A new approach to multi-phase formulation for the solidification of alloys

This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach. The phase field formulation of solidification for alloys with multiple solid phases is formed by relating tim...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 241; no. 8; pp. 816 - 829
Main Authors Bollada, P.C., Jimack, P.K., Mullis, A.M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.04.2012
Subjects
Online AccessGet full text
ISSN0167-2789
1872-8022
DOI10.1016/j.physd.2012.01.006

Cover

Loading…
Abstract This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach. The phase field formulation of solidification for alloys with multiple solid phases is formed by relating time derivatives of each variable of the system (e.g., phases and alloy concentration), to the variational derivative of free energy with respect to that variable, in such a way as to ensure positive local entropy production. Contributions to the free energy include the free energy density, which drives the system, and a penalty term for the phase field gradients, which ensures continuity in the variables. The phase field equations are supplemented by a constraint guaranteeing that at any point in space and time the phases sum to unity. How this constraint enters the formulation is the subject of this paper, which postulates and justifies an alternative to current methods. ► Identifies three major defects in the standard Lagrange Multiplier formulation of phase-field modelling of solidification. ► Proposes a set of attributes that a successful formulation must have. ► Identifies where the degree of freedom lies in the system to allow a formulation that satisfies the above criteria. ► Proposes alternatives that satisfy the criteria. ► Numerical results are given which support the new model.
AbstractList This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach. The phase field formulation of solidification for alloys with multiple solid phases is formed by relating time derivatives of each variable of the system (e.g., phases and alloy concentration), to the variational derivative of free energy with respect to that variable, in such a way as to ensure positive local entropy production. Contributions to the free energy include the free energy density, which drives the system, and a penalty term for the phase field gradients, which ensures continuity in the variables. The phase field equations are supplemented by a constraint guaranteeing that at any point in space and time the phases sum to unity. How this constraint enters the formulation is the subject of this paper, which postulates and justifies an alternative to current methods.
This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and offers an alternative approach. The phase field formulation of solidification for alloys with multiple solid phases is formed by relating time derivatives of each variable of the system (e.g., phases and alloy concentration), to the variational derivative of free energy with respect to that variable, in such a way as to ensure positive local entropy production. Contributions to the free energy include the free energy density, which drives the system, and a penalty term for the phase field gradients, which ensures continuity in the variables. The phase field equations are supplemented by a constraint guaranteeing that at any point in space and time the phases sum to unity. How this constraint enters the formulation is the subject of this paper, which postulates and justifies an alternative to current methods. ► Identifies three major defects in the standard Lagrange Multiplier formulation of phase-field modelling of solidification. ► Proposes a set of attributes that a successful formulation must have. ► Identifies where the degree of freedom lies in the system to allow a formulation that satisfies the above criteria. ► Proposes alternatives that satisfy the criteria. ► Numerical results are given which support the new model.
Author Bollada, P.C.
Mullis, A.M.
Jimack, P.K.
Author_xml – sequence: 1
  givenname: P.C.
  surname: Bollada
  fullname: Bollada, P.C.
  email: p.c.bollada@leeds.ac.uk
– sequence: 2
  givenname: P.K.
  surname: Jimack
  fullname: Jimack, P.K.
– sequence: 3
  givenname: A.M.
  surname: Mullis
  fullname: Mullis, A.M.
BookMark eNqFkD1PwzAURS1UJNrCL2DJyJLw7ES2MzBUFZ-qxAKz5fpDcZXGwXZB_fe4LRMDTM_Puse6PjM0GfxgELrGUGHA9HZTjd0-6ooAJhXgCoCeoSnmjJQcCJmgaU6xkjDeXqBZjBsAwKxmU_SyKAbzVchxDF6qrki-2O765Mqxk9EU1oe8yuT8cDgXqTNF9L3Tzjp1uva2kH3v9_ESnVvZR3P1M-fo_eH-bflUrl4fn5eLVamahqVyTZlsoJUWaM1wK7XiBEvFKVG8BdwQWWsKawoNra2imjBjLGeYSA2MaF3P0c3p3Vz5Y2diElsXlel7ORi_iyL_FDfAOcc52p6iKvgYg7FCuXSsnYJ0vcAgDv7ERhz9iYM_AVhkf5mtf7FjcFsZ9v9QdyfKZAOfzgQRlTODMtoFo5LQ3v3JfwOHGo1M
CitedBy_id crossref_primary_10_1016_j_actamat_2013_01_041
crossref_primary_10_1016_j_mtla_2021_101000
crossref_primary_10_1016_j_ijplas_2020_102914
crossref_primary_10_1016_j_actamat_2015_12_013
crossref_primary_10_1103_PhysRevB_91_174109
crossref_primary_10_1016_j_commatsci_2023_112779
crossref_primary_10_1016_j_commatsci_2016_09_036
crossref_primary_10_3390_met12020272
crossref_primary_10_1108_HFF_01_2019_0076
crossref_primary_10_4028_www_scientific_net_MSF_790_791_103
crossref_primary_10_1016_j_commatsci_2019_109085
crossref_primary_10_1016_j_jcp_2018_01_041
crossref_primary_10_1103_PhysRevB_92_184105
crossref_primary_10_1080_17797179_2016_1276395
crossref_primary_10_1016_j_actamat_2022_118169
crossref_primary_10_1016_j_physb_2021_412986
crossref_primary_10_1016_j_cpc_2012_05_013
crossref_primary_10_1016_j_jmrt_2024_11_088
crossref_primary_10_1103_PhysRevE_93_013126
crossref_primary_10_2355_isijinternational_ISIJINT_2019_305
crossref_primary_10_1016_j_pmatsci_2019_05_002
crossref_primary_10_1016_j_jmps_2018_01_014
crossref_primary_10_1039_C6CP00943C
crossref_primary_10_1021_jacsau_1c00026
crossref_primary_10_1103_PhysRevE_98_023309
Cites_doi 10.1016/j.matcom.2009.10.007
10.1016/S0167-2789(97)00227-3
10.1088/0965-0393/17/7/073001
10.1016/S1359-6454(02)00601-8
10.1016/0956-7151(94)00285-P
10.1103/PhysRevE.83.051608
10.1016/S1359-6454(01)00133-1
10.1016/0167-2789(93)90242-S
10.1103/PhysRevE.72.011602
10.1016/j.commatsci.2011.08.030
10.1016/j.physa.2005.05.024
10.1103/PhysRevE.74.061605
10.1103/PhysRevLett.83.2853
10.1016/S0022-0248(02)01976-0
10.1016/0167-2789(95)00298-7
10.1016/S0167-2789(97)00226-1
10.1016/S0167-2789(99)00129-3
10.1016/S0167-2789(00)00035-X
10.1016/S0022-0248(01)00867-3
10.1103/PhysRevA.45.7424
10.1016/S0167-2789(99)00184-0
10.1016/j.jcrysgro.2009.07.031
10.1016/0167-2789(93)90120-P
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/j.physd.2012.01.006
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
EndPage 829
ExternalDocumentID 10_1016_j_physd_2012_01_006
S0167278912000206
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HZ~
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSW
T5K
TN5
TWZ
XPP
YNT
~02
~G-
29O
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACRPL
ADIYS
ADNMO
ADVLN
AEIPS
AFFNX
AFJKZ
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HVGLF
H~9
MVM
NDZJH
R2-
SEW
SPG
SSH
SSZ
WUQ
XJT
YYP
7U5
8FD
EFKBS
L7M
ID FETCH-LOGICAL-c447t-b67a409af063719adc821ac862c890142a3d60b60463fc6d27eef8712ad072dd3
IEDL.DBID .~1
ISSN 0167-2789
IngestDate Mon Jul 21 10:21:16 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
Tue Jul 01 02:39:52 EDT 2025
Fri Feb 23 02:33:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Crystal growth
Multi-phase
Lagrange multiplier
Eutectic
Phase field
Solidification
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-b67a409af063719adc821ac862c890142a3d60b60463fc6d27eef8712ad072dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167278912000206
PQID 1671408881
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1671408881
crossref_citationtrail_10_1016_j_physd_2012_01_006
crossref_primary_10_1016_j_physd_2012_01_006
elsevier_sciencedirect_doi_10_1016_j_physd_2012_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-15
PublicationDateYYYYMMDD 2012-04-15
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Physica. D
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kobayashi (br000015) 1993; 63
Mullis, Cochrane (br000040) 2001; 49
Kobayashi, Warren (br000125) 2005; 356
Nestler, Wheeler, Ratke, Stöcker (br000065) 2000; 141
Lobkovsky, Warren (br000010) 2001; 225
Mullis (br000005) 2003; 51
Brush (br000035) 2003; 247
Tiaden (br000090) 1998; 115
Folch, Plapp (br000025) 2005; 72
Steinbach (br000060) 2009; 17
Steinbach, Pezzolla, Nestler, Seeszelberg, Prieler, Schmitz, Rezende (br000085) 1996
Kim, Kim, Kim, Park (br000115) 2006; 74
Nestler (br000070) 2000; 138
Choudhury, Plapp, Nestler (br000105) 2011; 83
Vanherpe, Wendler, Nestler, Vandewalle (br000080) 2010; 80
Porter, Easterling (br000135) 1992
T. Langer, A. Belyaev, H.-P. Seidel, Spherical Barycentric Coordinates, 2006.
Hirouchi, Tsuru, Shibutani (br000100) 2012; 53
Garcke, Nestler, Stoth (br000075) 1998; 115
Wheeler, Boettinger, McFadden (br000020) 1992; 45
Steinbach (br000095) 1999; 134
Lovelock, Rund (br000120) 1989
Sun, Beckermann (br000030) 2009; 311
Börzsönyi, Katona, Buka, Gránásy (br000045) 1999; 83
Warren, Boettinger (br000055) 1995; 43
Wheeler, Murray, Schaefer (br000050) 1993; 66
James R. Green, A comparison of multiphase models and techniques, Thesis, Leeds University, School of Computing and Institute for Materials Research, 2007.
Nestler (10.1016/j.physd.2012.01.006_br000070) 2000; 138
Nestler (10.1016/j.physd.2012.01.006_br000065) 2000; 141
Lovelock (10.1016/j.physd.2012.01.006_br000120) 1989
Garcke (10.1016/j.physd.2012.01.006_br000075) 1998; 115
Warren (10.1016/j.physd.2012.01.006_br000055) 1995; 43
Steinbach (10.1016/j.physd.2012.01.006_br000085) 1996
Choudhury (10.1016/j.physd.2012.01.006_br000105) 2011; 83
Steinbach (10.1016/j.physd.2012.01.006_br000060) 2009; 17
Kim (10.1016/j.physd.2012.01.006_br000115) 2006; 74
Mullis (10.1016/j.physd.2012.01.006_br000040) 2001; 49
Sun (10.1016/j.physd.2012.01.006_br000030) 2009; 311
Lobkovsky (10.1016/j.physd.2012.01.006_br000010) 2001; 225
Kobayashi (10.1016/j.physd.2012.01.006_br000015) 1993; 63
Brush (10.1016/j.physd.2012.01.006_br000035) 2003; 247
Porter (10.1016/j.physd.2012.01.006_br000135) 1992
Wheeler (10.1016/j.physd.2012.01.006_br000050) 1993; 66
Kobayashi (10.1016/j.physd.2012.01.006_br000125) 2005; 356
Wheeler (10.1016/j.physd.2012.01.006_br000020) 1992; 45
Tiaden (10.1016/j.physd.2012.01.006_br000090) 1998; 115
Börzsönyi (10.1016/j.physd.2012.01.006_br000045) 1999; 83
Mullis (10.1016/j.physd.2012.01.006_br000005) 2003; 51
Hirouchi (10.1016/j.physd.2012.01.006_br000100) 2012; 53
Folch (10.1016/j.physd.2012.01.006_br000025) 2005; 72
10.1016/j.physd.2012.01.006_br000110
Vanherpe (10.1016/j.physd.2012.01.006_br000080) 2010; 80
10.1016/j.physd.2012.01.006_br000130
Steinbach (10.1016/j.physd.2012.01.006_br000095) 1999; 134
References_xml – volume: 66
  start-page: 243
  year: 1993
  end-page: 262
  ident: br000050
  article-title: Computation of dendrites using a phase field model
  publication-title: Phys. D: Nonlinear Phenom.
– volume: 141
  start-page: 133
  year: 2000
  end-page: 154
  ident: br000065
  article-title: Phase-field model for solidification of a monotectic alloy with convection
  publication-title: Physica D
– volume: 83
  start-page: 051608+
  year: 2011
  ident: br000105
  article-title: Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys
  publication-title: Phys. Rev. E
– volume: 51
  start-page: 1959
  year: 2003
  end-page: 1969
  ident: br000005
  article-title: A study of kinetically limited dendritic growth at high undercooling using phase-field techniques
  publication-title: Acta Mater.
– volume: 45
  start-page: 7424
  year: 1992
  end-page: 7439
  ident: br000020
  article-title: Phase-field model for isothermal phase transitions in binary alloys
  publication-title: Phys. Rev. A
– volume: 115
  start-page: 73
  year: 1998
  end-page: 86
  ident: br000090
  article-title: The multiphase-field model with an integrated concept for modelling solute diffusion
  publication-title: Physica D
– volume: 74
  start-page: 061605+
  year: 2006
  ident: br000115
  article-title: Computer simulations of two-dimensional and three-dimensional ideal grain growth
  publication-title: Phys. Rev. E
– volume: 134
  start-page: 385
  year: 1999
  end-page: 393
  ident: br000095
  article-title: A generalized field method for multiphase transformations using interface fields
  publication-title: Physica D
– volume: 83
  start-page: 2853
  year: 1999
  end-page: 2856
  ident: br000045
  article-title: Dendrites regularized by spatially homogeneous time-periodic forcing
  publication-title: Phys. Rev. Lett.
– volume: 225
  start-page: 282
  year: 2001
  end-page: 288
  ident: br000010
  article-title: Phase-field model of crystal grains
  publication-title: J. Cryst. Growth
– reference: James R. Green, A comparison of multiphase models and techniques, Thesis, Leeds University, School of Computing and Institute for Materials Research, 2007.
– volume: 311
  start-page: 4447
  year: 2009
  end-page: 4453
  ident: br000030
  article-title: Effect of solid–liquid density change on dendrite tip velocity and shape selection
  publication-title: J. Cryst. Growth
– start-page: 135
  year: 1996
  end-page: 147
  ident: br000085
  article-title: A phase field concept for multiphase systems
  publication-title: Physica D
– reference: T. Langer, A. Belyaev, H.-P. Seidel, Spherical Barycentric Coordinates, 2006.
– volume: 43
  start-page: 689
  year: 1995
  end-page: 703
  ident: br000055
  article-title: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method
  publication-title: Acta Metall. Mater.
– volume: 53
  start-page: 474
  year: 2012
  end-page: 482
  ident: br000100
  article-title: Grain growth prediction with inclination dependence of 110 tilt grain boundary using multi-phase-field model with penalty for multiple junctions
  publication-title: Comput. Mater. Sci.
– volume: 356
  start-page: 127
  year: 2005
  end-page: 132
  ident: br000125
  article-title: Modeling the formation and dynamics of polycrystals in 3D
  publication-title: Physica A
– volume: 115
  start-page: 87
  year: 1998
  end-page: 108
  ident: br000075
  article-title: On anisotropic order parameter models for multi-phase systems and their sharp interface limits
  publication-title: Phys. D: Nonlinear Phenom.
– volume: 138
  start-page: 114
  year: 2000
  end-page: 133
  ident: br000070
  article-title: A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures
  publication-title: Phys. D: Nonlinear Phenom.
– volume: 49
  start-page: 2205
  year: 2001
  end-page: 2214
  ident: br000040
  article-title: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts
  publication-title: Acta Mater.
– volume: 80
  start-page: 1438
  year: 2010
  end-page: 1448
  ident: br000080
  article-title: A multigrid solver for phase field simulation of microstructure evolution
  publication-title: Math. Comput. Simul.
– volume: 72
  start-page: 011602+
  year: 2005
  ident: br000025
  article-title: Quantitative phase-field modeling of two-phase growth
  publication-title: Phys. Rev. E
– year: 1992
  ident: br000135
  article-title: Phase Transformations in Metals and Alloys
– year: 1989
  ident: br000120
  article-title: Tensors, Differential Forms, and Variational Principles
– volume: 247
  start-page: 587
  year: 2003
  end-page: 596
  ident: br000035
  article-title: A phase field model with electric current
  publication-title: J. Cryst. Growth
– volume: 17
  start-page: 073001+
  year: 2009
  ident: br000060
  article-title: Phase-field models in materials science
  publication-title: Modelling Simul. Mater. Sci. Eng.
– volume: 63
  start-page: 410
  year: 1993
  end-page: 423
  ident: br000015
  article-title: Modeling and numerical simulations of dendritic crystal growth
  publication-title: Phys. D: Nonlinear Phenom.
– volume: 80
  start-page: 1438
  year: 2010
  ident: 10.1016/j.physd.2012.01.006_br000080
  article-title: A multigrid solver for phase field simulation of microstructure evolution
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2009.10.007
– volume: 115
  start-page: 87
  year: 1998
  ident: 10.1016/j.physd.2012.01.006_br000075
  article-title: On anisotropic order parameter models for multi-phase systems and their sharp interface limits
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/S0167-2789(97)00227-3
– volume: 17
  start-page: 073001+
  year: 2009
  ident: 10.1016/j.physd.2012.01.006_br000060
  article-title: Phase-field models in materials science
  publication-title: Modelling Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/17/7/073001
– volume: 51
  start-page: 1959
  year: 2003
  ident: 10.1016/j.physd.2012.01.006_br000005
  article-title: A study of kinetically limited dendritic growth at high undercooling using phase-field techniques
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(02)00601-8
– ident: 10.1016/j.physd.2012.01.006_br000130
– volume: 43
  start-page: 689
  year: 1995
  ident: 10.1016/j.physd.2012.01.006_br000055
  article-title: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)00285-P
– volume: 83
  start-page: 051608+
  year: 2011
  ident: 10.1016/j.physd.2012.01.006_br000105
  article-title: Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.051608
– volume: 49
  start-page: 2205
  year: 2001
  ident: 10.1016/j.physd.2012.01.006_br000040
  article-title: A phase field model for spontaneous grain refinement in deeply undercooled metallic melts
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00133-1
– volume: 66
  start-page: 243
  year: 1993
  ident: 10.1016/j.physd.2012.01.006_br000050
  article-title: Computation of dendrites using a phase field model
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(93)90242-S
– year: 1989
  ident: 10.1016/j.physd.2012.01.006_br000120
– volume: 72
  start-page: 011602+
  year: 2005
  ident: 10.1016/j.physd.2012.01.006_br000025
  article-title: Quantitative phase-field modeling of two-phase growth
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.011602
– volume: 53
  start-page: 474
  year: 2012
  ident: 10.1016/j.physd.2012.01.006_br000100
  article-title: Grain growth prediction with inclination dependence of 110 tilt grain boundary using multi-phase-field model with penalty for multiple junctions
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.08.030
– volume: 356
  start-page: 127
  year: 2005
  ident: 10.1016/j.physd.2012.01.006_br000125
  article-title: Modeling the formation and dynamics of polycrystals in 3D
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.05.024
– volume: 74
  start-page: 061605+
  year: 2006
  ident: 10.1016/j.physd.2012.01.006_br000115
  article-title: Computer simulations of two-dimensional and three-dimensional ideal grain growth
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.061605
– volume: 83
  start-page: 2853
  year: 1999
  ident: 10.1016/j.physd.2012.01.006_br000045
  article-title: Dendrites regularized by spatially homogeneous time-periodic forcing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.2853
– volume: 247
  start-page: 587
  year: 2003
  ident: 10.1016/j.physd.2012.01.006_br000035
  article-title: A phase field model with electric current
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)01976-0
– start-page: 135
  year: 1996
  ident: 10.1016/j.physd.2012.01.006_br000085
  article-title: A phase field concept for multiphase systems
  publication-title: Physica D
  doi: 10.1016/0167-2789(95)00298-7
– volume: 115
  start-page: 73
  year: 1998
  ident: 10.1016/j.physd.2012.01.006_br000090
  article-title: The multiphase-field model with an integrated concept for modelling solute diffusion
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00226-1
– volume: 134
  start-page: 385
  year: 1999
  ident: 10.1016/j.physd.2012.01.006_br000095
  article-title: A generalized field method for multiphase transformations using interface fields
  publication-title: Physica D
  doi: 10.1016/S0167-2789(99)00129-3
– volume: 141
  start-page: 133
  year: 2000
  ident: 10.1016/j.physd.2012.01.006_br000065
  article-title: Phase-field model for solidification of a monotectic alloy with convection
  publication-title: Physica D
  doi: 10.1016/S0167-2789(00)00035-X
– ident: 10.1016/j.physd.2012.01.006_br000110
– year: 1992
  ident: 10.1016/j.physd.2012.01.006_br000135
– volume: 225
  start-page: 282
  year: 2001
  ident: 10.1016/j.physd.2012.01.006_br000010
  article-title: Phase-field model of crystal grains
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(01)00867-3
– volume: 45
  start-page: 7424
  year: 1992
  ident: 10.1016/j.physd.2012.01.006_br000020
  article-title: Phase-field model for isothermal phase transitions in binary alloys
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.7424
– volume: 138
  start-page: 114
  year: 2000
  ident: 10.1016/j.physd.2012.01.006_br000070
  article-title: A multi-phase-field model of eutectic and peritectic alloys: numerical simulation of growth structures
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/S0167-2789(99)00184-0
– volume: 311
  start-page: 4447
  year: 2009
  ident: 10.1016/j.physd.2012.01.006_br000030
  article-title: Effect of solid–liquid density change on dendrite tip velocity and shape selection
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.07.031
– volume: 63
  start-page: 410
  year: 1993
  ident: 10.1016/j.physd.2012.01.006_br000015
  article-title: Modeling and numerical simulations of dendritic crystal growth
  publication-title: Phys. D: Nonlinear Phenom.
  doi: 10.1016/0167-2789(93)90120-P
SSID ssj0001737
Score 2.160408
Snippet This paper demonstrates that the standard approach to the modelling of multi-phase field dynamics for the solidification of alloys has three major defects and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 816
SubjectTerms Alloys
Crystal growth
Density
Derivatives
Dynamical systems
Entropy
Eutectic
Free energy
Lagrange multiplier
Mathematical models
Multi-phase
Phase field
Solidification
Title A new approach to multi-phase formulation for the solidification of alloys
URI https://dx.doi.org/10.1016/j.physd.2012.01.006
https://www.proquest.com/docview/1671408881
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEfQgOhXnx4jg0bomXdPuOIZjTtxFB7uFNElxIu1w3cGLf7vvpa1f4A7e2pKE9uX1feT98gshl5zHMVOceUkSGUhQhPASCHO9FNyd7bFUWYMbnO8nYjTtjmfhrEEG9V4YhFVWtr-06c5aV086lTQ7i_m884AAetzHybirpyHtNrLXgU5fv3_BPFhU8mYivze2rpmHHMYLVw-QLhQXBBlCvP7yTr_stHM-wz2yW0WNtF--2D5p2KxJdr5xCTbJlsNy6uUBGfcpxMq0ZgunRU4dbNBbPIHLohilVmd24TWFCJCCAs4NgobKx3lKsR7_tjwk0-HN42DkVUcmeBq-vQA5RwoyNgWiDiLWU0bHnCkNaYuOsWDKVWCEnwjkCUu1MDyyNoWciSvjR9yY4IhsZHlmjwkVoYJxEs2Yirq-invc-iYMQw4xpgpt0CK8FpXUFZ84HmvxImvg2LN08pUoX-kzCfJtkavPTouSTmN9c1HPgfyhFRIM_vqOF_WMSfhfsAiiMpuvlhL0AHJKyPvZyX8HPyXbeIc1JRaekY3idWXPITQpkrbTvTbZ7N_ejSYfuoHifg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qi6gH8Yn1GcGjSzfpbnZ7LGLp-6KF3kJ2k8WKtMVuD_57Z_ZRVNCDtyWbhGUyO4_Mly8Ad0KEIdeCO1EUGExQpHQiDHOdBN2dbfFEW0MHnEdj2Z14_ak_rcBDeRaGYJWF7c9temati5ZGIc3GcjZrPBGAns5xcpHV0-QW1IidyqtCrd0bdMcbg8yDnDqTKL5pQEk-lMG8aAOBGENpT5ATyus3B_XDVGf-p3MA-0XgyNr5tx1Cxc6PYO8LneARbGdwznh1DP02w3CZlYThLF2wDDnoLF_QazEKVItru-iZYRDIUAdnhnBDefMiYVSS_1idwKTz-PzQdYpbE5zY84IURR1oTNo0SrsZ8JY2cSi4jjFziUOqmQrdNNKNJFGFJbE0IrA2wbRJaOMGwpjmKVTni7k9AyZ9jfNEMec68FwdtoR1je_7AsNM7dtmHUQpKhUXlOJ0s8WbKrFjryqTryL5KpcrlG8d7jeDljmjxt_dZbkG6ptiKLT5fw-8LVdM4S9DdRA9t4v1SqEeYFqJqT8__-_kN7DTfR4N1bA3HlzALr2hEhP3L6Gavq_tFUYqaXRdaOInh0PlLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+approach+to+multi-phase+formulation+for+the+solidification+of+alloys&rft.jtitle=Physica.+D&rft.au=Bollada%2C+P.C.&rft.au=Jimack%2C+P.K.&rft.au=Mullis%2C+A.M.&rft.date=2012-04-15&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=241&rft.issue=8&rft.spage=816&rft.epage=829&rft_id=info:doi/10.1016%2Fj.physd.2012.01.006&rft.externalDocID=S0167278912000206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon