A new approach to multi-phase formulation for the solidification of alloys
This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach. The phase field formulation of solidification for alloys with multiple solid phases is formed by relating tim...
Saved in:
Published in | Physica. D Vol. 241; no. 8; pp. 816 - 829 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.04.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0167-2789 1872-8022 |
DOI | 10.1016/j.physd.2012.01.006 |
Cover
Loading…
Abstract | This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach.
The phase field formulation of solidification for alloys with multiple solid phases is formed by relating time derivatives of each variable of the system (e.g., phases and alloy concentration), to the variational derivative of free energy with respect to that variable, in such a way as to ensure positive local entropy production. Contributions to the free energy include the free energy density, which drives the system, and a penalty term for the phase field gradients, which ensures continuity in the variables. The phase field equations are supplemented by a constraint guaranteeing that at any point in space and time the phases sum to unity. How this constraint enters the formulation is the subject of this paper, which postulates and justifies an alternative to current methods.
► Identifies three major defects in the standard Lagrange Multiplier formulation of phase-field modelling of solidification. ► Proposes a set of attributes that a successful formulation must have. ► Identifies where the degree of freedom lies in the system to allow a formulation that satisfies the above criteria. ► Proposes alternatives that satisfy the criteria. ► Numerical results are given which support the new model. |
---|---|
AbstractList | This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach. The phase field formulation of solidification for alloys with multiple solid phases is formed by relating time derivatives of each variable of the system (e.g., phases and alloy concentration), to the variational derivative of free energy with respect to that variable, in such a way as to ensure positive local entropy production. Contributions to the free energy include the free energy density, which drives the system, and a penalty term for the phase field gradients, which ensures continuity in the variables. The phase field equations are supplemented by a constraint guaranteeing that at any point in space and time the phases sum to unity. How this constraint enters the formulation is the subject of this paper, which postulates and justifies an alternative to current methods. This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach. The phase field formulation of solidification for alloys with multiple solid phases is formed by relating time derivatives of each variable of the system (e.g., phases and alloy concentration), to the variational derivative of free energy with respect to that variable, in such a way as to ensure positive local entropy production. Contributions to the free energy include the free energy density, which drives the system, and a penalty term for the phase field gradients, which ensures continuity in the variables. The phase field equations are supplemented by a constraint guaranteeing that at any point in space and time the phases sum to unity. How this constraint enters the formulation is the subject of this paper, which postulates and justifies an alternative to current methods. ► Identifies three major defects in the standard Lagrange Multiplier formulation of phase-field modelling of solidification. ► Proposes a set of attributes that a successful formulation must have. ► Identifies where the degree of freedom lies in the system to allow a formulation that satisfies the above criteria. ► Proposes alternatives that satisfy the criteria. ► Numerical results are given which support the new model. |
Author | Bollada, P.C. Mullis, A.M. Jimack, P.K. |
Author_xml | – sequence: 1 givenname: P.C. surname: Bollada fullname: Bollada, P.C. email: p.c.bollada@leeds.ac.uk – sequence: 2 givenname: P.K. surname: Jimack fullname: Jimack, P.K. – sequence: 3 givenname: A.M. surname: Mullis fullname: Mullis, A.M. |
BookMark | eNqFkD1PwzAURS1UJNrCL2DJyJLw7ES2MzBUFZ-qxAKz5fpDcZXGwXZB_fe4LRMDTM_Puse6PjM0GfxgELrGUGHA9HZTjd0-6ooAJhXgCoCeoSnmjJQcCJmgaU6xkjDeXqBZjBsAwKxmU_SyKAbzVchxDF6qrki-2O765Mqxk9EU1oe8yuT8cDgXqTNF9L3Tzjp1uva2kH3v9_ESnVvZR3P1M-fo_eH-bflUrl4fn5eLVamahqVyTZlsoJUWaM1wK7XiBEvFKVG8BdwQWWsKawoNra2imjBjLGeYSA2MaF3P0c3p3Vz5Y2diElsXlel7ORi_iyL_FDfAOcc52p6iKvgYg7FCuXSsnYJ0vcAgDv7ERhz9iYM_AVhkf5mtf7FjcFsZ9v9QdyfKZAOfzgQRlTODMtoFo5LQ3v3JfwOHGo1M |
CitedBy_id | crossref_primary_10_1016_j_actamat_2013_01_041 crossref_primary_10_1016_j_mtla_2021_101000 crossref_primary_10_1016_j_ijplas_2020_102914 crossref_primary_10_1016_j_actamat_2015_12_013 crossref_primary_10_1103_PhysRevB_91_174109 crossref_primary_10_1016_j_commatsci_2023_112779 crossref_primary_10_1016_j_commatsci_2016_09_036 crossref_primary_10_3390_met12020272 crossref_primary_10_1108_HFF_01_2019_0076 crossref_primary_10_4028_www_scientific_net_MSF_790_791_103 crossref_primary_10_1016_j_commatsci_2019_109085 crossref_primary_10_1016_j_jcp_2018_01_041 crossref_primary_10_1103_PhysRevB_92_184105 crossref_primary_10_1080_17797179_2016_1276395 crossref_primary_10_1016_j_actamat_2022_118169 crossref_primary_10_1016_j_physb_2021_412986 crossref_primary_10_1016_j_cpc_2012_05_013 crossref_primary_10_1016_j_jmrt_2024_11_088 crossref_primary_10_1103_PhysRevE_93_013126 crossref_primary_10_2355_isijinternational_ISIJINT_2019_305 crossref_primary_10_1016_j_pmatsci_2019_05_002 crossref_primary_10_1016_j_jmps_2018_01_014 crossref_primary_10_1039_C6CP00943C crossref_primary_10_1021_jacsau_1c00026 crossref_primary_10_1103_PhysRevE_98_023309 |
Cites_doi | 10.1016/j.matcom.2009.10.007 10.1016/S0167-2789(97)00227-3 10.1088/0965-0393/17/7/073001 10.1016/S1359-6454(02)00601-8 10.1016/0956-7151(94)00285-P 10.1103/PhysRevE.83.051608 10.1016/S1359-6454(01)00133-1 10.1016/0167-2789(93)90242-S 10.1103/PhysRevE.72.011602 10.1016/j.commatsci.2011.08.030 10.1016/j.physa.2005.05.024 10.1103/PhysRevE.74.061605 10.1103/PhysRevLett.83.2853 10.1016/S0022-0248(02)01976-0 10.1016/0167-2789(95)00298-7 10.1016/S0167-2789(97)00226-1 10.1016/S0167-2789(99)00129-3 10.1016/S0167-2789(00)00035-X 10.1016/S0022-0248(01)00867-3 10.1103/PhysRevA.45.7424 10.1016/S0167-2789(99)00184-0 10.1016/j.jcrysgro.2009.07.031 10.1016/0167-2789(93)90120-P |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. |
Copyright_xml | – notice: 2012 Elsevier B.V. |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1016/j.physd.2012.01.006 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-8022 |
EndPage | 829 |
ExternalDocumentID | 10_1016_j_physd_2012_01_006 S0167278912000206 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMV HZ~ IHE J1W K-O KOM M38 M41 MHUIS MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSW T5K TN5 TWZ XPP YNT ~02 ~G- 29O AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACRPL ADIYS ADNMO ADVLN AEIPS AFFNX AFJKZ AFXIZ AGCQF AGHFR AGQPQ AGRNS AIIUN ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HVGLF H~9 MVM NDZJH R2- SEW SPG SSH SSZ WUQ XJT YYP 7U5 8FD EFKBS L7M |
ID | FETCH-LOGICAL-c447t-b67a409af063719adc821ac862c890142a3d60b60463fc6d27eef8712ad072dd3 |
IEDL.DBID | .~1 |
ISSN | 0167-2789 |
IngestDate | Mon Jul 21 10:21:16 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 Tue Jul 01 02:39:52 EDT 2025 Fri Feb 23 02:33:30 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Crystal growth Multi-phase Lagrange multiplier Eutectic Phase field Solidification |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-b67a409af063719adc821ac862c890142a3d60b60463fc6d27eef8712ad072dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167278912000206 |
PQID | 1671408881 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1671408881 crossref_citationtrail_10_1016_j_physd_2012_01_006 crossref_primary_10_1016_j_physd_2012_01_006 elsevier_sciencedirect_doi_10_1016_j_physd_2012_01_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-15 |
PublicationDateYYYYMMDD | 2012-04-15 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Physica. D |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kobayashi (br000015) 1993; 63 Mullis, Cochrane (br000040) 2001; 49 Kobayashi, Warren (br000125) 2005; 356 Nestler, Wheeler, Ratke, Stöcker (br000065) 2000; 141 Lobkovsky, Warren (br000010) 2001; 225 Mullis (br000005) 2003; 51 Brush (br000035) 2003; 247 Tiaden (br000090) 1998; 115 Folch, Plapp (br000025) 2005; 72 Steinbach (br000060) 2009; 17 Steinbach, Pezzolla, Nestler, Seeszelberg, Prieler, Schmitz, Rezende (br000085) 1996 Kim, Kim, Kim, Park (br000115) 2006; 74 Nestler (br000070) 2000; 138 Choudhury, Plapp, Nestler (br000105) 2011; 83 Vanherpe, Wendler, Nestler, Vandewalle (br000080) 2010; 80 Porter, Easterling (br000135) 1992 T. Langer, A. Belyaev, H.-P. Seidel, Spherical Barycentric Coordinates, 2006. Hirouchi, Tsuru, Shibutani (br000100) 2012; 53 Garcke, Nestler, Stoth (br000075) 1998; 115 Wheeler, Boettinger, McFadden (br000020) 1992; 45 Steinbach (br000095) 1999; 134 Lovelock, Rund (br000120) 1989 Sun, Beckermann (br000030) 2009; 311 Börzsönyi, Katona, Buka, Gránásy (br000045) 1999; 83 Warren, Boettinger (br000055) 1995; 43 Wheeler, Murray, Schaefer (br000050) 1993; 66 James R. Green, A comparison of multiphase models and techniques, Thesis, Leeds University, School of Computing and Institute for Materials Research, 2007. Nestler (10.1016/j.physd.2012.01.006_br000070) 2000; 138 Nestler (10.1016/j.physd.2012.01.006_br000065) 2000; 141 Lovelock (10.1016/j.physd.2012.01.006_br000120) 1989 Garcke (10.1016/j.physd.2012.01.006_br000075) 1998; 115 Warren (10.1016/j.physd.2012.01.006_br000055) 1995; 43 Steinbach (10.1016/j.physd.2012.01.006_br000085) 1996 Choudhury (10.1016/j.physd.2012.01.006_br000105) 2011; 83 Steinbach (10.1016/j.physd.2012.01.006_br000060) 2009; 17 Kim (10.1016/j.physd.2012.01.006_br000115) 2006; 74 Mullis (10.1016/j.physd.2012.01.006_br000040) 2001; 49 Sun (10.1016/j.physd.2012.01.006_br000030) 2009; 311 Lobkovsky (10.1016/j.physd.2012.01.006_br000010) 2001; 225 Kobayashi (10.1016/j.physd.2012.01.006_br000015) 1993; 63 Brush (10.1016/j.physd.2012.01.006_br000035) 2003; 247 Porter (10.1016/j.physd.2012.01.006_br000135) 1992 Wheeler (10.1016/j.physd.2012.01.006_br000050) 1993; 66 Kobayashi (10.1016/j.physd.2012.01.006_br000125) 2005; 356 Wheeler (10.1016/j.physd.2012.01.006_br000020) 1992; 45 Tiaden (10.1016/j.physd.2012.01.006_br000090) 1998; 115 Börzsönyi (10.1016/j.physd.2012.01.006_br000045) 1999; 83 Mullis (10.1016/j.physd.2012.01.006_br000005) 2003; 51 Hirouchi (10.1016/j.physd.2012.01.006_br000100) 2012; 53 Folch (10.1016/j.physd.2012.01.006_br000025) 2005; 72 10.1016/j.physd.2012.01.006_br000110 Vanherpe (10.1016/j.physd.2012.01.006_br000080) 2010; 80 10.1016/j.physd.2012.01.006_br000130 Steinbach (10.1016/j.physd.2012.01.006_br000095) 1999; 134 |
References_xml | – volume: 66 start-page: 243 year: 1993 end-page: 262 ident: br000050 article-title: Computation of dendrites using a phase field model publication-title: Phys. D: Nonlinear Phenom. – volume: 141 start-page: 133 year: 2000 end-page: 154 ident: br000065 article-title: Phase-field model for solidification of a monotectic alloy with convection publication-title: Physica D – volume: 83 start-page: 051608+ year: 2011 ident: br000105 article-title: Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys publication-title: Phys. Rev. E – volume: 51 start-page: 1959 year: 2003 end-page: 1969 ident: br000005 article-title: A study of kinetically limited dendritic growth at high undercooling using phase-field techniques publication-title: Acta Mater. – volume: 45 start-page: 7424 year: 1992 end-page: 7439 ident: br000020 article-title: Phase-field model for isothermal phase transitions in binary alloys publication-title: Phys. Rev. A – volume: 115 start-page: 73 year: 1998 end-page: 86 ident: br000090 article-title: The multiphase-field model with an integrated concept for modelling solute diffusion publication-title: Physica D – volume: 74 start-page: 061605+ year: 2006 ident: br000115 article-title: Computer simulations of two-dimensional and three-dimensional ideal grain growth publication-title: Phys. Rev. E – volume: 134 start-page: 385 year: 1999 end-page: 393 ident: br000095 article-title: A generalized field method for multiphase transformations using interface fields publication-title: Physica D – volume: 83 start-page: 2853 year: 1999 end-page: 2856 ident: br000045 article-title: Dendrites regularized by spatially homogeneous time-periodic forcing publication-title: Phys. Rev. Lett. – volume: 225 start-page: 282 year: 2001 end-page: 288 ident: br000010 article-title: Phase-field model of crystal grains publication-title: J. Cryst. Growth – reference: James R. Green, A comparison of multiphase models and techniques, Thesis, Leeds University, School of Computing and Institute for Materials Research, 2007. – volume: 311 start-page: 4447 year: 2009 end-page: 4453 ident: br000030 article-title: Effect of solid–liquid density change on dendrite tip velocity and shape selection publication-title: J. Cryst. Growth – start-page: 135 year: 1996 end-page: 147 ident: br000085 article-title: A phase field concept for multiphase systems publication-title: Physica D – reference: T. Langer, A. Belyaev, H.-P. Seidel, Spherical Barycentric Coordinates, 2006. – volume: 43 start-page: 689 year: 1995 end-page: 703 ident: br000055 article-title: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method publication-title: Acta Metall. Mater. – volume: 53 start-page: 474 year: 2012 end-page: 482 ident: br000100 article-title: Grain growth prediction with inclination dependence of 110 tilt grain boundary using multi-phase-field model with penalty for multiple junctions publication-title: Comput. Mater. Sci. – volume: 356 start-page: 127 year: 2005 end-page: 132 ident: br000125 article-title: Modeling the formation and dynamics of polycrystals in 3D publication-title: Physica A – volume: 115 start-page: 87 year: 1998 end-page: 108 ident: br000075 article-title: On anisotropic order parameter models for multi-phase systems and their sharp interface limits publication-title: Phys. D: Nonlinear Phenom. – volume: 138 start-page: 114 year: 2000 end-page: 133 ident: br000070 article-title: A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures publication-title: Phys. D: Nonlinear Phenom. – volume: 49 start-page: 2205 year: 2001 end-page: 2214 ident: br000040 article-title: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts publication-title: Acta Mater. – volume: 80 start-page: 1438 year: 2010 end-page: 1448 ident: br000080 article-title: A multigrid solver for phase field simulation of microstructure evolution publication-title: Math. Comput. Simul. – volume: 72 start-page: 011602+ year: 2005 ident: br000025 article-title: Quantitative phase-field modeling of two-phase growth publication-title: Phys. Rev. E – year: 1992 ident: br000135 article-title: Phase Transformations in Metals and Alloys – year: 1989 ident: br000120 article-title: Tensors, Differential Forms, and Variational Principles – volume: 247 start-page: 587 year: 2003 end-page: 596 ident: br000035 article-title: A phase field model with electric current publication-title: J. Cryst. Growth – volume: 17 start-page: 073001+ year: 2009 ident: br000060 article-title: Phase-field models in materials science publication-title: Modelling Simul. Mater. Sci. Eng. – volume: 63 start-page: 410 year: 1993 end-page: 423 ident: br000015 article-title: Modeling and numerical simulations of dendritic crystal growth publication-title: Phys. D: Nonlinear Phenom. – volume: 80 start-page: 1438 year: 2010 ident: 10.1016/j.physd.2012.01.006_br000080 article-title: A multigrid solver for phase field simulation of microstructure evolution publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2009.10.007 – volume: 115 start-page: 87 year: 1998 ident: 10.1016/j.physd.2012.01.006_br000075 article-title: On anisotropic order parameter models for multi-phase systems and their sharp interface limits publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/S0167-2789(97)00227-3 – volume: 17 start-page: 073001+ year: 2009 ident: 10.1016/j.physd.2012.01.006_br000060 article-title: Phase-field models in materials science publication-title: Modelling Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/17/7/073001 – volume: 51 start-page: 1959 year: 2003 ident: 10.1016/j.physd.2012.01.006_br000005 article-title: A study of kinetically limited dendritic growth at high undercooling using phase-field techniques publication-title: Acta Mater. doi: 10.1016/S1359-6454(02)00601-8 – ident: 10.1016/j.physd.2012.01.006_br000130 – volume: 43 start-page: 689 year: 1995 ident: 10.1016/j.physd.2012.01.006_br000055 article-title: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)00285-P – volume: 83 start-page: 051608+ year: 2011 ident: 10.1016/j.physd.2012.01.006_br000105 article-title: Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.051608 – volume: 49 start-page: 2205 year: 2001 ident: 10.1016/j.physd.2012.01.006_br000040 article-title: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00133-1 – volume: 66 start-page: 243 year: 1993 ident: 10.1016/j.physd.2012.01.006_br000050 article-title: Computation of dendrites using a phase field model publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/0167-2789(93)90242-S – year: 1989 ident: 10.1016/j.physd.2012.01.006_br000120 – volume: 72 start-page: 011602+ year: 2005 ident: 10.1016/j.physd.2012.01.006_br000025 article-title: Quantitative phase-field modeling of two-phase growth publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.011602 – volume: 53 start-page: 474 year: 2012 ident: 10.1016/j.physd.2012.01.006_br000100 article-title: Grain growth prediction with inclination dependence of 110 tilt grain boundary using multi-phase-field model with penalty for multiple junctions publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.08.030 – volume: 356 start-page: 127 year: 2005 ident: 10.1016/j.physd.2012.01.006_br000125 article-title: Modeling the formation and dynamics of polycrystals in 3D publication-title: Physica A doi: 10.1016/j.physa.2005.05.024 – volume: 74 start-page: 061605+ year: 2006 ident: 10.1016/j.physd.2012.01.006_br000115 article-title: Computer simulations of two-dimensional and three-dimensional ideal grain growth publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.061605 – volume: 83 start-page: 2853 year: 1999 ident: 10.1016/j.physd.2012.01.006_br000045 article-title: Dendrites regularized by spatially homogeneous time-periodic forcing publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.2853 – volume: 247 start-page: 587 year: 2003 ident: 10.1016/j.physd.2012.01.006_br000035 article-title: A phase field model with electric current publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)01976-0 – start-page: 135 year: 1996 ident: 10.1016/j.physd.2012.01.006_br000085 article-title: A phase field concept for multiphase systems publication-title: Physica D doi: 10.1016/0167-2789(95)00298-7 – volume: 115 start-page: 73 year: 1998 ident: 10.1016/j.physd.2012.01.006_br000090 article-title: The multiphase-field model with an integrated concept for modelling solute diffusion publication-title: Physica D doi: 10.1016/S0167-2789(97)00226-1 – volume: 134 start-page: 385 year: 1999 ident: 10.1016/j.physd.2012.01.006_br000095 article-title: A generalized field method for multiphase transformations using interface fields publication-title: Physica D doi: 10.1016/S0167-2789(99)00129-3 – volume: 141 start-page: 133 year: 2000 ident: 10.1016/j.physd.2012.01.006_br000065 article-title: Phase-field model for solidification of a monotectic alloy with convection publication-title: Physica D doi: 10.1016/S0167-2789(00)00035-X – ident: 10.1016/j.physd.2012.01.006_br000110 – year: 1992 ident: 10.1016/j.physd.2012.01.006_br000135 – volume: 225 start-page: 282 year: 2001 ident: 10.1016/j.physd.2012.01.006_br000010 article-title: Phase-field model of crystal grains publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(01)00867-3 – volume: 45 start-page: 7424 year: 1992 ident: 10.1016/j.physd.2012.01.006_br000020 article-title: Phase-field model for isothermal phase transitions in binary alloys publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.7424 – volume: 138 start-page: 114 year: 2000 ident: 10.1016/j.physd.2012.01.006_br000070 article-title: A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/S0167-2789(99)00184-0 – volume: 311 start-page: 4447 year: 2009 ident: 10.1016/j.physd.2012.01.006_br000030 article-title: Effect of solid–liquid density change on dendrite tip velocity and shape selection publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.07.031 – volume: 63 start-page: 410 year: 1993 ident: 10.1016/j.physd.2012.01.006_br000015 article-title: Modeling and numerical simulations of dendritic crystal growth publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/0167-2789(93)90120-P |
SSID | ssj0001737 |
Score | 2.160408 |
Snippet | This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 816 |
SubjectTerms | Alloys Crystal growth Density Derivatives Dynamical systems Entropy Eutectic Free energy Lagrange multiplier Mathematical models Multi-phase Phase field Solidification |
Title | A new approach to multi-phase formulation for the solidification of alloys |
URI | https://dx.doi.org/10.1016/j.physd.2012.01.006 https://www.proquest.com/docview/1671408881 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEfQgOhXnx4jg0bomXdPuOIZjTtxFB7uFNElxIu1w3cGLf7vvpa1f4A7e2pKE9uX1feT98gshl5zHMVOceUkSGUhQhPASCHO9FNyd7bFUWYMbnO8nYjTtjmfhrEEG9V4YhFVWtr-06c5aV086lTQ7i_m884AAetzHybirpyHtNrLXgU5fv3_BPFhU8mYivze2rpmHHMYLVw-QLhQXBBlCvP7yTr_stHM-wz2yW0WNtF--2D5p2KxJdr5xCTbJlsNy6uUBGfcpxMq0ZgunRU4dbNBbPIHLohilVmd24TWFCJCCAs4NgobKx3lKsR7_tjwk0-HN42DkVUcmeBq-vQA5RwoyNgWiDiLWU0bHnCkNaYuOsWDKVWCEnwjkCUu1MDyyNoWciSvjR9yY4IhsZHlmjwkVoYJxEs2Yirq-invc-iYMQw4xpgpt0CK8FpXUFZ84HmvxImvg2LN08pUoX-kzCfJtkavPTouSTmN9c1HPgfyhFRIM_vqOF_WMSfhfsAiiMpuvlhL0AHJKyPvZyX8HPyXbeIc1JRaekY3idWXPITQpkrbTvTbZ7N_ejSYfuoHifg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qi6gH8Yn1GcGjSzfpbnZ7LGLp-6KF3kJ2k8WKtMVuD_57Z_ZRVNCDtyWbhGUyO4_Mly8Ad0KEIdeCO1EUGExQpHQiDHOdBN2dbfFEW0MHnEdj2Z14_ak_rcBDeRaGYJWF7c9temati5ZGIc3GcjZrPBGAns5xcpHV0-QW1IidyqtCrd0bdMcbg8yDnDqTKL5pQEk-lMG8aAOBGENpT5ATyus3B_XDVGf-p3MA-0XgyNr5tx1Cxc6PYO8LneARbGdwznh1DP02w3CZlYThLF2wDDnoLF_QazEKVItru-iZYRDIUAdnhnBDefMiYVSS_1idwKTz-PzQdYpbE5zY84IURR1oTNo0SrsZ8JY2cSi4jjFziUOqmQrdNNKNJFGFJbE0IrA2wbRJaOMGwpjmKVTni7k9AyZ9jfNEMec68FwdtoR1je_7AsNM7dtmHUQpKhUXlOJ0s8WbKrFjryqTryL5KpcrlG8d7jeDljmjxt_dZbkG6ptiKLT5fw-8LVdM4S9DdRA9t4v1SqEeYFqJqT8__-_kN7DTfR4N1bA3HlzALr2hEhP3L6Gavq_tFUYqaXRdaOInh0PlLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+to+multi-phase+formulation+for+the+solidification+of+alloys&rft.jtitle=Physica.+D&rft.au=Bollada%2C+P.C.&rft.au=Jimack%2C+P.K.&rft.au=Mullis%2C+A.M.&rft.date=2012-04-15&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=241&rft.issue=8&rft.spage=816&rft.epage=829&rft_id=info:doi/10.1016%2Fj.physd.2012.01.006&rft.externalDocID=S0167278912000206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |