Attention mechanism-based CNN for facial expression recognition
Facial expression recognition is a hot research topic and can be applied in many computer vision fields, such as human–computer interaction, affective computing and so on. In this paper, we propose a novel end-to-end network with attention mechanism for automatic facial expression recognition. The n...
Saved in:
Published in | Neurocomputing Vol. 411; pp. 340 - 350 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Elsevier B.V
21.10.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial expression recognition is a hot research topic and can be applied in many computer vision fields, such as human–computer interaction, affective computing and so on. In this paper, we propose a novel end-to-end network with attention mechanism for automatic facial expression recognition. The new network architecture consists of four parts, i.e., the feature extraction module, the attention module, the reconstruction module and the classification module. The LBP features extract image texture information and then catch the small movements of the faces, which can improve the network performance. Attention mechanism can make the neural network pay more attention to useful features. We combine LBP features and attention mechanism to enhance the attention model to obtain better results. In addition, we collected and labelled a new facial expression dataset of seven expressions from 35 subjects aged from 20 to 25. For each subject, we captured both RGB images and depth images with a Microsoft Kinect sensor. For each image type, there are 245 image sequences, each of which contains 110 images, resulting in 26,950 images in total. We apply the newly proposed method to our own dataset and four representative expression datasets, i.e., JAFFE, CK+, FER2013 and Oulu-CASIA. The experimental results demonstrate the feasibility and effectiveness of the proposed method. |
---|---|
AbstractList | Facial expression recognition is a hot research topic and can be applied in many computer vision fields, such as human–computer interaction, affective computing and so on. In this paper, we propose a novel end-to-end network with attention mechanism for automatic facial expression recognition. The new network architecture consists of four parts, i.e., the feature extraction module, the attention module, the reconstruction module and the classification module. The LBP features extract image texture information and then catch the small movements of the faces, which can improve the network performance. Attention mechanism can make the neural network pay more attention to useful features. We combine LBP features and attention mechanism to enhance the attention model to obtain better results. In addition, we collected and labelled a new facial expression dataset of seven expressions from 35 subjects aged from 20 to 25. For each subject, we captured both RGB images and depth images with a Microsoft Kinect sensor. For each image type, there are 245 image sequences, each of which contains 110 images, resulting in 26,950 images in total. We apply the newly proposed method to our own dataset and four representative expression datasets, i.e., JAFFE, CK+, FER2013 and Oulu-CASIA. The experimental results demonstrate the feasibility and effectiveness of the proposed method. |
Author | Li, Jing Jin, Kan Ju, Zhaojie Kubota, Naoyuki Zhou, Dalin |
Author_xml | – sequence: 1 givenname: Jing surname: Li fullname: Li, Jing organization: School of Information Engineering, Nanchang University, Nanchang 330031, China – sequence: 2 givenname: Kan surname: Jin fullname: Jin, Kan organization: School of Information Engineering, Nanchang University, Nanchang 330031, China – sequence: 3 givenname: Dalin surname: Zhou fullname: Zhou, Dalin organization: School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK – sequence: 4 givenname: Naoyuki surname: Kubota fullname: Kubota, Naoyuki organization: Graduate School of Systems Design, Tokyo Metropolitan University, China – sequence: 5 givenname: Zhaojie surname: Ju fullname: Ju, Zhaojie email: zhaojie.ju@port.ac.uk organization: School of Computing, University of Portsmouth, Portsmouth PO1 3HE, UK |
BackLink | https://cir.nii.ac.jp/crid/1871146592963088128$$DView record in CiNii |
BookMark | eNqFkD1PwzAQhi1UJNrCP2DIwJrgcxzHYQBVFV9SVRaYLcc5g6vGqeyA4N-TKEwMsNwt73Mfz4LMfOeRkHOgGVAQl7vM47vp2oxRRjMqMgr8iMxBliyVTIoZmdOKFSnLgZ2QRYw7SqEEVs3Jzarv0feu80mL5k17F9u01hGbZL3dJrYLidXG6X2Cn4eAMY7JgKZ79W6kTsmx1fuIZz99SV7ubp_XD-nm6f5xvdqkhvOyTzVoURS5BWYrMBzyqhF5DUKiFSVa2TBb15yVdjiZ6hyLApBbaEqbc9lYli8Jn-aa0MUY0KpDcK0OXwqoGiWonZokqFGCokINEgbs6hdmXK_Hw_ug3f4_-GKCvXMDN9ZBKQAXRcUqkVMpgckhdj3FcPj_w2FQ0Tj0Bhs3iOpV07m_93wDJtmHOQ |
CitedBy_id | crossref_primary_10_1007_s13198_023_02186_7 crossref_primary_10_48084_etasr_8433 crossref_primary_10_21597_jist_976577 crossref_primary_10_1080_01969722_2022_2062850 crossref_primary_10_1109_ACCESS_2024_3399557 crossref_primary_10_1093_ijlct_ctae114 crossref_primary_10_3390_app13084952 crossref_primary_10_3390_bioengineering10080948 crossref_primary_10_1109_ACCESS_2023_3308047 crossref_primary_10_1007_s11042_022_14186_z crossref_primary_10_1016_j_cscm_2024_e03183 crossref_primary_10_1002_inf2_12619 crossref_primary_10_1007_s11760_025_03984_1 crossref_primary_10_1016_j_bbe_2021_02_010 crossref_primary_10_1016_j_ijleo_2020_165499 crossref_primary_10_3390_info15070384 crossref_primary_10_3390_sym16040471 crossref_primary_10_1109_JSEN_2024_3389674 crossref_primary_10_3390_app14167356 crossref_primary_10_1109_TIM_2021_3134999 crossref_primary_10_3233_JIFS_235541 crossref_primary_10_1016_j_aej_2024_08_054 crossref_primary_10_1016_j_asoc_2021_108084 crossref_primary_10_1109_ACCESS_2024_3467286 crossref_primary_10_3233_JIFS_212022 crossref_primary_10_3390_electronics11091379 crossref_primary_10_3390_s24175487 crossref_primary_10_1016_j_compenvurbsys_2023_102009 crossref_primary_10_1038_s41598_024_74229_3 crossref_primary_10_1109_JSEN_2024_3493947 crossref_primary_10_3390_plants13243462 crossref_primary_10_1007_s11042_022_13799_8 crossref_primary_10_1007_s11554_023_01310_x crossref_primary_10_1109_THMS_2022_3145097 crossref_primary_10_1177_18761364241296439 crossref_primary_10_1016_j_neucom_2021_02_074 crossref_primary_10_1038_s41598_025_85139_3 crossref_primary_10_3233_JIFS_230524 crossref_primary_10_1016_j_ins_2023_02_056 crossref_primary_10_1007_s11042_022_12871_7 crossref_primary_10_1007_s10055_023_00808_w crossref_primary_10_4015_S1016237224500297 crossref_primary_10_1016_j_egyr_2024_07_023 crossref_primary_10_1038_s41598_023_38012_0 crossref_primary_10_1016_j_oceaneng_2024_119169 crossref_primary_10_1016_j_jhydrol_2024_132197 crossref_primary_10_1080_10618562_2023_2259806 crossref_primary_10_1109_TIM_2024_3488159 crossref_primary_10_1007_s11042_023_14666_w crossref_primary_10_1177_07356331221115663 crossref_primary_10_1016_j_cscm_2024_e03722 crossref_primary_10_1109_ACCESS_2024_3407361 crossref_primary_10_1007_s00371_022_02655_3 crossref_primary_10_1007_s11042_024_20428_z crossref_primary_10_2478_cait_2024_0010 crossref_primary_10_1088_1742_6596_2026_1_012029 crossref_primary_10_3390_rs14153670 crossref_primary_10_1007_s00371_023_03041_3 crossref_primary_10_1016_j_neucom_2022_05_019 crossref_primary_10_3390_app13010468 crossref_primary_10_1007_s11042_023_16837_1 crossref_primary_10_1111_exsy_13670 crossref_primary_10_1007_s10489_023_04490_y crossref_primary_10_1016_j_neucom_2022_04_052 crossref_primary_10_1016_j_ins_2023_01_095 crossref_primary_10_1145_3664197 crossref_primary_10_3389_fncom_2022_980063 crossref_primary_10_1049_ell2_12884 crossref_primary_10_1109_ACCESS_2023_3285781 crossref_primary_10_1016_j_asoc_2022_108788 crossref_primary_10_1016_j_chb_2024_108228 crossref_primary_10_1109_ACCESS_2023_3284457 crossref_primary_10_1109_ACCESS_2023_3333381 crossref_primary_10_26634_jip_9_2_18968 crossref_primary_10_1007_s11042_023_17013_1 crossref_primary_10_1109_TFUZZ_2024_3472043 crossref_primary_10_1016_j_asoc_2021_107930 crossref_primary_10_3390_electronics10202539 crossref_primary_10_1016_j_oceaneng_2022_113018 crossref_primary_10_1007_s42600_024_00391_2 crossref_primary_10_3390_s24237549 crossref_primary_10_54047_bibted_1206885 crossref_primary_10_1209_0295_5075_ac7ba4 crossref_primary_10_3233_JIFS_211729 crossref_primary_10_1007_s00371_024_03345_y crossref_primary_10_1007_s00521_021_06420_w crossref_primary_10_3390_s25051478 crossref_primary_10_3390_electronics12183837 crossref_primary_10_1109_JOE_2022_3192047 crossref_primary_10_3390_biomimetics8020199 crossref_primary_10_1109_TCSS_2023_3305616 crossref_primary_10_3233_JIFS_221919 crossref_primary_10_1016_j_cmpb_2024_108518 crossref_primary_10_1016_j_ins_2022_06_087 crossref_primary_10_1038_s41598_023_30442_0 crossref_primary_10_1109_ACCESS_2023_3283597 crossref_primary_10_3390_biomedicines11010133 crossref_primary_10_1016_j_neunet_2024_106489 crossref_primary_10_1155_2021_5486328 crossref_primary_10_1007_s10489_023_04802_2 crossref_primary_10_1155_2020_4065207 crossref_primary_10_1016_j_neucom_2021_06_033 crossref_primary_10_1007_s11042_024_20157_3 crossref_primary_10_3390_info15010030 crossref_primary_10_3390_computers11060088 crossref_primary_10_3390_s23115204 crossref_primary_10_1109_TAFFC_2023_3267774 crossref_primary_10_1142_S0218126624501317 crossref_primary_10_4018_IJSWIS_352418 crossref_primary_10_1063_5_0140545 crossref_primary_10_1177_21582440251317833 crossref_primary_10_1007_s41666_021_00101_y crossref_primary_10_1016_j_taml_2022_100384 crossref_primary_10_1109_ACCESS_2023_3325034 crossref_primary_10_3390_s24227404 crossref_primary_10_1016_j_aej_2023_01_017 crossref_primary_10_1109_TAFFC_2023_3286838 crossref_primary_10_1109_TR_2022_3190639 crossref_primary_10_3390_electronics10111289 crossref_primary_10_1155_2024_5576859 crossref_primary_10_1007_s12652_023_04627_4 crossref_primary_10_1109_TAFFC_2023_3312768 crossref_primary_10_1117_1_JEI_31_4_043056 crossref_primary_10_1016_j_neucom_2024_129323 crossref_primary_10_1109_TAFFC_2021_3122146 crossref_primary_10_1109_TII_2022_3145862 crossref_primary_10_7717_peerj_cs_2676 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_1109_TCE_2023_3263672 crossref_primary_10_1177_15280837231225827 crossref_primary_10_3390_electronics13061138 crossref_primary_10_7717_peerj_cs_2272 crossref_primary_10_3390_bdcc6040122 crossref_primary_10_1007_s00371_023_03168_3 crossref_primary_10_3390_s21030833 crossref_primary_10_1038_s41539_022_00139_6 crossref_primary_10_1016_j_csite_2022_102670 crossref_primary_10_3233_JIFS_222252 crossref_primary_10_1007_s00500_022_06804_7 crossref_primary_10_1109_TCDS_2021_3064280 crossref_primary_10_1016_j_egyr_2022_12_043 crossref_primary_10_32604_cmc_2023_032505 crossref_primary_10_3390_sym16040451 crossref_primary_10_1007_s11042_022_12058_0 crossref_primary_10_1007_s41870_024_01872_4 crossref_primary_10_1109_TII_2023_3253188 crossref_primary_10_1016_j_asoc_2023_110530 crossref_primary_10_1007_s11042_024_20511_5 crossref_primary_10_1109_ACCESS_2024_3365521 crossref_primary_10_1016_j_compag_2025_110182 crossref_primary_10_1007_s10489_022_03225_9 crossref_primary_10_1016_j_eswa_2022_116705 crossref_primary_10_1016_j_imavis_2020_104044 crossref_primary_10_1016_j_jad_2021_07_029 crossref_primary_10_3390_s24134153 crossref_primary_10_7717_peerj_cs_2266 crossref_primary_10_1007_s00521_021_06520_7 crossref_primary_10_1016_j_eswa_2023_122784 crossref_primary_10_1007_s42979_024_03537_2 crossref_primary_10_1142_S0218001422560134 crossref_primary_10_1109_TAI_2022_3172272 crossref_primary_10_1016_j_jvcir_2024_104345 crossref_primary_10_1109_ACCESS_2024_3476110 crossref_primary_10_1016_j_engappai_2023_106795 crossref_primary_10_3934_mbe_2023140 crossref_primary_10_59782_aai_v1i3_333 crossref_primary_10_1007_s00371_024_03369_4 crossref_primary_10_1016_j_ymeth_2021_11_010 crossref_primary_10_1364_AO_546273 crossref_primary_10_1109_TII_2024_3353912 crossref_primary_10_3390_systems11020107 crossref_primary_10_1007_s11042_022_13361_6 crossref_primary_10_1117_1_JEI_33_3_033032 crossref_primary_10_1007_s11042_023_15962_1 crossref_primary_10_1007_s11042_025_20698_1 crossref_primary_10_1109_TIM_2023_3314815 crossref_primary_10_3390_electronics12040969 |
Cites_doi | 10.1109/TPAMI.2002.1017623 10.1016/j.neucom.2019.05.005 10.1109/CVPRW.2018.00286 10.1109/CVPR.2014.233 10.1016/j.imavis.2011.07.002 10.1016/j.neucom.2018.03.034 10.1007/s11263-017-1055-1 10.1109/IJCNN.2015.7280539 10.1109/TIT.1967.1053964 10.1109/CVPR.2018.00231 10.1109/FG.2018.00046 10.1609/aaai.v31i1.11231 10.1109/CVPR.2017.243 10.1007/BF00994018 10.1109/CVPR.2019.00320 10.1109/5.726791 10.1016/0031-3203(95)00067-4 10.1109/34.927467 10.1109/CVPRW.2016.187 10.1109/CVPRW.2010.5543262 10.1007/978-3-319-69456-6_12 10.1109/CVPRW.2017.282 10.1109/TIP.2017.2689999 10.1007/978-981-13-7986-4_28 10.1016/j.neucom.2018.07.028 10.1109/FG.2019.8756615 10.1016/j.neucom.2017.06.050 10.1109/WACV.2016.7477450 10.1109/CVPR.2015.7298594 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | RYH AAYXX CITATION |
DOI | 10.1016/j.neucom.2020.06.014 |
DatabaseName | CiNii Complete CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 350 |
ExternalDocumentID | 10_1016_j_neucom_2020_06_014 S0925231220309838 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH 29N AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFJKZ AGQPQ AIGII ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW WUQ XPP |
ID | FETCH-LOGICAL-c447t-a1a6553f12f91c4139d63b168ef67ef8d2fbb427f8720a3e551e4f1d7f348df23 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 22:53:28 EDT 2025 Tue Jul 01 01:46:50 EDT 2025 Thu Jun 26 22:39:34 EDT 2025 Fri Feb 23 02:47:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Image Classification Convolutional Neural Network Facial Expression Recognition Local Binary Patten Attention Mechanism |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-a1a6553f12f91c4139d63b168ef67ef8d2fbb427f8720a3e551e4f1d7f348df23 |
ORCID | 0000-0001-8829-037X 0000-0003-2363-9125 |
OpenAccessLink | https://cir.nii.ac.jp/crid/1871146592963088128 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_06_014 crossref_citationtrail_10_1016_j_neucom_2020_06_014 nii_cinii_1871146592963088128 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_06_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-21 |
PublicationDateYYYYMMDD | 2020-10-21 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | C.M. Kuo, S.H. Lai, M. Sarkis, A compact deep learning model for robust facial expression recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 2121–2129 Z. Zhang, M. Lyons, M. Schuster, S. Akamatsu, Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron, in Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998. Proceedings, Nara 1998, pp. 454_9. Zhang, Huang, Du (b0135) 2017; 26 Zhong, Lei, et al., A graph-structured representation with BRNN for static-based facial expression recognition, 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), IEEE, 2019. J. Li, Y. Mi, J. Yu, et al., A novel convolutional neural network for facial expression recognition, International Conference on Cognitive Systems and Signal Processing. Springer, Singapore, 2018, pp. 310–320 T.F. Cootes, G.J. Edwards, C.J. Taylor, Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell. 23 (6) (2011) 6815 G. Huang, Z. Liu, K. Q. Weinberger, L. van der Maaten, Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016 P.D.M. Fernandez, F.A.G. Peña, T.I. Ren, et al., FERAtt: facial expression recognition with attention net. arXiv preprint arXiv:1902.03284, 2019. Simonyan, Zisserman (b0180) 2014 B.-K. Kim, S.-Y. Dong, J. Roh, G. Kim, S.-Y. Lee, Fusing aligned and non-aligned face information for automatic affect recognition in the wild: A deep learning approach, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 48–57 D. Hamester, P. Barros, S. Wermter, Face expression recognition with a 2-channel convolutional neural network, in: Neural Networks (IJCNN), 2015 International Joint Conference on, IEEE, 2015, pp. 1–8 Huiyuan Yang, Umur Ciftci, Lijun Yin, Facial expression recognition by de-expression residue learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018 Y. Guo, D. Tao, J. Yu, H. Xiong, Y. Li, D. Tao, Deep neural networks with relativity learning for facial expression recognition, in: Multimedia & Expo Workshops (ICMEW), 2016 IEEE International Conference on, IEEE, 2016, pp. 1–6. Ojala, Harwood (b0060) 1996; 29 Y. Lecun, L. Bottou, Y. Bengio, et al., Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 C. Szegedy, S. Ioffe, V. Vanhoucke, et al., Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 2016 Arriaga, Octavio, Matias Valdenegro-Toro, Paul Plöger, Real-time convolutional neural networks for emotion and gender classification. arXiv preprint arXiv:1710.07557 (2017). Cortes, Vapnik (b0130) 1995; 20 P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression, in: Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on, IEEE, 2010, pp. 94–101. T. Zhao, X. Wu, Pyramid feature attention network for saliency detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, 3085–3094 Sun, Jin, Zhao (b0035) 2017; 267 B. Hasani, M.H. Mahoor, Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields, (2017) 790–795 Shao, Qian (b0170) 2019; 355 M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with Gabor wavelets, in: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 200–205 W. Wang, Q. Sun, T. Chen, et al., A Fine-Grained Facial Expression Database for End-to-End Multi-Pose Facial Expression Recognition, arXiv preprint arXiv:1907.10838, 2019. T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform. Theor. 13 (1) (1967) pp. 21_7 H. Yang, U. Ciftci, L. Yin, Facial expression recognition by de-expression residue learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2168–2177 A. Mollahosseini, D. Chan, M.H. Mahoor, Going deeper in facial expression recognition using deep neural networks, (2016) 1–10 C. Turan, K.M. Lam, X. He, Soft Locality Preserving Map (SLPM) for Facial Expression Recognition. arXiv preprint arXiv:1801.03754, 2018. Zhang, Luo, Chen, Tang (b0205) 2018; 126 T. Connie, M. Al-Shabi, W.P. Cheah, et al., Facial expression recognition using a hybrid CNN–SIFT aggregator, International Workshop on Multi-disciplinary Trends in Artificial Intelligence, Springer, Cham, 2017, pp. 139–149 P. Liu, S. Han, Z. Meng Y. Tong, Facial expression recognition via a boosted deep belief network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1805–1812 Dhwani Mehta, Mohammad Faridul Haque Siddiqui, Ahmad Y. Javaid, Recognition of emotion intensities using machine learning algorithms: a comparative study, Sensors 19 (8) (2019) 1897 Sun, Zhao, Jin (b0080) 2018; 296 https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data T. Ojala, M. Pietikinen, T. Menp, Multiresolution grayscale and rotation invariant texture classification with local binary patterns, IEEE PAMI, vol. 24, no. 7, 2002 K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, (2015) 770–778 Zhao, Huang, Taini (b0145) 2011; 29 Y.-H. Lai, S.-H. Lai, Emotion-preserving representation learning via generative adversarial network for multi-view facial expression recognition, in: Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE International Conference on. IEEE, 2018, pp. 263–270 Yu, Liu, Liu (b0050) 2018; 317 P. Rodriguez, G. Cucurull, J. Gonalez, et al., Deep pain: exploiting long short-term memory networks for facial expression classification, IEEE Trans. Cybern. PP (99) (2017) 1–11 C. Pramerdorfer, M. Kampel, Facial expression recognition using convolutional neural networks: State of the art, arXiv preprint arXiv:1612.02903, 2016. R.R. Varior, B. Shuai, J. Tighe, et al., Scale-Aware Attention Network for Crowd Counting. arXiv preprint arXiv:1901.06026, 2019. C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with convolutions, IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015, pp. 1–9. Zhang (10.1016/j.neucom.2020.06.014_b0205) 2018; 126 10.1016/j.neucom.2020.06.014_b0025 10.1016/j.neucom.2020.06.014_b0125 10.1016/j.neucom.2020.06.014_b0225 10.1016/j.neucom.2020.06.014_b0105 10.1016/j.neucom.2020.06.014_b0120 Zhao (10.1016/j.neucom.2020.06.014_b0145) 2011; 29 10.1016/j.neucom.2020.06.014_b0165 10.1016/j.neucom.2020.06.014_b0220 10.1016/j.neucom.2020.06.014_b0045 10.1016/j.neucom.2020.06.014_b0100 10.1016/j.neucom.2020.06.014_b0200 Yu (10.1016/j.neucom.2020.06.014_b0050) 2018; 317 10.1016/j.neucom.2020.06.014_b0160 10.1016/j.neucom.2020.06.014_b0040 Zhang (10.1016/j.neucom.2020.06.014_b0135) 2017; 26 10.1016/j.neucom.2020.06.014_b0085 10.1016/j.neucom.2020.06.014_b0140 10.1016/j.neucom.2020.06.014_b0020 10.1016/j.neucom.2020.06.014_b0185 10.1016/j.neucom.2020.06.014_b0240 10.1016/j.neucom.2020.06.014_b0090 10.1016/j.neucom.2020.06.014_b0190 10.1016/j.neucom.2020.06.014_b0070 Ojala (10.1016/j.neucom.2020.06.014_b0060) 1996; 29 Sun (10.1016/j.neucom.2020.06.014_b0080) 2018; 296 Simonyan (10.1016/j.neucom.2020.06.014_b0180) 2014 Sun (10.1016/j.neucom.2020.06.014_b0035) 2017; 267 Shao (10.1016/j.neucom.2020.06.014_b0170) 2019; 355 10.1016/j.neucom.2020.06.014_b0015 10.1016/j.neucom.2020.06.014_b0235 10.1016/j.neucom.2020.06.014_b0115 Cortes (10.1016/j.neucom.2020.06.014_b0130) 1995; 20 10.1016/j.neucom.2020.06.014_b0215 10.1016/j.neucom.2020.06.014_b0175 10.1016/j.neucom.2020.06.014_b0230 10.1016/j.neucom.2020.06.014_b0110 10.1016/j.neucom.2020.06.014_b0155 10.1016/j.neucom.2020.06.014_b0210 10.1016/j.neucom.2020.06.014_b0095 10.1016/j.neucom.2020.06.014_b0150 10.1016/j.neucom.2020.06.014_b0030 10.1016/j.neucom.2020.06.014_b0195 10.1016/j.neucom.2020.06.014_b0075 |
References_xml | – reference: P. Lucey, J.F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression, in: Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on, IEEE, 2010, pp. 94–101. – reference: Z. Zhang, M. Lyons, M. Schuster, S. Akamatsu, Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron, in Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998. Proceedings, Nara 1998, pp. 454_9. – volume: 29 start-page: 51 year: 1996 end-page: 59 ident: b0060 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recogn. – reference: C.M. Kuo, S.H. Lai, M. Sarkis, A compact deep learning model for robust facial expression recognition, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 2121–2129 – reference: Dhwani Mehta, Mohammad Faridul Haque Siddiqui, Ahmad Y. Javaid, Recognition of emotion intensities using machine learning algorithms: a comparative study, Sensors 19 (8) (2019) 1897 – reference: J. Li, Y. Mi, J. Yu, et al., A novel convolutional neural network for facial expression recognition, International Conference on Cognitive Systems and Signal Processing. Springer, Singapore, 2018, pp. 310–320 – reference: Y. Lecun, L. Bottou, Y. Bengio, et al., Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324 – volume: 317 start-page: 50 year: 2018 end-page: 57 ident: b0050 article-title: Spatio-temporal convolutional features with nested LSTM for facial expression recognition[J] publication-title: Neurocomputing – reference: https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data – reference: Arriaga, Octavio, Matias Valdenegro-Toro, Paul Plöger, Real-time convolutional neural networks for emotion and gender classification. arXiv preprint arXiv:1710.07557 (2017). – reference: K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, (2015) 770–778 – reference: B.-K. Kim, S.-Y. Dong, J. Roh, G. Kim, S.-Y. Lee, Fusing aligned and non-aligned face information for automatic affect recognition in the wild: A deep learning approach, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 48–57 – reference: Y. Guo, D. Tao, J. Yu, H. Xiong, Y. Li, D. Tao, Deep neural networks with relativity learning for facial expression recognition, in: Multimedia & Expo Workshops (ICMEW), 2016 IEEE International Conference on, IEEE, 2016, pp. 1–6. – reference: Y.-H. Lai, S.-H. Lai, Emotion-preserving representation learning via generative adversarial network for multi-view facial expression recognition, in: Automatic Face & Gesture Recognition (FG 2018), 2018 13th IEEE International Conference on. IEEE, 2018, pp. 263–270 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0130 article-title: Support vector networks publication-title: Mach. Learn. – volume: 355 start-page: 82 year: 2019 end-page: 92 ident: b0170 article-title: Three convolutional neural network models for facial expression recognition in the wild publication-title: Neurocomputing – reference: R.R. Varior, B. Shuai, J. Tighe, et al., Scale-Aware Attention Network for Crowd Counting. arXiv preprint arXiv:1901.06026, 2019. – reference: C. Turan, K.M. Lam, X. He, Soft Locality Preserving Map (SLPM) for Facial Expression Recognition. arXiv preprint arXiv:1801.03754, 2018. – reference: G. Huang, Z. Liu, K. Q. Weinberger, L. van der Maaten, Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 2016 – reference: M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with Gabor wavelets, in: Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 200–205 – reference: Huiyuan Yang, Umur Ciftci, Lijun Yin, Facial expression recognition by de-expression residue learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018 – reference: T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inform. Theor. 13 (1) (1967) pp. 21_7 – reference: C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with convolutions, IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2015, pp. 1–9. – reference: T. Ojala, M. Pietikinen, T. Menp, Multiresolution grayscale and rotation invariant texture classification with local binary patterns, IEEE PAMI, vol. 24, no. 7, 2002 – reference: B. Hasani, M.H. Mahoor, Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields, (2017) 790–795 – reference: T. Zhao, X. Wu, Pyramid feature attention network for saliency detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, 3085–3094 – volume: 26 start-page: 4193 year: 2017 end-page: 4203 ident: b0135 article-title: Facial expression recognition based on deep evolutional spatial-temporal networks publication-title: IEEE Trans. Image Process. – reference: W. Wang, Q. Sun, T. Chen, et al., A Fine-Grained Facial Expression Database for End-to-End Multi-Pose Facial Expression Recognition, arXiv preprint arXiv:1907.10838, 2019. – reference: H. Yang, U. Ciftci, L. Yin, Facial expression recognition by de-expression residue learning, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2168–2177 – reference: P.D.M. Fernandez, F.A.G. Peña, T.I. Ren, et al., FERAtt: facial expression recognition with attention net. arXiv preprint arXiv:1902.03284, 2019. – volume: 29 start-page: 607 year: 2011 end-page: 619 ident: b0145 article-title: Facial expression recognition from near-infrared videos publication-title: Image Vision Comput. – reference: D. Hamester, P. Barros, S. Wermter, Face expression recognition with a 2-channel convolutional neural network, in: Neural Networks (IJCNN), 2015 International Joint Conference on, IEEE, 2015, pp. 1–8 – reference: Zhong, Lei, et al., A graph-structured representation with BRNN for static-based facial expression recognition, 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), IEEE, 2019. – volume: 296 start-page: 12 year: 2018 end-page: 22 ident: b0080 article-title: A visual attention based ROI detection method for facial expression recognition publication-title: Neurocomputing – volume: 126 start-page: 1 year: 2018 end-page: 20 ident: b0205 article-title: From facial expression recognition to interpersonal relation prediction publication-title: Int. J. Comput. Vis. – reference: A. Mollahosseini, D. Chan, M.H. Mahoor, Going deeper in facial expression recognition using deep neural networks, (2016) 1–10 – reference: T.F. Cootes, G.J. Edwards, C.J. Taylor, Active appearance models, IEEE Trans. Pattern Anal. Mach. Intell. 23 (6) (2011) 6815 – reference: C. Szegedy, S. Ioffe, V. Vanhoucke, et al., Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 2016 – reference: C. Pramerdorfer, M. Kampel, Facial expression recognition using convolutional neural networks: State of the art, arXiv preprint arXiv:1612.02903, 2016. – reference: T. Connie, M. Al-Shabi, W.P. Cheah, et al., Facial expression recognition using a hybrid CNN–SIFT aggregator, International Workshop on Multi-disciplinary Trends in Artificial Intelligence, Springer, Cham, 2017, pp. 139–149 – year: 2014 ident: b0180 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – reference: P. Rodriguez, G. Cucurull, J. Gonalez, et al., Deep pain: exploiting long short-term memory networks for facial expression classification, IEEE Trans. Cybern. PP (99) (2017) 1–11 – reference: P. Liu, S. Han, Z. Meng Y. Tong, Facial expression recognition via a boosted deep belief network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1805–1812 – volume: 267 start-page: 385 year: 2017 end-page: 395 ident: b0035 article-title: An efficient unconstrained facial expression recognition algorithm based on stack binarized auto-encoders and binarized neural networks publication-title: Neurocomputing – ident: 10.1016/j.neucom.2020.06.014_b0215 – ident: 10.1016/j.neucom.2020.06.014_b0070 doi: 10.1109/TPAMI.2002.1017623 – volume: 355 start-page: 82 year: 2019 ident: 10.1016/j.neucom.2020.06.014_b0170 article-title: Three convolutional neural network models for facial expression recognition in the wild publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.005 – ident: 10.1016/j.neucom.2020.06.014_b0110 – ident: 10.1016/j.neucom.2020.06.014_b0115 doi: 10.1109/CVPRW.2018.00286 – ident: 10.1016/j.neucom.2020.06.014_b0155 doi: 10.1109/CVPR.2014.233 – volume: 29 start-page: 607 issue: 9 year: 2011 ident: 10.1016/j.neucom.2020.06.014_b0145 article-title: Facial expression recognition from near-infrared videos publication-title: Image Vision Comput. doi: 10.1016/j.imavis.2011.07.002 – volume: 296 start-page: 12 year: 2018 ident: 10.1016/j.neucom.2020.06.014_b0080 article-title: A visual attention based ROI detection method for facial expression recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.034 – volume: 126 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.neucom.2020.06.014_b0205 article-title: From facial expression recognition to interpersonal relation prediction publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-017-1055-1 – ident: 10.1016/j.neucom.2020.06.014_b0175 doi: 10.1109/IJCNN.2015.7280539 – ident: 10.1016/j.neucom.2020.06.014_b0085 – ident: 10.1016/j.neucom.2020.06.014_b0140 doi: 10.1109/TIT.1967.1053964 – ident: 10.1016/j.neucom.2020.06.014_b0230 – ident: 10.1016/j.neucom.2020.06.014_b0195 doi: 10.1109/CVPR.2018.00231 – ident: 10.1016/j.neucom.2020.06.014_b0015 doi: 10.1109/FG.2018.00046 – year: 2014 ident: 10.1016/j.neucom.2020.06.014_b0180 article-title: Very deep convolutional networks for large-scale image recognition publication-title: Comput. Sci. – ident: 10.1016/j.neucom.2020.06.014_b0125 – ident: 10.1016/j.neucom.2020.06.014_b0100 – ident: 10.1016/j.neucom.2020.06.014_b0165 – ident: 10.1016/j.neucom.2020.06.014_b0040 doi: 10.1609/aaai.v31i1.11231 – ident: 10.1016/j.neucom.2020.06.014_b0090 doi: 10.1109/CVPR.2017.243 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.neucom.2020.06.014_b0130 article-title: Support vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: 10.1016/j.neucom.2020.06.014_b0095 doi: 10.1109/CVPR.2019.00320 – ident: 10.1016/j.neucom.2020.06.014_b0200 doi: 10.1109/5.726791 – volume: 29 start-page: 51 issue: 1 year: 1996 ident: 10.1016/j.neucom.2020.06.014_b0060 article-title: A comparative study of texture measures with classification based on feature distributions publication-title: Pattern Recogn. doi: 10.1016/0031-3203(95)00067-4 – ident: 10.1016/j.neucom.2020.06.014_b0220 – ident: 10.1016/j.neucom.2020.06.014_b0210 – ident: 10.1016/j.neucom.2020.06.014_b0105 doi: 10.1109/34.927467 – ident: 10.1016/j.neucom.2020.06.014_b0225 doi: 10.1109/CVPRW.2016.187 – ident: 10.1016/j.neucom.2020.06.014_b0075 doi: 10.1109/CVPRW.2010.5543262 – ident: 10.1016/j.neucom.2020.06.014_b0240 doi: 10.1007/978-3-319-69456-6_12 – ident: 10.1016/j.neucom.2020.06.014_b0045 doi: 10.1109/CVPRW.2017.282 – ident: 10.1016/j.neucom.2020.06.014_b0120 – volume: 26 start-page: 4193 issue: 9 year: 2017 ident: 10.1016/j.neucom.2020.06.014_b0135 article-title: Facial expression recognition based on deep evolutional spatial-temporal networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2689999 – ident: 10.1016/j.neucom.2020.06.014_b0150 doi: 10.1109/CVPR.2018.00231 – ident: 10.1016/j.neucom.2020.06.014_b0190 doi: 10.1007/978-981-13-7986-4_28 – volume: 317 start-page: 50 year: 2018 ident: 10.1016/j.neucom.2020.06.014_b0050 article-title: Spatio-temporal convolutional features with nested LSTM for facial expression recognition[J] publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.028 – ident: 10.1016/j.neucom.2020.06.014_b0160 doi: 10.1109/FG.2019.8756615 – ident: 10.1016/j.neucom.2020.06.014_b0185 – volume: 267 start-page: 385 year: 2017 ident: 10.1016/j.neucom.2020.06.014_b0035 article-title: An efficient unconstrained facial expression recognition algorithm based on stack binarized auto-encoders and binarized neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.050 – ident: 10.1016/j.neucom.2020.06.014_b0235 – ident: 10.1016/j.neucom.2020.06.014_b0020 doi: 10.1109/WACV.2016.7477450 – ident: 10.1016/j.neucom.2020.06.014_b0025 doi: 10.1109/CVPR.2015.7298594 – ident: 10.1016/j.neucom.2020.06.014_b0030 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0017129 ssib006546013 ssib042110509 ssib008068503 ssib005901258 ssib002043121 |
Score | 2.6784928 |
Snippet | Facial expression recognition is a hot research topic and can be applied in many computer vision fields, such as human–computer interaction, affective... |
SourceID | crossref nii elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 340 |
SubjectTerms | Attention Mechanism Convolutional Neural Network Facial Expression Recognition Image Classification Local Binary Patten |
Title | Attention mechanism-based CNN for facial expression recognition |
URI | https://dx.doi.org/10.1016/j.neucom.2020.06.014 https://cir.nii.ac.jp/crid/1871146592963088128 |
Volume | 411 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvXjxLVZt2YPXtdlHsslJSlGqQi9a6C0km1mI2LRoCp787c7mUfQgBS-BhN2wO5nMN5N8M0PINQcvAusB85QyTPk6ZZG0mgHCBRitbJZVBNlpMJmpx7k_75BxmwvjaJWN7a9temWtmyvDRprDVZ4Pn71IYBTFhXB_CULpEn6V0k7Lb742NA-uuajr7QmfudFt-lzF8Spg7TgjAn2mqoonV3_B006R5z-A5_6Q7DceIx3VizoiHSiOyUHbjYE2L-cJuR2VZc1dpAtw-bz5x4I5kMroeDql6JxSm7gP5BQ-G_ZrQTf8oWVxSmb3dy_jCWvaIzCD-yxZwpPA96XlwkbcIBhFWSBTHoRgAw02zIRNUyW0DbXwEgnoG4GyPNNWqjCzQp6RbrEs4JxQjPHQYiYKEKxUmojUDwMTZAY8z_iG8x6RrVRi09QOdy0s3uKWJPYa17KMnSxjx5XjqkfYZtaqrp2xZbxuBR7_0oEYzfuWmX18Prg0d-QYA-JufHT8AolGFBH44t93viR77syhleBXpFu-r6GPbkiZDio9G5Dd0cPTZPoNNvLZfQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB4lm0N7yaMPNW8ferUWvzCcotUq0ebFpYmUGwIzlqgaEjVEys_PeDGr9FBFyoUDMMgMZr4Z-5sZgJ8Ckxx9gjzR2nFtbM1z5S1Hggt0VvumWRJki3Rxqy_uzN0azMdcmECrjLZ_sOlLax3PTKM2p49tO_2V5JKiKCFl2CXIVLYOG6E6lZnAxuz8clGsNhOskEPJPWl4EBgz6JY0rw6fA21Ektu0LOQp9P8Qar1r2zfYc7YNm9FpZLNhXDuwht0X2BobMrD4f36Fk1nfD_RFdo8hpbd9uucBpxo2LwpG_inzVVgjZ_gSCbAdW1GIHrpvcHt2ejNf8NghgTutbc8rUaXGKC-kz4UjPMqbVNUizdCnFn3WSF_XWlqfWZlUCsk9Qu1FY73SWeOl-g6T7qHDH8AozCOjWWkkvNJ1JWuTpS5tHCaJM06IXVCjVkoXy4eHLhZ_ypEn9rscdFkGXZaBLif0LvCV1ONQPuOd--2o8PKfaVCShX9H8pC-Dw0tHAWFgfQ2hny_VJEdJRDe-_CTj-HT4ub6qrw6Ly734XO4EsBLigOY9H-f8ZC8kr4-irPuFb9j3C4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attention+mechanism-based+CNN+for+facial+expression+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Li%2C+Jing&rft.au=Jin%2C+Kan&rft.au=Zhou%2C+Dalin&rft.au=Kubota%2C+Naoyuki&rft.date=2020-10-21&rft.issn=0925-2312&rft.volume=411&rft.spage=340&rft.epage=350&rft_id=info:doi/10.1016%2Fj.neucom.2020.06.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_06_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |