Degradation of antibiotic Cephalosporin C in different water matrices by ionizing radiation: Degradation kinetics, pathways, and toxicity
Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation...
Saved in:
Published in | The Science of the total environment Vol. 791; p. 148253 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10–200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO42−, NO3−, and HCO3−, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy−1 respectively in the presence of SO42−, NO3−, and HCO3−. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, β-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-α-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater.
[Display omitted]
•Radiolytic degradation of Cephalosporin C in different water matrices was studied.•CEP-C degradation obeyed pseudo first-order reaction kinetics.•Inorganic anions had negative effect on the degradation of Cephalosporin C.•The major mechanisms of CEP-C degradation by gamma radiation was proposed.•Ionizing radiation is effective for Cephalosporin degradation in water and wastewater. |
---|---|
AbstractList | Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10-200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO42-, NO3-, and HCO3-, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy-1 respectively in the presence of SO42-, NO3-, and HCO3-. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, β-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-α-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater.Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10-200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO42-, NO3-, and HCO3-, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy-1 respectively in the presence of SO42-, NO3-, and HCO3-. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, β-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-α-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater. Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10–200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO42−, NO3−, and HCO3−, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy−1 respectively in the presence of SO42−, NO3−, and HCO3−. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, β-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-α-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater. [Display omitted] •Radiolytic degradation of Cephalosporin C in different water matrices was studied.•CEP-C degradation obeyed pseudo first-order reaction kinetics.•Inorganic anions had negative effect on the degradation of Cephalosporin C.•The major mechanisms of CEP-C degradation by gamma radiation was proposed.•Ionizing radiation is effective for Cephalosporin degradation in water and wastewater. Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the radiolytic degradation of antibiotic Cephalosporin C (CEP-C) in different water matrices was comprehensively investigated using gamma radiation at various experimental conditions. The results revealed that CEP-C oxidation obeyed pseudo first-order kinetics, and 100%, 94.9%, 67.0%, 44.6% and 34.5% removal of CEP-C with 10–200 mg/L was achieved at 0.4 kGy, respectively. The degradation was faster at higher absorbed dose and acidic conditions (pH = 3.5). The inorganic anions, including SO₄²⁻, NO₃⁻, and HCO₃⁻, had negative influence on the degradation of CEP-C, the corresponding rate constant decreased from 4.603 to 3.667, 1.677 and 2.509 kGy⁻¹ respectively in the presence of SO₄²⁻, NO₃⁻, and HCO₃⁻. The analysis of intermediate products indicated that CEP-C was oxidized to generate about 10 intermediate products. Besides, it was inferred that the thioether sulfur oxidation, β-lactam ring opening, acetyl dissociation from dihydrothiazine ring and D-α-aminohexylamide group abscission were the major reaction mechanisms of CEP-C degradation by gamma radiation. Importantly, the antibacterial activity of CEP-C could be completely vanished by gamma radiation alone, while more toxic intermediate products might be formed. Addition of hydrogen peroxide and peroxymonosulfate could significantly improve the CEP-C degradation, and reduce the toxicity of intermediates of CEP-C degradation. Similar degradation behavior was observed in the groundwater and wastewater, implying that ionizing radiation can be used for degradation of Cephalosporin in water and wastewater. |
ArticleNumber | 148253 |
Author | Wang, Jianlong Chen, Xiaoying |
Author_xml | – sequence: 1 givenname: Xiaoying surname: Chen fullname: Chen, Xiaoying organization: Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China – sequence: 2 givenname: Jianlong surname: Wang fullname: Wang, Jianlong email: wangjl@tsinghua.edu.cn organization: Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China |
BookMark | eNqNkc1OHDEQhC0EUhbIM8THHDIbe_48EykHtISAhMQFzpbHbkMvs_bENks2b5C3xsuiCHEhPrT7UPVJ1XVI9p13QMgnzuac8fbrch41Jp_AreclK_mc113ZVHtkxjvRF5yV7T6ZMVZ3Rd_24gM5jHHJ8hMdn5G_p3AblFEJvaPeUuUSDugTarqA6U6NPk4-oKMLmodBayGAS_RRJQh0pVJADZEOG5oB-AfdLc04fOZ9o6_h9-ggY-MXOql096g2eVPO0OR_Yw6wOSYHVo0RPr78R-Tm7Mf14ry4vPp5sTi5LHRdi1Song815wKMBdOaigltdGdbw3QNzCiTw7OBm9LYzvIs6Admm3wooXQ19FV1RD7vuFPwvx4gJrnCqGEclQP_EGXZd03btF0l3pc2NWt4nnWWft9JdfAxBrAyZ3oOnoLCUXImt23JpfzXlty2JXdtZb94458CrlTY_IfzZOeEfLQ1QtjqwGkwGEAnaTy-y3gC3He6pA |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_173986 crossref_primary_10_1016_j_watres_2024_121235 crossref_primary_10_1016_j_seppur_2021_119515 crossref_primary_10_1016_j_cej_2024_154284 crossref_primary_10_1016_j_envpol_2024_124037 crossref_primary_10_2174_1568026623666230315122855 crossref_primary_10_1016_j_jece_2022_108673 crossref_primary_10_1021_acsestwater_4c00661 crossref_primary_10_1016_j_chemosphere_2024_141437 crossref_primary_10_1016_j_chemosphere_2023_139027 crossref_primary_10_1016_j_seppur_2023_124388 crossref_primary_10_1098_rsos_240380 crossref_primary_10_1002_adfm_202406790 crossref_primary_10_1016_j_radphyschem_2023_111373 crossref_primary_10_1016_j_chemosphere_2024_141255 crossref_primary_10_1016_j_jhazmat_2022_129714 crossref_primary_10_1016_j_jece_2024_113250 crossref_primary_10_1016_j_apsusc_2022_153494 crossref_primary_10_1016_j_clet_2024_100733 crossref_primary_10_1016_j_radphyschem_2022_110741 crossref_primary_10_1016_j_jwpe_2022_103179 crossref_primary_10_1016_j_envpol_2023_122681 crossref_primary_10_1016_j_ijbiomac_2024_137077 crossref_primary_10_1016_j_envpol_2024_124640 crossref_primary_10_1016_j_jece_2024_114789 crossref_primary_10_1016_j_cej_2022_136964 crossref_primary_10_1016_j_envpol_2025_125926 crossref_primary_10_2478_nuka_2024_0008 crossref_primary_10_1016_j_jiec_2025_03_006 crossref_primary_10_1016_j_jpba_2023_115818 crossref_primary_10_1016_j_biortech_2023_129180 |
Cites_doi | 10.1016/j.scitotenv.2018.09.187 10.1016/j.scitotenv.2013.01.032 10.1016/j.chemosphere.2020.126351 10.1016/j.scitotenv.2019.03.027 10.1016/j.radphyschem.2017.12.009 10.1016/j.cej.2020.125091 10.1016/j.cej.2017.11.059 10.1016/j.jhazmat.2019.121335 10.1016/j.jhazmat.2020.124191 10.1016/j.jhazmat.2020.124172 10.1016/j.cej.2019.123332 10.1016/j.envpol.2018.06.040 10.1080/10934529.2014.910044 10.1016/j.radphyschem.2016.03.012 10.1016/j.seppur.2019.116079 10.1016/j.jhazmat.2020.122148 10.1016/j.watres.2017.06.057 10.1128/MMBR.00016-10 10.1016/j.radphyschem.2015.10.012 10.1016/j.cej.2020.125095 10.1073/pnas.1717295115 10.1016/j.jhazmat.2017.08.016 10.1016/j.scitotenv.2020.140997 10.1016/j.scitotenv.2018.07.415 10.1016/j.ijantimicag.2004.02.016 10.1021/acs.est.8b00092 10.1042/bj0790393 10.1007/s00253-018-8845-4 10.1016/j.cej.2018.12.133 10.1016/j.jhazmat.2014.07.008 10.1016/j.jhazmat.2017.02.034 10.1016/j.cej.2019.06.021 10.1016/j.jhazmat.2019.121058 10.1016/j.wasman.2018.11.039 10.1007/s13205-019-1766-9 10.1016/j.jaip.2017.07.033 10.1021/es301929e 10.1007/s11356-020-10069-8 10.1007/s11356-017-9985-2 10.1021/acs.est.0c05974 10.1016/j.apcatb.2019.01.090 10.1016/j.cej.2020.126158 10.1016/j.watres.2017.05.065 10.1016/j.cej.2015.11.033 10.1016/j.scitotenv.2020.139446 10.1016/j.scitotenv.2019.135023 10.1016/j.cej.2018.06.137 10.1016/j.scitotenv.2018.12.304 10.1016/j.jhazmat.2018.05.004 10.1016/j.watres.2012.11.027 10.1016/j.scitotenv.2021.144991 10.1016/j.cej.2018.12.072 10.1016/j.cej.2020.128392 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.148253 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2021_148253 S0048969721033246 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW WUQ XPP ZXP ZY4 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c447t-a91b4117edfed6d307cdc8f6d0c4e0dad8250b1d2df8f16d39b0f50167ac3b933 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Mon Jul 21 10:43:38 EDT 2025 Fri Jul 11 11:11:22 EDT 2025 Thu Apr 24 23:02:40 EDT 2025 Tue Jul 01 04:25:03 EDT 2025 Sun Apr 06 06:53:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Degradation Ionizing radiation Antibiotics Toxicity Cephalosporin C |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-a91b4117edfed6d307cdc8f6d0c4e0dad8250b1d2df8f16d39b0f50167ac3b933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2540512544 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2985656837 proquest_miscellaneous_2540512544 crossref_citationtrail_10_1016_j_scitotenv_2021_148253 crossref_primary_10_1016_j_scitotenv_2021_148253 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_148253 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-15 |
PublicationDateYYYYMMDD | 2021-10-15 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Serna-Galvis, Berrio-Perlaza, Torres-Palma (bb0155) 2017; 24 Zhang, Zhou, Du, Zhang, Cai, Sun, Huang (bb0260) 2017; 123 Klein, Van Boeckel, Martinez, Pant, Gandra, Levin, Goossens, Laxminarayan (bb0085) 2018; 115 Liu, Yang, Wang (bb0115) 2021; 404 Chu, Zhuan, Chen, Wang, Shen (bb0045) 2019; 361 Kovalakova, Cizmas, McDonald, Marsalek, Feng, Sharma (bb0095) 2020; 251 Pelalak, Alizadeh, Ghareshabani, Heidari (bb0130) 2020; 734 Zhuan, Wang (bb0275) 2020; 234 Chu, Zhuang, Wang (bb0040) 2018; 145 Liu, Fan, Wang (bb0105) 2018; 342 Ao, Sun, Li, Yang, Li, Lu (bb0010) 2019; 361 Macy, Blumenthal (bb0120) 2018; 6 Wang, Zhuan (bb0230) 2020; 701 Kong, Jiang, Qiao, Liu, Cheng, Yuan (bb0090) 2019; 651 Shen, Zhuan, Chu, Xiang, Sun, Wang (bb0170) 2019; 84 Rizzo, Manaia, Merlin, Schwartz, Dagot, Ploy, Michael, Fatta-Kassinos (bb0150) 2013; 447 Kar, Roy (bb0080) 2010; 87 Wang, Wang (bb0200) 2018; 334 Liu, Guo, Chen, Tan, Wang (bb0110) 2020; 54 Hu, Wang, Shen (bb0075) 2020; 384 Wang, Wang (bb0220) 2020; 401 Wang, Lin (bb0195) 2012; 46 Wang, Wang (bb0205) 2018; 102 Qian, Liu, Li, Gao, Chen, Liu, Zhou, Zhang, Chen, Li, Xue (bb0140) 2020; 384 Chu, Chen, Wang, Yang, Yang, Shen (bb0050) 2020; 382 Szabó, Tóth, Rácz, Takács, Wojnárovits (bb0175) 2016; 124 Zhao, Wang, Liang, Shi, Wang, Fan, Hu, Liu (bb0265) 2019; B-Environ. 247 He, Mezyk, Michael, Fatta-Kassinos, Dionysiou (bb0065) 2014; 279 Serna-Galvis, Ferraro, Silva-Agredo, Torres-Palma (bb0160) 2017; 122 Michael, Rizzo, McArdell, Manaia, Merlin, Schwartz, Dagot, Fatta-Kassinos (bb0125) 2013; 47 Chen, Wang (bb0025) 2020; 395 Das, Madhavan, Selvi, Das (bb0055) 2019; 9 Wang, Chu, Wojnarovits, Takacs (bb0240) 2020; 744 Yang, Chen, Chu, Wang (bb0255) 2020; 389 Wang, Chen (bb0185) 2021 Chen, Zhuan, Wang (bb0035) 2021; 404 Yang, Zuo, Li, Wang, Yu, Zhang (bb0250) 2016; 287 Yang, Zuo, Gan, Yu, Liu, Tang, Wang (bb0245) 2014; 49 Davies, Davies (bb0060) 2010; 74 Serna-Galvis, Cáceres-Peña, Torres-Palma (bb0165) 2020; 27 Qian, Xue, Chen, Luo, Zhou, Gao, Wang (bb0135) 2018; 354 Li, Li, He, Zhou, Wang, Zhu (bb0100) 2020; 395 Tang, Wang (bb0180) 2018; 52 Wang, Wang (bb0215) 2019; 658 Hodgkin, Maslen (bb0070) 1961; 79 Brook (bb0015) 2004; 24 Wang, Chu (bb0190) 2016; 125 Cai, Liu, Wang (bb0020) 2017; 331 Chen, Chu, Wang, Yang, Yang, Shen (bb0030) 2019; 374 Wang, Wang (bb0210) 2018; 351 Abramović, Uzelac, Armaković, Gašić, Četojević-Simin, Armaković (bb0005) 2021; 768 Zhuan, Wang (bb0270) 2019; 668 Wang, Wang (bb0225) 2021; 411 Ribeiro, Sures, Schmidt (bb0145) 2018; 241 Wang, Zhuan, Chu (bb0235) 2019; 646 Macy (10.1016/j.scitotenv.2021.148253_bb0120) 2018; 6 Hodgkin (10.1016/j.scitotenv.2021.148253_bb0070) 1961; 79 Liu (10.1016/j.scitotenv.2021.148253_bb0115) 2021; 404 Wang (10.1016/j.scitotenv.2021.148253_bb0190) 2016; 125 Wang (10.1016/j.scitotenv.2021.148253_bb0210) 2018; 351 Shen (10.1016/j.scitotenv.2021.148253_bb0170) 2019; 84 Wang (10.1016/j.scitotenv.2021.148253_bb0230) 2020; 701 Yang (10.1016/j.scitotenv.2021.148253_bb0245) 2014; 49 Chen (10.1016/j.scitotenv.2021.148253_bb0030) 2019; 374 Davies (10.1016/j.scitotenv.2021.148253_bb0060) 2010; 74 Wang (10.1016/j.scitotenv.2021.148253_bb0185) 2021 Wang (10.1016/j.scitotenv.2021.148253_bb0240) 2020; 744 Cai (10.1016/j.scitotenv.2021.148253_bb0020) 2017; 331 Klein (10.1016/j.scitotenv.2021.148253_bb0085) 2018; 115 Das (10.1016/j.scitotenv.2021.148253_bb0055) 2019; 9 Yang (10.1016/j.scitotenv.2021.148253_bb0255) 2020; 389 Ao (10.1016/j.scitotenv.2021.148253_bb0010) 2019; 361 Szabó (10.1016/j.scitotenv.2021.148253_bb0175) 2016; 124 Wang (10.1016/j.scitotenv.2021.148253_bb0215) 2019; 658 Ribeiro (10.1016/j.scitotenv.2021.148253_bb0145) 2018; 241 Wang (10.1016/j.scitotenv.2021.148253_bb0225) 2021; 411 Wang (10.1016/j.scitotenv.2021.148253_bb0235) 2019; 646 He (10.1016/j.scitotenv.2021.148253_bb0065) 2014; 279 Li (10.1016/j.scitotenv.2021.148253_bb0100) 2020; 395 Chu (10.1016/j.scitotenv.2021.148253_bb0045) 2019; 361 Pelalak (10.1016/j.scitotenv.2021.148253_bb0130) 2020; 734 Kar (10.1016/j.scitotenv.2021.148253_bb0080) 2010; 87 Kong (10.1016/j.scitotenv.2021.148253_bb0090) 2019; 651 Zhuan (10.1016/j.scitotenv.2021.148253_bb0275) 2020; 234 Qian (10.1016/j.scitotenv.2021.148253_bb0135) 2018; 354 Zhao (10.1016/j.scitotenv.2021.148253_bb0265) 2019; B-Environ. 247 Wang (10.1016/j.scitotenv.2021.148253_bb0205) 2018; 102 Brook (10.1016/j.scitotenv.2021.148253_bb0015) 2004; 24 Qian (10.1016/j.scitotenv.2021.148253_bb0140) 2020; 384 Liu (10.1016/j.scitotenv.2021.148253_bb0110) 2020; 54 Zhang (10.1016/j.scitotenv.2021.148253_bb0260) 2017; 123 Zhuan (10.1016/j.scitotenv.2021.148253_bb0270) 2019; 668 Chen (10.1016/j.scitotenv.2021.148253_bb0025) 2020; 395 Chu (10.1016/j.scitotenv.2021.148253_bb0040) 2018; 145 Wang (10.1016/j.scitotenv.2021.148253_bb0200) 2018; 334 Chen (10.1016/j.scitotenv.2021.148253_bb0035) 2021; 404 Michael (10.1016/j.scitotenv.2021.148253_bb0125) 2013; 47 Liu (10.1016/j.scitotenv.2021.148253_bb0105) 2018; 342 Chu (10.1016/j.scitotenv.2021.148253_bb0050) 2020; 382 Yang (10.1016/j.scitotenv.2021.148253_bb0250) 2016; 287 Serna-Galvis (10.1016/j.scitotenv.2021.148253_bb0155) 2017; 24 Abramović (10.1016/j.scitotenv.2021.148253_bb0005) 2021; 768 Serna-Galvis (10.1016/j.scitotenv.2021.148253_bb0165) 2020; 27 Kovalakova (10.1016/j.scitotenv.2021.148253_bb0095) 2020; 251 Serna-Galvis (10.1016/j.scitotenv.2021.148253_bb0160) 2017; 122 Wang (10.1016/j.scitotenv.2021.148253_bb0195) 2012; 46 Wang (10.1016/j.scitotenv.2021.148253_bb0220) 2020; 401 Tang (10.1016/j.scitotenv.2021.148253_bb0180) 2018; 52 Rizzo (10.1016/j.scitotenv.2021.148253_bb0150) 2013; 447 Hu (10.1016/j.scitotenv.2021.148253_bb0075) 2020; 384 |
References_xml | – volume: 395 year: 2020 ident: bb0100 article-title: Efficient degradation of antibiotics by non-thermal discharge plasma: highlight the impacts of molecular structures and degradation pathways publication-title: Chem. Eng. J. – volume: 6 start-page: 82 year: 2018 end-page: 89 ident: bb0120 article-title: Are cephalosporins safe for use in penicillin allergy without prior allergy evaluation? publication-title: J. Allergy Clin. Immunol. Pract. – volume: 447 start-page: 345 year: 2013 end-page: 360 ident: bb0150 article-title: Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review publication-title: Sci. Total Environ. – volume: 84 start-page: 141 year: 2019 end-page: 146 ident: bb0170 article-title: Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: exploring the development of recycling economy in antibiotic pharmaceutical factory publication-title: Waste Manag. – volume: 102 start-page: 3573 year: 2018 end-page: 3582 ident: bb0205 article-title: Microbial degradation of sulfamethoxazole in the environment publication-title: Appl. Microbiol. Biotechnol. – volume: 401 year: 2020 ident: bb0220 article-title: Reactive species in advanced oxidation processes: formation, identification and reaction mechanism publication-title: Chem. Eng. J. – volume: 52 start-page: 5367 year: 2018 end-page: 5377 ident: bb0180 article-title: Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine publication-title: Environ. Sci. Technol. – volume: 49 start-page: 1258 year: 2014 end-page: 1264 ident: bb0245 article-title: Advanced treatment of cephalosporin pharmaceutical wastewater by nano-coated electrode and perforated electrode publication-title: J. Environ. Sci. Health A – volume: 404 year: 2021 ident: bb0035 article-title: Assessment of degradation characteristic and mineralization efficiency of norfloxacin by ionizing radiation combined with Fenton-like oxidation publication-title: J. Hazard. Mater. – volume: 24 start-page: 23771 year: 2017 end-page: 23782 ident: bb0155 article-title: Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways publication-title: Environ. Sci. Pollut. Res. – volume: 646 start-page: 1385 year: 2019 end-page: 1397 ident: bb0235 article-title: The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview publication-title: Sci. Total Environ. – volume: 342 start-page: 166 year: 2018 end-page: 176 ident: bb0105 article-title: Zn-Fe-CNTs catalytic in situ generation of H publication-title: J. Hazard. Mater. – volume: 54 start-page: 14085 year: 2020 end-page: 14095 ident: bb0110 article-title: High-efficient generation of H publication-title: Environ. Sci. Technol. – volume: 46 start-page: 12417 year: 2012 end-page: 12426 ident: bb0195 article-title: Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity publication-title: Environ. Sci. Technol. – volume: 145 start-page: 34 year: 2018 end-page: 38 ident: bb0040 article-title: Degradation kinetics and mechanism of penicillin G in aqueous matrices by ionizing radiation publication-title: Radiat. Phys. Chem. – volume: 9 year: 2019 ident: bb0055 article-title: An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern publication-title: 3 Biotech – volume: 651 start-page: 271 year: 2019 end-page: 280 ident: bb0090 article-title: The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways publication-title: Sci. Total Environ. – volume: 331 start-page: 265 year: 2017 end-page: 272 ident: bb0020 article-title: Performance of microwave treatment for disintegration of cephalosporin mycelial dreg (CMD) and degradation of residual cephalosporin antibiotics publication-title: J. Hazard. Mater. – volume: 361 start-page: 156 year: 2019 end-page: 166 ident: bb0045 article-title: Degradation of macrolide antibiotic erythromycin and reduction of antimicrobial activity using persulfate activated by gamma radiation in different water matrices publication-title: Chem. Eng. J. – volume: 404 year: 2021 ident: bb0115 article-title: Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects publication-title: J. Hazard. Mater. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: bb0200 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 768 year: 2021 ident: bb0005 article-title: Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: degradation kinetics, pathways, and toxicity publication-title: Sci. Total Environ. – volume: 382 year: 2020 ident: bb0050 article-title: Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment publication-title: J. Hazard. Mater. – volume: 47 start-page: 957 year: 2013 end-page: 995 ident: bb0125 article-title: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review publication-title: Water Res. – volume: 384 year: 2020 ident: bb0140 article-title: Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process publication-title: Chem. Eng. J. – volume: 27 start-page: 41381 year: 2020 end-page: 41393 ident: bb0165 article-title: Elimination of representative fluoroquinolones, penicillins, and cephalosporins by solar photo-Fenton: degradation routes, primary transformations, degradation improvement by citric acid addition, and antimicrobial activity evolution publication-title: Environ. Sci. Pollut. Res. – volume: 123 start-page: 153 year: 2017 end-page: 161 ident: bb0260 article-title: Oxidation of Β-lactam antibiotics by peracetic acid: reaction kinetics, product and pathway evaluation publication-title: Water Res. – volume: 279 start-page: 375 year: 2014 end-page: 383 ident: bb0065 article-title: Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H publication-title: J. Hazard. Mater. – volume: 734 year: 2020 ident: bb0130 article-title: Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: experimental, modeling, transformation mechanism and DFT study publication-title: Sci. Total Environ. – volume: 354 start-page: 153 year: 2018 end-page: 160 ident: bb0135 article-title: Oxidation of cefalexin by thermally activated persulfate: kinetics, products, and antibacterial activity change publication-title: J. Hazard. Mater. – volume: 395 year: 2020 ident: bb0025 article-title: Degradation of norfloxacin in aqueous solution by ionizing irradiation: kinetics, pathway and biological toxicity publication-title: Chem. Eng. J. – volume: 115 start-page: E3463 year: 2018 end-page: E3470 ident: bb0085 article-title: Global increase and geographic convergence in antibiotic consumption between 2000 and 2015 publication-title: P. Natl. Acad. Sci. USA – volume: 124 start-page: 84 year: 2016 end-page: 90 ident: bb0175 article-title: OH and e publication-title: Radiat. Phys. Chem. – volume: B-Environ. 247 start-page: 57 year: 2019 end-page: 69 ident: bb0265 article-title: Enhanced photocatalytic activity of Ag-CsPbBr publication-title: Appl. Catal. – volume: 287 start-page: 30 year: 2016 end-page: 37 ident: bb0250 article-title: Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater publication-title: Chem. Eng. J. – volume: 701 year: 2020 ident: bb0230 article-title: Degradation of antibiotics by advanced oxidation processes: an overview publication-title: Sci. Total Environ. – volume: 389 year: 2020 ident: bb0255 article-title: Enhancement of ionizing radiation-induced catalytic degradation of antibiotics using Fe/C nanomaterials derived from Fe-based MOFs publication-title: J. Hazard. Mater. – volume: 234 start-page: 116079 year: 2020 ident: bb0275 article-title: Degradation of diclofenac in aqueous solution by ionizing radiation in the presence of humic acid publication-title: Sep. Purif. Technol. – volume: 122 start-page: 128 year: 2017 end-page: 138 ident: bb0160 article-title: Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV publication-title: Water Res. – volume: 384 year: 2020 ident: bb0075 article-title: Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment publication-title: J. Hazard. Mater. – volume: 411 year: 2021 ident: bb0225 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. – volume: 744 year: 2020 ident: bb0240 article-title: Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview publication-title: Sci. Total Environ. – volume: 87 start-page: 1455 year: 2010 end-page: 1515 ident: bb0080 article-title: Predictive toxicology using QSAR: a perspective publication-title: J. Indian Chem. Soc. – volume: 125 start-page: 56 year: 2016 end-page: 64 ident: bb0190 article-title: Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview publication-title: Radiat. Phys. Chem. – volume: 361 start-page: 1053 year: 2019 end-page: 1062 ident: bb0010 article-title: Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: influencing factors, degradation pathways, and toxicity evaluation publication-title: Chem. Eng. J. – volume: 79 start-page: 393 year: 1961 end-page: 402 ident: bb0070 article-title: The x-ray analysis of the structure of cephalosporin C publication-title: Biochem. J. – volume: 251 year: 2020 ident: bb0095 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere – volume: 241 start-page: 1153 year: 2018 end-page: 1166 ident: bb0145 article-title: Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies publication-title: Environ. Pollut. – volume: 351 start-page: 688 year: 2018 end-page: 696 ident: bb0210 article-title: Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions publication-title: Chem. Eng. J. – volume: 668 start-page: 67 year: 2019 end-page: 73 ident: bb0270 article-title: Degradation of sulfamethoxazole by ionizing radiation: kinetics and implications of additives publication-title: Sci. Total Environ. – volume: 374 start-page: 1102 year: 2019 end-page: 1108 ident: bb0030 article-title: Degradation of antibiotic cephalosporin C in aqueous solution and elimination of antimicrobial activity by gamma irradiation publication-title: Chem. Eng. J. – volume: 24 start-page: 18 year: 2004 end-page: 23 ident: bb0015 article-title: Use of oral cephalosporins in the treatment of acute otitis media in children publication-title: Int. J. Antimicrob. Agents – volume: 74 start-page: 417 year: 2010 ident: bb0060 article-title: Origins and evolution of antibiotic resistance publication-title: Microbiol. Mol. Biol. Rev. – year: 2021 ident: bb0185 article-title: Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: an overview publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 658 start-page: 1367 year: 2019 end-page: 1374 ident: bb0215 article-title: Oxidative removal of carbamazepine by peroxymonosulfate (PMS) combined to ionizing radiation: degradation, mineralization and biological toxicity publication-title: Sci. Total Environ. – volume: 651 start-page: 271 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0090 article-title: The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.187 – volume: 447 start-page: 345 year: 2013 ident: 10.1016/j.scitotenv.2021.148253_bb0150 article-title: Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.01.032 – volume: 251 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0095 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126351 – volume: 668 start-page: 67 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0270 article-title: Degradation of sulfamethoxazole by ionizing radiation: kinetics and implications of additives publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.027 – volume: 145 start-page: 34 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0040 article-title: Degradation kinetics and mechanism of penicillin G in aqueous matrices by ionizing radiation publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2017.12.009 – volume: 395 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0100 article-title: Efficient degradation of antibiotics by non-thermal discharge plasma: highlight the impacts of molecular structures and degradation pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125091 – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0200 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 384 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0075 article-title: Enhanced performance of anaerobic digestion of cephalosporin C fermentation residues by gamma irradiation-induced pretreatment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121335 – volume: 404 year: 2021 ident: 10.1016/j.scitotenv.2021.148253_bb0115 article-title: Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: advances and prospects publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124191 – volume: 404 year: 2021 ident: 10.1016/j.scitotenv.2021.148253_bb0035 article-title: Assessment of degradation characteristic and mineralization efficiency of norfloxacin by ionizing radiation combined with Fenton-like oxidation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124172 – volume: 384 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0140 article-title: Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123332 – volume: 241 start-page: 1153 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0145 article-title: Cephalosporin antibiotics in the aquatic environment: a critical review of occurrence, fate, ecotoxicity and removal technologies publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.06.040 – volume: 49 start-page: 1258 year: 2014 ident: 10.1016/j.scitotenv.2021.148253_bb0245 article-title: Advanced treatment of cephalosporin pharmaceutical wastewater by nano-coated electrode and perforated electrode publication-title: J. Environ. Sci. Health A doi: 10.1080/10934529.2014.910044 – volume: 125 start-page: 56 year: 2016 ident: 10.1016/j.scitotenv.2021.148253_bb0190 article-title: Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2016.03.012 – volume: 234 start-page: 116079 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0275 article-title: Degradation of diclofenac in aqueous solution by ionizing radiation in the presence of humic acid publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116079 – volume: 389 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0255 article-title: Enhancement of ionizing radiation-induced catalytic degradation of antibiotics using Fe/C nanomaterials derived from Fe-based MOFs publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122148 – volume: 123 start-page: 153 year: 2017 ident: 10.1016/j.scitotenv.2021.148253_bb0260 article-title: Oxidation of Β-lactam antibiotics by peracetic acid: reaction kinetics, product and pathway evaluation publication-title: Water Res. doi: 10.1016/j.watres.2017.06.057 – volume: 74 start-page: 417 issue: 3 year: 2010 ident: 10.1016/j.scitotenv.2021.148253_bb0060 article-title: Origins and evolution of antibiotic resistance publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00016-10 – volume: 124 start-page: 84 year: 2016 ident: 10.1016/j.scitotenv.2021.148253_bb0175 article-title: OH and e−aq are yet good candidates for demolishing the β-lactam system of a penicillin eliminating the antimicrobial activity publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2015.10.012 – volume: 395 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0025 article-title: Degradation of norfloxacin in aqueous solution by ionizing irradiation: kinetics, pathway and biological toxicity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125095 – volume: 115 start-page: E3463 issue: 15 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0085 article-title: Global increase and geographic convergence in antibiotic consumption between 2000 and 2015 publication-title: P. Natl. Acad. Sci. USA doi: 10.1073/pnas.1717295115 – volume: 342 start-page: 166 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0105 article-title: Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.08.016 – volume: 744 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0240 article-title: Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140997 – year: 2021 ident: 10.1016/j.scitotenv.2021.148253_bb0185 article-title: Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: an overview publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 646 start-page: 1385 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0235 article-title: The occurrence, distribution and degradation of antibiotics by ionizing radiation: an overview publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.415 – volume: 24 start-page: 18 issue: 1 year: 2004 ident: 10.1016/j.scitotenv.2021.148253_bb0015 article-title: Use of oral cephalosporins in the treatment of acute otitis media in children publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2004.02.016 – volume: 52 start-page: 5367 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0180 article-title: Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00092 – volume: 79 start-page: 393 year: 1961 ident: 10.1016/j.scitotenv.2021.148253_bb0070 article-title: The x-ray analysis of the structure of cephalosporin C publication-title: Biochem. J. doi: 10.1042/bj0790393 – volume: 102 start-page: 3573 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0205 article-title: Microbial degradation of sulfamethoxazole in the environment publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-8845-4 – volume: 361 start-page: 1053 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0010 article-title: Degradation of tetracycline by medium pressure UV-activated peroxymonosulfate process: influencing factors, degradation pathways, and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.133 – volume: 279 start-page: 375 year: 2014 ident: 10.1016/j.scitotenv.2021.148253_bb0065 article-title: Degradation kinetics and mechanism of β-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254nm irradiation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.07.008 – volume: 331 start-page: 265 year: 2017 ident: 10.1016/j.scitotenv.2021.148253_bb0020 article-title: Performance of microwave treatment for disintegration of cephalosporin mycelial dreg (CMD) and degradation of residual cephalosporin antibiotics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.02.034 – volume: 374 start-page: 1102 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0030 article-title: Degradation of antibiotic cephalosporin C in aqueous solution and elimination of antimicrobial activity by gamma irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.06.021 – volume: 382 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0050 article-title: Degradation of antibiotics and inactivation of antibiotic resistance genes (ARGs) in Cephalosporin C fermentation residues using ionizing radiation, ozonation and thermal treatment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121058 – volume: 87 start-page: 1455 issue: 12 year: 2010 ident: 10.1016/j.scitotenv.2021.148253_bb0080 article-title: Predictive toxicology using QSAR: a perspective publication-title: J. Indian Chem. Soc. – volume: 84 start-page: 141 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0170 article-title: Inactivation of antibiotic resistance genes in antibiotic fermentation residues by ionizing radiation: exploring the development of recycling economy in antibiotic pharmaceutical factory publication-title: Waste Manag. doi: 10.1016/j.wasman.2018.11.039 – volume: 9 issue: 6 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0055 article-title: An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern publication-title: 3 Biotech doi: 10.1007/s13205-019-1766-9 – volume: 6 start-page: 82 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0120 article-title: Are cephalosporins safe for use in penicillin allergy without prior allergy evaluation? publication-title: J. Allergy Clin. Immunol. Pract. doi: 10.1016/j.jaip.2017.07.033 – volume: 46 start-page: 12417 year: 2012 ident: 10.1016/j.scitotenv.2021.148253_bb0195 article-title: Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity publication-title: Environ. Sci. Technol. doi: 10.1021/es301929e – volume: 27 start-page: 41381 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0165 article-title: Elimination of representative fluoroquinolones, penicillins, and cephalosporins by solar photo-Fenton: degradation routes, primary transformations, degradation improvement by citric acid addition, and antimicrobial activity evolution publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-10069-8 – volume: 24 start-page: 23771 year: 2017 ident: 10.1016/j.scitotenv.2021.148253_bb0155 article-title: Electrochemical treatment of penicillin, cephalosporin, and fluoroquinolone antibiotics via active chlorine: evaluation of antimicrobial activity, toxicity, matrix, and their correlation with the degradation pathways publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9985-2 – volume: 54 start-page: 14085 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0110 article-title: High-efficient generation of H2O2 by aluminum-graphite composite through selective oxygen reduction for degradation of organic contaminants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05974 – volume: B-Environ. 247 start-page: 57 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0265 article-title: Enhanced photocatalytic activity of Ag-CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA publication-title: Appl. Catal. doi: 10.1016/j.apcatb.2019.01.090 – volume: 401 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0220 article-title: Reactive species in advanced oxidation processes: formation, identification and reaction mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126158 – volume: 122 start-page: 128 year: 2017 ident: 10.1016/j.scitotenv.2021.148253_bb0160 article-title: Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV254 and UV254/persulfate processes publication-title: Water Res. doi: 10.1016/j.watres.2017.05.065 – volume: 287 start-page: 30 year: 2016 ident: 10.1016/j.scitotenv.2021.148253_bb0250 article-title: Effective ultrasound electrochemical degradation of biological toxicity and refractory cephalosporin pharmaceutical wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.11.033 – volume: 734 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0130 article-title: Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: experimental, modeling, transformation mechanism and DFT study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139446 – volume: 701 year: 2020 ident: 10.1016/j.scitotenv.2021.148253_bb0230 article-title: Degradation of antibiotics by advanced oxidation processes: an overview publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135023 – volume: 351 start-page: 688 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0210 article-title: Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.137 – volume: 658 start-page: 1367 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0215 article-title: Oxidative removal of carbamazepine by peroxymonosulfate (PMS) combined to ionizing radiation: degradation, mineralization and biological toxicity publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.304 – volume: 354 start-page: 153 year: 2018 ident: 10.1016/j.scitotenv.2021.148253_bb0135 article-title: Oxidation of cefalexin by thermally activated persulfate: kinetics, products, and antibacterial activity change publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.05.004 – volume: 47 start-page: 957 year: 2013 ident: 10.1016/j.scitotenv.2021.148253_bb0125 article-title: Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review publication-title: Water Res. doi: 10.1016/j.watres.2012.11.027 – volume: 768 year: 2021 ident: 10.1016/j.scitotenv.2021.148253_bb0005 article-title: Experimental and computational study of hydrolysis and photolysis of antibiotic ceftriaxone: degradation kinetics, pathways, and toxicity publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.144991 – volume: 361 start-page: 156 year: 2019 ident: 10.1016/j.scitotenv.2021.148253_bb0045 article-title: Degradation of macrolide antibiotic erythromycin and reduction of antimicrobial activity using persulfate activated by gamma radiation in different water matrices publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.072 – volume: 411 year: 2021 ident: 10.1016/j.scitotenv.2021.148253_bb0225 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128392 |
SSID | ssj0000781 |
Score | 2.49683 |
Snippet | Cephalosporin antibiotics are ubiquitous emerging pollutants in various aquatic environments due to their extensive production and application. Herein, the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 148253 |
SubjectTerms | abscission absorbed dose antibacterial properties Antibiotics Cephalosporin C cephalosporins Degradation dissociation gamma radiation groundwater hydrogen peroxide Ionizing radiation oxidation sulfur Toxicity wastewater |
Title | Degradation of antibiotic Cephalosporin C in different water matrices by ionizing radiation: Degradation kinetics, pathways, and toxicity |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.148253 https://www.proquest.com/docview/2540512544 https://www.proquest.com/docview/2985656837 |
Volume | 791 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQkhGChohQqI3EkbbxxXr1VS6uFFT0gKnqzbI8tUkqy2k1blgN3_jUzcdJSJOiBS14aW9GM5-HHfMPYq9xmrpBOR2mmXSSdKSMjQERCOAtOeoCuxtL7o2x6LN-dpCdrbDLkwtCxyt72B5veWev-y27Pzd15VVGOryzKjNBn4gTDAoLdljKnUb7z4_qYB4HZhF1mVGykvnHGC_ttG4xNL3CiOBY7hImZJn_zUH_Y6s4BHT5kD_rIke-Hn3vE1lw9YndDLcnViG0cXKesIVmvs8sRux9W5nhIOHrMfr4hfIhQSok3niNrK1M12CufuPlnfdbQTLeq-YTjZSig0vJLjEoX_GsH6e-W3Kw4LeV-R9fHFwRwQP3t8d87_4IRLKFAv-ZU9_hSr_BJ18Db5luFLFk9YceHBx8n06gvyBBZ5Gwb6VIYKUTuwDvIAM2DBVv4DGIrXQwakH0xinoMvvACCUoT-5QSHbRNTJkkG2y9bmr3lPEcDEiAosi0l9b60iX52PsyiR1OjSHdZNkgBGV7tHIqmnGmhmNpp-pKeoqkp4L0Nll81XAeADtub7I3SFndGHsK3crtjV8O40KhZtJ2i65dc75UYwqGBUHA_YOmLCiiLpL82f_8xBa7R2_kU0X6nK23i3P3AoOl1mx32rDN7uy_nU2P6D778Gn2C6spHHY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqIgQSQjBQUVYjwY20ceI4SSUOaNpqSpdTK_VmvKqBkoxmUoZw4M7v4Q_yXpaWIkEPqJcoSmzL8XPeYj9_HyGvUiNcxp0KEqFcwJ3OA80sCxhzxjrurW05lvYPxOSIvz9OjpfIz-EsDKZV9rq_0-mttu6frPejuT4tCjzjy7NcIPpMGINbIPrMyl3XLCBum7_d2QQhv46i7a3D8SToqQUCw3laBypnmjOWOuudFRYmurEm88KGhrvQKguBUwidjqzPPIMCuQ59gin7ysQ6x1VQ0Ps3OKgLpE1Y-36RV4LoOd22NmgS6N6lpDL4kLoCZ_gLRKYRW0MQziT-m0n8wzi0Fm_7Hrnbu6r0XTca98mSK0fkZkde2YzIytbFGTko1iuJ-Yjc6ZYCaXfC6QH5sYmAFB13E608BVkWuqigVTp20xN1WmFoXZR0TOEyMLbUdAFu8Ix-bjkE3JzqhuLa8TewtXSGiArY3gb9vfFP4DIj7PQbikTLC9XAnSotrauvBQxJ85AcXYuYVshyWZXuEaGp1ZZbm2VCeW6Mz12cRt7nceggFrfJKhGDEKTp4dGRpeNUDnlwH-W59CRKT3bSWyXhecVphxBydZWNQcry0mSXYMeurvxymBcSVAHu76jSVWdzGaH3zRBz7h9l8gxd-CxOH_9PJ16QW5PD_T25t3Ow-4Tcxjdo0FnylCzXszP3DDy1Wj9v_wxKPlz3r_gLcuNX_Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+antibiotic+Cephalosporin+C+in+different+water+matrices+by+ionizing+radiation%3A+Degradation+kinetics%2C+pathways%2C+and+toxicity&rft.jtitle=The+Science+of+the+total+environment&rft.au=Chen%2C+Xiaoying&rft.au=Wang%2C+Jianlong&rft.date=2021-10-15&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=791&rft.spage=148253&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.148253&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |