The Resolution Matrix in Tomographic Multiplexing: Optimization of Inter-Parameter Cross-Talk, Relative Quantitation, and Localization

Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. Methods: We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexpon...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 66; no. 8; pp. 2341 - 2351
Main Authors Hou, Steven S., Bacskai, Brian J., Kumar, Anand T. N.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2018.2889043

Cover

Loading…
Abstract Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. Methods: We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms. Results: The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements. Conclusion: The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores. Significance: Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters.
AbstractList Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. Methods: We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms. Results: The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements. Conclusion: The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores. Significance: Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters.
We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue. We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms. The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements. The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores. Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters.
We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue.OBJECTIVEWe use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such as biological tissue.We consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms.METHODSWe consider three inversion methods; an asymptotic time domain (ATD) approach, based on a multiexponential analysis of time domain data, a direct time domain (DTD) approach, which is a minimum error solution, and a cross-talk constrained time domain (CCTD) inversion, which is a solution to an optimization problem that minimizes both error and cross-talk. We compare these methods using Monte Carlo simulations and time domain fluorescence measurements with tissue-mimicking phantoms.The ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements.RESULTSThe ATD approach provides high accuracy of relative quantitation and spatial localization of two fluorophores embedded in a 18-mm thick turbid medium, with concentration ratios of up to 1:4.25. DTD leads to significant errors in relative quantitation and localization. CCTD provides improved quantitation accuracy over DTD, and better spatial resolution compared to ATD. We present a rigorous theoretical basis for these results and provide a complete derivation of the CCTD estimator. The Bayesian analysis also leads to a formula for rapid computation of the DTD inverse operator for large-scale tomography measurements.The ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores.CONCLUSIONThe ATD and CCTD inversion methods provide significant advantages over DTD for accurately estimating multiple overlapping fluorophores.Time domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters.SIGNIFICANCETime domain fluorescence tomography, using zero cross-talk estimators, can serve as a powerful tool for quantifying multiple fluorescently labeled biological processes. The Bayesian framework presented here can be applied to general multiparameter inverse problems for the quantitative estimation of multiple overlapping parameters.
Author Bacskai, Brian J.
Kumar, Anand T. N.
Hou, Steven S.
Author_xml – sequence: 1
  givenname: Steven S.
  surname: Hou
  fullname: Hou, Steven S.
  organization: Department of Neurology, Massachusetts General HospitalAlzheimer's Disease Research UnitHarvard Medical School
– sequence: 2
  givenname: Brian J.
  orcidid: 0000-0002-2584-6702
  surname: Bacskai
  fullname: Bacskai, Brian J.
  organization: Department of Neurology, Massachusetts General HospitalAlzheimer's Disease Research UnitHarvard Medical School
– sequence: 3
  givenname: Anand T. N.
  orcidid: 0000-0002-8745-9599
  surname: Kumar
  fullname: Kumar, Anand T. N.
  email: ankumar@nmr.mgh.harvard.edu
  organization: Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30582520$$D View this record in MEDLINE/PubMed
BookMark eNp9UsFu1DAUtFAR3RY-ACEhS1x6aBbbsRO7ByS6KlBpVwUUzpaTOLsujh2cpCp8AN-N000r6IGTn_VmRuPxHIED550G4CVGS4yReFucby6WBGG-JJwLRNMnYIEZ4wlhKT4ACxRXiSCCHoKjvr-OV8pp9gwcpohxwghagN_FTsOvuvd2HIx3cKOGYG6hcbDwrd8G1e1MBTejHUxn9a1x2zN41Q2mNb_UHcE38NINOiSfVVCtjhNcBd_3SaHs99MobSPuRsMvo3KDGe5Ip1C5Gq59pews8xw8bZTt9Yv5PAbfPlwUq0_J-urj5er9OqkozYekxKLUeZbWVFOa5ghnJMdlqRBSSOeEVIzFEasai4o0aUZr3HBGUV1zkTdpnh6Dd3vdbixbXVfaDUFZ2QXTqvBTemXkvxtndnLrb2SWMSFEFgVOZoHgf4y6H2Rr-kpbq5z2Yy8JzmLKESgi9M0j6LUfg4vPk4RkmHNK8snR678dPVi5_6IIyPeAaoo16EZWc4zRoLESIzmVQU5lkFMZ5FyGyMSPmPfi_-O82nOM1voBzxlnOHr5A7AuwT0
CODEN IEBEAX
CitedBy_id crossref_primary_10_1002_cnm_3408
crossref_primary_10_1117_1_JBO_27_12_126001
crossref_primary_10_1158_0008_5472_CAN_24_0880
crossref_primary_10_1016_j_amc_2020_125913
crossref_primary_10_1364_BOE_459935
Cites_doi 10.1364/OL.41.001352
10.1117/1.3469797
10.1117/1.JBO.17.5.056001
10.1021/cr900343z
10.1118/1.2733803
10.1016/0024-3795(86)90226-0
10.1137/S1064827598345667
10.1364/OL.37.002559
10.1111/j.1365-2818.2012.03618.x
10.1016/j.laa.2006.03.031
10.1017/CBO9780511804441
10.1364/OL.30.003347
10.1109/TMI.2008.918341
10.1364/OE.14.012255
10.1887/0750304359
10.1088/0266-5611/25/12/123010
10.1364/OL.39.001165
10.1364/OE.10.000159
10.1109/SAM.2006.1706171
10.1523/JNEUROSCI.23-11-04560.2003
10.1007/978-3-540-74276-0_6
10.1364/BOE.3.003161
10.1118/1.1568977
10.1111/j.1365-2818.2010.03437.x
10.1364/AO.38.002950
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2018.2889043
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2351
ExternalDocumentID PMC6659996
30582520
10_1109_TBME_2018_2889043
8585120
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01 CA 211084; R01 EB 000768
  funderid: 10.13039/100000002
– fundername: NCI NIH HHS
  grantid: R01 CA211084
– fundername: NIBIB NIH HHS
  grantid: R01 EB000768
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-b19be763d4e4437016271bba00a0e722c5500a1ad19c2f364d1f8540dd897f373
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 13:52:11 EDT 2025
Thu Sep 04 15:53:08 EDT 2025
Mon Jun 30 08:18:44 EDT 2025
Thu Apr 03 07:01:59 EDT 2025
Tue Jul 01 03:28:31 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-b19be763d4e4437016271bba00a0e722c5500a1ad19c2f364d1f8540dd897f373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2584-6702
0000-0002-8745-9599
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6659996
PMID 30582520
PQID 2261884277
PQPubID 85474
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6659996
crossref_primary_10_1109_TBME_2018_2889043
ieee_primary_8585120
crossref_citationtrail_10_1109_TBME_2018_2889043
pubmed_primary_30582520
proquest_miscellaneous_2160149639
proquest_journals_2261884277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
press (ref13) 2007
menke (ref14) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1364/OL.41.001352
– ident: ref9
  doi: 10.1117/1.3469797
– year: 2012
  ident: ref14
  publication-title: Geophysical Data Analysis Discrete Inverse Theory
– ident: ref25
  doi: 10.1117/1.JBO.17.5.056001
– ident: ref22
  doi: 10.1021/cr900343z
– ident: ref6
  doi: 10.1118/1.2733803
– ident: ref27
  doi: 10.1016/0024-3795(86)90226-0
– ident: ref18
  doi: 10.1137/S1064827598345667
– ident: ref10
  doi: 10.1364/OL.37.002559
– ident: ref23
  doi: 10.1111/j.1365-2818.2012.03618.x
– ident: ref26
  doi: 10.1016/j.laa.2006.03.031
– ident: ref17
  doi: 10.1017/CBO9780511804441
– ident: ref12
  doi: 10.1364/OL.30.003347
– ident: ref4
  doi: 10.1109/TMI.2008.918341
– ident: ref3
  doi: 10.1364/OE.14.012255
– ident: ref1
  doi: 10.1887/0750304359
– ident: ref8
  doi: 10.1088/0266-5611/25/12/123010
– ident: ref2
  doi: 10.1364/OL.39.001165
– ident: ref19
  doi: 10.1364/OE.10.000159
– year: 2007
  ident: ref13
  publication-title: Numerical Recipes 3rd Edition The Art of Scientific Computing
– ident: ref16
  doi: 10.1109/SAM.2006.1706171
– ident: ref21
  doi: 10.1523/JNEUROSCI.23-11-04560.2003
– ident: ref7
  doi: 10.1007/978-3-540-74276-0_6
– ident: ref11
  doi: 10.1364/BOE.3.003161
– ident: ref20
  doi: 10.1118/1.1568977
– ident: ref24
  doi: 10.1111/j.1365-2818.2010.03437.x
– ident: ref15
  doi: 10.1364/AO.38.002950
SSID ssj0014846
Score 2.3233676
Snippet Objective: We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse...
We use a resolution matrix-based Bayesian framework to compare inversion methods for tomographic fluorescence lifetime multiplexing in a diffuse medium, such...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2341
SubjectTerms Accuracy
Algorithms
Asymptotic methods
Bayes methods
Bayes Theorem
Bayesian analysis
Biological activity
Biomedical measurement
Chemical compounds
Computer simulation
Crosstalk
Fluorescence
fluorescence tomography
Fluorophores
Inverse problems
lifetime multiplexing
Localization
Mimicry
Molecular imaging
Molecular Imaging - methods
Monte Carlo Method
Monte Carlo simulation
Multiplexing
Operators (mathematics)
Optimization
Parameter estimation
Phantoms, Imaging
Quantitation
Spatial discrimination
Spatial resolution
Time domain analysis
time-resolved imaging
Tissues
Tomography
Tomography, Optical - methods
Title The Resolution Matrix in Tomographic Multiplexing: Optimization of Inter-Parameter Cross-Talk, Relative Quantitation, and Localization
URI https://ieeexplore.ieee.org/document/8585120
https://www.ncbi.nlm.nih.gov/pubmed/30582520
https://www.proquest.com/docview/2261884277
https://www.proquest.com/docview/2160149639
https://pubmed.ncbi.nlm.nih.gov/PMC6659996
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAceLQ8AgUZiRPabOPEG8fcoGpVIcJD2kq9RbbjiFXbBEGCKn4Av5uZ2Bt1qwpxs-SHnMzY_sbzzRjgdZpZIyzXsWxyMlAUj7VSJpZ2QamgXVaM4WLlp_z4RHw4XZxuwWyKhXHOjeQzN6fi6MuvOzvQVdn-6MNK0UC_hWrmY7Umj4EofFBOwnEBp0oEDyZP1P7yfXlIJK5inhaFSkS2cQaNj6rchC-v0ySvnDtH96Fcz9jTTc7mQ2_m9ve1ZI7_-0kP4F4AoOyd15iHsOXaHbh7JS3hDtwug8N9F_6gGjG64vcKykrK6H_JVi1bdhc-2_XKsjKwEi-x-1v2GXehixDeybqGjZeO8RdNNDAssQP6KfFSn5_NmOfi_XLs66DbPuQLnzHd1uwjnbJhmEdwcnS4PDiOw9MNsRVC9rHhyjjcumrhhMgk4spUcmN0kujEyTS1aBglmuuaK5s2WS5q3hQIHuu6ULLJZPYYttuudU-Badso4TLFtUZjsDZaZ6ZeEJkHoQ-ioQiStTArG-ZJz2ucV6N9k6iK5F-R_Ksg_wjeTF2--6Qe_2q8S2KbGgaJRbC31pgqLPufFWJZXhQilTKCV1M1LljywujWdQO24TmZpYgMI3jiFWwaGzdftNhpcLmhelMDSga-WdOuvo1JwfN8Qbbrs5tn-xzu4Dcpz1zcg-3-x-BeIJrqzctxGf0FrOwdMg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NECDRQwEie02caJE8fcoGq1wKaAtJV6i2zHEau2SQUJqvgB_G7GsTfqVhXiZskPOZmx_Y3nmzHAmzjRimkqQ15n1kARNJRCqJDr1KaCNkk-hIsVR9nsmH06SU82YDLGwhhjBvKZmdri4MuvWt3bq7K9wYcVo4F-C899lrpordFnwHIXlhNRXMKxYN6HSSOxt_hQHFgaVz6N81xELFk7hYZnVW5CmNeJkldOnsMHUKzm7Agnp9O-U1P9-1o6x__9qIdw30NQ8t7pzCPYMM0W3LuSmHALbhfe5b4Nf1CRiL3kdypKCpvT_5IsG7Joz12-66UmheclXmL3d-QL7kPnPsCTtDUZrh3Dr9ISwbBE9u1PCRfy7HRCHBvvlyHfetl0PmP4hMimInN7zvphHsPx4cFifxb6xxtCzRjvQkWFMrh5VcwwlnBEljGnSskokpHhcazRNIoklRUVOq6TjFW0zhE-VlUueJ3w5AlsNm1jdoBIXQtmEkGlRHOwUlImqkotnQfBD-KhAKKVMEvt52kf2DgrBwsnEqWVf2nlX3r5B_B27HLh0nr8q_G2FdvY0EssgN2VxpR-4f8sEc3SPGcx5wG8HqtxyVo_jGxM22MbmlnDFLFhAE-dgo1j4_aLNrsdnK-p3tjApgNfr2mW34e04FmWWuv12c2zfQV3ZotiXs4_Hn1-Dnfx-4TjMe7CZvejNy8QW3Xq5bCk_gKw3yB_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Resolution+Matrix+in+Tomographic+Multiplexing%3A+Optimization+of+Inter-Parameter+Cross-Talk%2C+Relative+Quantitation%2C+and+Localization&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Hou%2C+Steven+S.&rft.au=Bacskai%2C+Brian+J.&rft.au=Kumar%2C+Anand+T.+N.&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=66&rft.issue=8&rft.spage=2341&rft.epage=2351&rft_id=info:doi/10.1109%2FTBME.2018.2889043&rft.externalDocID=8585120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon