Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR
The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favora...
Saved in:
Published in | Energy (Oxford) Vol. 186; p. 115832 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.11.2019
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favorable to noise reduction and can operate at low velocity wind. The aerodynamic performance of this turbine is studied experimentally in wind tunnel as well as by CFD. In order to obtain the 3D-flow field around the wind turbine rotor, the numerical simulations are performed by means of detached eddy simulation method (DES). The simulation of pitch variation is made possible by using sliding-mesh method. Thus a specially created program adapts the pitch depending on the blade azimuthal position during rotation. The obtained results show that adapted pitch blades are preferable because they permit to obtain a power coefficient Cp that rivals other VAWT in the case of TSR<1. The maximum torque fluctuation during rotation is lower in the case of adapted variable-pitch compared to fixed-pitch and thus the maximum aerodynamic loads on the structure can be reduced. Moreover, the pitch adaptation leads to lower interaction effects between the upstream-blade wake and down-stream blades. |
---|---|
AbstractList | The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favorable to noise reduction and can operate at low velocity wind. The aerodynamic performance of this turbine is studied experimentally in wind tunnel as well as by CFD. In order to obtain the 3D-flow field around the wind turbine rotor, the numerical simulations are performed by means of detached eddy simulation method (DES). The simulation of pitch variation is made possible by using sliding-mesh method. Thus a specially created program adapts the pitch depending on the blade azimuthal position during rotation. The obtained results show that adapted pitch blades are preferable because they permit to obtain a power coefficient Cp that rivals other VAWT in the case of TSR<1. The maximum torque fluctuation during rotation is lower in the case of adapted variable-pitch compared to fixed-pitch and thus the maximum aerodynamic loads on the structure can be reduced. Moreover, the pitch adaptation leads to lower interaction effects between the upstream-blade wake and down-stream blades. The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favorable to noise reduction and can operate at low velocity wind. The aerodynamic performance of this turbine is studied experimentally in wind tunnel as well as by CFD. In order to obtain the 3D-flow field around the wind turbine rotor, the numerical simulations are performed by means of detached eddy simulation method (DES). The simulation of pitch variation is made possible by using sliding-mesh method. Thus a specially created program adapts the pitch depending on the blade azimuthal position during rotation. The obtained results show that adapted pitch blades are preferable because they permit to obtain a power coefficient Cp that rivals other VAWT in the case of . The maximum torque fluctuation during rotation is lower in the case of adapted variable-pitch compared to fixed-pitch and thus the maximum aerodynamic loads on the structure can be reduced. Moreover, the pitch adaptation leads to lower interaction effects between the upstream-blade wake and down-stream blades. |
ArticleNumber | 115832 |
Author | Dobrev, I. Massouh, F. Dizene, R. Zouzou, B. |
Author_xml | – sequence: 1 givenname: B. orcidid: 0000-0002-3814-7302 surname: Zouzou fullname: Zouzou, B. email: bzouzou@usthb.dz organization: University of Science and Technology Houari Boumédiène, BP 32 El Alia 16111, Bab Ezzouar, Algeria – sequence: 2 givenname: I. surname: Dobrev fullname: Dobrev, I. organization: Arts et Métiers-ParisTech, 151, bd L’Hôpital, Paris, 75013, France – sequence: 3 givenname: F. orcidid: 0000-0002-0718-5429 surname: Massouh fullname: Massouh, F. organization: Arts et Métiers-ParisTech, 151, bd L’Hôpital, Paris, 75013, France – sequence: 4 givenname: R. surname: Dizene fullname: Dizene, R. organization: University of Science and Technology Houari Boumédiène, BP 32 El Alia 16111, Bab Ezzouar, Algeria |
BackLink | https://hal.science/hal-02464150$$DView record in HAL |
BookMark | eNqFkU-P1DAMxSu0SMwufAMOkbjAocVpk7bhgLTav0gjIcFyjjypy2TUJkOSzjLfng5FHPYAJ8vW7z3ZfufZmfOOsuw1h4IDr9_vCnIUvh-LErgqoCl4XT7LVrxtqrxuWnmWraCqIZdClC-y8xh3ACBbpVZZf_NzT8GO5BIODF3H3DTOA_O7w-EYbWS-Z8icP9DArjEES1NkwScf2KNNW3bAYHEzENvbZLZsJLNFZ-PIMLHBP7KHr19eZs97HCK9-lMvsm-3Nw9X9_n6892nq8t1boRoUo7QynaDnZKdUgSma0D1m1JuiLCVvO06SSjqsqpR1qqRBB0oVXGUXHBsoLrI3i2-Wxz0fr4Lw1F7tPr-cq1PMyhFLbiEA5_Ztwu7D_7HRDHp0UZDw4CO_BR1WYEsK9nyZkbfPEF3fgrze04Uh1rMluVMiYUywccYqP-7AQd9Ckrv9BKUPgWlodFzULPswxOZsQmT9S4FtMP_xB8XMc1fPVgKOhpLzlBnA5mkO2__bfALDFmyjQ |
CitedBy_id | crossref_primary_10_1007_s10098_023_02554_8 crossref_primary_10_1016_j_ijhydene_2022_07_181 crossref_primary_10_1016_j_isci_2023_107674 crossref_primary_10_1016_j_energy_2020_117772 crossref_primary_10_1016_j_jweia_2023_105484 crossref_primary_10_1016_j_seta_2021_101262 crossref_primary_10_1016_j_energy_2020_118809 crossref_primary_10_3390_su16198476 crossref_primary_10_1016_j_renene_2021_09_004 crossref_primary_10_1063_5_0180107 crossref_primary_10_3390_app11031033 crossref_primary_10_1016_j_energy_2022_126541 crossref_primary_10_1016_j_enconman_2021_114890 crossref_primary_10_1016_j_enconman_2021_114693 crossref_primary_10_1016_j_oceaneng_2024_118930 crossref_primary_10_1016_j_oceaneng_2025_120762 crossref_primary_10_1115_1_4057035 crossref_primary_10_1063_5_0034362 crossref_primary_10_1093_ijlct_ctac117 crossref_primary_10_17533_udea_redin_20240413 crossref_primary_10_3389_fenrg_2024_1437800 |
Cites_doi | 10.1016/j.enconman.2015.12.084 10.1016/j.jfluidstructs.2015.06.003 10.1016/j.jfluidstructs.2013.05.005 10.1016/j.ijheatfluidflow.2008.07.001 10.1016/j.apenergy.2017.12.035 10.1016/j.energy.2018.10.101 10.1115/1.1629751 10.1063/1.4964310 10.1016/j.renene.2016.05.056 10.1115/1.4032794 10.1155/2013/905379 10.1016/j.rser.2006.05.017 10.1016/j.jweia.2015.01.004 10.1016/j.apenergy.2017.03.128 10.1016/j.renene.2016.03.069 10.1016/j.renene.2015.06.048 10.1016/j.enconman.2016.11.067 10.1016/j.enconman.2016.03.034 10.1016/j.egypro.2015.12.067 10.1016/j.renene.2017.07.068 10.1177/0309524X16677884 10.1155/2009/505343 10.1016/j.renene.2015.04.043 10.1007/s12206-013-0852-x |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Nov 1, 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Nov 1, 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 1XC VOOES |
DOI | 10.1016/j.energy.2019.07.162 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | oai_HAL_hal_02464150v1 10_1016_j_energy_2019_07_162 S036054421931504X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c447t-a0858bad95d99e0cd709fb25beea8518dd5ea46236a56975e0d09931a5141a703 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Wed Aug 13 07:42:20 EDT 2025 Thu Jul 10 19:18:29 EDT 2025 Wed Aug 13 08:17:00 EDT 2025 Tue Jul 01 00:43:14 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Fri Feb 23 02:24:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CFD VAWT UDF 3D DES Variable-pitch |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-a0858bad95d99e0cd709fb25beea8518dd5ea46236a56975e0d09931a5141a703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0718-5429 0000-0002-3814-7302 |
OpenAccessLink | https://hal.science/hal-02464150 |
PQID | 2310644152 |
PQPubID | 2045484 |
ParticipantIDs | hal_primary_oai_HAL_hal_02464150v1 proquest_miscellaneous_2305235817 proquest_journals_2310644152 crossref_primary_10_1016_j_energy_2019_07_162 crossref_citationtrail_10_1016_j_energy_2019_07_162 elsevier_sciencedirect_doi_10_1016_j_energy_2019_07_162 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Almohammadi, Ingham, Ma, Pourkashanian (bib23) 2015; 57 Gharali, Johnson (bib22) 2013; 42 Elkhoury, Kiwata, Aoun (bib29) 2015; 139 Larose, D'Auteuil (bib30) 2008; vol. 7 Abdalrahman, Melek, Lien (bib18) 2017; 114 Paraschivoiu, Trifu, Saeed (bib13) 2009; 2009 Balduzzi, Bianchini, Maleci, Ferrara, Ferrari (bib36) 2016; 85 Duquette, Visser (bib11) 2003; 125 Rezaeiha, Kalkman, Blocken (bib16) 2017; 197 Xisto, Páscoa, Leger, Trancossi (bib8) 2014 D. G. J. Marie, Turbine having its rotating shaft transverse to the flow of the current, 1931. US Patent 1,835,018. Cai, Gu, Pan, Zhu (bib1) 2016; 112 G. M. Tierney, Cycloidal vtol uav, 2005. US Patent 6,932,296. Zhang, Liang, Liu, Jiao, Guo (bib32) 2013; 5 Spalart, Jou, Strelets, Allmaras (bib33) 1997; 1 Sagharichi, Maghrebi, ArabGolarcheh (bib9) 2016; 8 Xisto, Páscoa, Trancossi (bib19) 2016; 138 Zamani, Maghrebi, Varedi (bib5) 2016; 95 Fluent (bib31) 2015 Roh, Kang (bib26) 2013; 27 Hansen (bib34) 2015 Eriksson, Bernhoff, Leijon (bib12) 2008; 12 Burton, Sharpe, Jenkins, Bossanyi (bib39) 2001 A. Curutchet, S. Grosmangin, R. Fourton, G. Corde, Rotary machine comprising a rotor placed in a fluid and equipped with orientable blades, 2017. US Patent 9,841,003. Lee, Lim (bib25) 2015; 83 Lei, Zhou, Bao, Li, Han (bib37) 2017; 133 Li, Xiao, Xu, Peng, Hu, Zhu (bib15) 2018; 212 Lei, Su, Bao, Chen, Han, Zhou (bib24) 2019; 166 Jain, Abhishek (bib17) 2016; 97 Kavade, Ghanegaonkar (bib20) 2018 Mertens (bib2) 2006 Shahizare, Nik-Ghazali, Chong, Tabatabaeikia, Izadyar, Esmaeilzadeh (bib21) 2016; 117 Kirke, Paillard (bib27) 2017; 41 Sheldahl, Klimas (bib28) 1981 Shur, Spalart, Strelets, Travin (bib38) 2008; 29 Paraschivoiu (bib35) 2002 Madsen, Lundgren (bib6) 1980 Stankovic, Campbell, Harries (bib3) 2009 Bianchini, Ferrara, Ferrari (bib14) 2015; 81 Bianchini (10.1016/j.energy.2019.07.162_bib14) 2015; 81 Jain (10.1016/j.energy.2019.07.162_bib17) 2016; 97 Balduzzi (10.1016/j.energy.2019.07.162_bib36) 2016; 85 Sagharichi (10.1016/j.energy.2019.07.162_bib9) 2016; 8 Xisto (10.1016/j.energy.2019.07.162_bib19) 2016; 138 Zamani (10.1016/j.energy.2019.07.162_bib5) 2016; 95 Hansen (10.1016/j.energy.2019.07.162_bib34) 2015 Eriksson (10.1016/j.energy.2019.07.162_bib12) 2008; 12 Paraschivoiu (10.1016/j.energy.2019.07.162_bib13) 2009; 2009 Stankovic (10.1016/j.energy.2019.07.162_bib3) 2009 Roh (10.1016/j.energy.2019.07.162_bib26) 2013; 27 Li (10.1016/j.energy.2019.07.162_bib15) 2018; 212 10.1016/j.energy.2019.07.162_bib4 Zhang (10.1016/j.energy.2019.07.162_bib32) 2013; 5 10.1016/j.energy.2019.07.162_bib7 Lei (10.1016/j.energy.2019.07.162_bib24) 2019; 166 Cai (10.1016/j.energy.2019.07.162_bib1) 2016; 112 Xisto (10.1016/j.energy.2019.07.162_bib8) 2014 Abdalrahman (10.1016/j.energy.2019.07.162_bib18) 2017; 114 Kirke (10.1016/j.energy.2019.07.162_bib27) 2017; 41 Paraschivoiu (10.1016/j.energy.2019.07.162_bib35) 2002 Kavade (10.1016/j.energy.2019.07.162_bib20) 2018 Gharali (10.1016/j.energy.2019.07.162_bib22) 2013; 42 Rezaeiha (10.1016/j.energy.2019.07.162_bib16) 2017; 197 Fluent (10.1016/j.energy.2019.07.162_bib31) 2015 Sheldahl (10.1016/j.energy.2019.07.162_bib28) 1981 Madsen (10.1016/j.energy.2019.07.162_bib6) 1980 Mertens (10.1016/j.energy.2019.07.162_bib2) 2006 Lee (10.1016/j.energy.2019.07.162_bib25) 2015; 83 Burton (10.1016/j.energy.2019.07.162_bib39) 2001 10.1016/j.energy.2019.07.162_bib10 Shur (10.1016/j.energy.2019.07.162_bib38) 2008; 29 Elkhoury (10.1016/j.energy.2019.07.162_bib29) 2015; 139 Spalart (10.1016/j.energy.2019.07.162_bib33) 1997; 1 Shahizare (10.1016/j.energy.2019.07.162_bib21) 2016; 117 Duquette (10.1016/j.energy.2019.07.162_bib11) 2003; 125 Almohammadi (10.1016/j.energy.2019.07.162_bib23) 2015; 57 Lei (10.1016/j.energy.2019.07.162_bib37) 2017; 133 Larose (10.1016/j.energy.2019.07.162_bib30) 2008; vol. 7 |
References_xml | – year: 2015 ident: bib34 article-title: Aerodynamics of wind turbines – volume: 29 start-page: 1638 year: 2008 end-page: 1649 ident: bib38 article-title: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities publication-title: Int J Heat Fluid Flow – volume: 1 start-page: 4 year: 1997 end-page: 8 ident: bib33 article-title: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach publication-title: Advances in DNS/LES – volume: 85 start-page: 419 year: 2016 end-page: 435 ident: bib36 article-title: Critical issues in the CFD simulation of Darrieus wind turbines publication-title: Renew Energy – year: 1980 ident: bib6 article-title: The Voith-Schneider wind turbine: some theoretical and experimental results on the aerodynamics of the Voith-Schneider wind turbine, Institute of Industrial Constructions and energy technology – volume: 41 start-page: 74 year: 2017 end-page: 90 ident: bib27 article-title: Predicted and measured performance of a vertical axis wind turbine with passive variable pitch compared to fixed pitch publication-title: Wind Eng – volume: 166 start-page: 471 year: 2019 end-page: 489 ident: bib24 article-title: Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms publication-title: Energy – reference: A. Curutchet, S. Grosmangin, R. Fourton, G. Corde, Rotary machine comprising a rotor placed in a fluid and equipped with orientable blades, 2017. US Patent 9,841,003. – volume: 197 start-page: 132 year: 2017 end-page: 150 ident: bib16 article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine publication-title: Appl Energy – year: 2001 ident: bib39 article-title: Wind energy handbook – volume: 112 start-page: 146 year: 2016 end-page: 156 ident: bib1 article-title: Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology publication-title: Energy Convers Manag – year: 1981 ident: bib28 article-title: Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines – volume: 212 start-page: 1107 year: 2018 end-page: 1125 ident: bib15 article-title: Optimization of blade pitch in h-rotor vertical axis wind turbines through computational fluid dynamics simulations publication-title: Appl Energy – volume: 133 start-page: 235 year: 2017 end-page: 248 ident: bib37 article-title: Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine publication-title: Energy Convers Manag – volume: 83 start-page: 407 year: 2015 end-page: 415 ident: bib25 article-title: Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine publication-title: Renew Energy – volume: 114 start-page: 1353 year: 2017 end-page: 1362 ident: bib18 article-title: Pitch angle control for a small-scale darrieus vertical axis wind turbine with straight blades (h-type vawt) publication-title: Renew Energy – volume: 97 start-page: 97 year: 2016 end-page: 113 ident: bib17 article-title: Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching publication-title: Renew Energy – volume: 139 start-page: 111 year: 2015 end-page: 123 ident: bib29 article-title: Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch publication-title: J Wind Eng Ind Aerodyn – volume: 117 start-page: 206 year: 2016 end-page: 217 ident: bib21 article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation publication-title: Energy Convers Manag – volume: 138 year: 2016 ident: bib19 article-title: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high-solidity VAWT publication-title: J Sol Energy Eng – reference: G. M. Tierney, Cycloidal vtol uav, 2005. US Patent 6,932,296. – reference: D. G. J. Marie, Turbine having its rotating shaft transverse to the flow of the current, 1931. US Patent 1,835,018. – year: 2014 ident: bib8 article-title: Wind energy production using an optimized variable pitch vertical axis rotor – start-page: 1 year: 2018 end-page: 10 ident: bib20 article-title: Performance evaluation of small-scale vertical axis wind turbine by optimized best position blade pitching at different tip speed ratios publication-title: J Inst Eng – volume: 12 start-page: 1419 year: 2008 end-page: 1434 ident: bib12 article-title: Evaluation of different turbine concepts for wind power publication-title: Renew Sustain Energy Rev – year: 2006 ident: bib2 article-title: Wind energy in the built environment: concentrator effects of buildings – year: 2002 ident: bib35 article-title: Wind turbine design: with emphasis on Darrieus concept – volume: 8 year: 2016 ident: bib9 article-title: Variable pitch blades: an approach for improving performance of Darrieus wind turbine publication-title: J Renew Sustain Energy – volume: 125 start-page: 425 year: 2003 end-page: 432 ident: bib11 article-title: Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines publication-title: Trans Am Soc Mech Eng J Solar Energy Eng – volume: 42 start-page: 228 year: 2013 end-page: 244 ident: bib22 article-title: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity publication-title: J Fluids Struct – volume: 57 start-page: 144 year: 2015 end-page: 158 ident: bib23 article-title: Modeling dynamic stall of a straight blade vertical axis wind turbine publication-title: J Fluids Struct – volume: 81 start-page: 122 year: 2015 end-page: 132 ident: bib14 article-title: Pitch optimization in small-size darrieus wind turbines publication-title: Energy Procedia – year: 2009 ident: bib3 article-title: Urban wind energy – volume: vol. 7 start-page: 20 year: 2008 ident: bib30 article-title: Effect of local air compressibility on the aerodynamics of rectangular prisms at Mach number below 0.3 publication-title: 6th international colloquium on bluff body aerodynamics from – volume: 5 start-page: 905379 year: 2013 ident: bib32 article-title: Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD publication-title: Adv Mech Eng – year: 2015 ident: bib31 article-title: Ansys fluent udf manual – volume: 27 start-page: 3299 year: 2013 end-page: 3307 ident: bib26 article-title: Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine publication-title: J Mech Sci Technol – volume: 95 start-page: 109 year: 2016 end-page: 126 ident: bib5 article-title: Starting torque improvement using j-shaped straight-bladed darrieus vertical axis wind turbine by means of numerical simulation publication-title: Renew Energy – volume: 2009 year: 2009 ident: bib13 article-title: H-darrieus wind turbine with blade pitch control publication-title: Int J Rotating Mach – volume: 112 start-page: 146 year: 2016 ident: 10.1016/j.energy.2019.07.162_bib1 article-title: Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.12.084 – volume: 57 start-page: 144 year: 2015 ident: 10.1016/j.energy.2019.07.162_bib23 article-title: Modeling dynamic stall of a straight blade vertical axis wind turbine publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2015.06.003 – volume: 42 start-page: 228 year: 2013 ident: 10.1016/j.energy.2019.07.162_bib22 article-title: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity publication-title: J Fluids Struct doi: 10.1016/j.jfluidstructs.2013.05.005 – year: 2015 ident: 10.1016/j.energy.2019.07.162_bib34 – volume: 29 start-page: 1638 year: 2008 ident: 10.1016/j.energy.2019.07.162_bib38 article-title: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities publication-title: Int J Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2008.07.001 – volume: 212 start-page: 1107 year: 2018 ident: 10.1016/j.energy.2019.07.162_bib15 article-title: Optimization of blade pitch in h-rotor vertical axis wind turbines through computational fluid dynamics simulations publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.035 – ident: 10.1016/j.energy.2019.07.162_bib10 – year: 2015 ident: 10.1016/j.energy.2019.07.162_bib31 – volume: 166 start-page: 471 year: 2019 ident: 10.1016/j.energy.2019.07.162_bib24 article-title: Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms publication-title: Energy doi: 10.1016/j.energy.2018.10.101 – volume: 125 start-page: 425 year: 2003 ident: 10.1016/j.energy.2019.07.162_bib11 article-title: Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines publication-title: Trans Am Soc Mech Eng J Solar Energy Eng doi: 10.1115/1.1629751 – ident: 10.1016/j.energy.2019.07.162_bib4 – volume: 8 year: 2016 ident: 10.1016/j.energy.2019.07.162_bib9 article-title: Variable pitch blades: an approach for improving performance of Darrieus wind turbine publication-title: J Renew Sustain Energy doi: 10.1063/1.4964310 – volume: 97 start-page: 97 year: 2016 ident: 10.1016/j.energy.2019.07.162_bib17 article-title: Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching publication-title: Renew Energy doi: 10.1016/j.renene.2016.05.056 – volume: 138 year: 2016 ident: 10.1016/j.energy.2019.07.162_bib19 article-title: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high-solidity VAWT publication-title: J Sol Energy Eng doi: 10.1115/1.4032794 – volume: 5 start-page: 905379 year: 2013 ident: 10.1016/j.energy.2019.07.162_bib32 article-title: Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD publication-title: Adv Mech Eng doi: 10.1155/2013/905379 – volume: 12 start-page: 1419 year: 2008 ident: 10.1016/j.energy.2019.07.162_bib12 article-title: Evaluation of different turbine concepts for wind power publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2006.05.017 – year: 1980 ident: 10.1016/j.energy.2019.07.162_bib6 – volume: vol. 7 start-page: 20 year: 2008 ident: 10.1016/j.energy.2019.07.162_bib30 article-title: Effect of local air compressibility on the aerodynamics of rectangular prisms at Mach number below 0.3 – volume: 139 start-page: 111 year: 2015 ident: 10.1016/j.energy.2019.07.162_bib29 article-title: Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2015.01.004 – year: 2002 ident: 10.1016/j.energy.2019.07.162_bib35 – year: 2009 ident: 10.1016/j.energy.2019.07.162_bib3 – volume: 197 start-page: 132 year: 2017 ident: 10.1016/j.energy.2019.07.162_bib16 article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.128 – ident: 10.1016/j.energy.2019.07.162_bib7 – volume: 1 start-page: 4 year: 1997 ident: 10.1016/j.energy.2019.07.162_bib33 article-title: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach publication-title: Advances in DNS/LES – year: 2014 ident: 10.1016/j.energy.2019.07.162_bib8 – volume: 95 start-page: 109 year: 2016 ident: 10.1016/j.energy.2019.07.162_bib5 article-title: Starting torque improvement using j-shaped straight-bladed darrieus vertical axis wind turbine by means of numerical simulation publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.069 – year: 2006 ident: 10.1016/j.energy.2019.07.162_bib2 – volume: 85 start-page: 419 year: 2016 ident: 10.1016/j.energy.2019.07.162_bib36 article-title: Critical issues in the CFD simulation of Darrieus wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2015.06.048 – volume: 133 start-page: 235 year: 2017 ident: 10.1016/j.energy.2019.07.162_bib37 article-title: Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.11.067 – start-page: 1 year: 2018 ident: 10.1016/j.energy.2019.07.162_bib20 article-title: Performance evaluation of small-scale vertical axis wind turbine by optimized best position blade pitching at different tip speed ratios publication-title: J Inst Eng – volume: 117 start-page: 206 year: 2016 ident: 10.1016/j.energy.2019.07.162_bib21 article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.03.034 – year: 1981 ident: 10.1016/j.energy.2019.07.162_bib28 – volume: 81 start-page: 122 year: 2015 ident: 10.1016/j.energy.2019.07.162_bib14 article-title: Pitch optimization in small-size darrieus wind turbines publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.12.067 – volume: 114 start-page: 1353 year: 2017 ident: 10.1016/j.energy.2019.07.162_bib18 article-title: Pitch angle control for a small-scale darrieus vertical axis wind turbine with straight blades (h-type vawt) publication-title: Renew Energy doi: 10.1016/j.renene.2017.07.068 – volume: 41 start-page: 74 year: 2017 ident: 10.1016/j.energy.2019.07.162_bib27 article-title: Predicted and measured performance of a vertical axis wind turbine with passive variable pitch compared to fixed pitch publication-title: Wind Eng doi: 10.1177/0309524X16677884 – volume: 2009 year: 2009 ident: 10.1016/j.energy.2019.07.162_bib13 article-title: H-darrieus wind turbine with blade pitch control publication-title: Int J Rotating Mach doi: 10.1155/2009/505343 – volume: 83 start-page: 407 year: 2015 ident: 10.1016/j.energy.2019.07.162_bib25 article-title: Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine publication-title: Renew Energy doi: 10.1016/j.renene.2015.04.043 – volume: 27 start-page: 3299 year: 2013 ident: 10.1016/j.energy.2019.07.162_bib26 article-title: Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine publication-title: J Mech Sci Technol doi: 10.1007/s12206-013-0852-x – year: 2001 ident: 10.1016/j.energy.2019.07.162_bib39 |
SSID | ssj0005899 |
Score | 2.417494 |
Snippet | The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115832 |
SubjectTerms | 3D DES Aerodynamic loads Aerodynamics blades CFD Computer simulation Detached eddy simulation Engineering Sciences Finite element method Fluids mechanics Mathematical analysis mathematical models Mechanics Noise reduction Numerical analysis Rotation Three dimensional flow Tip speed torque Turbine blades Turbines UDF Urban areas Variable-pitch Variation VAWT Vertical axis wind turbines wind Wind power Wind tunnels Wind turbines |
Title | Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR |
URI | https://dx.doi.org/10.1016/j.energy.2019.07.162 https://www.proquest.com/docview/2310644152 https://www.proquest.com/docview/2305235817 https://hal.science/hal-02464150 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4Be4ALWmAR5SUv4mqaNHYex4otKttdDjy0vVm242q7KknVtOW2v31n8igPCSHtKUoyjiPPePzZnm8McC7RK4aod24D43FhnMdjYWNubSfynfVERR_7eRP2H8T3oRyuwWXDhaGwytr3Vz699Nb1k3bdmu3peNy-w1oQbwjscgGiGjEkBruIyMov_r4I84jLMyRJmJN0Q58rY7xcya-jAK_kolxp6bw3PK3_pjjJN-66HIOuPsN2DR5Zt_q_HVhz2S5sNtziYhf2e8-8NRSsO26xB6Pei0z-TGcpyxbVXg3dVXlJWD5immX50k3YNz3DOfSiYLMcJ-WMVmvZEqfVRLRi0zGqmj06Ig2Pi0em52ySP7H7u9sv8HDVu7_s8_qIBW6xreZcI-KKjU4TmSaJ82waecnIdKRxTiMWi9NUOi0QIoVahkkknZcipAx8jTjL1-gt9mEjyzN3ACw0qbQCS6CKhXMjE5mg_KbRphMEugVB07LK1vnH6RiMiWoCzf6oSh-K9KG8SKE-WsBXpaZV_o0P5KNGaeqVHSkcIj4oeYY6XlVCabf73R-KniGOCRHoeEu_BceNCai6sxeKIDLBSonf-Lp6jd2U9l505vIFydD6u4z96PC___AItuiuYkIew8Z8tnAnCInm5rS0-VP41L0e9G_oOrj9NfgHG-INug |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4Be2AviMei7QKLF-3VNGnsPI4Iirq7hQMUqTfLdlzRVUmqpi03fjszeXQBCSHtMck4sTKe8Wd7vhmAnxK9Yoh65zYwHhfGeTwWNubWdiLfWU9U9LGr67B3J34P5XANzhsuDIVV1r6_8umlt67vtOu_2Z6Ox-1b_AriDYEmFyCqEcN1-CTQfKmMwenTiziPuCwiSdKcxBv-XBnk5UqCHUV4JaflVkvnvflp_Z4CJd_463ISutyGrRo9srOqgzuw5rJd2GzIxcUu7Hf_EddQsLbcYg9G3Rep_JnOUpYtqsMauqoSk7B8xDTL8qWbsAs9w0X0omCzHFfljLZr2RLX1cS0YtMx6po9OGINj4sHpudskj-ywe3NF7i77A7Oe7yuscCtENGca4RcsdFpItMkcZ5NIy8ZmY40zmkEY3GaSqcFYqRQyzCJpPNSxJSBrxFo-RrdxT5sZHnmvgILTSqtwBaoY-HcyEQmKN9ptOkEgW5B0PxZZesE5FQHY6KaSLO_qtKHIn0oL1KojxbwVatplYDjA_moUZp6NZAUzhEftDxBHa8-Qnm3e2d9RfcQyISIdLyl34LDZgio2toLRRiZcKXEd_xYPUY7pcMXnbl8QTK0AS9jP_r23z08hs3e4Kqv-r-u_xzAZ3pS0SIPYWM-W7gjxEdz870c_8-2kQ2l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+analysis+of+a+novel+Darrieus+rotor+with+variable+pitch+mechanism+at+low+TSR&rft.jtitle=Energy+%28Oxford%29&rft.au=Zouzou%2C+B&rft.au=Dobrev%2C+I&rft.au=Massouh%2C+F&rft.au=Dizene%2C+R&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=186&rft.spage=1&rft_id=info:doi/10.1016%2Fj.energy.2019.07.162&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |