Supramolecular Organogels Based on N-Benzyl, N′-Acylbispidinols

The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 9; no. 1; p. 89
Main Authors Medved’ko, Alexey V., Dalinger, Alexander I., Nuriev, Vyacheslav N., Semashko, Vera S., Filatov, Andrei V., Ezhov, Alexander A., Churakov, Andrei V., Howard, Judith A. K., Shiryaev, Andrey A., Baranchikov, Alexander E., Ivanov, Vladimir K., Vatsadze, Sergey Z.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 11.01.2019
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H+ and Cl− anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π−π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.
AbstractList The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H+ and Cl− anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π−π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.
The acylation of unsymmetrical -benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H⁺ and Cl anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π-π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.
The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H⁺ and Cl- anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π-π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H⁺ and Cl- anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π-π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.
The acylation of unsymmetrical N -benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H + and Cl − anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π−π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.
Author Howard, Judith A. K.
Filatov, Andrei V.
Semashko, Vera S.
Churakov, Andrei V.
Shiryaev, Andrey A.
Baranchikov, Alexander E.
Dalinger, Alexander I.
Ezhov, Alexander A.
Nuriev, Vyacheslav N.
Vatsadze, Sergey Z.
Medved’ko, Alexey V.
Ivanov, Vladimir K.
AuthorAffiliation 2 Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; filatov_andrey_@mail.ru
4 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
1 Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; lexeym@gmail.com (A.V.M.); dal1995@mail.ru (A.I.D.); nvn@org.chem.msu.ru (V.N.N.); vera-s@yandex.ru (V.S.S.); a.baranchikov@yandex.ru (A.E.B.)
3 Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; alexander-ezhov@yandex.ru
9 Faculty of Material Science, Lomonosov Moscow State University, 119991 Moscow, Russia
7 Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; a_shiryaev@mail.ru
8 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, 119017 Moscow, Russia
5 Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Mo
AuthorAffiliation_xml – name: 6 Department of Chemistry, University of Durham, Durham DH1 3LE, UK; j.a.k.howard@durham.ac.uk
– name: 9 Faculty of Material Science, Lomonosov Moscow State University, 119991 Moscow, Russia
– name: 1 Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; lexeym@gmail.com (A.V.M.); dal1995@mail.ru (A.I.D.); nvn@org.chem.msu.ru (V.N.N.); vera-s@yandex.ru (V.S.S.); a.baranchikov@yandex.ru (A.E.B.)
– name: 8 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences, 119017 Moscow, Russia
– name: 2 Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; filatov_andrey_@mail.ru
– name: 5 Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 119991 Moscow, Russia; churakov@igic.ras.ru (A.V.C.); van@igic.ras.ru (V.K.I.)
– name: 3 Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; alexander-ezhov@yandex.ru
– name: 4 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
– name: 7 Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; a_shiryaev@mail.ru
Author_xml – sequence: 1
  givenname: Alexey V.
  orcidid: 0000-0002-8731-6934
  surname: Medved’ko
  fullname: Medved’ko, Alexey V.
– sequence: 2
  givenname: Alexander I.
  surname: Dalinger
  fullname: Dalinger, Alexander I.
– sequence: 3
  givenname: Vyacheslav N.
  surname: Nuriev
  fullname: Nuriev, Vyacheslav N.
– sequence: 4
  givenname: Vera S.
  surname: Semashko
  fullname: Semashko, Vera S.
– sequence: 5
  givenname: Andrei V.
  surname: Filatov
  fullname: Filatov, Andrei V.
– sequence: 6
  givenname: Alexander A.
  orcidid: 0000-0001-6221-3093
  surname: Ezhov
  fullname: Ezhov, Alexander A.
– sequence: 7
  givenname: Andrei V.
  surname: Churakov
  fullname: Churakov, Andrei V.
– sequence: 8
  givenname: Judith A. K.
  surname: Howard
  fullname: Howard, Judith A. K.
– sequence: 9
  givenname: Andrey A.
  orcidid: 0000-0002-2467-825X
  surname: Shiryaev
  fullname: Shiryaev, Andrey A.
– sequence: 10
  givenname: Alexander E.
  orcidid: 0000-0002-2378-7446
  surname: Baranchikov
  fullname: Baranchikov, Alexander E.
– sequence: 11
  givenname: Vladimir K.
  orcidid: 0000-0003-2343-2140
  surname: Ivanov
  fullname: Ivanov, Vladimir K.
– sequence: 12
  givenname: Sergey Z.
  orcidid: 0000-0001-7884-8579
  surname: Vatsadze
  fullname: Vatsadze, Sergey Z.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30641896$$D View this record in MEDLINE/PubMed
BookMark eNptkU9vFCEYh4mpsbX25N3M0URHYWCG4WKybdQ2adqDeib8eVlpWFhhxmR76mfyI_lJpN3abI0cgMDD83vJ-xztxRQBoZcEv6NU4PdRxSQwwXgUT9BBh7lomRBkb2e_j45KucJ1CELHnj5D-xQPjIxiOECLL_M6q1UKYOagcnOZl9W4hFCaY1XANik2F-0xxOtNeNtc_L751S7MJmhf1t76mEJ5gZ46FQoc3a-H6Nunj19PTtvzy89nJ4vz1jDGp1bzEY8D7TkYTWrlDrhzpKdYYzs4TqglTgnuQDNlYLB1IqPVCrCwjltBD9HZ1muTupLr7Fcqb2RSXt4dpLyUKk_eBJC6r5nOGG1FxxzDogPc9crhnhmGla2uD1vXetYrsAbilFV4JH18E_13uUw_Zf2AGBivgtf3gpx-zFAmufLFQAgqQpqL7AgXtOtHzCr6ajfrIeRvDyrwZguYnErJ4B4QguVtk-VOkytN_qGNn9Tk022hPvz3zR-JdKyC
CitedBy_id crossref_primary_10_1070_RCR5011
crossref_primary_10_1007_s11172_023_3729_x
crossref_primary_10_1021_acs_oprd_4c00086
crossref_primary_10_1134_S1070363222050061
crossref_primary_10_1016_j_mencom_2020_05_028
crossref_primary_10_1021_acsmedchemlett_1c00299
crossref_primary_10_1070_RCR4914
crossref_primary_10_3390_chemistry6030023
crossref_primary_10_3390_nano9091197
crossref_primary_10_1016_j_mencom_2021_04_023
crossref_primary_10_1134_S0012500821090019
crossref_primary_10_1016_j_jorganchem_2021_121945
Cites_doi 10.1070/RC2014v83n10ABEH004471
10.1039/C7CS00804J
10.1039/C6CS00124F
10.1002/poc.2909
10.1016/j.nucmedbio.2016.08.011
10.1002/chem.201703374
10.1002/chem.201702284
10.1016/j.mencom.2016.04.011
10.1107/S0108767307043930
10.1016/bs.adioch.2015.09.005
10.1002/chem.201404086
10.1002/(SICI)1099-0690(199912)1999:12<3479::AID-EJOC3479>3.0.CO;2-H
10.1002/jcc.20412
10.1002/anie.201405098
10.1007/1-4020-3689-2
10.1038/ncomms2499
10.1039/C8DT01108G
10.1080/15257770.2011.584513
10.1016/j.tet.2007.05.026
10.1002/9780470147290.ch3
10.1021/ja801804c
10.1021/ic4008685
10.1107/S1600536812030310
10.3762/bjoc.6.99
10.1107/S2052520616003954
10.1007/s11172-008-0303-5
10.1016/j.tet.2015.07.046
10.1134/S199079311207007X
10.1039/C7SC03301J
10.1039/B704456A
10.1016/j.ica.2017.08.022
10.1002/chem.201200986
10.2174/1568026615666150915111434
10.1021/jo0604991
10.1007/978-1-4471-7290-1
10.1016/j.chempr.2017.07.012
10.1039/c3cs60080g
10.1021/acsnano.7b00997
10.1021/ic4004214
10.1021/acsomega.6b00237
10.1016/j.tet.2014.09.009
10.1007/978-3-540-49527-7
10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B
10.1002/chem.201803292
10.1039/C7CS00163K
10.1002/9780470144428.ch9
10.1021/ja503363v
10.1016/j.tetlet.2011.11.112
10.1007/BF00753444
10.1021/cr9700282
10.1021/la7005919
10.1070/RCR4752
10.1002/anie.200800022
10.1039/b417081b
10.1039/C4MH00245H
10.1134/S1070428006080215
10.1134/S0036023615010027
10.1055/s-2008-1067241
10.1055/s-2007-1072754
10.1039/C8NJ01930D
10.1070/MC1999v009n03ABEH001097
10.1088/0031-9155/59/23/7419
10.1039/C6CS00435K
10.2310/7290.2010.00008
10.1002/hlca.201500505
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano9010089
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_b5c44fccbd924f4092e025af054c40ad
PMC6359647
30641896
10_3390_nano9010089
Genre Journal Article
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 16-13-00114
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c447t-b78086357ecb1390fe7ff1530b0d6f713d1fa97feb4ace6dace18dbae09df7d93
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:30:13 EDT 2025
Thu Aug 21 13:56:18 EDT 2025
Fri Jul 11 07:40:28 EDT 2025
Wed Feb 19 02:33:06 EST 2025
Tue Jul 01 01:16:40 EDT 2025
Thu Apr 24 22:54:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ATR spectroscopy
X-ray diffraction
AFM study
SEM
organic nanomaterials
TEM
bispidines
supramolecular gels
FTIR spectroscopy
SAXS
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-b78086357ecb1390fe7ff1530b0d6f713d1fa97feb4ace6dace18dbae09df7d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8731-6934
0000-0001-6221-3093
0000-0002-2467-825X
0000-0002-2378-7446
0000-0003-2343-2140
0000-0001-7884-8579
OpenAccessLink https://doaj.org/article/b5c44fccbd924f4092e025af054c40ad
PMID 30641896
PQID 2179325804
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b5c44fccbd924f4092e025af054c40ad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6359647
proquest_miscellaneous_2179325804
pubmed_primary_30641896
crossref_primary_10_3390_nano9010089
crossref_citationtrail_10_3390_nano9010089
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190111
PublicationDateYYYYMMDD 2019-01-11
PublicationDate_xml – month: 1
  year: 2019
  text: 20190111
  day: 11
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_54
ref_53
Ebead (ref_68) 2011; 30
Comba (ref_26) 2007; 55
Shlyakhtin (ref_58) 2012; 6
Atanasov (ref_29) 2006; 27
Vatsadze (ref_22) 1999; 9
Hirst (ref_40) 2008; 130
Holland (ref_4) 2010; 9
Draper (ref_33) 2017; 3
Weiss (ref_34) 2014; 136
Comba (ref_9) 2017; 23
Vatsadze (ref_25) 2016; 26
Champion (ref_3) 2014; 59
ref_60
Vatsadze (ref_55) 2006; 42
Paterson (ref_6) 2016; Volume 68
Abdallah (ref_36) 2000; 12
Lee (ref_7) 2016; 43
Groom (ref_65) 2016; 72
Sahoo (ref_48) 2012; 18
Zhang (ref_18) 2011; 396–398
Yang (ref_47) 2007; 23
Palyulin (ref_23) 1999; 2
ref_27
Kudryavtsev (ref_66) 2012; 68
Comba (ref_13) 2013; 52
Sangeetha (ref_35) 2005; 34
Kurkutova (ref_69) 1976; 17
Liu (ref_16) 2008; 2008
Stephan (ref_11) 2014; 20
Tomassoli (ref_12) 2016; 16
Kudryavtsev (ref_24) 2014; 70
Iliel (ref_64) 1991; Volume 20
Comba (ref_8) 2018; 47
Semashko (ref_56) 2008; 57
ref_31
Maekawa (ref_67) 2015; 71
Egorova (ref_10) 2016; 1
Breuning (ref_15) 2008; 2008
Zefirov (ref_21) 1991; 20
Sheldrick (ref_59) 2008; 64
Toom (ref_14) 2006; 71
ref_39
Lee (ref_51) 2017; 11
ref_38
Stucchi (ref_19) 2016; 99
Balakhonov (ref_57) 2015; 60
Amabilino (ref_30) 2017; 46
Morris (ref_50) 2013; 4
Ajayaghosh (ref_52) 2008; 37
Cui (ref_63) 2012; 25
Draper (ref_61) 2018; 47
Rossetti (ref_20) 2018; 42
Ananikov (ref_41) 2014; 83
ref_46
ref_45
ref_44
Terech (ref_37) 1997; 97
Haridas (ref_17) 2012; 53
Comba (ref_28) 2013; 52
ref_1
Hirst (ref_32) 2008; 47
ref_2
Smith (ref_43) 2007; 63
Desvergne (ref_42) 2010; 6
Dawn (ref_62) 2018; 24
ref_5
Cornwell (ref_49) 2014; 53
References_xml – volume: 83
  start-page: 885
  year: 2014
  ident: ref_41
  article-title: Development of new methods in modern selective organic synthesis: Preparation of functionalized molecules with atomic precision
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RC2014v83n10ABEH004471
– volume: 47
  start-page: 3395
  year: 2018
  ident: ref_61
  article-title: How should multicomponent supramolecular gels be characterised?
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00804J
– ident: ref_53
  doi: 10.1039/C6CS00124F
– volume: 25
  start-page: 814
  year: 2012
  ident: ref_63
  article-title: Degradation of dichloromethane by bispidine
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.2909
– volume: 43
  start-page: 781
  year: 2016
  ident: ref_7
  article-title: Copper-64 labeled liposomes for imaging bone marrow
  publication-title: Nucl. Med. Biol.
  doi: 10.1016/j.nucmedbio.2016.08.011
– volume: 24
  start-page: 762
  year: 2018
  ident: ref_62
  article-title: Low Molecular Weight Supramolecular Gels Under Shear: Rheology as the Tool for Elucidating Structure–Function Correlation
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.201703374
– volume: 23
  start-page: 15945
  year: 2017
  ident: ref_9
  article-title: Octadentate Picolinic Acid-Based Bispidine Ligand for Radiometal Ions
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.201702284
– volume: 26
  start-page: 212
  year: 2016
  ident: ref_25
  article-title: Computer modeling of ferrocene-substituted 3,7-diazabicyclo[3.3.1]nonanes as serine protease inhibitors
  publication-title: Mendeleev Commun.
  doi: 10.1016/j.mencom.2016.04.011
– volume: 64
  start-page: 112
  year: 2008
  ident: ref_59
  article-title: A short history of SHELX
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767307043930
– volume: Volume 68
  start-page: 223
  year: 2016
  ident: ref_6
  article-title: Macrocyclic Bifunctional Chelators and Conjugation Strategies for Copper-64 Radiopharmaceuticals
  publication-title: Advances in Inorganic Chemistry
  doi: 10.1016/bs.adioch.2015.09.005
– volume: 20
  start-page: 17011
  year: 2014
  ident: ref_11
  article-title: Bispidines for Dual Imaging
  publication-title: Chem. A Eur. J.
  doi: 10.1002/chem.201404086
– volume: 2
  start-page: 3479
  year: 1999
  ident: ref_23
  article-title: Conformational switching of 3,7-diacyl-3,7-diazabicyclo[3.3.1]nonanes by metal binding and by solvent changes
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/(SICI)1099-0690(199912)1999:12<3479::AID-EJOC3479>3.0.CO;2-H
– volume: 27
  start-page: 1263
  year: 2006
  ident: ref_29
  article-title: DFT models for copper(II) bispidine complexes: Structures, stabilities, isomerism, spin distribution, and spectroscopy
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20412
– volume: 53
  start-page: 12461
  year: 2014
  ident: ref_49
  article-title: Multidomain hybrid hydrogels: Spatially resolved photopatterned synthetic nanomaterials combining polymer and low-molecular-weight gelators
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201405098
– ident: ref_45
  doi: 10.1007/1-4020-3689-2
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_50
  article-title: Chemically programmed self-sorting of gelator networks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2499
– volume: 47
  start-page: 9202
  year: 2018
  ident: ref_8
  article-title: Bispidines for radiopharmaceuticals
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT01108G
– volume: 30
  start-page: 391
  year: 2011
  ident: ref_68
  article-title: Synthesis of cyclobutane nucleosides
  publication-title: Nucleosidesnucleotides Nucl. Acids
  doi: 10.1080/15257770.2011.584513
– volume: 63
  start-page: 7283
  year: 2007
  ident: ref_43
  article-title: Molecular gels-underpinning nanoscale materials with organic chemistry
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2007.05.026
– volume: Volume 20
  start-page: 171
  year: 1991
  ident: ref_64
  article-title: Conformational Analysis of Bicyclo[3.3.1]nonanes and Their Hetero Analogs
  publication-title: Topics in Stereochemistry
  doi: 10.1002/9780470147290.ch3
– volume: 130
  start-page: 9113
  year: 2008
  ident: ref_40
  article-title: Low-molecular-weight gelators: Elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801804c
– volume: 52
  start-page: 8131
  year: 2013
  ident: ref_28
  article-title: Optimization of Pentadentate Bispidines as Bifunctional Chelators for 64 Cu Positron Emission Tomography (PET)
  publication-title: Inorg. Chem.
  doi: 10.1021/ic4008685
– volume: 68
  start-page: o2373
  year: 2012
  ident: ref_66
  article-title: syn -3-(4-Chlorobenzyl)-1,5-dimethyl-3,7-diazabicyclo[3.3.1]nonan-9-ol
  publication-title: Acta Crystallogr. Sect. E Struct. Rep. Online
  doi: 10.1107/S1600536812030310
– volume: 6
  start-page: 846
  year: 2010
  ident: ref_42
  article-title: Organic gelators and hydrogelators
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.6.99
– volume: 72
  start-page: 171
  year: 2016
  ident: ref_65
  article-title: The Cambridge structural database
  publication-title: Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater.
  doi: 10.1107/S2052520616003954
– volume: 57
  start-page: 2207
  year: 2008
  ident: ref_56
  article-title: An NMR study of quaternary ammonium salts of 5,7-dimethyl-1,3- diazaadamantan-6-one
  publication-title: Russ. Chem. Bull.
  doi: 10.1007/s11172-008-0303-5
– volume: 71
  start-page: 6694
  year: 2015
  ident: ref_67
  article-title: Selective introduction of a trifluoroacetyl group onto 4-vinylpyridines through magnesium-promoted reduction
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2015.07.046
– ident: ref_38
– volume: 6
  start-page: 818
  year: 2012
  ident: ref_58
  article-title: Carboxylation of aromatic compounds in a supercritical carbon dioxide medium
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S199079311207007X
– ident: ref_31
  doi: 10.1039/C7SC03301J
– volume: 37
  start-page: 109
  year: 2008
  ident: ref_52
  article-title: Organogels as scaffolds for excitation energy transfer and light harvesting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B704456A
– ident: ref_27
  doi: 10.1016/j.ica.2017.08.022
– volume: 18
  start-page: 8057
  year: 2012
  ident: ref_48
  article-title: Gel sculpture: Moldable, load-bearing and self-healing non-polymeric supramolecular gel derived from a simple organic salt
  publication-title: Chemistry
  doi: 10.1002/chem.201200986
– volume: 20
  start-page: 171
  year: 1991
  ident: ref_21
  article-title: Topics in Stereochemistry
  publication-title: Top. Stereochem.
  doi: 10.1002/9780470147290.ch3
– volume: 16
  start-page: 1314
  year: 2016
  ident: ref_12
  article-title: Bispidine as a Privileged Scaffold
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026615666150915111434
– volume: 71
  start-page: 7155
  year: 2006
  ident: ref_14
  article-title: Substituent Effects on the Basicity of 3,7-Diazabicyclo[3.3.1]nonanes
  publication-title: J. Org. Chem.
  doi: 10.1021/jo0604991
– ident: ref_1
  doi: 10.1007/978-1-4471-7290-1
– volume: 3
  start-page: 390
  year: 2017
  ident: ref_33
  article-title: Low-Molecular-Weight Gels: The State of the Art
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.07.012
– ident: ref_60
  doi: 10.1039/c3cs60080g
– volume: 11
  start-page: 4155
  year: 2017
  ident: ref_51
  article-title: Ultraviolet Patterned Calixarene-Derived Supramolecular Gels and Films with Spatially Resolved Mechanical and Fluorescent Properties
  publication-title: Acs Nano
  doi: 10.1021/acsnano.7b00997
– volume: 52
  start-page: 6481
  year: 2013
  ident: ref_13
  article-title: Tuning of the properties of transition-metal bispidine complexes by variation of the basicity of the aromatic donor groups
  publication-title: Inorg. Chem.
  doi: 10.1021/ic4004214
– volume: 1
  start-page: 854
  year: 2016
  ident: ref_10
  article-title: Copper-Bispidine Complexes: Synthesis and Complex Stability Study
  publication-title: ACS Omega
  doi: 10.1021/acsomega.6b00237
– volume: 70
  start-page: 7854
  year: 2014
  ident: ref_24
  article-title: Synthesis of novel bridged dinitrogen heterocycles and their evaluation as potential fragments for the design of biologically active compounds
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2014.09.009
– ident: ref_5
  doi: 10.1007/978-3-540-49527-7
– volume: 12
  start-page: 1237
  year: 2000
  ident: ref_36
  article-title: Organogels and Low Molecular Mass Organic Gelators
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B
– ident: ref_54
  doi: 10.1002/chem.201803292
– volume: 46
  start-page: 2404
  year: 2017
  ident: ref_30
  article-title: Supramolecular materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00163K
– volume: 55
  start-page: 613
  year: 2007
  ident: ref_26
  article-title: Bispidine Coordination Chemistry
  publication-title: Prog. Inorg. Chem.
  doi: 10.1002/9780470144428.ch9
– volume: 136
  start-page: 7519
  year: 2014
  ident: ref_34
  article-title: The past, present, and future of molecular gels. What is the status of the field, and where is it going?
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503363v
– volume: 53
  start-page: 623
  year: 2012
  ident: ref_17
  article-title: Bispidine as a secondary structure nucleator in peptides
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2011.11.112
– ident: ref_44
– volume: 396–398
  start-page: 1236
  year: 2011
  ident: ref_18
  article-title: Synthesis of Chiral Tridentate Ligands Embodying the Bispidine Framework and their Application in the Enantioselective Addition of Diethylzinc to Aldehydes
  publication-title: Adv. Mater. Res.
– volume: 17
  start-page: 591
  year: 1976
  ident: ref_69
  article-title: Molecular Structure of 1-Methyl-5,7- diphenyl-1,3-diazaadamantan-6-one Iodide
  publication-title: J. Struct. Chem.
  doi: 10.1007/BF00753444
– volume: 97
  start-page: 3133
  year: 1997
  ident: ref_37
  article-title: Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels
  publication-title: Chem. Rev.
  doi: 10.1021/cr9700282
– volume: 23
  start-page: 8224
  year: 2007
  ident: ref_47
  article-title: Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives
  publication-title: Langmuir ACS J. Surf. Colloids
  doi: 10.1021/la7005919
– ident: ref_2
  doi: 10.1070/RCR4752
– volume: 47
  start-page: 8002
  year: 2008
  ident: ref_32
  article-title: High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: From regenerative medicine to electronic devices
  publication-title: Angew. Chem. (Int. Ed. Engl.)
  doi: 10.1002/anie.200800022
– volume: 34
  start-page: 821
  year: 2005
  ident: ref_35
  article-title: Supramolecular gels: Functions and uses
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b417081b
– ident: ref_39
  doi: 10.1039/C4MH00245H
– volume: 42
  start-page: 1225
  year: 2006
  ident: ref_55
  article-title: New stereoselective intramolecular redox reaction in the system of 3,7-diazabicyclo[3.3.1]nonan-9-one
  publication-title: Russ. J. Org. Chem.
  doi: 10.1134/S1070428006080215
– volume: 60
  start-page: 9
  year: 2015
  ident: ref_57
  article-title: Effect of supercritical drying parameters on the phase composition and morphology of aerogels based on vanadium oxide
  publication-title: Russ. J. Inorg. Chem.
  doi: 10.1134/S0036023615010027
– volume: 2008
  start-page: 2841
  year: 2008
  ident: ref_15
  article-title: Chiral Bispidines
  publication-title: Synthesis
  doi: 10.1055/s-2008-1067241
– volume: 2008
  start-page: 0647
  year: 2008
  ident: ref_16
  article-title: Asymmetric Aldol Reaction Using New Bispidine Catalysts
  publication-title: Synfacts
  doi: 10.1055/s-2007-1072754
– volume: 42
  start-page: 12072
  year: 2018
  ident: ref_20
  article-title: Application of chiral bi- and tetra-dentate bispidine-derived ligands in the copper(II)-catalyzed asymmetric Henry reaction
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ01930D
– volume: 9
  start-page: XXVI
  year: 1999
  ident: ref_22
  article-title: First 1H NMR observation of chair-boat conformers in bispidinone system. Molecular structure of 3,7-diisopropyl-1,5-diphenyl-3,7-diazabicyclo-[3.3.1]nonane-9-one
  publication-title: Mendeleev Commun.
  doi: 10.1070/MC1999v009n03ABEH001097
– volume: 59
  start-page: 7419
  year: 2014
  ident: ref_3
  article-title: Positron range in PET imaging: Non-conventional isotopes
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/23/7419
– ident: ref_46
  doi: 10.1039/C6CS00435K
– volume: 9
  start-page: 1
  year: 2010
  ident: ref_4
  article-title: Unconventional Nuclides for Radiopharmaceuticals
  publication-title: Mol. Imaging
  doi: 10.2310/7290.2010.00008
– volume: 99
  start-page: 315
  year: 2016
  ident: ref_19
  article-title: Split- Ugi Reaction with Chiral Compounds: Synthesis of Piperazine- and Bispidine-Based Peptidomimetics
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.201500505
SSID ssj0000913853
Score 2.1378238
Snippet The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess...
The acylation of unsymmetrical -benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess...
The acylation of unsymmetrical N -benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 89
SubjectTerms AFM study
ATR spectroscopy
bispidines
FTIR spectroscopy
organic nanomaterials
SAXS
SEM
supramolecular gels
TEM
X-ray diffraction
Title Supramolecular Organogels Based on N-Benzyl, N′-Acylbispidinols
URI https://www.ncbi.nlm.nih.gov/pubmed/30641896
https://www.proquest.com/docview/2179325804
https://pubmed.ncbi.nlm.nih.gov/PMC6359647
https://doaj.org/article/b5c44fccbd924f4092e025af054c40ad
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60XvQgvq2PEqEnMXSTbF7HRlpFsIhY6C3sUwt1U_o41JO_yZ_kL3E2aUsqBS9eckgWMswk830fOzuDUB0YLGYuoTb2qdlmNC1vReDZMaE0oIDpMq_NeewE913y0PN7pVFfpiasaA9cOK7BfE6I4pwJUAoK1IgrAaapAqrBCabCZF_AvJKYynNw7HgARMWBPA90fUNTnZlSBGwGupcgKO_Uv45e_q6SLMFOew_tzvmi1Szs3EcbUh-gnVIXwUPIjNPhiL4v5txa-fHK7BVAz0oAo4SVaatjJ1J_zAY3Vuf788tu8tmA9cfDPiBXNhgfoW679XJ7b88nI9jgjHBiszACKeL5oeQMKBxWMlQKchdmWAQKdKdwFI1DJRmhXAYCLk4kGJU4FioUsXeMKjrT8hRZARAyL5KxwtQnoXQpjiT3BcGRChzpkyq6Xjgr5fO24WZ6xSAF-WA8m5Y8W0X15eJh0S1j_bLEeH25xLS4zm9A4NN54NO_Al9FV4uYpfBLmH0OqmU2HaeuSTquH2Ew_qSI4fJVRnA5URxUUbgS3RVbVp_o_lvedhv8bY7tnv2H8edoG5iXqVSzHecCVSajqbwEdjNhNbQZte9qaCtpdZ6ea_ln_QNZzf3g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Organogels+Based+on+N-Benzyl%2C+N%E2%80%B2-Acylbispidinols&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Medved%E2%80%99ko%2C+Alexey+V.&rft.au=Dalinger%2C+Alexander+I.&rft.au=Nuriev%2C+Vyacheslav+N.&rft.au=Semashko%2C+Vera+S.&rft.date=2019-01-11&rft.issn=2079-4991&rft.eissn=2079-4991&rft.volume=9&rft.issue=1&rft.spage=89&rft_id=info:doi/10.3390%2Fnano9010089&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_nano9010089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon