Near field and far field plasmonic enhancements with bilayers of different dimensions AgNPs@DLC for improved current density in silicon solar

The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine th...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 19663 - 7
Main Authors Hekmat, Maryam, Shafiekhani, Azizollah, Khabir, Mehdi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.11.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm 2 (by 70% compared to the bare reference cell).
AbstractList The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell).
The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm 2 (by 70% compared to the bare reference cell).
The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell).The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell).
Abstract The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the improved performance of silicon solar cells by integrating two layers of silver nanoparticles of different sizes. We experimentally examine the plasmonic near-field and far-field effects of bilayer Ag NPs embedded within an anti-reflective DLC layer on silicon solar cells' optical and electrical characteristics. Field-Emission Scanning Electron Microscopy drove the two-dimensional differences in the size of Ag NPs. The surface plasmon resonance of the two-dimensional nanoparticles was estimated from the absorption optical spectra. External quantum efficiency measurements showed that near-field or far-field plasmonic effects altered with the Ag NPs size. The development of far fields was confirmed by measuring the solar cell performance under AM 1.5 G illumination. The impact of the far-field in the cell containing two layers of Ag NPs, which outer layer is larger dimensions NPs, improves the current density up to 38.4 mA/cm2 (by 70% compared to the bare reference cell).
ArticleNumber 19663
Author Hekmat, Maryam
Shafiekhani, Azizollah
Khabir, Mehdi
Author_xml – sequence: 1
  givenname: Maryam
  surname: Hekmat
  fullname: Hekmat, Maryam
  organization: Department of Nanophysics, Faculty of Physics, Alzahra University
– sequence: 2
  givenname: Azizollah
  surname: Shafiekhani
  fullname: Shafiekhani, Azizollah
  email: ashafie@alzahra.ac.ir
  organization: Department of Nanophysics, Faculty of Physics, Alzahra University
– sequence: 3
  givenname: Mehdi
  surname: Khabir
  fullname: Khabir, Mehdi
  organization: Department of Electrical Engineering, Iran University of Science and Technology
BookMark eNp9kstu3CAUhq0qlZqmeYGukLrpxi1gsPGmajTpJdIo7aJdIwyHGUYYpuBJNQ_Rdy6O00uyCJvD5ft_zoHzvDoJMUBVvST4DcGNeJsZ4b2oMaU1pT0hdf-kOqWY8Zo2lJ78N39Wnee8w2Vw2jPSn1a_rkElZB14g1QwyP5d7b3KYwxOIwhbFTSMEKaMfrppiwbn1RFSRtEi46yFVM7KrCDZxZDRxeb6a35_uV4hGxNy4z7FGzBIH9JCztx0RC6g7LzTscToVXpRPbXKZzi_i2fV948fvq0-1-svn65WF-taM9ZN9YC7jkMHDBrVccE5BcsE5QTzzrK2YS1rQLSWtwNj_dCxAQsy2IF3jRaWN81ZdbX4mqh2cp_cqNJRRuXk7UZMG6nS5LQHaXTRcKYwFLPB0KExuueDwK0xGEhfvN4tXvvDMILRpb6k_D3T-yfBbeUm3si-bYWgs8HrO4MUfxwgT3J0WYP3KkA8ZEm7pmOFJaSgrx6gu3hIoTzVTLU961suCiUWSqeYcwIrtZvUVD6m3O-8JFjOfSOXvpGlb-Rt38g5F_pA-qeOR0XNIsoFDhtI_7J6RPUbQm3ZZw
CitedBy_id crossref_primary_10_1007_s11468_023_02066_7
crossref_primary_10_1002_vipr_202300807
crossref_primary_10_1088_1402_4896_ad8973
crossref_primary_10_3390_lubricants11040186
crossref_primary_10_1007_s11468_024_02476_1
crossref_primary_10_1088_1402_4896_ad7895
crossref_primary_10_1007_s11082_023_05158_0
crossref_primary_10_1016_j_mtcomm_2024_109488
crossref_primary_10_1016_j_jddst_2023_105307
crossref_primary_10_1007_s11468_025_02759_1
crossref_primary_10_1002_jemt_24568
Cites_doi 10.1002/pip.1021
10.1063/1.1736034
10.1007/s12633-018-9890-4
10.1016/j.mssp.2021.105782
10.1016/j.apsusc.2013.12.088
10.1063/1.2336629
10.1088/0957-4484/24/26/265601
10.1063/1.5092948
10.1103/PhysRevLett.110.187401
10.1117/1.JNP.9.093066
10.1016/j.cplett.2004.09.154
10.1088/2399-1984/ab02b5
10.1166/jctn.2008.1103
10.1088/1361-6641/ab74eb
10.1007/978-94-007-7805-4
10.1007/s11468-013-9632-9
10.1364/JOSAB.17.001906
10.1021/nl062377u
10.1016/j.rser.2017.08.094
10.1088/0957-4484/23/19/194003
10.1016/j.jnoncrysol.2003.09.004
10.1016/j.apsusc.2015.04.145
10.1016/j.cplett.2018.03.004
10.1063/1.2988288
10.1002/adma.200900331
10.1016/j.apsusc.2020.147434
10.1016/S0927-0248(00)00345-7
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-22911-9
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (UHCL Subscription)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7
ExternalDocumentID oai_doaj_org_article_dc3c854a0e6b4bd2b3dc95b806dd0e19
PMC9668829
10_1038_s41598_022_22911_9
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c447t-b0775e7e4e3a758552ef48251057f4634643e86f56b449b74b081bfb573c8f533
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:02:55 EDT 2025
Thu Aug 21 18:39:06 EDT 2025
Fri Jul 11 09:26:37 EDT 2025
Wed Aug 13 08:18:15 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 00:55:25 EDT 2025
Fri Feb 21 02:36:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-b0775e7e4e3a758552ef48251057f4634643e86f56b449b74b081bfb573c8f533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-22911-9
PQID 2736949658
PQPubID 2041939
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_dc3c854a0e6b4bd2b3dc95b806dd0e19
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9668829
proquest_miscellaneous_2737466811
proquest_journals_2736949658
crossref_citationtrail_10_1038_s41598_022_22911_9
crossref_primary_10_1038_s41598_022_22911_9
springer_journals_10_1038_s41598_022_22911_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-16
PublicationDateYYYYMMDD 2022-11-16
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References NakayamaKTanabeKAtwaterHAPlasmonic nanoparticle enhanced light absorption in GaAs solar cellsAppl. Phys. Lett.200893122008ApPhL..93l1904N10.1063/1.2988288
MertzJRadiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified descriptionJOSA B200017190619132000JOSAB..17.1906M1:CAS:528:DC%2BD3cXnslGis78%3D10.1364/JOSAB.17.001906
LazarGLazarIIR characterization of a-C:H:N films sputtered in Ar/CH4/N2 plasmaJ. Non-Cryst. Solids200333170782003JNCS..331...70L1:CAS:528:DC%2BD3sXos1KgtLs%3D10.1016/j.jnoncrysol.2003.09.004
HekmatMRostamianFShafiekhaniAImproving solar cells characteristics by tuning the density distribution of deep trapping states using Au@ DLC decorated on photoanodesMater. Sci. Semicond. Process.20211281:CAS:528:DC%2BB3MXlsV2rsrc%3D10.1016/j.mssp.2021.105782
WangBLeuPWEnhanced absorption in silicon nanocone arrays for photovoltaicsNanotechnology2012192012Nanot..23s4003W10.1088/0957-4484/23/19/194003
MorawiecSMendesMJMirabellaSSimoneFPrioloFCrupiISelf-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: Correlation between structural and optical propertiesNanotechnology201324262013Nanot..24z5601M10.1088/0957-4484/24/26/26560123733320
BorraMZGulluSKEsFDemirciogluOGunovenMTuranRBekAA feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cellsAppl. Surf. Sci.201431843502014ApSS..318...43Z10.1016/j.apsusc.2013.12.088
PalaRAWhiteJBarnardELiuJBrongersmaMLDesign of plasmonic thin-film solar cells with broadband absorption enhancementsAdv. Mater.200921350435091:CAS:528:DC%2BD1MXhtV2lt7nI10.1002/adma.200900331
EnrichiFQuandtARighiniGCPlasmonic enhanced solar cells. Summary of possible strategies and recent resultsRenew. Sustain. Energy Rev.201882243324391:CAS:528:DC%2BC2sXhsVyit73F10.1016/j.rser.2017.08.094
ShockleyWQueisserHJDetailed balance limit of efficiency of p-n junction solar cellsJ. Appl. Phys.1961325101961JAP....32..510S1:CAS:528:DyaF3MXpslGqsQ%3D%3D10.1063/1.1736034
ShahbazyanTVStockmanMIPlasmonics: Theory and Applications2013Springer10.1007/978-94-007-7805-4
NikolaidouKSarangSGhoshSNanostructured photovoltaicsNano Futures201912019NanoF...3a2002N10.1088/2399-1984/ab02b5
SardanaSKChavaVSNKomaralaVKMorphology and optical properties of sputter deposited silver nanoparticles on plain, textured and antireflection layer coated textured siliconAppl. Surf. Sci.20153476516562015ApSS..347..651S1:CAS:528:DC%2BC2MXnvFaqtb0%3D10.1016/j.apsusc.2015.04.145
GreenMAEmeryKHishikawaYWartaWSolar cell efficiency tablesProg. Photovoltaics Res. Appl.2010534610.1002/pip.1021
MieGBeitrage zur Optik Truber Medien, Speziell Kolloidaler MetallosungenAnn. Phys.19082537644539.0890.02
Abd El-kaderFHHakeemNAOsmanWHMenazeaAAAbdelghanyAMNanosecond laser irradiation as new route for silver nanoparticles precipitation in glassy matrixSILICON2019113773811:CAS:528:DC%2BC1cXpsFOgtL8%3D10.1007/s12633-018-9890-4
HuLChenXChenGSurface-plasmon enhanced near-bandgap light absorption in silicon photovoltaicsJ. Comput. Theor. Nanosci.2008112096210110.1166/jctn.2008.1103
HekmatMRostamyanFShafiekhaniAKhabirMBarrier coating and plasmonic effect by using diamond-like carbon and silver nanoparticles on quantum dots sensitize solar cellsSemicond. Sci. Technol.20203542020SeScT..35d5019H1:CAS:528:DC%2BB3cXhvFWiu7nI10.1088/1361-6641/ab74eb
ShokeenPSinghYPJainAKapoorAEnhanced performance of thin-film solar cell by metallic nanostructural vertical dual modelJ. Nanophotonics2015912015JNano...9.3066S10.1117/1.JNP.9.093066
LipovsekBSmoleFTopicMHumarISinigojARDriving forces and charge-carrier separation in p-n junction solar cellsAIP Adv.201992019AIPA....9e5026L10.1063/1.5092948
SalehZMNasserHÖzkolEGünövenMAltuntasBBekATuranREnhanced optical absorption and spectral photocurrent in a-Si: H by single-and double-layer silver plasmonic interfacesPlasmonics2014923573651:CAS:528:DC%2BC2cXntVSisLg%3D10.1007/s11468-013-9632-9
DahmenCSchmidtBPlessenGVRadiation damping in metal nanoparticle pairsNano Lett.2007723183222007NanoL...7..318D1:CAS:528:DC%2BD2sXns1yhtQ%3D%3D10.1021/nl062377u17243751
GradyNKHalasNJNordlanderPInfluence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticlesChem. Phys. Lett.20043991671712004CPL...399..167G1:CAS:528:DC%2BD2cXpvVelsbs%3D10.1016/j.cplett.2004.09.154
GhoshBRaySCEspinoza-GonzálezRVillarroelRHeviaSAAlvarez-VegaPSurface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic applicationChem. Phys. Lett.201869860662018CPL...698...60G1:CAS:528:DC%2BC1cXktlWhtbw%3D10.1016/j.cplett.2018.03.004
HoWJChenJCLiuJJHoCHEnhancing luminescent down-shifting of Eu-doped phosphors by incorporating plasmonic silver nanoparticles for silicon solar cellsAppl. Surf. Sci.20205321:CAS:528:DC%2BB3cXhs1Gjsb%2FJ10.1016/j.apsusc.2020.147434
DerkacsDLimSHMatheuPMarWYuETImproved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticlesAppl. Phys. Lett.2006892006ApPhL..89i3103D10.1063/1.2336629
ThongrattanasiriSde-AbajoFJGOptical field enhancement by strong plasmon interaction in graphene nanostructuresPhys. Rev. Lett.20131102013PhRvL.110r7401T10.1103/PhysRevLett.110.18740123683241
LitovchenkoVGKlyuiNISolar cells based on DLC film–Si structures for space applicationSol. Energy Mater. Sol. Cells20016855701:CAS:528:DC%2BD3cXovFOrtr0%3D10.1016/S0927-0248(00)00345-7
NK Grady (22911_CR20) 2004; 399
WJ Ho (22911_CR9) 2020; 532
B Ghosh (22911_CR18) 2018; 698
FH Abd El-kader (22911_CR21) 2019; 11
B Lipovsek (22911_CR2) 2019; 9
B Wang (22911_CR4) 2012; 19
MA Green (22911_CR6) 2010; 5
J Mertz (22911_CR22) 2000; 17
K Nikolaidou (22911_CR8) 2019; 1
G Lazar (22911_CR10) 2003; 331
D Derkacs (22911_CR23) 2006; 89
SK Sardana (22911_CR15) 2015; 347
TV Shahbazyan (22911_CR1) 2013
S Morawiec (22911_CR16) 2013; 24
G Mie (22911_CR27) 1908; 25
P Shokeen (22911_CR13) 2015; 9
ZM Saleh (22911_CR14) 2014; 9
RA Pala (22911_CR25) 2009; 21
M Hekmat (22911_CR12) 2020; 35
VG Litovchenko (22911_CR26) 2001; 68
F Enrichi (22911_CR3) 2018; 82
K Nakayama (22911_CR24) 2008; 93
S Thongrattanasiri (22911_CR19) 2013; 110
W Shockley (22911_CR7) 1961; 32
C Dahmen (22911_CR28) 2007; 7
MZ Borra (22911_CR17) 2014; 318
L Hu (22911_CR5) 2008; 11
M Hekmat (22911_CR11) 2021; 128
References_xml – reference: ShokeenPSinghYPJainAKapoorAEnhanced performance of thin-film solar cell by metallic nanostructural vertical dual modelJ. Nanophotonics2015912015JNano...9.3066S10.1117/1.JNP.9.093066
– reference: MorawiecSMendesMJMirabellaSSimoneFPrioloFCrupiISelf-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: Correlation between structural and optical propertiesNanotechnology201324262013Nanot..24z5601M10.1088/0957-4484/24/26/26560123733320
– reference: GhoshBRaySCEspinoza-GonzálezRVillarroelRHeviaSAAlvarez-VegaPSurface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic applicationChem. Phys. Lett.201869860662018CPL...698...60G1:CAS:528:DC%2BC1cXktlWhtbw%3D10.1016/j.cplett.2018.03.004
– reference: NikolaidouKSarangSGhoshSNanostructured photovoltaicsNano Futures201912019NanoF...3a2002N10.1088/2399-1984/ab02b5
– reference: HoWJChenJCLiuJJHoCHEnhancing luminescent down-shifting of Eu-doped phosphors by incorporating plasmonic silver nanoparticles for silicon solar cellsAppl. Surf. Sci.20205321:CAS:528:DC%2BB3cXhs1Gjsb%2FJ10.1016/j.apsusc.2020.147434
– reference: LipovsekBSmoleFTopicMHumarISinigojARDriving forces and charge-carrier separation in p-n junction solar cellsAIP Adv.201992019AIPA....9e5026L10.1063/1.5092948
– reference: SardanaSKChavaVSNKomaralaVKMorphology and optical properties of sputter deposited silver nanoparticles on plain, textured and antireflection layer coated textured siliconAppl. Surf. Sci.20153476516562015ApSS..347..651S1:CAS:528:DC%2BC2MXnvFaqtb0%3D10.1016/j.apsusc.2015.04.145
– reference: HekmatMRostamyanFShafiekhaniAKhabirMBarrier coating and plasmonic effect by using diamond-like carbon and silver nanoparticles on quantum dots sensitize solar cellsSemicond. Sci. Technol.20203542020SeScT..35d5019H1:CAS:528:DC%2BB3cXhvFWiu7nI10.1088/1361-6641/ab74eb
– reference: ThongrattanasiriSde-AbajoFJGOptical field enhancement by strong plasmon interaction in graphene nanostructuresPhys. Rev. Lett.20131102013PhRvL.110r7401T10.1103/PhysRevLett.110.18740123683241
– reference: ShockleyWQueisserHJDetailed balance limit of efficiency of p-n junction solar cellsJ. Appl. Phys.1961325101961JAP....32..510S1:CAS:528:DyaF3MXpslGqsQ%3D%3D10.1063/1.1736034
– reference: HekmatMRostamianFShafiekhaniAImproving solar cells characteristics by tuning the density distribution of deep trapping states using Au@ DLC decorated on photoanodesMater. Sci. Semicond. Process.20211281:CAS:528:DC%2BB3MXlsV2rsrc%3D10.1016/j.mssp.2021.105782
– reference: Abd El-kaderFHHakeemNAOsmanWHMenazeaAAAbdelghanyAMNanosecond laser irradiation as new route for silver nanoparticles precipitation in glassy matrixSILICON2019113773811:CAS:528:DC%2BC1cXpsFOgtL8%3D10.1007/s12633-018-9890-4
– reference: NakayamaKTanabeKAtwaterHAPlasmonic nanoparticle enhanced light absorption in GaAs solar cellsAppl. Phys. Lett.200893122008ApPhL..93l1904N10.1063/1.2988288
– reference: HuLChenXChenGSurface-plasmon enhanced near-bandgap light absorption in silicon photovoltaicsJ. Comput. Theor. Nanosci.2008112096210110.1166/jctn.2008.1103
– reference: SalehZMNasserHÖzkolEGünövenMAltuntasBBekATuranREnhanced optical absorption and spectral photocurrent in a-Si: H by single-and double-layer silver plasmonic interfacesPlasmonics2014923573651:CAS:528:DC%2BC2cXntVSisLg%3D10.1007/s11468-013-9632-9
– reference: PalaRAWhiteJBarnardELiuJBrongersmaMLDesign of plasmonic thin-film solar cells with broadband absorption enhancementsAdv. Mater.200921350435091:CAS:528:DC%2BD1MXhtV2lt7nI10.1002/adma.200900331
– reference: WangBLeuPWEnhanced absorption in silicon nanocone arrays for photovoltaicsNanotechnology2012192012Nanot..23s4003W10.1088/0957-4484/23/19/194003
– reference: GreenMAEmeryKHishikawaYWartaWSolar cell efficiency tablesProg. Photovoltaics Res. Appl.2010534610.1002/pip.1021
– reference: LazarGLazarIIR characterization of a-C:H:N films sputtered in Ar/CH4/N2 plasmaJ. Non-Cryst. Solids200333170782003JNCS..331...70L1:CAS:528:DC%2BD3sXos1KgtLs%3D10.1016/j.jnoncrysol.2003.09.004
– reference: DahmenCSchmidtBPlessenGVRadiation damping in metal nanoparticle pairsNano Lett.2007723183222007NanoL...7..318D1:CAS:528:DC%2BD2sXns1yhtQ%3D%3D10.1021/nl062377u17243751
– reference: BorraMZGulluSKEsFDemirciogluOGunovenMTuranRBekAA feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cellsAppl. Surf. Sci.201431843502014ApSS..318...43Z10.1016/j.apsusc.2013.12.088
– reference: DerkacsDLimSHMatheuPMarWYuETImproved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticlesAppl. Phys. Lett.2006892006ApPhL..89i3103D10.1063/1.2336629
– reference: MertzJRadiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified descriptionJOSA B200017190619132000JOSAB..17.1906M1:CAS:528:DC%2BD3cXnslGis78%3D10.1364/JOSAB.17.001906
– reference: EnrichiFQuandtARighiniGCPlasmonic enhanced solar cells. Summary of possible strategies and recent resultsRenew. Sustain. Energy Rev.201882243324391:CAS:528:DC%2BC2sXhsVyit73F10.1016/j.rser.2017.08.094
– reference: LitovchenkoVGKlyuiNISolar cells based on DLC film–Si structures for space applicationSol. Energy Mater. Sol. Cells20016855701:CAS:528:DC%2BD3cXovFOrtr0%3D10.1016/S0927-0248(00)00345-7
– reference: MieGBeitrage zur Optik Truber Medien, Speziell Kolloidaler MetallosungenAnn. Phys.19082537644539.0890.02
– reference: ShahbazyanTVStockmanMIPlasmonics: Theory and Applications2013Springer10.1007/978-94-007-7805-4
– reference: GradyNKHalasNJNordlanderPInfluence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticlesChem. Phys. Lett.20043991671712004CPL...399..167G1:CAS:528:DC%2BD2cXpvVelsbs%3D10.1016/j.cplett.2004.09.154
– volume: 5
  start-page: 346
  year: 2010
  ident: 22911_CR6
  publication-title: Prog. Photovoltaics Res. Appl.
  doi: 10.1002/pip.1021
– volume: 32
  start-page: 510
  year: 1961
  ident: 22911_CR7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 11
  start-page: 377
  year: 2019
  ident: 22911_CR21
  publication-title: SILICON
  doi: 10.1007/s12633-018-9890-4
– volume: 128
  year: 2021
  ident: 22911_CR11
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2021.105782
– volume: 318
  start-page: 43
  year: 2014
  ident: 22911_CR17
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.12.088
– volume: 89
  year: 2006
  ident: 22911_CR23
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2336629
– volume: 24
  issue: 26
  year: 2013
  ident: 22911_CR16
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/26/265601
– volume: 9
  year: 2019
  ident: 22911_CR2
  publication-title: AIP Adv.
  doi: 10.1063/1.5092948
– volume: 110
  year: 2013
  ident: 22911_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.187401
– volume: 9
  issue: 1
  year: 2015
  ident: 22911_CR13
  publication-title: J. Nanophotonics
  doi: 10.1117/1.JNP.9.093066
– volume: 399
  start-page: 167
  year: 2004
  ident: 22911_CR20
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2004.09.154
– volume: 1
  year: 2019
  ident: 22911_CR8
  publication-title: Nano Futures
  doi: 10.1088/2399-1984/ab02b5
– volume: 25
  start-page: 376
  year: 1908
  ident: 22911_CR27
  publication-title: Ann. Phys.
– volume: 11
  start-page: 2096
  year: 2008
  ident: 22911_CR5
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2008.1103
– volume: 35
  issue: 4
  year: 2020
  ident: 22911_CR12
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab74eb
– volume-title: Plasmonics: Theory and Applications
  year: 2013
  ident: 22911_CR1
  doi: 10.1007/978-94-007-7805-4
– volume: 9
  start-page: 357
  issue: 2
  year: 2014
  ident: 22911_CR14
  publication-title: Plasmonics
  doi: 10.1007/s11468-013-9632-9
– volume: 17
  start-page: 1906
  year: 2000
  ident: 22911_CR22
  publication-title: JOSA B
  doi: 10.1364/JOSAB.17.001906
– volume: 7
  start-page: 318
  issue: 2
  year: 2007
  ident: 22911_CR28
  publication-title: Nano Lett.
  doi: 10.1021/nl062377u
– volume: 82
  start-page: 2433
  year: 2018
  ident: 22911_CR3
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.08.094
– volume: 19
  year: 2012
  ident: 22911_CR4
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/19/194003
– volume: 331
  start-page: 70
  year: 2003
  ident: 22911_CR10
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2003.09.004
– volume: 347
  start-page: 651
  year: 2015
  ident: 22911_CR15
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.04.145
– volume: 698
  start-page: 60
  year: 2018
  ident: 22911_CR18
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.03.004
– volume: 93
  issue: 12
  year: 2008
  ident: 22911_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2988288
– volume: 21
  start-page: 3504
  year: 2009
  ident: 22911_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900331
– volume: 532
  year: 2020
  ident: 22911_CR9
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147434
– volume: 68
  start-page: 55
  year: 2001
  ident: 22911_CR26
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(00)00345-7
SSID ssj0000529419
Score 2.437233
Snippet The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report on the...
Abstract The effect of a bilayer of different dimension silver nanoparticles (Ag NPs) on light trapping in silicon solar cells is investigated. Here, we report...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19663
SubjectTerms 639/301
639/766
Humanities and Social Sciences
multidisciplinary
Nanoparticles
Photovoltaic cells
Scanning electron microscopy
Science
Science (multidisciplinary)
Silicon
Silver
Solar cells
Surface plasmon resonance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiKcILWiQuEHUJHYc-0YpVBWCFQcq9Wb5FRppm63Y9NAf0f_cGSe7NJWAC6fdTWaVx3wjf2OPv2HsrYvcCid5brX2uaiVzC3nLvfO1sHKuootzXd8W8jjE_HltD691eqLasJGeeDxxe0Hz72qhS2idMKFyvHgde1UIUMoYhL8rHDMu5VMjarelRalnnbJFFztr3Gkot1kmHtVFUZ4rmcjURLsn7HMuzWSdxZK0_hz9Ig9nIgjHIw3_Jjdi_0Tdn9sJXn1lF0vELKQ6tHA9gHa7a8L5MfnJIALsT8jH6dNbUATsOC6pSXODasWNq1SBvx2TmXtiEc4-Ln4vv7w6eshILmFLs1AxAB-VHWCQHbDFXQ9rLslggo_KVd-xk6OPv84PM6nVgu5F6IZckdKeLGJAl1HGQT5SNCuVqRzrZBcIHGJSrY1OkFo1wiHVMK1rm7QOy1Sxudsp1_18QUDqTgaIy1otUJTp13FbdClFbwJRfAZKzev3fhJh5zaYSxNWg_nyoyuMugqk1xldMbebf9zMapw_NX6I3lza0kK2ukA4spMuDL_wlXG9jZYMFNYrw1yPalJYV9l7M32NAYkrbLYPq4uk00jpFRlmbFmhqHZDc3P9N1ZkvbG5BNTHrz4-w3afl_8zw_88n888C57UFF0UImj3GM7w6_L-AoJ1-Bep9i6AZCrKXs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4imWFmQkbhA1iR3HPkEpVBWCFQcq7c3yK22kbbLtpof-iP5nZpxHlUr0tI_MJs7OOP7m4W8I-WgDM9wKlhilXMILKRLDmE2cNYU3oshDhfGO30txfMJ_rorVEHDbDmWV4zMxPqh96zBGvg_LrFBIbi6_bC4S7BqF2dWhhcZD8gipy9Cqy1U5xVgwi8UzNeyVSZnc38J6hXvKwAPLc5jniZqtR5G2f4Y171ZK3kmXxlXo6Bl5OsBHetDr-zl5EJoX5HHfUPL6JblZguHSWJVGTeNpNX3aAEo-RxpcGpoz1HTc2kYxDEttvTaIvGlb0bFhSgfvzrG4HaySHpwu_2y_fv91SAHi0jrGIYKnrud2oh7lumtaN3Rbr8G04BU95lfk5OjH38PjZGi4kDjOyy6xyIcXysBBgehHoKY47m0FUFdxwTjAlyBFVQjLubIltwAobGWLkjlZAXB8TXaatglvCBWSgTCAg0pJELXK5sx4lRnOSp96tyDZ-LdrN7CRY1OMtY5ZcSZ1ryoNqtJRVVotyKfpN5uei-Ne6W-ozUkSebTjF-3lqR6mpfYORl5wkwa4Jetzy7xThZWp8D4NGZxkb7QFPUzurb41xQX5MB2GaYm5FtOE9irKlFwImWULUs5saDag-ZGmPosE3-CCguMDF_88Wtvtxf9_w2_vH-sueZKj3WMJo9gjO93lVXgHgKqz7-Os-QehNB_7
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiPIQCwUZiRtEJLHj2LcupVW1ghUSVOrN8ittpG226qaH_gj-c2ecB0oFlXrabDJJnMxM_I0985mQjzYww61giVHKJbyQIjGM2cRZU3gjijxUON7xYymOT_jitDjdIvlQCxOT9iOlZfxMD9lhXzbQ0WAxGIROeQ4OmqhHZAep2sG2d-bzxa_FOLKCc1c8U32FTMrkP06e9EKRrH-CMO_mR96ZJI19z9Ez8rQHjXTeNXOXbIXmOXncLSN584L8WYK50piLRk3jaTX-uwRsfIHktzQ056jfWNBGcfCV2nplEG_TdUWHZVJa2LrAlHawRTo_W_7c7H_7fkAB2NI6jj4ET13H6EQ9yrU3tG7opl6BQcEvxskvycnR4e-D46RfZiFxnJdtYpEFL5SBg9owekD9cKxoBShXccE4gJYgRVUIy7myJbcAI2xli5I5WQFcfEW2m3UTXhMqJANhgASVkiBqlc2Z8SoznJU-9W5GsuG1a9dzkONSGCsd58KZ1J2qNKhKR1VpNSOfxnMuOwaOe6W_ojZHSWTPjjvWV2e6tybtHbS84CYN8EjW55Z5pworU-F9GjK4yN5gC7p36Y0GnCcUsuvLGfkwHgZnxBkW04T1dZQpuRAyy2aknNjQpEHTI019Hmm9IfCEcAdu_nmwtr83__8Dv3mY-FvyJEc_wERGsUe226vr8A5gVWvf9350C3X-HwI
  priority: 102
  providerName: Springer Nature
Title Near field and far field plasmonic enhancements with bilayers of different dimensions AgNPs@DLC for improved current density in silicon solar
URI https://link.springer.com/article/10.1038/s41598-022-22911-9
https://www.proquest.com/docview/2736949658
https://www.proquest.com/docview/2737466811
https://pubmed.ncbi.nlm.nih.gov/PMC9668829
https://doaj.org/article/dc3c854a0e6b4bd2b3dc95b806dd0e19
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZ2ERIviKvoGJWReINAEzu-PCDoyqapYtUEVOpbZMfOFqlLR9tJ9EfwnznHSYoyDSSecju5-Zwjf8f2-Q4hr61nhlvBIqN1HvFUicgwZqPcmtQZkSa-wPGOs4k4nfLxLJ3tkLbcUdOAqztDO6wnNV3O3_38sfkIDv-hThlX71fQCWGiGIRVSQLOG-ldsg89k8SKBmcN3K-5vhPNY93kztx9a6d_CjT-Hex5e-XkrenT0CudPCQPGjhJh7X-H5EdXz0m9-oCk5sn5NcEDJmGVWrUVI4W26NrQM1XSItLfXWJmg-pbhSHZakt5waROF0UtC2gsoa9K1zsDlZKhxeT89Wnz19GFCAvLcO4hHc0r7meqEO59YaWFV2VczA12GIzPyXTk-Pvo9OoKcAQ5ZzLdWSRH89Lz0GhGFeg5jjmugLIK7hgHOCMV6JIheVcW8ktAAxb2FSyXBUAJJ-RvWpR-eeECsVAGMBCoRWIWm0TZpyODWfSDVzeI3Hb7FnesJNjkYx5FmbJmcpqVWWgqiyoKtM98mZ7z3XNzfFP6SPU5lYSebXDicXyImvcNHM5fHnKzcDDL1mXWOZynVo1EM4NfAwPOWxtIWttNQMEKDTy7qseebW9DG6Kcy-m8oubICO5ECqOe0R2bKjzQd0rVXkZCL8hJIVACF7-trW2Py__-w8f_J_4C3I_QT_AJY7ikOytlzf-JQCute2TXTmTfbI_HI6_jWF7dDw5_wpnR2LUD4MY_eBnvwGRpC0k
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0JqGELwgPkVhgJHgCaIlsePYDwjGxtSxruJhk_pm7NjZInVJWTuh_gj-Cr-ROyfp1EnsbU9Nm0tzyZ3v03dHyDvrmeFWsMgoVUQ8kyIyjNmosCZzRmSpLzHecTQWwxP-fZJNNsjfvhYGt1X2MjEIatcUGCPfBjUrFDY3l59nvyKcGoXZ1X6ERssWh375G1y2-aeDPaDv-zTd_3a8O4y6qQJRwXm-iCw2ffO554AlGsuIDscCTrBcSi4YBx3tpSgzYTlXNucWtKYtbZazQpYZBkBB5N8BxRujs5dP8lVMB7NmPFFdbU7M5PYc9CPWsIHHl6YgVyK1pv_CmIA12_b6zsxr6dmg9fYfkgeduUp3Wv56RDZ8_ZjcbQdYLp-QP2N4IzTsgqOmdrRcfZuBVX6ObXepr8-Qs0IpHcWwL7XV1KClT5uS9gNaFnB0jpvpYRXQndPxj_mXvdEuBZOaViHu4R0t2l5S1CHcYkmrms6rKbAyfKKH_pSc3AopnpHNuqn9c0KFZAAMxkipJIBaZVNmnEoMZ7mLXTEgSf_addF1P8chHFMdsvBM6pZUGkilA6m0GpAPq2tmbe-PG6G_IjVXkNi3O_zQXJzqTgxoVwDmGTexh0eyLrXMFSqzMhbOxT6BP9nqeUF3wmSur1h_QN6uToMYwNyOqX1zGWByLoRMkgHJ13hoDaH1M3V1FhqKg8sLjhbc_GPPbVc3__8Dv7gZ1zfk3vD4aKRHB-PDl-R-imsAt0-KLbK5uLj0r8CYW9jXYQVR8vO2l-w_4ltanA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1Jo6gXhBXEXHACPBE0RtYseJHxBs66qNjapCTNqbsWNni9QlZc2E-hH8EF_HOU7SqZPY256aNieNk3O_-BxC3hnHNDeCBVrKLOBxKgLNmAkyo2OrRRy5HOMd3ybi4IR_PY1PN8jfbi8MllV2MtELaltlGCMfgJoVEpubp4O8LYuYjsaf578CnCCFmdZunEZDIkdu-Rvct8WnwxHg-n0Ujfd_7B0E7YSBIOM8qQODDeBc4jisGA1nXBrHzZxgxeRcMA762qUij4XhXJqEG9CgJjdxwrI0jzEYCuJ_M0GvqEc2d_cn0--rCA_m0Hgo2506Q5YOFqAtcUcb-H9RBFImkGva0A8NWLN0b9Zp3kjWeh04fkQetsYr3Wmo7THZcOUTcq8ZZ7l8Sv5M4J1QXxNHdWlpvvo2Bxv9ApvwUleeI535jXUUg8DUFDONdj-tctqNa6nh6AJL64En6M7ZZLr4Mjreo2Bg08JHQZylWdNZilqEq5e0KOmimAFhwyf668_IyZ0g4znplVXpXhAqUgbAYJrkMgVQI03EtJWh5iyxQ5v1Sdi9dpW1vdBxJMdM-Zw8S1WDKgWoUh5VSvbJh9U186YTyK3Qu4jNFSR28fY_VJdnqhUKymaw8pjroYNHMjYyzGYyNulQWDt0IfzJdkcLqhUtC3XNCH3ydnUahAJmenTpqisPk3Ah0jDsk2SNhtYWtH6mLM59e3FwgMHtgpt_7Kjt-ub_f-Ct29f6htwHdlXHh5Ojl-RBhCyAtZRim_Tqyyv3Ciy72rxuWYiSn3fNtf8AFLBgNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near+field+and+far+field+plasmonic+enhancements+with+bilayers+of+different+dimensions+AgNPs%40DLC+for+improved+current+density+in+silicon+solar&rft.jtitle=Scientific+reports&rft.au=Hekmat%2C+Maryam&rft.au=Shafiekhani%2C+Azizollah&rft.au=Khabir%2C+Mehdi&rft.date=2022-11-16&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-22911-9&rft.externalDocID=10_1038_s41598_022_22911_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon