Near field and far field plasmonic enhancements with bilayers of different dimensions AgNPs@DLC for improved current density in silicon solar
The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine th...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 19663 - 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm
2
(by 70% compared to the bare reference cell). |
---|---|
AbstractList | The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell). The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm 2 (by 70% compared to the bare reference cell). The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell).The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell). Abstract The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell). |
ArticleNumber | 19663 |
Author | Hekmat, Maryam Shafiekhani, Azizollah Khabir, Mehdi |
Author_xml | – sequence: 1 givenname: Maryam surname: Hekmat fullname: Hekmat, Maryam organization: Department of Nanophysics, Faculty of Physics, Alzahra University – sequence: 2 givenname: Azizollah surname: Shafiekhani fullname: Shafiekhani, Azizollah email: ashafie@alzahra.ac.ir organization: Department of Nanophysics, Faculty of Physics, Alzahra University – sequence: 3 givenname: Mehdi surname: Khabir fullname: Khabir, Mehdi organization: Department of Electrical Engineering, Iran University of Science and Technology |
BookMark | eNp9kstu3CAUhq0qlZqmeYGukLrpxi1gsPGmajTpJdIo7aJdIwyHGUYYpuBJNQ_Rdy6O00uyCJvD5ft_zoHzvDoJMUBVvST4DcGNeJsZ4b2oMaU1pT0hdf-kOqWY8Zo2lJ78N39Wnee8w2Vw2jPSn1a_rkElZB14g1QwyP5d7b3KYwxOIwhbFTSMEKaMfrppiwbn1RFSRtEi46yFVM7KrCDZxZDRxeb6a35_uV4hGxNy4z7FGzBIH9JCztx0RC6g7LzTscToVXpRPbXKZzi_i2fV948fvq0-1-svn65WF-taM9ZN9YC7jkMHDBrVccE5BcsE5QTzzrK2YS1rQLSWtwNj_dCxAQsy2IF3jRaWN81ZdbX4mqh2cp_cqNJRRuXk7UZMG6nS5LQHaXTRcKYwFLPB0KExuueDwK0xGEhfvN4tXvvDMILRpb6k_D3T-yfBbeUm3si-bYWgs8HrO4MUfxwgT3J0WYP3KkA8ZEm7pmOFJaSgrx6gu3hIoTzVTLU961suCiUWSqeYcwIrtZvUVD6m3O-8JFjOfSOXvpGlb-Rt38g5F_pA-qeOR0XNIsoFDhtI_7J6RPUbQm3ZZw |
CitedBy_id | crossref_primary_10_1007_s11468_023_02066_7 crossref_primary_10_1002_vipr_202300807 crossref_primary_10_1088_1402_4896_ad8973 crossref_primary_10_3390_lubricants11040186 crossref_primary_10_1007_s11468_024_02476_1 crossref_primary_10_1088_1402_4896_ad7895 crossref_primary_10_1007_s11082_023_05158_0 crossref_primary_10_1016_j_mtcomm_2024_109488 crossref_primary_10_1016_j_jddst_2023_105307 crossref_primary_10_1007_s11468_025_02759_1 crossref_primary_10_1002_jemt_24568 |
Cites_doi | 10.1002/pip.1021 10.1063/1.1736034 10.1007/s12633-018-9890-4 10.1016/j.mssp.2021.105782 10.1016/j.apsusc.2013.12.088 10.1063/1.2336629 10.1088/0957-4484/24/26/265601 10.1063/1.5092948 10.1103/PhysRevLett.110.187401 10.1117/1.JNP.9.093066 10.1016/j.cplett.2004.09.154 10.1088/2399-1984/ab02b5 10.1166/jctn.2008.1103 10.1088/1361-6641/ab74eb 10.1007/978-94-007-7805-4 10.1007/s11468-013-9632-9 10.1364/JOSAB.17.001906 10.1021/nl062377u 10.1016/j.rser.2017.08.094 10.1088/0957-4484/23/19/194003 10.1016/j.jnoncrysol.2003.09.004 10.1016/j.apsusc.2015.04.145 10.1016/j.cplett.2018.03.004 10.1063/1.2988288 10.1002/adma.200900331 10.1016/j.apsusc.2020.147434 10.1016/S0927-0248(00)00345-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-22911-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (UHCL Subscription) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_dc3c854a0e6b4bd2b3dc95b806dd0e19 PMC9668829 10_1038_s41598_022_22911_9 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c447t-b0775e7e4e3a758552ef48251057f4634643e86f56b449b74b081bfb573c8f533 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:02:55 EDT 2025 Thu Aug 21 18:39:06 EDT 2025 Fri Jul 11 09:26:37 EDT 2025 Wed Aug 13 08:18:15 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 00:55:25 EDT 2025 Fri Feb 21 02:36:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-b0775e7e4e3a758552ef48251057f4634643e86f56b449b74b081bfb573c8f533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-22911-9 |
PQID | 2736949658 |
PQPubID | 2041939 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc3c854a0e6b4bd2b3dc95b806dd0e19 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9668829 proquest_miscellaneous_2737466811 proquest_journals_2736949658 crossref_citationtrail_10_1038_s41598_022_22911_9 crossref_primary_10_1038_s41598_022_22911_9 springer_journals_10_1038_s41598_022_22911_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-16 |
PublicationDateYYYYMMDD | 2022-11-16 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | NakayamaKTanabeKAtwaterHAPlasmonic nanoparticle enhanced light absorption in GaAs solar cellsAppl. Phys. Lett.200893122008ApPhL..93l1904N10.1063/1.2988288 MertzJRadiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified descriptionJOSA B200017190619132000JOSAB..17.1906M1:CAS:528:DC%2BD3cXnslGis78%3D10.1364/JOSAB.17.001906 LazarGLazarIIR characterization of a-C:H:N films sputtered in Ar/CH4/N2 plasmaJ. Non-Cryst. Solids200333170782003JNCS..331...70L1:CAS:528:DC%2BD3sXos1KgtLs%3D10.1016/j.jnoncrysol.2003.09.004 HekmatMRostamianFShafiekhaniAImproving solar cells characteristics by tuning the density distribution of deep trapping states using Au@ DLC decorated on photoanodesMater. Sci. Semicond. Process.20211281:CAS:528:DC%2BB3MXlsV2rsrc%3D10.1016/j.mssp.2021.105782 WangBLeuPWEnhanced absorption in silicon nanocone arrays for photovoltaicsNanotechnology2012192012Nanot..23s4003W10.1088/0957-4484/23/19/194003 MorawiecSMendesMJMirabellaSSimoneFPrioloFCrupiISelf-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: Correlation between structural and optical propertiesNanotechnology201324262013Nanot..24z5601M10.1088/0957-4484/24/26/26560123733320 BorraMZGulluSKEsFDemirciogluOGunovenMTuranRBekAA feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cellsAppl. Surf. Sci.201431843502014ApSS..318...43Z10.1016/j.apsusc.2013.12.088 PalaRAWhiteJBarnardELiuJBrongersmaMLDesign of plasmonic thin-film solar cells with broadband absorption enhancementsAdv. Mater.200921350435091:CAS:528:DC%2BD1MXhtV2lt7nI10.1002/adma.200900331 EnrichiFQuandtARighiniGCPlasmonic enhanced solar cells. Summary of possible strategies and recent resultsRenew. Sustain. Energy Rev.201882243324391:CAS:528:DC%2BC2sXhsVyit73F10.1016/j.rser.2017.08.094 ShockleyWQueisserHJDetailed balance limit of efficiency of p-n junction solar cellsJ. Appl. Phys.1961325101961JAP....32..510S1:CAS:528:DyaF3MXpslGqsQ%3D%3D10.1063/1.1736034 ShahbazyanTVStockmanMIPlasmonics: Theory and Applications2013Springer10.1007/978-94-007-7805-4 NikolaidouKSarangSGhoshSNanostructured photovoltaicsNano Futures201912019NanoF...3a2002N10.1088/2399-1984/ab02b5 SardanaSKChavaVSNKomaralaVKMorphology and optical properties of sputter deposited silver nanoparticles on plain, textured and antireflection layer coated textured siliconAppl. Surf. Sci.20153476516562015ApSS..347..651S1:CAS:528:DC%2BC2MXnvFaqtb0%3D10.1016/j.apsusc.2015.04.145 GreenMAEmeryKHishikawaYWartaWSolar cell efficiency tablesProg. Photovoltaics Res. Appl.2010534610.1002/pip.1021 MieGBeitrage zur Optik Truber Medien, Speziell Kolloidaler MetallosungenAnn. Phys.19082537644539.0890.02 Abd El-kaderFHHakeemNAOsmanWHMenazeaAAAbdelghanyAMNanosecond laser irradiation as new route for silver nanoparticles precipitation in glassy matrixSILICON2019113773811:CAS:528:DC%2BC1cXpsFOgtL8%3D10.1007/s12633-018-9890-4 HuLChenXChenGSurface-plasmon enhanced near-bandgap light absorption in silicon photovoltaicsJ. Comput. Theor. Nanosci.2008112096210110.1166/jctn.2008.1103 HekmatMRostamyanFShafiekhaniAKhabirMBarrier coating and plasmonic effect by using diamond-like carbon and silver nanoparticles on quantum dots sensitize solar cellsSemicond. Sci. Technol.20203542020SeScT..35d5019H1:CAS:528:DC%2BB3cXhvFWiu7nI10.1088/1361-6641/ab74eb ShokeenPSinghYPJainAKapoorAEnhanced performance of thin-film solar cell by metallic nanostructural vertical dual modelJ. Nanophotonics2015912015JNano...9.3066S10.1117/1.JNP.9.093066 LipovsekBSmoleFTopicMHumarISinigojARDriving forces and charge-carrier separation in p-n junction solar cellsAIP Adv.201992019AIPA....9e5026L10.1063/1.5092948 SalehZMNasserHÖzkolEGünövenMAltuntasBBekATuranREnhanced optical absorption and spectral photocurrent in a-Si: H by single-and double-layer silver plasmonic interfacesPlasmonics2014923573651:CAS:528:DC%2BC2cXntVSisLg%3D10.1007/s11468-013-9632-9 DahmenCSchmidtBPlessenGVRadiation damping in metal nanoparticle pairsNano Lett.2007723183222007NanoL...7..318D1:CAS:528:DC%2BD2sXns1yhtQ%3D%3D10.1021/nl062377u17243751 GradyNKHalasNJNordlanderPInfluence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticlesChem. Phys. Lett.20043991671712004CPL...399..167G1:CAS:528:DC%2BD2cXpvVelsbs%3D10.1016/j.cplett.2004.09.154 GhoshBRaySCEspinoza-GonzálezRVillarroelRHeviaSAAlvarez-VegaPSurface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic applicationChem. Phys. Lett.201869860662018CPL...698...60G1:CAS:528:DC%2BC1cXktlWhtbw%3D10.1016/j.cplett.2018.03.004 HoWJChenJCLiuJJHoCHEnhancing luminescent down-shifting of Eu-doped phosphors by incorporating plasmonic silver nanoparticles for silicon solar cellsAppl. Surf. Sci.20205321:CAS:528:DC%2BB3cXhs1Gjsb%2FJ10.1016/j.apsusc.2020.147434 DerkacsDLimSHMatheuPMarWYuETImproved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticlesAppl. Phys. Lett.2006892006ApPhL..89i3103D10.1063/1.2336629 ThongrattanasiriSde-AbajoFJGOptical field enhancement by strong plasmon interaction in graphene nanostructuresPhys. Rev. Lett.20131102013PhRvL.110r7401T10.1103/PhysRevLett.110.18740123683241 LitovchenkoVGKlyuiNISolar cells based on DLC film–Si structures for space applicationSol. Energy Mater. Sol. Cells20016855701:CAS:528:DC%2BD3cXovFOrtr0%3D10.1016/S0927-0248(00)00345-7 NK Grady (22911_CR20) 2004; 399 WJ Ho (22911_CR9) 2020; 532 B Ghosh (22911_CR18) 2018; 698 FH Abd El-kader (22911_CR21) 2019; 11 B Lipovsek (22911_CR2) 2019; 9 B Wang (22911_CR4) 2012; 19 MA Green (22911_CR6) 2010; 5 J Mertz (22911_CR22) 2000; 17 K Nikolaidou (22911_CR8) 2019; 1 G Lazar (22911_CR10) 2003; 331 D Derkacs (22911_CR23) 2006; 89 SK Sardana (22911_CR15) 2015; 347 TV Shahbazyan (22911_CR1) 2013 S Morawiec (22911_CR16) 2013; 24 G Mie (22911_CR27) 1908; 25 P Shokeen (22911_CR13) 2015; 9 ZM Saleh (22911_CR14) 2014; 9 RA Pala (22911_CR25) 2009; 21 M Hekmat (22911_CR12) 2020; 35 VG Litovchenko (22911_CR26) 2001; 68 F Enrichi (22911_CR3) 2018; 82 K Nakayama (22911_CR24) 2008; 93 S Thongrattanasiri (22911_CR19) 2013; 110 W Shockley (22911_CR7) 1961; 32 C Dahmen (22911_CR28) 2007; 7 MZ Borra (22911_CR17) 2014; 318 L Hu (22911_CR5) 2008; 11 M Hekmat (22911_CR11) 2021; 128 |
References_xml | – reference: ShokeenPSinghYPJainAKapoorAEnhanced performance of thin-film solar cell by metallic nanostructural vertical dual modelJ. Nanophotonics2015912015JNano...9.3066S10.1117/1.JNP.9.093066 – reference: MorawiecSMendesMJMirabellaSSimoneFPrioloFCrupiISelf-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: Correlation between structural and optical propertiesNanotechnology201324262013Nanot..24z5601M10.1088/0957-4484/24/26/26560123733320 – reference: GhoshBRaySCEspinoza-GonzálezRVillarroelRHeviaSAAlvarez-VegaPSurface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic applicationChem. Phys. Lett.201869860662018CPL...698...60G1:CAS:528:DC%2BC1cXktlWhtbw%3D10.1016/j.cplett.2018.03.004 – reference: NikolaidouKSarangSGhoshSNanostructured photovoltaicsNano Futures201912019NanoF...3a2002N10.1088/2399-1984/ab02b5 – reference: HoWJChenJCLiuJJHoCHEnhancing luminescent down-shifting of Eu-doped phosphors by incorporating plasmonic silver nanoparticles for silicon solar cellsAppl. Surf. Sci.20205321:CAS:528:DC%2BB3cXhs1Gjsb%2FJ10.1016/j.apsusc.2020.147434 – reference: LipovsekBSmoleFTopicMHumarISinigojARDriving forces and charge-carrier separation in p-n junction solar cellsAIP Adv.201992019AIPA....9e5026L10.1063/1.5092948 – reference: SardanaSKChavaVSNKomaralaVKMorphology and optical properties of sputter deposited silver nanoparticles on plain, textured and antireflection layer coated textured siliconAppl. Surf. Sci.20153476516562015ApSS..347..651S1:CAS:528:DC%2BC2MXnvFaqtb0%3D10.1016/j.apsusc.2015.04.145 – reference: HekmatMRostamyanFShafiekhaniAKhabirMBarrier coating and plasmonic effect by using diamond-like carbon and silver nanoparticles on quantum dots sensitize solar cellsSemicond. Sci. Technol.20203542020SeScT..35d5019H1:CAS:528:DC%2BB3cXhvFWiu7nI10.1088/1361-6641/ab74eb – reference: ThongrattanasiriSde-AbajoFJGOptical field enhancement by strong plasmon interaction in graphene nanostructuresPhys. Rev. Lett.20131102013PhRvL.110r7401T10.1103/PhysRevLett.110.18740123683241 – reference: ShockleyWQueisserHJDetailed balance limit of efficiency of p-n junction solar cellsJ. Appl. Phys.1961325101961JAP....32..510S1:CAS:528:DyaF3MXpslGqsQ%3D%3D10.1063/1.1736034 – reference: HekmatMRostamianFShafiekhaniAImproving solar cells characteristics by tuning the density distribution of deep trapping states using Au@ DLC decorated on photoanodesMater. Sci. Semicond. Process.20211281:CAS:528:DC%2BB3MXlsV2rsrc%3D10.1016/j.mssp.2021.105782 – reference: Abd El-kaderFHHakeemNAOsmanWHMenazeaAAAbdelghanyAMNanosecond laser irradiation as new route for silver nanoparticles precipitation in glassy matrixSILICON2019113773811:CAS:528:DC%2BC1cXpsFOgtL8%3D10.1007/s12633-018-9890-4 – reference: NakayamaKTanabeKAtwaterHAPlasmonic nanoparticle enhanced light absorption in GaAs solar cellsAppl. Phys. Lett.200893122008ApPhL..93l1904N10.1063/1.2988288 – reference: HuLChenXChenGSurface-plasmon enhanced near-bandgap light absorption in silicon photovoltaicsJ. Comput. Theor. Nanosci.2008112096210110.1166/jctn.2008.1103 – reference: SalehZMNasserHÖzkolEGünövenMAltuntasBBekATuranREnhanced optical absorption and spectral photocurrent in a-Si: H by single-and double-layer silver plasmonic interfacesPlasmonics2014923573651:CAS:528:DC%2BC2cXntVSisLg%3D10.1007/s11468-013-9632-9 – reference: PalaRAWhiteJBarnardELiuJBrongersmaMLDesign of plasmonic thin-film solar cells with broadband absorption enhancementsAdv. Mater.200921350435091:CAS:528:DC%2BD1MXhtV2lt7nI10.1002/adma.200900331 – reference: WangBLeuPWEnhanced absorption in silicon nanocone arrays for photovoltaicsNanotechnology2012192012Nanot..23s4003W10.1088/0957-4484/23/19/194003 – reference: GreenMAEmeryKHishikawaYWartaWSolar cell efficiency tablesProg. Photovoltaics Res. Appl.2010534610.1002/pip.1021 – reference: LazarGLazarIIR characterization of a-C:H:N films sputtered in Ar/CH4/N2 plasmaJ. Non-Cryst. Solids200333170782003JNCS..331...70L1:CAS:528:DC%2BD3sXos1KgtLs%3D10.1016/j.jnoncrysol.2003.09.004 – reference: DahmenCSchmidtBPlessenGVRadiation damping in metal nanoparticle pairsNano Lett.2007723183222007NanoL...7..318D1:CAS:528:DC%2BD2sXns1yhtQ%3D%3D10.1021/nl062377u17243751 – reference: BorraMZGulluSKEsFDemirciogluOGunovenMTuranRBekAA feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cellsAppl. Surf. Sci.201431843502014ApSS..318...43Z10.1016/j.apsusc.2013.12.088 – reference: DerkacsDLimSHMatheuPMarWYuETImproved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticlesAppl. Phys. Lett.2006892006ApPhL..89i3103D10.1063/1.2336629 – reference: MertzJRadiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified descriptionJOSA B200017190619132000JOSAB..17.1906M1:CAS:528:DC%2BD3cXnslGis78%3D10.1364/JOSAB.17.001906 – reference: EnrichiFQuandtARighiniGCPlasmonic enhanced solar cells. Summary of possible strategies and recent resultsRenew. Sustain. Energy Rev.201882243324391:CAS:528:DC%2BC2sXhsVyit73F10.1016/j.rser.2017.08.094 – reference: LitovchenkoVGKlyuiNISolar cells based on DLC film–Si structures for space applicationSol. Energy Mater. Sol. Cells20016855701:CAS:528:DC%2BD3cXovFOrtr0%3D10.1016/S0927-0248(00)00345-7 – reference: MieGBeitrage zur Optik Truber Medien, Speziell Kolloidaler MetallosungenAnn. Phys.19082537644539.0890.02 – reference: ShahbazyanTVStockmanMIPlasmonics: Theory and Applications2013Springer10.1007/978-94-007-7805-4 – reference: GradyNKHalasNJNordlanderPInfluence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticlesChem. Phys. Lett.20043991671712004CPL...399..167G1:CAS:528:DC%2BD2cXpvVelsbs%3D10.1016/j.cplett.2004.09.154 – volume: 5 start-page: 346 year: 2010 ident: 22911_CR6 publication-title: Prog. Photovoltaics Res. Appl. doi: 10.1002/pip.1021 – volume: 32 start-page: 510 year: 1961 ident: 22911_CR7 publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 11 start-page: 377 year: 2019 ident: 22911_CR21 publication-title: SILICON doi: 10.1007/s12633-018-9890-4 – volume: 128 year: 2021 ident: 22911_CR11 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.105782 – volume: 318 start-page: 43 year: 2014 ident: 22911_CR17 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.12.088 – volume: 89 year: 2006 ident: 22911_CR23 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2336629 – volume: 24 issue: 26 year: 2013 ident: 22911_CR16 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/26/265601 – volume: 9 year: 2019 ident: 22911_CR2 publication-title: AIP Adv. doi: 10.1063/1.5092948 – volume: 110 year: 2013 ident: 22911_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.187401 – volume: 9 issue: 1 year: 2015 ident: 22911_CR13 publication-title: J. Nanophotonics doi: 10.1117/1.JNP.9.093066 – volume: 399 start-page: 167 year: 2004 ident: 22911_CR20 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2004.09.154 – volume: 1 year: 2019 ident: 22911_CR8 publication-title: Nano Futures doi: 10.1088/2399-1984/ab02b5 – volume: 25 start-page: 376 year: 1908 ident: 22911_CR27 publication-title: Ann. Phys. – volume: 11 start-page: 2096 year: 2008 ident: 22911_CR5 publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2008.1103 – volume: 35 issue: 4 year: 2020 ident: 22911_CR12 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ab74eb – volume-title: Plasmonics: Theory and Applications year: 2013 ident: 22911_CR1 doi: 10.1007/978-94-007-7805-4 – volume: 9 start-page: 357 issue: 2 year: 2014 ident: 22911_CR14 publication-title: Plasmonics doi: 10.1007/s11468-013-9632-9 – volume: 17 start-page: 1906 year: 2000 ident: 22911_CR22 publication-title: JOSA B doi: 10.1364/JOSAB.17.001906 – volume: 7 start-page: 318 issue: 2 year: 2007 ident: 22911_CR28 publication-title: Nano Lett. doi: 10.1021/nl062377u – volume: 82 start-page: 2433 year: 2018 ident: 22911_CR3 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.08.094 – volume: 19 year: 2012 ident: 22911_CR4 publication-title: Nanotechnology doi: 10.1088/0957-4484/23/19/194003 – volume: 331 start-page: 70 year: 2003 ident: 22911_CR10 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2003.09.004 – volume: 347 start-page: 651 year: 2015 ident: 22911_CR15 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.04.145 – volume: 698 start-page: 60 year: 2018 ident: 22911_CR18 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.03.004 – volume: 93 issue: 12 year: 2008 ident: 22911_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2988288 – volume: 21 start-page: 3504 year: 2009 ident: 22911_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.200900331 – volume: 532 year: 2020 ident: 22911_CR9 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147434 – volume: 68 start-page: 55 year: 2001 ident: 22911_CR26 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(00)00345-7 |
SSID | ssj0000529419 |
Score | 2.437233 |
Snippet | The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the... Abstract The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19663 |
SubjectTerms | 639/301 639/766 Humanities and Social Sciences multidisciplinary Nanoparticles Photovoltaic cells Scanning electron microscopy Science Science (multidisciplinary) Silicon Silver Solar cells Surface plasmon resonance |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcILWiQuEHUJHYc-0YpVBWCFQcq9Wb5FRppm63Y9NAf0f_cGSe7NJWAC6fdTWaVx3wjf2OPv2HsrYvcCid5brX2uaiVzC3nLvfO1sHKuootzXd8W8jjE_HltD691eqLasJGeeDxxe0Hz72qhS2idMKFyvHgde1UIUMoYhL8rHDMu5VMjarelRalnnbJFFztr3Gkot1kmHtVFUZ4rmcjURLsn7HMuzWSdxZK0_hz9Ig9nIgjHIw3_Jjdi_0Tdn9sJXn1lF0vELKQ6tHA9gHa7a8L5MfnJIALsT8jH6dNbUATsOC6pSXODasWNq1SBvx2TmXtiEc4-Ln4vv7w6eshILmFLs1AxAB-VHWCQHbDFXQ9rLslggo_KVd-xk6OPv84PM6nVgu5F6IZckdKeLGJAl1HGQT5SNCuVqRzrZBcIHGJSrY1OkFo1wiHVMK1rm7QOy1Sxudsp1_18QUDqTgaIy1otUJTp13FbdClFbwJRfAZKzev3fhJh5zaYSxNWg_nyoyuMugqk1xldMbebf9zMapw_NX6I3lza0kK2ukA4spMuDL_wlXG9jZYMFNYrw1yPalJYV9l7M32NAYkrbLYPq4uk00jpFRlmbFmhqHZDc3P9N1ZkvbG5BNTHrz4-w3afl_8zw_88n888C57UFF0UImj3GM7w6_L-AoJ1-Bep9i6AZCrKXs priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4imWFmQkbhA1iR3HPkEpVBWCFQcq7c3yK22kbbLtpof-iP5nZpxHlUr0tI_MJs7OOP7m4W8I-WgDM9wKlhilXMILKRLDmE2cNYU3oshDhfGO30txfMJ_rorVEHDbDmWV4zMxPqh96zBGvg_LrFBIbi6_bC4S7BqF2dWhhcZD8gipy9Cqy1U5xVgwi8UzNeyVSZnc38J6hXvKwAPLc5jniZqtR5G2f4Y171ZK3kmXxlXo6Bl5OsBHetDr-zl5EJoX5HHfUPL6JblZguHSWJVGTeNpNX3aAEo-RxpcGpoz1HTc2kYxDEttvTaIvGlb0bFhSgfvzrG4HaySHpwu_2y_fv91SAHi0jrGIYKnrud2oh7lumtaN3Rbr8G04BU95lfk5OjH38PjZGi4kDjOyy6xyIcXysBBgehHoKY47m0FUFdxwTjAlyBFVQjLubIltwAobGWLkjlZAXB8TXaatglvCBWSgTCAg0pJELXK5sx4lRnOSp96tyDZ-LdrN7CRY1OMtY5ZcSZ1ryoNqtJRVVotyKfpN5uei-Ne6W-ozUkSebTjF-3lqR6mpfYORl5wkwa4Jetzy7xThZWp8D4NGZxkb7QFPUzurb41xQX5MB2GaYm5FtOE9irKlFwImWULUs5saDag-ZGmPosE3-CCguMDF_88Wtvtxf9_w2_vH-sueZKj3WMJo9gjO93lVXgHgKqz7-Os-QehNB_7 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiPIQCwUZiRtEJLHj2LcupVW1ghUSVOrN8ittpG226qaH_gj-c2ecB0oFlXrabDJJnMxM_I0985mQjzYww61giVHKJbyQIjGM2cRZU3gjijxUON7xYymOT_jitDjdIvlQCxOT9iOlZfxMD9lhXzbQ0WAxGIROeQ4OmqhHZAep2sG2d-bzxa_FOLKCc1c8U32FTMrkP06e9EKRrH-CMO_mR96ZJI19z9Ez8rQHjXTeNXOXbIXmOXncLSN584L8WYK50piLRk3jaTX-uwRsfIHktzQ056jfWNBGcfCV2nplEG_TdUWHZVJa2LrAlHawRTo_W_7c7H_7fkAB2NI6jj4ET13H6EQ9yrU3tG7opl6BQcEvxskvycnR4e-D46RfZiFxnJdtYpEFL5SBg9owekD9cKxoBShXccE4gJYgRVUIy7myJbcAI2xli5I5WQFcfEW2m3UTXhMqJANhgASVkiBqlc2Z8SoznJU-9W5GsuG1a9dzkONSGCsd58KZ1J2qNKhKR1VpNSOfxnMuOwaOe6W_ojZHSWTPjjvWV2e6tybtHbS84CYN8EjW55Z5pworU-F9GjK4yN5gC7p36Y0GnCcUsuvLGfkwHgZnxBkW04T1dZQpuRAyy2aknNjQpEHTI019Hmm9IfCEcAdu_nmwtr83__8Dv3mY-FvyJEc_wERGsUe226vr8A5gVWvf9350C3X-HwI priority: 102 providerName: Springer Nature |
Title | Near field and far field plasmonic enhancements with bilayers of different dimensions AgNPs@DLC for improved current density in silicon solar |
URI | https://link.springer.com/article/10.1038/s41598-022-22911-9 https://www.proquest.com/docview/2736949658 https://www.proquest.com/docview/2737466811 https://pubmed.ncbi.nlm.nih.gov/PMC9668829 https://doaj.org/article/dc3c854a0e6b4bd2b3dc95b806dd0e19 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2ERIviKvoGJWReINAEzu-PCDoyqapYtUEVOpbZMfOFqlLR9tJ9EfwnznHSYoyDSSecju5-Zwjf8f2-Q4hr61nhlvBIqN1HvFUicgwZqPcmtQZkSa-wPGOs4k4nfLxLJ3tkLbcUdOAqztDO6wnNV3O3_38sfkIDv-hThlX71fQCWGiGIRVSQLOG-ldsg89k8SKBmcN3K-5vhPNY93kztx9a6d_CjT-Hex5e-XkrenT0CudPCQPGjhJh7X-H5EdXz0m9-oCk5sn5NcEDJmGVWrUVI4W26NrQM1XSItLfXWJmg-pbhSHZakt5waROF0UtC2gsoa9K1zsDlZKhxeT89Wnz19GFCAvLcO4hHc0r7meqEO59YaWFV2VczA12GIzPyXTk-Pvo9OoKcAQ5ZzLdWSRH89Lz0GhGFeg5jjmugLIK7hgHOCMV6JIheVcW8ktAAxb2FSyXBUAJJ-RvWpR-eeECsVAGMBCoRWIWm0TZpyODWfSDVzeI3Hb7FnesJNjkYx5FmbJmcpqVWWgqiyoKtM98mZ7z3XNzfFP6SPU5lYSebXDicXyImvcNHM5fHnKzcDDL1mXWOZynVo1EM4NfAwPOWxtIWttNQMEKDTy7qseebW9DG6Kcy-m8oubICO5ECqOe0R2bKjzQd0rVXkZCL8hJIVACF7-trW2Py__-w8f_J_4C3I_QT_AJY7ikOytlzf-JQCute2TXTmTfbI_HI6_jWF7dDw5_wpnR2LUD4MY_eBnvwGRpC0k |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0JqGELwgPkVhgJHgCaIlsePYDwjGxtSxruJhk_pm7NjZInVJWTuh_gj-Cr-ROyfp1EnsbU9Nm0tzyZ3v03dHyDvrmeFWsMgoVUQ8kyIyjNmosCZzRmSpLzHecTQWwxP-fZJNNsjfvhYGt1X2MjEIatcUGCPfBjUrFDY3l59nvyKcGoXZ1X6ERssWh375G1y2-aeDPaDv-zTd_3a8O4y6qQJRwXm-iCw2ffO554AlGsuIDscCTrBcSi4YBx3tpSgzYTlXNucWtKYtbZazQpYZBkBB5N8BxRujs5dP8lVMB7NmPFFdbU7M5PYc9CPWsIHHl6YgVyK1pv_CmIA12_b6zsxr6dmg9fYfkgeduUp3Wv56RDZ8_ZjcbQdYLp-QP2N4IzTsgqOmdrRcfZuBVX6ObXepr8-Qs0IpHcWwL7XV1KClT5uS9gNaFnB0jpvpYRXQndPxj_mXvdEuBZOaViHu4R0t2l5S1CHcYkmrms6rKbAyfKKH_pSc3AopnpHNuqn9c0KFZAAMxkipJIBaZVNmnEoMZ7mLXTEgSf_addF1P8chHFMdsvBM6pZUGkilA6m0GpAPq2tmbe-PG6G_IjVXkNi3O_zQXJzqTgxoVwDmGTexh0eyLrXMFSqzMhbOxT6BP9nqeUF3wmSur1h_QN6uToMYwNyOqX1zGWByLoRMkgHJ13hoDaH1M3V1FhqKg8sLjhbc_GPPbVc3__8Dv7gZ1zfk3vD4aKRHB-PDl-R-imsAt0-KLbK5uLj0r8CYW9jXYQVR8vO2l-w_4ltanA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo6gXhBXEXHACPBE0RtYseJHxBs66qNjapCTNqbsWNni9QlZc2E-hH8EF_HOU7SqZPY256aNieNk3O_-BxC3hnHNDeCBVrKLOBxKgLNmAkyo2OrRRy5HOMd3ybi4IR_PY1PN8jfbi8MllV2MtELaltlGCMfgJoVEpubp4O8LYuYjsaf578CnCCFmdZunEZDIkdu-Rvct8WnwxHg-n0Ujfd_7B0E7YSBIOM8qQODDeBc4jisGA1nXBrHzZxgxeRcMA762qUij4XhXJqEG9CgJjdxwrI0jzEYCuJ_M0GvqEc2d_cn0--rCA_m0Hgo2506Q5YOFqAtcUcb-H9RBFImkGva0A8NWLN0b9Zp3kjWeh04fkQetsYr3Wmo7THZcOUTcq8ZZ7l8Sv5M4J1QXxNHdWlpvvo2Bxv9ApvwUleeI535jXUUg8DUFDONdj-tctqNa6nh6AJL64En6M7ZZLr4Mjreo2Bg08JHQZylWdNZilqEq5e0KOmimAFhwyf668_IyZ0g4znplVXpXhAqUgbAYJrkMgVQI03EtJWh5iyxQ5v1Sdi9dpW1vdBxJMdM-Zw8S1WDKgWoUh5VSvbJh9U186YTyK3Qu4jNFSR28fY_VJdnqhUKymaw8pjroYNHMjYyzGYyNulQWDt0IfzJdkcLqhUtC3XNCH3ydnUahAJmenTpqisPk3Ah0jDsk2SNhtYWtH6mLM59e3FwgMHtgpt_7Kjt-ub_f-Ct29f6htwHdlXHh5Ojl-RBhCyAtZRim_Tqyyv3Ciy72rxuWYiSn3fNtf8AFLBgNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+field+and+far+field+plasmonic+enhancements+with+bilayers+of+different+dimensions+AgNPs%40DLC+for+improved+current+density+in+silicon+solar&rft.jtitle=Scientific+reports&rft.au=Hekmat%2C+Maryam&rft.au=Shafiekhani%2C+Azizollah&rft.au=Khabir%2C+Mehdi&rft.date=2022-11-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-22911-9&rft.externalDocID=10_1038_s41598_022_22911_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |