The Resolution Matrix in Tomographic Multiplexing: Optimization of Inter-Parameter Cross-Talk, Relative Quantitation, and Localization
Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. Methods: We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexpon...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 66; no. 8; pp. 2341 - 2351 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2018.2889043 |
Cover
Loading…
Abstract | Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. Methods: We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms. Results: The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements. Conclusion: The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores. Significance: Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters. |
---|---|
AbstractList | Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. Methods: We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms. Results: The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements. Conclusion: The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores. Significance: Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters. We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms. The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements. The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores. Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters. We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue.OBJECTIVEWe use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue.We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms.METHODSWe consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms.The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements.RESULTSThe ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements.The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores.CONCLUSIONThe ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores.Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters.SIGNIFICANCETime domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters. |
Author | Bacskai, Brian J. Kumar, Anand T. N. Hou, Steven S. |
Author_xml | – sequence: 1 givenname: Steven S. surname: Hou fullname: Hou, Steven S. organization: Department of Neurology, Massachusetts General HospitalAlzheimer's Disease Research UnitHarvard Medical School – sequence: 2 givenname: Brian J. orcidid: 0000-0002-2584-6702 surname: Bacskai fullname: Bacskai, Brian J. organization: Department of Neurology, Massachusetts General HospitalAlzheimer's Disease Research UnitHarvard Medical School – sequence: 3 givenname: Anand T. N. orcidid: 0000-0002-8745-9599 surname: Kumar fullname: Kumar, Anand T. N. email: ankumar@nmr.mgh.harvard.edu organization: Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30582520$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UsFu1DAUtFAR3RY-ACEhS1x6aBbbsRO7ByS6KlBpVwUUzpaTOLsujh2cpCp8AN-N000r6IGTn_VmRuPxHIED550G4CVGS4yReFucby6WBGG-JJwLRNMnYIEZ4wlhKT4ACxRXiSCCHoKjvr-OV8pp9gwcpohxwghagN_FTsOvuvd2HIx3cKOGYG6hcbDwrd8G1e1MBTejHUxn9a1x2zN41Q2mNb_UHcE38NINOiSfVVCtjhNcBd_3SaHs99MobSPuRsMvo3KDGe5Ip1C5Gq59pews8xw8bZTt9Yv5PAbfPlwUq0_J-urj5er9OqkozYekxKLUeZbWVFOa5ghnJMdlqRBSSOeEVIzFEasai4o0aUZr3HBGUV1zkTdpnh6Dd3vdbixbXVfaDUFZ2QXTqvBTemXkvxtndnLrb2SWMSFEFgVOZoHgf4y6H2Rr-kpbq5z2Yy8JzmLKESgi9M0j6LUfg4vPk4RkmHNK8snR678dPVi5_6IIyPeAaoo16EZWc4zRoLESIzmVQU5lkFMZ5FyGyMSPmPfi_-O82nOM1voBzxlnOHr5A7AuwT0 |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_1002_cnm_3408 crossref_primary_10_1117_1_JBO_27_12_126001 crossref_primary_10_1158_0008_5472_CAN_24_0880 crossref_primary_10_1016_j_amc_2020_125913 crossref_primary_10_1364_BOE_459935 |
Cites_doi | 10.1364/OL.41.001352 10.1117/1.3469797 10.1117/1.JBO.17.5.056001 10.1021/cr900343z 10.1118/1.2733803 10.1016/0024-3795(86)90226-0 10.1137/S1064827598345667 10.1364/OL.37.002559 10.1111/j.1365-2818.2012.03618.x 10.1016/j.laa.2006.03.031 10.1017/CBO9780511804441 10.1364/OL.30.003347 10.1109/TMI.2008.918341 10.1364/OE.14.012255 10.1887/0750304359 10.1088/0266-5611/25/12/123010 10.1364/OL.39.001165 10.1364/OE.10.000159 10.1109/SAM.2006.1706171 10.1523/JNEUROSCI.23-11-04560.2003 10.1007/978-3-540-74276-0_6 10.1364/BOE.3.003161 10.1118/1.1568977 10.1111/j.1365-2818.2010.03437.x 10.1364/AO.38.002950 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1109/TBME.2018.2889043 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 2351 |
ExternalDocumentID | PMC6659996 30582520 10_1109_TBME_2018_2889043 8585120 |
Genre | orig-research Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01 CA 211084; R01 EB 000768 funderid: 10.13039/100000002 – fundername: NCI NIH HHS grantid: R01 CA211084 – fundername: NIBIB NIH HHS grantid: R01 EB000768 |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c447t-b19be763d4e4437016271bba00a0e722c5500a1ad19c2f364d1f8540dd897f373 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Thu Aug 21 13:52:11 EDT 2025 Thu Sep 04 15:53:08 EDT 2025 Mon Jun 30 08:18:44 EDT 2025 Thu Apr 03 07:01:59 EDT 2025 Tue Jul 01 03:28:31 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-b19be763d4e4437016271bba00a0e722c5500a1ad19c2f364d1f8540dd897f373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2584-6702 0000-0002-8745-9599 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6659996 |
PMID | 30582520 |
PQID | 2261884277 |
PQPubID | 85474 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659996 crossref_primary_10_1109_TBME_2018_2889043 ieee_primary_8585120 crossref_citationtrail_10_1109_TBME_2018_2889043 pubmed_primary_30582520 proquest_miscellaneous_2160149639 proquest_journals_2261884277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 press (ref13) 2007 menke (ref14) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref5 doi: 10.1364/OL.41.001352 – ident: ref9 doi: 10.1117/1.3469797 – year: 2012 ident: ref14 publication-title: Geophysical Data Analysis Discrete Inverse Theory – ident: ref25 doi: 10.1117/1.JBO.17.5.056001 – ident: ref22 doi: 10.1021/cr900343z – ident: ref6 doi: 10.1118/1.2733803 – ident: ref27 doi: 10.1016/0024-3795(86)90226-0 – ident: ref18 doi: 10.1137/S1064827598345667 – ident: ref10 doi: 10.1364/OL.37.002559 – ident: ref23 doi: 10.1111/j.1365-2818.2012.03618.x – ident: ref26 doi: 10.1016/j.laa.2006.03.031 – ident: ref17 doi: 10.1017/CBO9780511804441 – ident: ref12 doi: 10.1364/OL.30.003347 – ident: ref4 doi: 10.1109/TMI.2008.918341 – ident: ref3 doi: 10.1364/OE.14.012255 – ident: ref1 doi: 10.1887/0750304359 – ident: ref8 doi: 10.1088/0266-5611/25/12/123010 – ident: ref2 doi: 10.1364/OL.39.001165 – ident: ref19 doi: 10.1364/OE.10.000159 – year: 2007 ident: ref13 publication-title: Numerical Recipes 3rd Edition The Art of Scientific Computing – ident: ref16 doi: 10.1109/SAM.2006.1706171 – ident: ref21 doi: 10.1523/JNEUROSCI.23-11-04560.2003 – ident: ref7 doi: 10.1007/978-3-540-74276-0_6 – ident: ref11 doi: 10.1364/BOE.3.003161 – ident: ref20 doi: 10.1118/1.1568977 – ident: ref24 doi: 10.1111/j.1365-2818.2010.03437.x – ident: ref15 doi: 10.1364/AO.38.002950 |
SSID | ssj0014846 |
Score | 2.3233676 |
Snippet | Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse... We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2341 |
SubjectTerms | Accuracy Algorithms Asymptotic methods Bayes methods Bayes Theorem Bayesian analysis Biological activity Biomedical measurement Chemical compounds Computer simulation Crosstalk Fluorescence fluorescence tomography Fluorophores Inverse problems lifetime multiplexing Localization Mimicry Molecular imaging Molecular Imaging - methods Monte Carlo Method Monte Carlo simulation Multiplexing Operators (mathematics) Optimization Parameter estimation Phantoms, Imaging Quantitation Spatial discrimination Spatial resolution Time domain analysis time-resolved imaging Tissues Tomography Tomography, Optical - methods |
Title | The Resolution Matrix in Tomographic Multiplexing: Optimization of Inter-Parameter Cross-Talk, Relative Quantitation, and Localization |
URI | https://ieeexplore.ieee.org/document/8585120 https://www.ncbi.nlm.nih.gov/pubmed/30582520 https://www.proquest.com/docview/2261884277 https://www.proquest.com/docview/2160149639 https://pubmed.ncbi.nlm.nih.gov/PMC6659996 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAceLQ8AgUZiRPabOPEG8fcoGpVIcJD2kq9RbbjiFXbBEGCKn4Av5uZ2Bt1qwpxs-SHnMzY_sbzzRjgdZpZIyzXsWxyMlAUj7VSJpZ2QamgXVaM4WLlp_z4RHw4XZxuwWyKhXHOjeQzN6fi6MuvOzvQVdn-6MNK0UC_hWrmY7Umj4EofFBOwnEBp0oEDyZP1P7yfXlIJK5inhaFSkS2cQaNj6rchC-v0ySvnDtH96Fcz9jTTc7mQ2_m9ve1ZI7_-0kP4F4AoOyd15iHsOXaHbh7JS3hDtwug8N9F_6gGjG64vcKykrK6H_JVi1bdhc-2_XKsjKwEi-x-1v2GXehixDeybqGjZeO8RdNNDAssQP6KfFSn5_NmOfi_XLs66DbPuQLnzHd1uwjnbJhmEdwcnS4PDiOw9MNsRVC9rHhyjjcumrhhMgk4spUcmN0kujEyTS1aBglmuuaK5s2WS5q3hQIHuu6ULLJZPYYttuudU-Badso4TLFtUZjsDZaZ6ZeEJkHoQ-ioQiStTArG-ZJz2ucV6N9k6iK5F-R_Ksg_wjeTF2--6Qe_2q8S2KbGgaJRbC31pgqLPufFWJZXhQilTKCV1M1LljywujWdQO24TmZpYgMI3jiFWwaGzdftNhpcLmhelMDSga-WdOuvo1JwfN8Qbbrs5tn-xzu4Dcpz1zcg-3-x-BeIJrqzctxGf0FrOwdMg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NECDRQwEie02caJE8fcoGq1wKaAtJV6i2zHEau2SQUJqvgB_G7GsTfqVhXiZskPOZmx_Y3nmzHAmzjRimkqQ15n1kARNJRCqJDr1KaCNkk-hIsVR9nsmH06SU82YDLGwhhjBvKZmdri4MuvWt3bq7K9wYcVo4F-C899lrpordFnwHIXlhNRXMKxYN6HSSOxt_hQHFgaVz6N81xELFk7hYZnVW5CmNeJkldOnsMHUKzm7Agnp9O-U1P9-1o6x__9qIdw30NQ8t7pzCPYMM0W3LuSmHALbhfe5b4Nf1CRiL3kdypKCpvT_5IsG7Joz12-66UmheclXmL3d-QL7kPnPsCTtDUZrh3Dr9ISwbBE9u1PCRfy7HRCHBvvlyHfetl0PmP4hMimInN7zvphHsPx4cFifxb6xxtCzRjvQkWFMrh5VcwwlnBEljGnSskokpHhcazRNIoklRUVOq6TjFW0zhE-VlUueJ3w5AlsNm1jdoBIXQtmEkGlRHOwUlImqkotnQfBD-KhAKKVMEvt52kf2DgrBwsnEqWVf2nlX3r5B_B27HLh0nr8q_G2FdvY0EssgN2VxpR-4f8sEc3SPGcx5wG8HqtxyVo_jGxM22MbmlnDFLFhAE-dgo1j4_aLNrsdnK-p3tjApgNfr2mW34e04FmWWuv12c2zfQV3ZotiXs4_Hn1-Dnfx-4TjMe7CZvejNy8QW3Xq5bCk_gKw3yB_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Resolution+Matrix+in+Tomographic+Multiplexing%3A+Optimization+of+Inter-Parameter+Cross-Talk%2C+Relative+Quantitation%2C+and+Localization&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Hou%2C+Steven+S.&rft.au=Bacskai%2C+Brian+J.&rft.au=Kumar%2C+Anand+T.+N.&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=66&rft.issue=8&rft.spage=2341&rft.epage=2351&rft_id=info:doi/10.1109%2FTBME.2018.2889043&rft.externalDocID=8585120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |