.892881
10.1080/01621459.2020.1752219
10.1111/anzs.12073
10.1214/aos/1176347017
10.1111/jtsa.12590
10.1111/j.1467-9868.2010.00766.x
10.1214/15-AOS1363
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jeconom.2022.12.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1872-6895
ExternalDocumentID 10_1016_j_jeconom_2022_12_008
S0304407623000209
GrantInformation_xml – fundername: NSF
  grantid: DMS-2014626
  funderid: http://dx.doi.org/10.13039/100003187
– fundername: NIH Echo
  grantid: UH3OD023313
GroupedDBID --K
--M
--Z
-DZ
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29K
3R3
4.4
41~
457
4G.
5GY
5VS
63O
6I.
6P2
7-5
71M
8P~
9JN
9JO
AABCJ
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AAXUO
AAYOK
ABAOU
ABEFU
ABEHJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACHQT
ACNCT
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AETEA
AEYQN
AFFNX
AFKWA
AFODL
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HMJ
HVGLF
HZ~
H~9
IHE
IXIXF
J1W
K-O
KOM
LPU
LY5
M26
M41
MHUIS
MO0
MS~
MVM
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCU
SDF
SDG
SDP
SEB
SEE
SES
SEW
SME
SPC
SPCBC
SSB
SSF
SSW
SSZ
T5K
TAE
TN5
U5U
UHB
UQL
VH1
WUQ
YK3
YQT
YYP
ZCG
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c447t-bb9066698c9d83ef8ba93314104c8afb424f64db374c47629d814d5c5d07af853
IEDL.DBID AIKHN
ISSN 0304-4076
IngestDate Fri Sep 05 03:38:43 EDT 2025
Thu Apr 24 22:55:07 EDT 2025
Tue Jul 01 02:35:57 EDT 2025
Sat Mar 02 16:00:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Random objects
Fisher–Rao metric
Skew-symmetric operators
Time series analysis
Rotation
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-bb9066698c9d83ef8ba93314104c8afb424f64db374c47629d814d5c5d07af853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304407623000209
PQID 2834217349
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834217349
crossref_citationtrail_10_1016_j_jeconom_2022_12_008
crossref_primary_10_1016_j_jeconom_2022_12_008
elsevier_sciencedirect_doi_10_1016_j_jeconom_2022_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of econometrics
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Petersen, Liu, Divani (b26) 2021; 49
Zhu, Müller (b35) 2021
Villani (b33) 2009
Hron, Menafoglio, Templ, Hruzova, Filzmoser (b19) 2016; 94
Kim (b20) 1998; 26
Dai, Müller (b11) 2018; 46
Pfaff (b28) 2008; 27
Rosenthal, Wu, Klassen, Srivastava (b29) 2014; 109
Shi, Li, Cai (b32) 2021; 116
Bauer, Bruveris, Michor (b2) 2016; 48
Petersen, Müller (b27) 2016; 44
Scealy, Welsh (b31) 2014; 56
Friedrich (b16) 1991; 153
Müller (b24) 2016; 44
Chang (b8) 1989; 17
Aitchison (b1) 1986
Bosq (b4) 2000
Marzio, Panzera, Taylor (b23) 2019; 114
Chang (b7) 1986; 14
Zhang, Kokoszka, Petersen (b34) 2022; 43
Fan, Yao (b14) 2017
Felicísimo, Muñoz, González-Solis (b15) 2008; 3
Scealy, Welsh (b30) 2011; 73
Mardia (b21) 2014
Martin (b22) 1932; 54
Gajardo, Carroll, Chen, Dai, Fan, Hadjipantelis, Han, Ji, Müller, Wang (b17) 2021
Burago, Burago, Ivanov (b6) 2001
Gallier, Xu (b18) 2003; 18
Fan, Yao (b13) 2003
Pegoraro, Beraha (b25) 2022; 23
Brockwell, Davis (b5) 1991
Dai (b10) 2022; 16
Chen, Lin, Müller (b9) 2021
Downs (b12) 2003; 90
Bhatia, Katz (b3) 2021; September 16
Hron (10.1016/j.jeconom.2022.12.008_b19) 2016; 94
Kim (10.1016/j.jeconom.2022.12.008_b20) 1998; 26
Scealy (10.1016/j.jeconom.2022.12.008_b30) 2011; 73
Zhu (10.1016/j.jeconom.2022.12.008_b35) 2021
Scealy (10.1016/j.jeconom.2022.12.008_b31) 2014; 56
Dai (10.1016/j.jeconom.2022.12.008_b10) 2022; 16
Shi (10.1016/j.jeconom.2022.12.008_b32) 2021; 116
Zhang (10.1016/j.jeconom.2022.12.008_b34) 2022; 43
Petersen (10.1016/j.jeconom.2022.12.008_b26) 2021; 49
Aitchison (10.1016/j.jeconom.2022.12.008_b1) 1986
Pfaff (10.1016/j.jeconom.2022.12.008_b28) 2008; 27
Gallier (10.1016/j.jeconom.2022.12.008_b18) 2003; 18
Petersen (10.1016/j.jeconom.2022.12.008_b27) 2016; 44
Downs (10.1016/j.jeconom.2022.12.008_b12) 2003; 90
Felicísimo (10.1016/j.jeconom.2022.12.008_b15) 2008; 3
Fan (10.1016/j.jeconom.2022.12.008_b14) 2017
Bosq (10.1016/j.jeconom.2022.12.008_b4) 2000
Chang (10.1016/j.jeconom.2022.12.008_b7) 1986; 14
Fan (10.1016/j.jeconom.2022.12.008_b13) 2003
Bauer (10.1016/j.jeconom.2022.12.008_b2) 2016; 48
Bhatia (10.1016/j.jeconom.2022.12.008_b3) 2021; September 16
Villani (10.1016/j.jeconom.2022.12.008_b33) 2009
Marzio (10.1016/j.jeconom.2022.12.008_b23) 2019; 114
Chang (10.1016/j.jeconom.2022.12.008_b8) 1989; 17
Friedrich (10.1016/j.jeconom.2022.12.008_b16) 1991; 153
Gajardo (10.1016/j.jeconom.2022.12.008_b17) 2021
Brockwell (10.1016/j.jeconom.2022.12.008_b5) 1991
Rosenthal (10.1016/j.jeconom.2022.12.008_b29) 2014; 109
Chen (10.1016/j.jeconom.2022.12.008_b9) 2021
Martin (10.1016/j.jeconom.2022.12.008_b22) 1932; 54
Dai (10.1016/j.jeconom.2022.12.008_b11) 2018; 46
Mardia (10.1016/j.jeconom.2022.12.008_b21) 2014
Müller (10.1016/j.jeconom.2022.12.008_b24) 2016; 44
Pegoraro (10.1016/j.jeconom.2022.12.008_b25) 2022; 23
Burago (10.1016/j.jeconom.2022.12.008_b6) 2001
References_xml – volume: 54
  start-page: 579
  year: 1932
  end-page: 631
  ident: b22
  article-title: On infinite orthogonal matrices
  publication-title: Amer. J. Math.
– volume: 44
  start-page: 1867
  year: 2016
  end-page: 1887
  ident: b24
  article-title: Peter hall, functional data analysis and random objects
  publication-title: Ann. Stat.
– year: 1991
  ident: b5
  article-title: Time Series: Theory and Methods
– volume: 27
  year: 2008
  ident: b28
  article-title: VAR, SVAR and SVEC models: Implementation within R package vars
  publication-title: J. Stat. Softw.
– volume: 44
  start-page: 183
  year: 2016
  end-page: 218
  ident: b27
  article-title: Functional data analysis for density functions by transformation to a Hilbert space
  publication-title: Ann. Stat.
– volume: 90
  start-page: 655
  year: 2003
  end-page: 668
  ident: b12
  article-title: Spherical regression
  publication-title: Biometrika
– year: 2003
  ident: b13
  article-title: Nonlinear Time Series: Nonparametric and Parametric Methods
– volume: 18
  start-page: 10
  year: 2003
  end-page: 20
  ident: b18
  article-title: Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices
  publication-title: Int. J. Robot. Autom.
– volume: 48
  start-page: 499
  year: 2016
  end-page: 506
  ident: b2
  article-title: Uniqueness of the Fisher–Rao metric on the space of smooth densities
  publication-title: Bull. Lond. Math. Soc.
– volume: 3
  year: 2008
  ident: b15
  article-title: Ocean surface winds drive dynamics of transoceanic aerial movements
  publication-title: PLoS One
– volume: 94
  start-page: 330
  year: 2016
  end-page: 350
  ident: b19
  article-title: Simplicial principal component analysis for density functions in Bayes spaces
  publication-title: Comput. Stat. Data Anal.
– volume: 109
  start-page: 1615
  year: 2014
  end-page: 1624
  ident: b29
  article-title: Spherical regression models using projective linear transformations
  publication-title: J. Amer. Statist. Assoc.
– year: 2014
  ident: b21
  article-title: Statistics of Directional Data
– year: 2021
  ident: b35
  article-title: Autoregressive optimal transport models
– volume: 49
  start-page: 590
  year: 2021
  end-page: 611
  ident: b26
  article-title: Wasserstein F-tests and confidence bands for the Fréchet regression of density response curves
  publication-title: Ann. Stat.
– volume: 14
  start-page: 907
  year: 1986
  end-page: 924
  ident: b7
  article-title: Spherical regression
  publication-title: Ann. Statist.
– volume: 56
  start-page: 145
  year: 2014
  end-page: 169
  ident: b31
  article-title: Colours and cocktails: Compositional data analysis
  publication-title: Aust. N. Z. J. Stat.
– volume: 17
  start-page: 293
  year: 1989
  end-page: 306
  ident: b8
  article-title: Spherical regression with errors in variables
  publication-title: Ann. Statist.
– volume: 46
  start-page: 3334
  year: 2018
  end-page: 3361
  ident: b11
  article-title: Principal component analysis for functional data on Riemannian manifolds and spheres
  publication-title: Ann. Stat.
– volume: 153
  start-page: 273
  year: 1991
  end-page: 296
  ident: b16
  article-title: Die Fisher-Information und symplektische Strukturen
  publication-title: Math. Nachr.
– year: 2000
  ident: b4
  article-title: Linear Processes in Function Spaces: Theory and Applications
– start-page: 1
  year: 2021
  end-page: 14
  ident: b9
  article-title: Wasserstein regression
  publication-title: J. Amer. Statist. Assoc.
– volume: 114
  start-page: 466
  year: 2019
  end-page: 476
  ident: b23
  article-title: Nonparametric rotations for sphere-sphere regression
  publication-title: J. Amer. Statist. Assoc.
– year: 2001
  ident: b6
  article-title: A Course in Metric Geometry
– volume: 26
  start-page: 1083
  year: 1998
  end-page: 1102
  ident: b20
  article-title: Deconvolution density estimation on SO(N)
  publication-title: Ann. Statist.
– volume: 73
  start-page: 351
  year: 2011
  end-page: 375
  ident: b30
  article-title: Regression for compositional data by using distributions defined on the hypersphere
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
– volume: 43
  start-page: 30
  year: 2022
  end-page: 52
  ident: b34
  article-title: Wasserstein autoregressive models for density time series
  publication-title: J. Time Series Anal.
– volume: September 16
  start-page: A12
  year: 2021
  ident: b3
  article-title: Why we are experiencing so many unusually hot summer nights
  publication-title: N.Y. Times
– year: 2009
  ident: b33
  article-title: Optimal Transport: Old and New
– year: 1986
  ident: b1
  article-title: The Statistical Analysis of Compositional Data
– volume: 16
  start-page: 700
  year: 2022
  end-page: 736
  ident: b10
  article-title: Statistical inference on the Hilbert sphere with application to random densities
  publication-title: Electron. J. Stat.
– volume: 116
  start-page: 1953
  year: 2021
  end-page: 1964
  ident: b32
  article-title: Spherical regression under mismatch corruption with application to automated knowledge translation
  publication-title: J. Amer. Statist. Assoc.
– year: 2017
  ident: b14
  article-title: The Elements of Financial Econometrics
– year: 2021
  ident: b17
  article-title: fdapace: Functional data analysis and empirical dynamics
– volume: 23
  year: 2022
  ident: b25
  article-title: Projected statistical methods for distributional data on the real line with the Wasserstein metric
  publication-title: J. Mach. Learn. Res.
– volume: 90
  start-page: 655
  issue: 3
  year: 2003
  ident: 10.1016/j.jeconom.2022.12.008_b12
  article-title: Spherical regression
  publication-title: Biometrika
  doi: 10.1093/biomet/90.3.655
– volume: September 16
  start-page: A12
  year: 2021
  ident: 10.1016/j.jeconom.2022.12.008_b3
  article-title: Why we are experiencing so many unusually hot summer nights
  publication-title: N.Y. Times
– year: 1991
  ident: 10.1016/j.jeconom.2022.12.008_b5
– volume: 44
  start-page: 1867
  year: 2016
  ident: 10.1016/j.jeconom.2022.12.008_b24
  article-title: Peter hall, functional data analysis and random objects
  publication-title: Ann. Stat.
  doi: 10.1214/16-AOS1492
– year: 2001
  ident: 10.1016/j.jeconom.2022.12.008_b6
– volume: 3
  issue: 8
  year: 2008
  ident: 10.1016/j.jeconom.2022.12.008_b15
  article-title: Ocean surface winds drive dynamics of transoceanic aerial movements
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0002928
– volume: 54
  start-page: 579
  issue: 3
  year: 1932
  ident: 10.1016/j.jeconom.2022.12.008_b22
  article-title: On infinite orthogonal matrices
  publication-title: Amer. J. Math.
  doi: 10.2307/2370903
– start-page: 1
  year: 2021
  ident: 10.1016/j.jeconom.2022.12.008_b9
  article-title: Wasserstein regression
  publication-title: J. Amer. Statist. Assoc.
– year: 2021
  ident: 10.1016/j.jeconom.2022.12.008_b35
– volume: 14
  start-page: 907
  issue: 3
  year: 1986
  ident: 10.1016/j.jeconom.2022.12.008_b7
  article-title: Spherical regression
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176350041
– volume: 48
  start-page: 499
  issue: 3
  year: 2016
  ident: 10.1016/j.jeconom.2022.12.008_b2
  article-title: Uniqueness of the Fisher–Rao metric on the space of smooth densities
  publication-title: Bull. Lond. Math. Soc.
  doi: 10.1112/blms/bdw020
– year: 2017
  ident: 10.1016/j.jeconom.2022.12.008_b14
– year: 2000
  ident: 10.1016/j.jeconom.2022.12.008_b4
– volume: 16
  start-page: 700
  issue: 1
  year: 2022
  ident: 10.1016/j.jeconom.2022.12.008_b10
  article-title: Statistical inference on the Hilbert sphere with application to random densities
  publication-title: Electron. J. Stat.
  doi: 10.1214/21-EJS1942
– year: 2021
  ident: 10.1016/j.jeconom.2022.12.008_b17
– volume: 94
  start-page: 330
  year: 2016
  ident: 10.1016/j.jeconom.2022.12.008_b19
  article-title: Simplicial principal component analysis for density functions in Bayes spaces
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2015.07.007
– volume: 27
  issue: 4
  year: 2008
  ident: 10.1016/j.jeconom.2022.12.008_b28
  article-title: VAR, SVAR and SVEC models: Implementation within R package vars
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v027.i04
– volume: 26
  start-page: 1083
  issue: 3
  year: 1998
  ident: 10.1016/j.jeconom.2022.12.008_b20
  article-title: Deconvolution density estimation on SO(N)
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1024691089
– volume: 49
  start-page: 590
  issue: 1
  year: 2021
  ident: 10.1016/j.jeconom.2022.12.008_b26
  article-title: Wasserstein F-tests and confidence bands for the Fréchet regression of density response curves
  publication-title: Ann. Stat.
  doi: 10.1214/20-AOS1971
– volume: 23
  year: 2022
  ident: 10.1016/j.jeconom.2022.12.008_b25
  article-title: Projected statistical methods for distributional data on the real line with the Wasserstein metric
  publication-title: J. Mach. Learn. Res.
– volume: 153
  start-page: 273
  issue: 1
  year: 1991
  ident: 10.1016/j.jeconom.2022.12.008_b16
  article-title: Die Fisher-Information und symplektische Strukturen
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19911530125
– volume: 114
  start-page: 466
  issue: 525
  year: 2019
  ident: 10.1016/j.jeconom.2022.12.008_b23
  article-title: Nonparametric rotations for sphere-sphere regression
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2017.1421542
– volume: 46
  start-page: 3334
  year: 2018
  ident: 10.1016/j.jeconom.2022.12.008_b11
  article-title: Principal component analysis for functional data on Riemannian manifolds and spheres
  publication-title: Ann. Stat.
  doi: 10.1214/17-AOS1660
– volume: 109
  start-page: 1615
  issue: 508
  year: 2014
  ident: 10.1016/j.jeconom.2022.12.008_b29
  article-title: Spherical regression models using projective linear transformations
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2014.892881
– volume: 116
  start-page: 1953
  issue: 536
  year: 2021
  ident: 10.1016/j.jeconom.2022.12.008_b32
  article-title: Spherical regression under mismatch corruption with application to automated knowledge translation
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2020.1752219
– volume: 56
  start-page: 145
  issue: 2
  year: 2014
  ident: 10.1016/j.jeconom.2022.12.008_b31
  article-title: Colours and cocktails: Compositional data analysis
  publication-title: Aust. N. Z. J. Stat.
  doi: 10.1111/anzs.12073
– year: 1986
  ident: 10.1016/j.jeconom.2022.12.008_b1
– volume: 18
  start-page: 10
  issue: 1
  year: 2003
  ident: 10.1016/j.jeconom.2022.12.008_b18
  article-title: Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices
  publication-title: Int. J. Robot. Autom.
– year: 2014
  ident: 10.1016/j.jeconom.2022.12.008_b21
– volume: 17
  start-page: 293
  issue: 1
  year: 1989
  ident: 10.1016/j.jeconom.2022.12.008_b8
  article-title: Spherical regression with errors in variables
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176347017
– volume: 43
  start-page: 30
  issue: 1
  year: 2022
  ident: 10.1016/j.jeconom.2022.12.008_b34
  article-title: Wasserstein autoregressive models for density time series
  publication-title: J. Time Series Anal.
  doi: 10.1111/jtsa.12590
– year: 2009
  ident: 10.1016/j.jeconom.2022.12.008_b33
– volume: 73
  start-page: 351
  issue: 3
  year: 2011
  ident: 10.1016/j.jeconom.2022.12.008_b30
  article-title: Regression for compositional data by using distributions defined on the hypersphere
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2010.00766.x
– volume: 44
  start-page: 183
  issue: 1
  year: 2016
  ident: 10.1016/j.jeconom.2022.12.008_b27
  article-title: Functional data analysis for density functions by transformation to a Hilbert space
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1363
– year: 2003
  ident: 10.1016/j.jeconom.2022.12.008_b13
SSID ssj0005483
Score 2.4714901
Snippet We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105389
SubjectTerms arithmetics
econometrics
energy
Fisher–Rao metric
geometry
power generation
Random objects
Rotation
Skew-symmetric operators
summer
Time series analysis
Title Spherical autoregressive models, with application to distributional and compositional time series
URI https://dx.doi.org/10.1016/j.jeconom.2022.12.008
https://www.proquest.com/docview/2834217349
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_m9qA-iJ_4TQQf7ba21y55FFGmsr2o4FtI0xQc0g03X_3bvWtTvxAEHxtyoeSS-8jd_Q7gdGBQhYbud4RxP8C0j4FSJgwiScpOpmFoK-zO0TgdPuDNY_LYgoumFobTKr3sr2V6Ja39SM_vZm_29NS746AeuSOkv6t4mlqCThSrNGlD5_z6djj-zPTAGo2T5gdM8FnI05t0J64qACZPMYqqh0FuNPm7ivohrCsNdLUOa950FOf1321Ay5WbsNxUFs83YXX0gcFKXytsR9YwzFtg7hg-gBkiDKMWuMrNJkknqlY48zPBD7LiSzhbLKYiZ1Rd3xCLKctccAq6z_OiEe5ML_gQu_k2PFxd3l8MA99dIbCIg0WQZYp9FyWtymXsCpkZFcec9olWmiLDCIsU8yweoEXaZZoVYp7YJO8PTEFafgfa5bR0uyAMslorrKI1MevnkiYk5Jq51ElrM9wDbDZUWw89zh0wnnWTYzbRng-a-aDDSBMf9qD7QTarsTf-IpANt_S3Q6RJP_xFetJwV9MF46iJKd30da7J_kLy22JU-_9f_gBW6AvrdO9DaC9eXt0RWTOL7BiWum_hsT-z7xlv9QU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8Be4A9IMaGVhjMSDyStkkuif04oaHCKC-0Em-W4zgSFUqrtX3d386d4zA2ISHxGMcXRT77Pnx3vwM4Kwyq2ND5TjAdRpgPMVLKxFEiSdnJPI6tx-4c3-ajKV7fZ_cbcNHVwnBaZZD9rUz30jqMDMJqDhYPD4M7DuqRO0L628fT1CZ8wCwtOK-v_-dFnge2WJw0O-Lpf8t4BrP-zPnyX_ITk8RfC3KbydcV1H-i2uufyz3YDYaj-NH-2yfYcM0-bHd1xct9-Dh-RmClpx22IlsQ5s9g7hg8gNkhDGMWOO9kk5wTvhHO8lzwdax4EcwWq7moGFM3tMNiyqYSnIAesrxohPvSC97CbvkFppc_JxejKPRWiCxisYrKUrHnoqRVlUxdLUuj0pSTPtFKU5eYYJ1jVaYFWqQ1plkxVpnNqmFhatLxB7DVzBv3FYRBVmq1VfRNLIeVpAkZOWYud9LaEnuA3YJqG4DHuf_Fo-4yzGY68EEzH3ScaOJDD_rPZIsWeeMtAtlxS_-zhTRph7dITzvuajpeHDMxjZuvl5qsLySvLUV1-P7Pf4ft0WR8o2-ubn8dwQ69wTbx-xtsrX6v3THZNavyxO_bJzFA9dA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spherical+autoregressive+models%2C+with+application+to+distributional+and+compositional+time+series&rft.jtitle=Journal+of+econometrics&rft.au=Zhu%2C+Changbo&rft.au=M%C3%BCller%2C+Hans-Georg&rft.date=2024-02-01&rft.pub=Elsevier+B.V&rft.issn=0304-4076&rft.eissn=1872-6895&rft.volume=239&rft.issue=2&rft_id=info:doi/10.1016%2Fj.jeconom.2022.12.008&rft.externalDocID=S0304407623000209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4076&client=summon