Impact of a single water molecule on the atmospheric oxidation of thiophene by hydroperoxyl radical

Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidati...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 18959 - 23
Main Authors Douroudgari, Hamed, Sharifi, Maryam Seyed, Vahedpour, Morteza
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.11.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO 2 reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice–Ramsperger–Kassel–Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO 2 (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.
AbstractList Abstract Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO2 reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice–Ramsperger–Kassel–Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO2 (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.
Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO 2 reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice–Ramsperger–Kassel–Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO 2 (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.
Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO2 reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice-Ramsperger-Kassel-Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO2 (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO2 reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice-Ramsperger-Kassel-Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO2 (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.
Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO2 reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice–Ramsperger–Kassel–Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO2 (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.
ArticleNumber 18959
Author Sharifi, Maryam Seyed
Douroudgari, Hamed
Vahedpour, Morteza
Author_xml – sequence: 1
  givenname: Hamed
  surname: Douroudgari
  fullname: Douroudgari, Hamed
  email: douroudgari@znu.ac.ir
  organization: Department of Chemistry, University of Zanjan
– sequence: 2
  givenname: Maryam Seyed
  surname: Sharifi
  fullname: Sharifi, Maryam Seyed
  organization: Department of Chemistry, University of Zanjan
– sequence: 3
  givenname: Morteza
  surname: Vahedpour
  fullname: Vahedpour, Morteza
  email: vahed@znu.ac.ir
  organization: Department of Chemistry, University of Zanjan
BookMark eNp9Uk1v1DAUjFARLaV_gJMlLlxS4o_E9gUJVUBXqsQFztaL_bLrVRIvthe6_x7vpgLaQ32x_d7MePQ8r6uzOcxYVW9pc00brj4kQVut6oaxmjHFaa1eVBesEW3NOGNn_53Pq6uUtk1ZLdOC6lfVOe-4kJqJi8quph3YTMJAgCQ_r0ckvyFjJFMY0e7LNcwkb5BAnkLabTB6S8K9d5B96RRe3vhQ6jOS_kA2BxfDDmO4P4wkgvMWxjfVywHGhFcP-2X148vn7ze39d23r6ubT3e1FULmGgQy2_dKUtcg58Khcy2jfUM7lJJKBVLLTlnHGg1Ktq3gA_YcUQhXRiH4ZbVadF2ArdlFP0E8mADenAohrg3E7O2IpuHa9pwNHRVOIGgAyTqhLQyid0x2RevjorXb9xM6i3OOMD4SfdyZ_caswy-jO8G5VkXg_YNADD_3mLKZfLI4jjBj2CfDJBcd7TQ7Qt89gW7DPs5lVEcUV52SjBYUW1A2hpQiDn_N0MYcI2GWSJgSCXOKhDlKqyck6_Pp54ppPz5P5Qs1lXfmNcZ_rp5h_QHPR8xo
CitedBy_id crossref_primary_10_1063_5_0194098
crossref_primary_10_1021_acsapm_4c03197
crossref_primary_10_1038_s41598_023_35473_1
crossref_primary_10_1007_s00214_024_03146_5
crossref_primary_10_1016_j_atmosenv_2024_120787
Cites_doi 10.1002/cphc.200900387
10.1016/0009-2614(83)80228-0
10.1021/es00014a018
10.1021/ja00279a008
10.1016/S0009-2614(03)00435-4
10.1103/PhysRevB.37.785
10.1016/0009-2614(89)85013-4
10.1021/jp101804j
10.1021/ja01406a001
10.1002/kin.550171202
10.1021/jp972173p
10.1021/jp910202n
10.1021/cr00063a002
10.1021/ja100976b
10.1002/slct.201801291
10.1016/S1352-2310(03)00459-X
10.1002/qua.26573
10.1016/j.cplett.2013.07.065
10.1021/jp301919g
10.1029/94JD03107
10.1016/j.comptc.2016.08.002
10.1063/1.1749604
10.1080/0144235X.2011.634128
10.1002/kin.550160707
10.1021/jp405687c
10.1021/jp064468l
10.1021/cr020522s
10.1139/w98-045
10.1016/j.combustflame.2012.08.008
10.1002/kin.550090604
10.1016/S0021-8502(00)00101-4
10.1063/1.2335438
10.1063/1.447964
10.1063/1.444367
10.1007/s00894-015-2839-2
10.1016/S0009-2614(00)00966-0
10.1039/C7CS00602K
10.1016/S0009-2614(02)00494-3
10.1063/1.441814
10.1039/B609330B
10.1103/PhysRev.35.1303
10.1039/B409900A
10.1021/acs.jpca.6b06531
10.1002/kin.550150106
10.1016/j.cplett.2010.10.043
10.1002/kin.550180407
10.1021/jp107550w
10.1021/jp962692c
10.1146/annurev.pc.32.100181.002043
10.1021/cr00088a005
10.1016/j.cplett.2008.11.019
10.1021/jp3025107
10.1073/pnas.82.20.6723
10.1021/ja01452a015
10.1007/s10874-005-3580-5
10.1016/S0360-1285(03)00060-1
10.1038/s41598-021-92221-z
10.1080/00268976.2016.1214293
10.1063/1.456010
10.3184/146867816X14754978258571
10.1007/978-94-009-6505-8_15
10.1021/jp102935d
10.1021/jp110024e
10.1029/2003JD004240
10.1021/ja01187a080
10.1021/j100559a018
10.1002/chem.201705163
10.1021/jp209029p
10.1021/ja01183a083
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-22831-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 23
ExternalDocumentID oai_doaj_org_article_039cb32f614d4ea9aa72649caf4bd276
PMC9643398
10_1038_s41598_022_22831_8
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c447t-a4e2cbb871d0e334dedd521b016e77178a79768cd209a875543feb3ee44d59843
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:06 EDT 2025
Thu Aug 21 18:39:14 EDT 2025
Fri Jul 11 02:02:39 EDT 2025
Sat Aug 23 12:55:20 EDT 2025
Tue Jul 01 00:55:21 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Fri Feb 21 02:40:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-a4e2cbb871d0e334dedd521b016e77178a79768cd209a875543feb3ee44d59843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-22831-8
PMID 36347924
PQID 2733868721
PQPubID 2041939
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_039cb32f614d4ea9aa72649caf4bd276
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643398
proquest_miscellaneous_2734616928
proquest_journals_2733868721
crossref_primary_10_1038_s41598_022_22831_8
crossref_citationtrail_10_1038_s41598_022_22831_8
springer_journals_10_1038_s41598_022_22831_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-08
PublicationDateYYYYMMDD 2022-11-08
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Handy, Pople, Head-Gordon (CR61) 1989; 164
Zhang, Wang, Feng, Du, Mu (CR43) 2008; 467
Yang, Mortier (CR75) 1986; 108
CR38
Ali, Sonk, Barker (CR53) 2016; 120
Altarawneh, Dlugogorski, Kennedy, Mackie (CR46) 2013; 160
Farnia, Vahedpour, Abedi, Farrokhpour (CR52) 2013; 583
Gonzalez, Schlegel (CR56) 1989; 90
CR78
CR32
Bartlett (CR58) 1981; 32
CR76
Reed, Curtiss, Weinhold (CR77) 1988; 88
Anglada, Gonzalez (CR11) 2009; 10
Ren (CR50) 2003; 37
CR70
Mikhailov, Vlasenko, Krämer, Niessner (CR6) 2001; 32
Lee, Tang (CR36) 1981; 75
Stockwell (CR3) 1995; 100
Song, Fanelli, Cook, Bai, Parish (CR26) 2012; 116
Hamilton, Lii (CR8) 1977; 9
CR5
Jørgensen, Kjaergaard (CR17) 2010; 114
CR7
Rice, Ramsperger (CR81) 1927; 49
Zhang, Sun, Huang, Wang (CR39) 2018; 3
Simmie (CR49) 2003; 29
CR48
CR47
CR45
McCabe, Rajakumar, Marshall, Smith, Ravishankara (CR4) 2006; 8
CR44
Canneaux, Sokolowski-Gomez, Henon, Bohr, Dóbé (CR13) 2004; 6
CR40
Du, Zhang (CR21) 2013; 117
Latimer, Rodebush (CR2) 1920; 42
Martin, Jourdain, LeBras (CR24) 1985; 17
Lee (CR60) 2003; 372
Gao, Hall, Smith, Grice (CR37) 1997; 101
Allodi, Dunn, Livada, Kirschner, Shields (CR15) 2006; 110
Buszek, Francisco, Anglada (CR1) 2011; 30
Bao, Truhlar (CR80) 2017; 46
Sharifi, Douroudgari, Vahedpour (CR54) 2021; 11
Wine, Thompson (CR27) 1984; 16
Vöhringer-Martinez, Tellbach, Liessmann, Abel (CR18) 2010; 114
CR12
Heard, Pilling (CR51) 2003; 103
CR10
Kropp, Fedorak (CR22) 1998; 44
Cabañas (CR42) 2002; 358
Leininger, Nielsen, Crawford, Janssen (CR59) 2000; 328
Subramani, Rajamani, Shankar (CR72) 2021; 121
Iuga, Alvarez-Idaboy, Vivier-Bunge (CR16) 2010; 501
Eckart (CR79) 1930; 35
Aloisio, Francisco (CR9) 1998; 102
Thangamani, Shankar, Vijayakumar, Kolandaivel (CR71) 2016; 114
Gonzalez, Anglada, Buszek, Francisco (CR14) 2011; 133
Westerholm (CR23) 1991; 25
Shiroudi, Deleuze (CR34) 2015; 21
Wallington (CR30) 1986; 18
Lee, Tang (CR28) 1982; 77
Handy, Pople, Head-Gordon, Raghavachari, Trucks (CR62) 1989; 164
Yang, Parr, Pucci (CR74) 1984; 81
Buszek, Barker, Francisco (CR20) 2012; 116
CR69
Yang, Parr (CR73) 1985; 82
Eyring (CR67) 1935; 3
CR68
MacLeod, Jourdain, Le Bras (CR31) 1983; 98
CR66
CR65
CR64
Atkinson, Aschmann, Carter (CR29) 1983; 15
CR63
Zhang, Sun, Sun, Tang, Wang (CR33) 2016; 1092
Shiroudi, Deleuze (CR35) 2016; 41
Cabañas (CR41) 2005; 51
Lee, Yang, Parr (CR55) 1988; 37
Atkinson, Carter (CR25) 1984; 84
Long (CR19) 2011; 115
Wood (CR57) 2006; 125
E Vöhringer-Martinez (22831_CR18) 2010; 114
C Lee (22831_CR55) 1988; 37
PH Wine (22831_CR27) 1984; 16
MA Allodi (22831_CR15) 2006; 110
B Cabañas (22831_CR42) 2002; 358
W Yang (22831_CR75) 1986; 108
22831_CR38
D Thangamani (22831_CR71) 2016; 114
AE Reed (22831_CR77) 1988; 88
RJ Buszek (22831_CR1) 2011; 30
W Zhang (22831_CR43) 2008; 467
22831_CR78
22831_CR32
22831_CR76
MK Altarawneh (22831_CR46) 2013; 160
22831_CR70
S Aloisio (22831_CR9) 1998; 102
DE Heard (22831_CR51) 2003; 103
X Gao (22831_CR37) 1997; 101
NC Handy (22831_CR62) 1989; 164
RJ Bartlett (22831_CR58) 1981; 32
22831_CR7
22831_CR5
R Atkinson (22831_CR29) 1983; 15
DC McCabe (22831_CR4) 2006; 8
JM Simmie (22831_CR49) 2003; 29
S Canneaux (22831_CR13) 2004; 6
C Eckart (22831_CR79) 1930; 35
B Cabañas (22831_CR41) 2005; 51
Y Zhang (22831_CR33) 2016; 1092
H MacLeod (22831_CR31) 1983; 98
22831_CR48
X Song (22831_CR26) 2012; 116
22831_CR45
22831_CR44
22831_CR47
22831_CR40
S Farnia (22831_CR52) 2013; 583
J Lee (22831_CR36) 1981; 75
WM Latimer (22831_CR2) 1920; 42
J Gonzalez (22831_CR14) 2011; 133
OK Rice (22831_CR81) 1927; 49
WR Stockwell (22831_CR3) 1995; 100
A Shiroudi (22831_CR35) 2016; 41
TJ Lee (22831_CR60) 2003; 372
M Subramani (22831_CR72) 2021; 121
R Atkinson (22831_CR25) 1984; 84
B Long (22831_CR19) 2011; 115
B Du (22831_CR21) 2013; 117
JL Bao (22831_CR80) 2017; 46
TJ Wallington (22831_CR30) 1986; 18
N Handy (22831_CR61) 1989; 164
RN Westerholm (22831_CR23) 1991; 25
ML Leininger (22831_CR59) 2000; 328
22831_CR12
C Iuga (22831_CR16) 2010; 501
A Shiroudi (22831_CR34) 2015; 21
JM Anglada (22831_CR11) 2009; 10
Y Zhang (22831_CR39) 2018; 3
22831_CR10
H Eyring (22831_CR67) 1935; 3
W Yang (22831_CR73) 1985; 82
MA Ali (22831_CR53) 2016; 120
C Gonzalez (22831_CR56) 1989; 90
S Jørgensen (22831_CR17) 2010; 114
EF Mikhailov (22831_CR6) 2001; 32
GP Wood (22831_CR57) 2006; 125
KG Kropp (22831_CR22) 1998; 44
X Ren (22831_CR50) 2003; 37
J Lee (22831_CR28) 1982; 77
D Martin (22831_CR24) 1985; 17
22831_CR66
22831_CR69
22831_CR68
W Yang (22831_CR74) 1984; 81
22831_CR63
22831_CR65
EJ Hamilton Jr (22831_CR8) 1977; 9
22831_CR64
RJ Buszek (22831_CR20) 2012; 116
MS Sharifi (22831_CR54) 2021; 11
References_xml – ident: CR45
– ident: CR70
– volume: 10
  start-page: 3034
  year: 2009
  end-page: 3045
  ident: CR11
  article-title: Different catalytic effects of a single water molecule: The gas-phase reaction of formic acid with hydroxyl radical in water vapor
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200900387
– ident: CR68
– volume: 98
  start-page: 381
  year: 1983
  end-page: 385
  ident: CR31
  article-title: Absolute rate constant for the reaction of OH with thiophene between 293 and 473 K
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(83)80228-0
– volume: 25
  start-page: 332
  year: 1991
  end-page: 338
  ident: CR23
  article-title: Chemical and biological characterization of particulate-, semivolatile-, and gas-phase-associated compounds in diluted heavy-duty diesel exhausts: A comparison of three different semivolatile-phase samplers
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00014a018
– volume: 108
  start-page: 5708
  year: 1986
  end-page: 5711
  ident: CR75
  article-title: The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00279a008
– volume: 372
  start-page: 362
  year: 2003
  end-page: 367
  ident: CR60
  article-title: Comparison of the T1 and D1 diagnostics for electronic structure theory: A new definition for the open-shell D1 diagnostic
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00435-4
– ident: CR12
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  ident: CR55
  article-title: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 164
  start-page: 185
  year: 1989
  ident: CR61
  article-title: Rag havachari and GW Trucks
  publication-title: Chem. Phys. Lett
  doi: 10.1016/0009-2614(89)85013-4
– volume: 114
  start-page: 9720
  year: 2010
  end-page: 9724
  ident: CR18
  article-title: Role of water complexes in the reaction of propionaldehyde with OH radicals
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp101804j
– volume: 164
  start-page: 185
  year: 1989
  end-page: 192
  ident: CR62
  article-title: Size-consistent Brueckner theory limited to double substitutions
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)85013-4
– volume: 49
  start-page: 1617
  year: 1927
  end-page: 1629
  ident: CR81
  article-title: Theories of unimolecular gas reactions at low pressures
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01406a001
– volume: 17
  start-page: 1247
  year: 1985
  end-page: 1261
  ident: CR24
  article-title: Kinetic study for the reactions of OH radicals with dimethylsulfide, diethylsulfide, tetrahydrothiophene, and thiophene
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550171202
– volume: 102
  start-page: 1899
  year: 1998
  end-page: 1902
  ident: CR9
  article-title: Existence of a hydroperoxy and water (HO2·H2O) radical complex
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp972173p
– volume: 114
  start-page: 4857
  year: 2010
  end-page: 4863
  ident: CR17
  article-title: Effect of hydration on the hydrogen abstraction reaction by HO in DMS and its oxidation products
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp910202n
– volume: 84
  start-page: 437
  year: 1984
  end-page: 470
  ident: CR25
  article-title: Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions
  publication-title: Chem. Rev.
  doi: 10.1021/cr00063a002
– volume: 133
  start-page: 3345
  year: 2011
  end-page: 3353
  ident: CR14
  article-title: Impact of water on the OH + HOCl reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100976b
– volume: 3
  start-page: 8644
  year: 2018
  end-page: 8650
  ident: CR39
  article-title: Mechanistic and kinetic study on the reaction of thiophene (C4H4S) with O (3P)
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201801291
– volume: 37
  start-page: 3639
  year: 2003
  end-page: 3651
  ident: CR50
  article-title: OH and HO2 chemistry in the urban atmosphere of New York City
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(03)00459-X
– volume: 121
  year: 2021
  ident: CR72
  article-title: Kinetics and degradation mechanism of atmospheric isoprene (2-methyl-1, 3-butadiene (C5H8)) with chlorine radical and its derivatives—A theoretical study
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.26573
– volume: 583
  start-page: 190
  year: 2013
  end-page: 197
  ident: CR52
  article-title: Theoretical study on the mechanism and kinetics of acetaldehyde and hydroperoxyl radical: An important atmospheric reaction
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.07.065
– volume: 116
  start-page: 4934
  year: 2012
  end-page: 4946
  ident: CR26
  article-title: Mechanisms for the reaction of thiophene and methylthiophene with singlet and triplet molecular oxygen
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp301919g
– volume: 100
  start-page: 11695
  year: 1995
  end-page: 11698
  ident: CR3
  article-title: On the HO2 + HO2 reaction: Its misapplication in atmospheric chemistry models
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/94JD03107
– volume: 1092
  start-page: 74
  year: 2016
  end-page: 81
  ident: CR33
  article-title: Mechanistic and kinetic study on the reaction of thiophene with hydroxyl radical
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2016.08.002
– volume: 3
  start-page: 107
  year: 1935
  end-page: 115
  ident: CR67
  article-title: The activated complex in chemical reactions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1749604
– ident: CR32
– volume: 30
  start-page: 335
  year: 2011
  end-page: 369
  ident: CR1
  article-title: Water effects on atmospheric reactions
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2011.634128
– volume: 16
  start-page: 867
  year: 1984
  end-page: 878
  ident: CR27
  article-title: Kinetics of OH reactions with furan, thiophene, and tetrahydrothiophene
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550160707
– ident: CR78
– ident: CR5
– volume: 117
  start-page: 6883
  year: 2013
  end-page: 6892
  ident: CR21
  article-title: Theoretical study on the water-assisted reaction of NCO with HCHO
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp405687c
– ident: CR64
– volume: 110
  start-page: 13283
  year: 2006
  end-page: 13289
  ident: CR15
  article-title: Do hydroxyl radical−water clusters, OH(H2O)n, n = 1–5, exist in the atmosphere?
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp064468l
– volume: 103
  start-page: 5163
  year: 2003
  end-page: 5198
  ident: CR51
  article-title: Measurement of OH and HO2 in the Troposphere
  publication-title: Chem. Rev.
  doi: 10.1021/cr020522s
– volume: 44
  start-page: 605
  year: 1998
  end-page: 622
  ident: CR22
  article-title: A review of the occurrence, toxicity, and biodegradation of condensed thiophenes found in petroleum
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w98-045
– volume: 160
  start-page: 9
  year: 2013
  end-page: 16
  ident: CR46
  article-title: Rate constants for reactions of ethylbenzene with hydroperoxyl radical
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2012.08.008
– volume: 9
  start-page: 875
  year: 1977
  end-page: 885
  ident: CR8
  article-title: The dependence on H2O and on NH3 of the kinetics of the self-reaction of HO2 in the gas-phase formation of HO2·H2O and HO2·NH3 complexes
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550090604
– volume: 32
  start-page: 697
  year: 2001
  end-page: 711
  ident: CR6
  article-title: Interaction of soot aerosol particles with water droplets: Influence of surface hydrophilicity
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(00)00101-4
– volume: 125
  year: 2006
  ident: CR57
  article-title: A restricted-open-shell complete-basis-set model chemistry
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2335438
– ident: CR66
– ident: CR47
– volume: 81
  start-page: 2862
  year: 1984
  end-page: 2863
  ident: CR74
  article-title: Electron density, Kohn-Sham frontier orbitals, and Fukui functions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447964
– volume: 77
  start-page: 4459
  year: 1982
  end-page: 4463
  ident: CR28
  article-title: Absolute rate constants for the hydroxyl radical reactions with ethane, furan, and thiophene at room temperature
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444367
– volume: 21
  start-page: 1
  year: 2015
  end-page: 20
  ident: CR34
  article-title: Theoretical study of the oxidation mechanisms of thiophene initiated by hydroxyl radicals
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-015-2839-2
– volume: 328
  start-page: 431
  year: 2000
  end-page: 436
  ident: CR59
  article-title: A new diagnostic for open-shell coupled-cluster theory
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00966-0
– volume: 46
  start-page: 7548
  year: 2017
  end-page: 7596
  ident: CR80
  article-title: Variational transition state theory: Theoretical framework and recent developments
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00602K
– volume: 358
  start-page: 401
  year: 2002
  end-page: 406
  ident: CR42
  article-title: A kinetic study of gas-phase reaction of thiophene with NO3 by using absolute and relative methods
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00494-3
– ident: CR10
– volume: 75
  start-page: 137
  year: 1981
  end-page: 140
  ident: CR36
  article-title: Absolute rate constant for the reaction of O (3 P) with thiophene from 238 to 448 K
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441814
– volume: 8
  start-page: 4563
  year: 2006
  end-page: 4574
  ident: CR4
  article-title: The relaxation of OH (v = 1) and OD (v = 1) by H2O and D2O at temperatures from 251 to 390 K
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B609330B
– ident: CR40
– ident: CR63
– volume: 35
  start-page: 1303
  year: 1930
  end-page: 1309
  ident: CR79
  article-title: The penetration of a potential barrier by electrons
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.35.1303
– volume: 6
  start-page: 5172
  year: 2004
  end-page: 5177
  ident: CR13
  article-title: Theoretical study of the reaction OH + acetone: A possible kinetic effect of the presence of water?
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B409900A
– volume: 120
  start-page: 7060
  year: 2016
  end-page: 7070
  ident: CR53
  article-title: Predicted chemical activation rate constants for HO2 + CH2NH: The dominant role of a hydrogen-bonded pre-reactive complex
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b06531
– ident: CR69
– volume: 15
  start-page: 51
  year: 1983
  end-page: 61
  ident: CR29
  article-title: Kinetics of the reactions of O3 and OH radicals with furan and thiophene at 298±2 K
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550150106
– ident: CR44
– volume: 501
  start-page: 11
  year: 2010
  end-page: 15
  ident: CR16
  article-title: Single water-molecule catalysis in the glyoxal+OH reaction under tropospheric conditions: Fact or fiction? A quantum chemistry and pseudo-second order computational kinetic study
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.10.043
– ident: CR48
– ident: CR65
– ident: CR38
– volume: 18
  start-page: 487
  year: 1986
  end-page: 496
  ident: CR30
  article-title: Kinetics of the gas phase reaction of OH radicals with pyrrole and thiophene
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550180407
– volume: 115
  start-page: 1350
  year: 2011
  end-page: 1357
  ident: CR19
  article-title: Theoretical study on the gas phase reaction of sulfuric acid with hydroxyl radical in the presence of water
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp107550w
– volume: 101
  start-page: 187
  year: 1997
  end-page: 191
  ident: CR37
  article-title: Dynamics of ring cleavage and substitution in the reactive scattering of O (3P) atoms with C2H4S and C4H4S molecules
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp962692c
– volume: 32
  start-page: 359
  year: 1981
  end-page: 401
  ident: CR58
  article-title: Many-body perturbation theory and coupled cluster theory for electron correlation in molecules
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.32.100181.002043
– volume: 88
  start-page: 899
  year: 1988
  end-page: 926
  ident: CR77
  article-title: Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint
  publication-title: Chem. Rev.
  doi: 10.1021/cr00088a005
– volume: 467
  start-page: 52
  year: 2008
  end-page: 57
  ident: CR43
  article-title: Computational studies on the mechanisms for the gas-phase reaction between thiophene and NO3
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.11.019
– volume: 116
  start-page: 4712
  year: 2012
  end-page: 4719
  ident: CR20
  article-title: Water effect on the OH + HCl reaction
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp3025107
– ident: CR7
– ident: CR76
– volume: 82
  start-page: 6723
  year: 1985
  end-page: 6726
  ident: CR73
  article-title: Hardness, softness, and the fukui function in the electronic theory of metals and catalysis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.82.20.6723
– volume: 42
  start-page: 1419
  year: 1920
  end-page: 1433
  ident: CR2
  article-title: Polarity and ionization from the standpoint of the Lewis theory of valence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01452a015
– volume: 51
  start-page: 317
  year: 2005
  end-page: 335
  ident: CR41
  article-title: Products and mechanism of the NO3 reaction with thiophene
  publication-title: J. Atmos. Chem.
  doi: 10.1007/s10874-005-3580-5
– volume: 29
  start-page: 599
  year: 2003
  end-page: 634
  ident: CR49
  article-title: Detailed chemical kinetic models for the combustion of hydrocarbon fuels
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/S0360-1285(03)00060-1
– volume: 11
  start-page: 13049
  year: 2021
  ident: CR54
  article-title: Chemical insights into the atmospheric oxidation of thiophene by hydroperoxyl radical
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92221-z
– volume: 114
  start-page: 3055
  year: 2016
  end-page: 3075
  ident: CR71
  article-title: Mechanism and kinetics of the atmospheric degradation of 2-formylcinnamaldehyde with O3 and hydroxyl OH radicals—a theoretical study
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2016.1214293
– volume: 90
  start-page: 2154
  year: 1989
  end-page: 2161
  ident: CR56
  article-title: An improved algorithm for reaction path following
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456010
– volume: 41
  start-page: 398
  year: 2016
  end-page: 417
  ident: CR35
  article-title: Reaction mechanisms and kinetics of the O2 addition pathways to the main thiophene-OH adduct: A theoretical study
  publication-title: Prog. React. Kinet. Mech.
  doi: 10.3184/146867816X14754978258571
– volume: 103
  start-page: 5163
  year: 2003
  ident: 22831_CR51
  publication-title: Chem. Rev.
  doi: 10.1021/cr020522s
– volume: 21
  start-page: 1
  year: 2015
  ident: 22831_CR34
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-015-2839-2
– volume: 41
  start-page: 398
  year: 2016
  ident: 22831_CR35
  publication-title: Prog. React. Kinet. Mech.
  doi: 10.3184/146867816X14754978258571
– volume: 44
  start-page: 605
  year: 1998
  ident: 22831_CR22
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w98-045
– volume: 164
  start-page: 185
  year: 1989
  ident: 22831_CR62
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(89)85013-4
– ident: 22831_CR66
– volume: 49
  start-page: 1617
  year: 1927
  ident: 22831_CR81
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01406a001
– volume: 114
  start-page: 4857
  year: 2010
  ident: 22831_CR17
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp910202n
– ident: 22831_CR32
  doi: 10.1007/978-94-009-6505-8_15
– volume: 6
  start-page: 5172
  year: 2004
  ident: 22831_CR13
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B409900A
– volume: 100
  start-page: 11695
  year: 1995
  ident: 22831_CR3
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/94JD03107
– volume: 15
  start-page: 51
  year: 1983
  ident: 22831_CR29
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550150106
– volume: 10
  start-page: 3034
  year: 2009
  ident: 22831_CR11
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200900387
– volume: 3
  start-page: 8644
  year: 2018
  ident: 22831_CR39
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201801291
– ident: 22831_CR12
  doi: 10.1021/jp102935d
– volume: 25
  start-page: 332
  year: 1991
  ident: 22831_CR23
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00014a018
– ident: 22831_CR63
– volume: 32
  start-page: 697
  year: 2001
  ident: 22831_CR6
  publication-title: J. Aerosol Sci.
  doi: 10.1016/S0021-8502(00)00101-4
– volume: 121
  year: 2021
  ident: 22831_CR72
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.26573
– volume: 114
  start-page: 3055
  year: 2016
  ident: 22831_CR71
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2016.1214293
– volume: 75
  start-page: 137
  year: 1981
  ident: 22831_CR36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441814
– volume: 51
  start-page: 317
  year: 2005
  ident: 22831_CR41
  publication-title: J. Atmos. Chem.
  doi: 10.1007/s10874-005-3580-5
– volume: 120
  start-page: 7060
  year: 2016
  ident: 22831_CR53
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.6b06531
– volume: 358
  start-page: 401
  year: 2002
  ident: 22831_CR42
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00494-3
– volume: 98
  start-page: 381
  year: 1983
  ident: 22831_CR31
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(83)80228-0
– ident: 22831_CR48
  doi: 10.1021/jp110024e
– ident: 22831_CR10
  doi: 10.1029/2003JD004240
– volume: 17
  start-page: 1247
  year: 1985
  ident: 22831_CR24
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550171202
– volume: 372
  start-page: 362
  year: 2003
  ident: 22831_CR60
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(03)00435-4
– ident: 22831_CR70
– volume: 467
  start-page: 52
  year: 2008
  ident: 22831_CR43
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.11.019
– volume: 583
  start-page: 190
  year: 2013
  ident: 22831_CR52
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2013.07.065
– volume: 84
  start-page: 437
  year: 1984
  ident: 22831_CR25
  publication-title: Chem. Rev.
  doi: 10.1021/cr00063a002
– ident: 22831_CR78
– volume: 125
  year: 2006
  ident: 22831_CR57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2335438
– volume: 90
  start-page: 2154
  year: 1989
  ident: 22831_CR56
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456010
– ident: 22831_CR44
  doi: 10.1021/ja01187a080
– volume: 30
  start-page: 335
  year: 2011
  ident: 22831_CR1
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/0144235X.2011.634128
– ident: 22831_CR5
  doi: 10.1021/j100559a018
– ident: 22831_CR7
– volume: 108
  start-page: 5708
  year: 1986
  ident: 22831_CR75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00279a008
– volume: 81
  start-page: 2862
  year: 1984
  ident: 22831_CR74
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447964
– ident: 22831_CR68
– ident: 22831_CR65
  doi: 10.1002/chem.201705163
– volume: 16
  start-page: 867
  year: 1984
  ident: 22831_CR27
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550160707
– volume: 1092
  start-page: 74
  year: 2016
  ident: 22831_CR33
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2016.08.002
– ident: 22831_CR64
– ident: 22831_CR47
  doi: 10.1021/jp209029p
– volume: 164
  start-page: 185
  year: 1989
  ident: 22831_CR61
  publication-title: Chem. Phys. Lett
  doi: 10.1016/0009-2614(89)85013-4
– volume: 3
  start-page: 107
  year: 1935
  ident: 22831_CR67
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1749604
– volume: 101
  start-page: 187
  year: 1997
  ident: 22831_CR37
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp962692c
– volume: 116
  start-page: 4712
  year: 2012
  ident: 22831_CR20
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp3025107
– volume: 11
  start-page: 13049
  year: 2021
  ident: 22831_CR54
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92221-z
– volume: 501
  start-page: 11
  year: 2010
  ident: 22831_CR16
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2010.10.043
– volume: 160
  start-page: 9
  year: 2013
  ident: 22831_CR46
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2012.08.008
– volume: 37
  start-page: 785
  year: 1988
  ident: 22831_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 110
  start-page: 13283
  year: 2006
  ident: 22831_CR15
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp064468l
– volume: 114
  start-page: 9720
  year: 2010
  ident: 22831_CR18
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp101804j
– volume: 102
  start-page: 1899
  year: 1998
  ident: 22831_CR9
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp972173p
– ident: 22831_CR45
  doi: 10.1021/ja01183a083
– ident: 22831_CR38
– ident: 22831_CR40
– volume: 32
  start-page: 359
  year: 1981
  ident: 22831_CR58
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.32.100181.002043
– ident: 22831_CR69
– volume: 82
  start-page: 6723
  year: 1985
  ident: 22831_CR73
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.82.20.6723
– volume: 116
  start-page: 4934
  year: 2012
  ident: 22831_CR26
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp301919g
– volume: 29
  start-page: 599
  year: 2003
  ident: 22831_CR49
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/S0360-1285(03)00060-1
– ident: 22831_CR76
– volume: 46
  start-page: 7548
  year: 2017
  ident: 22831_CR80
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00602K
– volume: 18
  start-page: 487
  year: 1986
  ident: 22831_CR30
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550180407
– volume: 35
  start-page: 1303
  year: 1930
  ident: 22831_CR79
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.35.1303
– volume: 115
  start-page: 1350
  year: 2011
  ident: 22831_CR19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp107550w
– volume: 133
  start-page: 3345
  year: 2011
  ident: 22831_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja100976b
– volume: 328
  start-page: 431
  year: 2000
  ident: 22831_CR59
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)00966-0
– volume: 117
  start-page: 6883
  year: 2013
  ident: 22831_CR21
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp405687c
– volume: 77
  start-page: 4459
  year: 1982
  ident: 22831_CR28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.444367
– volume: 37
  start-page: 3639
  year: 2003
  ident: 22831_CR50
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(03)00459-X
– volume: 88
  start-page: 899
  year: 1988
  ident: 22831_CR77
  publication-title: Chem. Rev.
  doi: 10.1021/cr00088a005
– volume: 42
  start-page: 1419
  year: 1920
  ident: 22831_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01452a015
– volume: 9
  start-page: 875
  year: 1977
  ident: 22831_CR8
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.550090604
– volume: 8
  start-page: 4563
  year: 2006
  ident: 22831_CR4
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B609330B
SSID ssj0000529419
Score 2.4063523
Snippet Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule...
Abstract Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18959
SubjectTerms 639/638/563/606
704/172/169
704/172/4081
Aromatic compounds
Atmosphere
Humanities and Social Sciences
multidisciplinary
Oxidation
Peroxyl radicals
Potential energy
Relative humidity
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlEOglNGlLN1-okFtqYkuyLR2TkCUtpKcEchOyNGYXNnbYdWj332ckebfrQJJLr5aEJc2IeU8fbwg5gSoX3CrkJjXjiQCVJkoqmzBIQSpE8Dwo3tz8Lq7vxK_7_H4j1Ze_ExblgePEnaVc2YqzGsOIE2CUMSXGcGVNLSrHyiC2jTFvg0xFVW-mRKb6VzIpl2cLjFT-NRlyL6_4kiVyEImCYP8AZb68I_nioDTEn_EnstMDR3oeO7xLPkCzR7ZjKsnlZ2J_hueOtK2poZ7_z4D-QRw5pw8xAS7QtqGI9qjpHtqFFxOYWtr-ncacSr5dN5l6kYEGaLWkk6Xz2_T-ksuMzk04zflC7sZXt5fXSZ9AIbFClF1iBDBbVciJXAqcCwfOYbiuEOZBiTxOmhLRiLQOZ9AgcUGz1UiuAYRwOFmCfyVbTdvAN0LTGnFGYaRUohZ5Bsrmsighr8HyDAwbkWw1mdr26uI-ycVMh1NuLnU0gEYD6GAALUfkdN3mMWprvFn7wttoXdPrYocP6C269xb9nreMyOHKwrpfrAuNCI7LQiIXHpHv62JcZv7sxDTQPoU6osgKxbAf5cAzBh0aljTTSRDs9ppnXGHLHysf-vfz1we8_z8GfEA-Mu_zYSP8kGx18yc4QhjVVcdhxTwD2OIZEQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgCIkL4lMsFGQkbhA1sZ3EPiFAVAUJTlTam-XYE3albdLupmr33zPjeLdKJXqNbcXxjDNvZuw3jH2AplTSG_RNWiEzBSbPjDY-E5CDNojgZWS8-fW7OjlVP-flPAXcNulY5e6fGH_UofcUIz9CMyt1pdFh-Xx-kVHVKMquphIa99kDoi6jI131vN7HWCiLpQqT7srkUh9t0F7RnTL0wIj3pcj0xB5F2v4J1rx9UvJWujRaoeMn7HGCj_zLKO-n7B50z9jDsaDk9jnzP-KlR9633HGKAqyAXyGaXPOzsQwu8L7jiPm4G876DVEKLD3vr5djZSUaNyyWRDXQAW-2fLENFKynoy4rvnYxp_OCnR5___PtJEtlFDKvVD1kToHwTYOeUchBShUgBDTaDYI9qNGb065GTKJ9ELlx6L6g8Fp0sQGUCrhYSr5kB13fwSvG8xbRRuW0NqpVZQHGl7qqoWzBywKcmLFit5jWJ45xKnWxsjHXLbUdBWBRADYKwOoZ-7gfcz4ybNzZ-yvJaN-T2LHjg37916bNZnNpfCNFi9AjKHDGuRpxn_GuVU0QdTVjhzsJ27RlN_ZGwWbs_b4ZNxtlUFwH_WXso6qiMgLnUU80YzKhaUu3XETabmI-kwZHftrp0M3L___Br--e6xv2SJA2x0D3ITsY1pfwFmHS0LyLe-EfpzcQLA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbG0CReELAhDgbKJN5YRZukbfIIJ6aBtD1t0t6iNHG5k27tdNcJ7t_jpO2hToDEa5OoaezUn2PnM8B7rHIpnCbfpOYikajTRCvtEo4pKk0IXkTGm4vL4vxafrvJb_aAj3dhYtJ-pLSMv-kxO-zjhgxNuAxGrlMgbMkS9QgeB-r2oNXzYr47VwmRK5np4X5MKtQfhk5sUKTqn-DLh9mRD0Kk0fKcPYOnA2Rkn_pJPoc9bF7AQV9EcnsI7mu86MjamlkWPP8Vsh-EINfsti99i6xtGOE8ZrvbdhNoBJaOtT-XfTWlMK5bLAO9QIOs2rLF1ocD-pDesmJrG-M4R3B99uVqfp4MpRMSJ2XZJVYid1VF3pBPUQjp0Xsy1BUBPCzJg1O2JByinOeptuSykMBqcqsRpfS0WFK8hP2mbfAVsLQmhFFYpbSsZZ6hdrkqSsxrdCJDy2eQjYtp3MArHspbrEyMbwtlegEYEoCJAjBqBh92Y-56Vo1_9v4cZLTrGRix44N2_d0MGmJSoV0leE1ww0u02tqSsJ52tpaV52Uxg-NRwmbYphtD2E2oQpEXPIOTXTNtsBA1sQ2297GPLLJCc5pHOdGMyYSmLc1yEam6A9uZ0DTydNSh3y__-we__r_ub-AJD9odD7uPYb9b3-Nbgkpd9S7ujV8XLQ3w
  priority: 102
  providerName: Springer Nature
Title Impact of a single water molecule on the atmospheric oxidation of thiophene by hydroperoxyl radical
URI https://link.springer.com/article/10.1038/s41598-022-22831-8
https://www.proquest.com/docview/2733868721
https://www.proquest.com/docview/2734616928
https://pubmed.ncbi.nlm.nih.gov/PMC9643398
https://doaj.org/article/039cb32f614d4ea9aa72649caf4bd276
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBf9YKMvY58sXRc02NvmzZZkW3oYIw0tXaBlbAvkTcjyuQmk9uq4rPnvd5KdDJduD3syyBKydXfc7yTd7wh5C1ksuFUYmxSMBwJUGCipbMAgBKkQwXPPeHN-kZxNxWQWz3bIptxRt4Cre0M7V09qWi8_3F6vP6PBf2pTxuXHFTohlyiGYZUjc4kCuUv20TOlzlDPO7jfcn0zJSLV5c7cP_SAPOSJS69koueqPKN_D4bevUR55yTVO6jTx-RRhyzpqFWFJ2QHyqfkQVtrcv2M2C8-H5JWBTXUbRAsgf5CoFnTq7ZCLtCqpAgHqWmuqpVjG1hYWt0u2qJLblwzXzgWghJotqbzde728d0tmCWtjT_ueU6mpyc_xmdBV2EhsEKkTWAEMJtlGDTlIXAucshz9OcZ4kBIMdCTJkW4Im3OQmUwskG5Fhh9AwiR47oJ_oLslVUJLwkNCwQiiZFSiULEESgbyySFuADLIzBsQKLNYmrb0Y-7KhhL7Y_BudStLDTKQntZaDkg77ZjfrbkG__sfexktO3piLN9Q1Vf6s4OdciVzTgrEJXkAowyJkVIqKwpRJazNBmQo42E9UYZNUI8LhOJwfKAvNm-Rjt0hyumhOrG9xFJlCiG35H2NKP3Qf035WLuGb0dKRpXOPL9Rof-TP73Hz7874lekQPmdN5vjx-Rvaa-gdcIrppsSHbTWTok-6PR5PsEn8cnF1-_Yes4GQ_9hsXQ29RvrVomkA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJwQviJ9aYYCR4AmiJbaT2A8IMdjUsq1CaJP2ZhznQit1yWgzjf5T_I2cnaRTJrG3vSZ2YvvOvu989neEvIUsFtwq9E0KxgMBKgyUVDZgEIJUiOC5Z7w5miSjE_HtND7dIH-7uzDuWGW3JvqFOq-s2yPfQTPLZSLRYfl0_jtwWaNcdLVLodGoxQGsLtFlW34cf0X5vmNsf-_4yyhoswoEVoi0DowAZrMMHYU8BM5FDnmONixD7AMpOjfSpGiipc1ZqAyieexLgR4ngBB5rKTg-N07ZFNwdGUGZHN3b_L9x3pXx8XNRKTa2zkhlztLtJDuFhv6fI5pJgpkzwL6RAE9dHv9bOa1AK23e_sPyYMWsNLPjYY9IhtQPiZ3mxSWqyfEjv01S1oV1FC37zAHeon4dUHPmsS7QKuSIsqkpj6rlo7EYGZp9WfW5HJy9erpzJEblECzFZ2uchcecIdr5nRhfBTpKTm5lSF-RgZlVcIWoWGB-CYxUipRiDgCZWOZpBAXYHkEhg1J1A2mti2ruUuuMdc-us6lbgSgUQDaC0DLIXm_rnPecHrcWHrXyWhd0vFx-wfV4pdup7cOubIZZwWCnVyAUcakiDSVNYXIcpYmQ7LdSVi3i8RSX6n0kLxZv8bp7WI2poTqwpcRSZQohu1Ie5rRa1D_TTmbeqJwx7XGFdb80OnQ1c__3-HnN7f1Nbk3Oj461IfjycELcp85zfbb7NtkUC8u4CWCtDp71c4MSn7e9mT8B4wTTfU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEIiXiZ9a2QAjwRNETWwnsR8QAka1Mph4YFLfjGNfaKUuGW2n0X-Nv46zk3TKJPa218ROnNyd7zuf_R0hr6BIBbcKY5OS8UiAiiMllY0YxCAVIngeGG--HWeHJ-LLJJ1skb_dWRi_rbKbE8NE7Wrr18iH6Ga5zCQGLMOy3Rbx_WD0_ux35CtI-UxrV06jUZEjWF9g-LZ8Nz5AWb9mbPT5x6fDqK0wEFkh8lVkBDBbFBg0uBg4Fw6cQ39WIA6CHAMdaXJ019I6FiuDyB6_q8ToE0AIlyopOD73Frmd8zTxNpZP8s36js-giUS153RiLodL9JX-PBtGf55zJolkzxeGkgE9nHt1l-aVVG3wgKP7ZKeFrvRDo2sPyBZUD8mdppjl-hGx43DgktYlNdSvQMyBXiCSXdDTpgQv0LqiiDepWZ3WS09nMLO0_jNrqjr5fqvpzNMcVECLNZ2unU8U-G02c7owIZ_0mJzcyA9-QraruoJdQuMSkU5mpFSiFGkCyqYyyyEtwfIEDBuQpPuZ2rb85r7MxlyHPDuXuhGARgHoIAAtB-TNps9Zw-5xbeuPXkablp6ZO1yoF790a-g65soWnJUIe5wAo4zJEXMqa0pROJZnA7LfSVi308VSXyr3gLzc3EZD99kbU0F9HtqILMkUw3HkPc3oDah_p5pNA2W4Z13jCnu-7XTo8uX__-Cn14_1BbmLJqi_jo-P9sg95hU7rLfvk-3V4hyeIVpbFc-DWVDy86bt8B9o71DF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+a+single+water+molecule+on+the+atmospheric+oxidation+of+thiophene+by+hydroperoxyl+radical&rft.jtitle=Scientific+reports&rft.au=Douroudgari%2C+Hamed&rft.au=Sharifi%2C+Maryam+Seyed&rft.au=Vahedpour%2C+Morteza&rft.date=2022-11-08&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-22831-8&rft_id=info%3Apmid%2F36347924&rft.externalDocID=PMC9643398
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon