Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR

The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favora...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 186; p. 115832
Main Authors Zouzou, B., Dobrev, I., Massouh, F., Dizene, R.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favorable to noise reduction and can operate at low velocity wind. The aerodynamic performance of this turbine is studied experimentally in wind tunnel as well as by CFD. In order to obtain the 3D-flow field around the wind turbine rotor, the numerical simulations are performed by means of detached eddy simulation method (DES). The simulation of pitch variation is made possible by using sliding-mesh method. Thus a specially created program adapts the pitch depending on the blade azimuthal position during rotation. The obtained results show that adapted pitch blades are preferable because they permit to obtain a power coefficient Cp that rivals other VAWT in the case of TSR<1. The maximum torque fluctuation during rotation is lower in the case of adapted variable-pitch compared to fixed-pitch and thus the maximum aerodynamic loads on the structure can be reduced. Moreover, the pitch adaptation leads to lower interaction effects between the upstream-blade wake and down-stream blades.
AbstractList The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favorable to noise reduction and can operate at low velocity wind. The aerodynamic performance of this turbine is studied experimentally in wind tunnel as well as by CFD. In order to obtain the 3D-flow field around the wind turbine rotor, the numerical simulations are performed by means of detached eddy simulation method (DES). The simulation of pitch variation is made possible by using sliding-mesh method. Thus a specially created program adapts the pitch depending on the blade azimuthal position during rotation. The obtained results show that adapted pitch blades are preferable because they permit to obtain a power coefficient Cp that rivals other VAWT in the case of TSR<1. The maximum torque fluctuation during rotation is lower in the case of adapted variable-pitch compared to fixed-pitch and thus the maximum aerodynamic loads on the structure can be reduced. Moreover, the pitch adaptation leads to lower interaction effects between the upstream-blade wake and down-stream blades.
The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to locate it in urban areas. This article is devoted to the study of an original VAWT with variable-pitch and low tip speed ratio TSR which is favorable to noise reduction and can operate at low velocity wind. The aerodynamic performance of this turbine is studied experimentally in wind tunnel as well as by CFD. In order to obtain the 3D-flow field around the wind turbine rotor, the numerical simulations are performed by means of detached eddy simulation method (DES). The simulation of pitch variation is made possible by using sliding-mesh method. Thus a specially created program adapts the pitch depending on the blade azimuthal position during rotation. The obtained results show that adapted pitch blades are preferable because they permit to obtain a power coefficient Cp that rivals other VAWT in the case of . The maximum torque fluctuation during rotation is lower in the case of adapted variable-pitch compared to fixed-pitch and thus the maximum aerodynamic loads on the structure can be reduced. Moreover, the pitch adaptation leads to lower interaction effects between the upstream-blade wake and down-stream blades.
ArticleNumber 115832
Author Dobrev, I.
Massouh, F.
Dizene, R.
Zouzou, B.
Author_xml – sequence: 1
  givenname: B.
  orcidid: 0000-0002-3814-7302
  surname: Zouzou
  fullname: Zouzou, B.
  email: bzouzou@usthb.dz
  organization: University of Science and Technology Houari Boumédiène, BP 32 El Alia 16111, Bab Ezzouar, Algeria
– sequence: 2
  givenname: I.
  surname: Dobrev
  fullname: Dobrev, I.
  organization: Arts et Métiers-ParisTech, 151, bd L’Hôpital, Paris, 75013, France
– sequence: 3
  givenname: F.
  orcidid: 0000-0002-0718-5429
  surname: Massouh
  fullname: Massouh, F.
  organization: Arts et Métiers-ParisTech, 151, bd L’Hôpital, Paris, 75013, France
– sequence: 4
  givenname: R.
  surname: Dizene
  fullname: Dizene, R.
  organization: University of Science and Technology Houari Boumédiène, BP 32 El Alia 16111, Bab Ezzouar, Algeria
BackLink https://hal.science/hal-02464150$$DView record in HAL
BookMark eNqFkU-P1DAMxSu0SMwufAMOkbjAocVpk7bhgLTav0gjIcFyjjypy2TUJkOSzjLfng5FHPYAJ8vW7z3ZfufZmfOOsuw1h4IDr9_vCnIUvh-LErgqoCl4XT7LVrxtqrxuWnmWraCqIZdClC-y8xh3ACBbpVZZf_NzT8GO5BIODF3H3DTOA_O7w-EYbWS-Z8icP9DArjEES1NkwScf2KNNW3bAYHEzENvbZLZsJLNFZ-PIMLHBP7KHr19eZs97HCK9-lMvsm-3Nw9X9_n6892nq8t1boRoUo7QynaDnZKdUgSma0D1m1JuiLCVvO06SSjqsqpR1qqRBB0oVXGUXHBsoLrI3i2-Wxz0fr4Lw1F7tPr-cq1PMyhFLbiEA5_Ztwu7D_7HRDHp0UZDw4CO_BR1WYEsK9nyZkbfPEF3fgrze04Uh1rMluVMiYUywccYqP-7AQd9Ckrv9BKUPgWlodFzULPswxOZsQmT9S4FtMP_xB8XMc1fPVgKOhpLzlBnA5mkO2__bfALDFmyjQ
CitedBy_id crossref_primary_10_1007_s10098_023_02554_8
crossref_primary_10_1016_j_ijhydene_2022_07_181
crossref_primary_10_1016_j_isci_2023_107674
crossref_primary_10_1016_j_energy_2020_117772
crossref_primary_10_1016_j_jweia_2023_105484
crossref_primary_10_1016_j_seta_2021_101262
crossref_primary_10_1016_j_energy_2020_118809
crossref_primary_10_3390_su16198476
crossref_primary_10_1016_j_renene_2021_09_004
crossref_primary_10_1063_5_0180107
crossref_primary_10_3390_app11031033
crossref_primary_10_1016_j_energy_2022_126541
crossref_primary_10_1016_j_enconman_2021_114890
crossref_primary_10_1016_j_enconman_2021_114693
crossref_primary_10_1016_j_oceaneng_2024_118930
crossref_primary_10_1016_j_oceaneng_2025_120762
crossref_primary_10_1115_1_4057035
crossref_primary_10_1063_5_0034362
crossref_primary_10_1093_ijlct_ctac117
crossref_primary_10_17533_udea_redin_20240413
crossref_primary_10_3389_fenrg_2024_1437800
Cites_doi 10.1016/j.enconman.2015.12.084
10.1016/j.jfluidstructs.2015.06.003
10.1016/j.jfluidstructs.2013.05.005
10.1016/j.ijheatfluidflow.2008.07.001
10.1016/j.apenergy.2017.12.035
10.1016/j.energy.2018.10.101
10.1115/1.1629751
10.1063/1.4964310
10.1016/j.renene.2016.05.056
10.1115/1.4032794
10.1155/2013/905379
10.1016/j.rser.2006.05.017
10.1016/j.jweia.2015.01.004
10.1016/j.apenergy.2017.03.128
10.1016/j.renene.2016.03.069
10.1016/j.renene.2015.06.048
10.1016/j.enconman.2016.11.067
10.1016/j.enconman.2016.03.034
10.1016/j.egypro.2015.12.067
10.1016/j.renene.2017.07.068
10.1177/0309524X16677884
10.1155/2009/505343
10.1016/j.renene.2015.04.043
10.1007/s12206-013-0852-x
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 1, 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 1, 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
1XC
VOOES
DOI 10.1016/j.energy.2019.07.162
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID oai_HAL_hal_02464150v1
10_1016_j_energy_2019_07_162
S036054421931504X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c447t-a0858bad95d99e0cd709fb25beea8518dd5ea46236a56975e0d09931a5141a703
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Aug 13 07:42:20 EDT 2025
Thu Jul 10 19:18:29 EDT 2025
Wed Aug 13 08:17:00 EDT 2025
Tue Jul 01 00:43:14 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Fri Feb 23 02:24:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CFD
VAWT
UDF
3D DES
Variable-pitch
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-a0858bad95d99e0cd709fb25beea8518dd5ea46236a56975e0d09931a5141a703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0718-5429
0000-0002-3814-7302
OpenAccessLink https://hal.science/hal-02464150
PQID 2310644152
PQPubID 2045484
ParticipantIDs hal_primary_oai_HAL_hal_02464150v1
proquest_miscellaneous_2305235817
proquest_journals_2310644152
crossref_primary_10_1016_j_energy_2019_07_162
crossref_citationtrail_10_1016_j_energy_2019_07_162
elsevier_sciencedirect_doi_10_1016_j_energy_2019_07_162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Almohammadi, Ingham, Ma, Pourkashanian (bib23) 2015; 57
Gharali, Johnson (bib22) 2013; 42
Elkhoury, Kiwata, Aoun (bib29) 2015; 139
Larose, D'Auteuil (bib30) 2008; vol. 7
Abdalrahman, Melek, Lien (bib18) 2017; 114
Paraschivoiu, Trifu, Saeed (bib13) 2009; 2009
Balduzzi, Bianchini, Maleci, Ferrara, Ferrari (bib36) 2016; 85
Duquette, Visser (bib11) 2003; 125
Rezaeiha, Kalkman, Blocken (bib16) 2017; 197
Xisto, Páscoa, Leger, Trancossi (bib8) 2014
D. G. J. Marie, Turbine having its rotating shaft transverse to the flow of the current, 1931. US Patent 1,835,018.
Cai, Gu, Pan, Zhu (bib1) 2016; 112
G. M. Tierney, Cycloidal vtol uav, 2005. US Patent 6,932,296.
Zhang, Liang, Liu, Jiao, Guo (bib32) 2013; 5
Spalart, Jou, Strelets, Allmaras (bib33) 1997; 1
Sagharichi, Maghrebi, ArabGolarcheh (bib9) 2016; 8
Xisto, Páscoa, Trancossi (bib19) 2016; 138
Zamani, Maghrebi, Varedi (bib5) 2016; 95
Fluent (bib31) 2015
Roh, Kang (bib26) 2013; 27
Hansen (bib34) 2015
Eriksson, Bernhoff, Leijon (bib12) 2008; 12
Burton, Sharpe, Jenkins, Bossanyi (bib39) 2001
A. Curutchet, S. Grosmangin, R. Fourton, G. Corde, Rotary machine comprising a rotor placed in a fluid and equipped with orientable blades, 2017. US Patent 9,841,003.
Lee, Lim (bib25) 2015; 83
Lei, Zhou, Bao, Li, Han (bib37) 2017; 133
Li, Xiao, Xu, Peng, Hu, Zhu (bib15) 2018; 212
Lei, Su, Bao, Chen, Han, Zhou (bib24) 2019; 166
Jain, Abhishek (bib17) 2016; 97
Kavade, Ghanegaonkar (bib20) 2018
Mertens (bib2) 2006
Shahizare, Nik-Ghazali, Chong, Tabatabaeikia, Izadyar, Esmaeilzadeh (bib21) 2016; 117
Kirke, Paillard (bib27) 2017; 41
Sheldahl, Klimas (bib28) 1981
Shur, Spalart, Strelets, Travin (bib38) 2008; 29
Paraschivoiu (bib35) 2002
Madsen, Lundgren (bib6) 1980
Stankovic, Campbell, Harries (bib3) 2009
Bianchini, Ferrara, Ferrari (bib14) 2015; 81
Bianchini (10.1016/j.energy.2019.07.162_bib14) 2015; 81
Jain (10.1016/j.energy.2019.07.162_bib17) 2016; 97
Balduzzi (10.1016/j.energy.2019.07.162_bib36) 2016; 85
Sagharichi (10.1016/j.energy.2019.07.162_bib9) 2016; 8
Xisto (10.1016/j.energy.2019.07.162_bib19) 2016; 138
Zamani (10.1016/j.energy.2019.07.162_bib5) 2016; 95
Hansen (10.1016/j.energy.2019.07.162_bib34) 2015
Eriksson (10.1016/j.energy.2019.07.162_bib12) 2008; 12
Paraschivoiu (10.1016/j.energy.2019.07.162_bib13) 2009; 2009
Stankovic (10.1016/j.energy.2019.07.162_bib3) 2009
Roh (10.1016/j.energy.2019.07.162_bib26) 2013; 27
Li (10.1016/j.energy.2019.07.162_bib15) 2018; 212
10.1016/j.energy.2019.07.162_bib4
Zhang (10.1016/j.energy.2019.07.162_bib32) 2013; 5
10.1016/j.energy.2019.07.162_bib7
Lei (10.1016/j.energy.2019.07.162_bib24) 2019; 166
Cai (10.1016/j.energy.2019.07.162_bib1) 2016; 112
Xisto (10.1016/j.energy.2019.07.162_bib8) 2014
Abdalrahman (10.1016/j.energy.2019.07.162_bib18) 2017; 114
Kirke (10.1016/j.energy.2019.07.162_bib27) 2017; 41
Paraschivoiu (10.1016/j.energy.2019.07.162_bib35) 2002
Kavade (10.1016/j.energy.2019.07.162_bib20) 2018
Gharali (10.1016/j.energy.2019.07.162_bib22) 2013; 42
Rezaeiha (10.1016/j.energy.2019.07.162_bib16) 2017; 197
Fluent (10.1016/j.energy.2019.07.162_bib31) 2015
Sheldahl (10.1016/j.energy.2019.07.162_bib28) 1981
Madsen (10.1016/j.energy.2019.07.162_bib6) 1980
Mertens (10.1016/j.energy.2019.07.162_bib2) 2006
Lee (10.1016/j.energy.2019.07.162_bib25) 2015; 83
Burton (10.1016/j.energy.2019.07.162_bib39) 2001
10.1016/j.energy.2019.07.162_bib10
Shur (10.1016/j.energy.2019.07.162_bib38) 2008; 29
Elkhoury (10.1016/j.energy.2019.07.162_bib29) 2015; 139
Spalart (10.1016/j.energy.2019.07.162_bib33) 1997; 1
Shahizare (10.1016/j.energy.2019.07.162_bib21) 2016; 117
Duquette (10.1016/j.energy.2019.07.162_bib11) 2003; 125
Almohammadi (10.1016/j.energy.2019.07.162_bib23) 2015; 57
Lei (10.1016/j.energy.2019.07.162_bib37) 2017; 133
Larose (10.1016/j.energy.2019.07.162_bib30) 2008; vol. 7
References_xml – year: 2015
  ident: bib34
  article-title: Aerodynamics of wind turbines
– volume: 29
  start-page: 1638
  year: 2008
  end-page: 1649
  ident: bib38
  article-title: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
  publication-title: Int J Heat Fluid Flow
– volume: 1
  start-page: 4
  year: 1997
  end-page: 8
  ident: bib33
  article-title: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach
  publication-title: Advances in DNS/LES
– volume: 85
  start-page: 419
  year: 2016
  end-page: 435
  ident: bib36
  article-title: Critical issues in the CFD simulation of Darrieus wind turbines
  publication-title: Renew Energy
– year: 1980
  ident: bib6
  article-title: The Voith-Schneider wind turbine: some theoretical and experimental results on the aerodynamics of the Voith-Schneider wind turbine, Institute of Industrial Constructions and energy technology
– volume: 41
  start-page: 74
  year: 2017
  end-page: 90
  ident: bib27
  article-title: Predicted and measured performance of a vertical axis wind turbine with passive variable pitch compared to fixed pitch
  publication-title: Wind Eng
– volume: 166
  start-page: 471
  year: 2019
  end-page: 489
  ident: bib24
  article-title: Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms
  publication-title: Energy
– reference: A. Curutchet, S. Grosmangin, R. Fourton, G. Corde, Rotary machine comprising a rotor placed in a fluid and equipped with orientable blades, 2017. US Patent 9,841,003.
– volume: 197
  start-page: 132
  year: 2017
  end-page: 150
  ident: bib16
  article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine
  publication-title: Appl Energy
– year: 2001
  ident: bib39
  article-title: Wind energy handbook
– volume: 112
  start-page: 146
  year: 2016
  end-page: 156
  ident: bib1
  article-title: Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology
  publication-title: Energy Convers Manag
– year: 1981
  ident: bib28
  article-title: Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines
– volume: 212
  start-page: 1107
  year: 2018
  end-page: 1125
  ident: bib15
  article-title: Optimization of blade pitch in h-rotor vertical axis wind turbines through computational fluid dynamics simulations
  publication-title: Appl Energy
– volume: 133
  start-page: 235
  year: 2017
  end-page: 248
  ident: bib37
  article-title: Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine
  publication-title: Energy Convers Manag
– volume: 83
  start-page: 407
  year: 2015
  end-page: 415
  ident: bib25
  article-title: Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine
  publication-title: Renew Energy
– volume: 114
  start-page: 1353
  year: 2017
  end-page: 1362
  ident: bib18
  article-title: Pitch angle control for a small-scale darrieus vertical axis wind turbine with straight blades (h-type vawt)
  publication-title: Renew Energy
– volume: 97
  start-page: 97
  year: 2016
  end-page: 113
  ident: bib17
  article-title: Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching
  publication-title: Renew Energy
– volume: 139
  start-page: 111
  year: 2015
  end-page: 123
  ident: bib29
  article-title: Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch
  publication-title: J Wind Eng Ind Aerodyn
– volume: 117
  start-page: 206
  year: 2016
  end-page: 217
  ident: bib21
  article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation
  publication-title: Energy Convers Manag
– volume: 138
  year: 2016
  ident: bib19
  article-title: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high-solidity VAWT
  publication-title: J Sol Energy Eng
– reference: G. M. Tierney, Cycloidal vtol uav, 2005. US Patent 6,932,296.
– reference: D. G. J. Marie, Turbine having its rotating shaft transverse to the flow of the current, 1931. US Patent 1,835,018.
– year: 2014
  ident: bib8
  article-title: Wind energy production using an optimized variable pitch vertical axis rotor
– start-page: 1
  year: 2018
  end-page: 10
  ident: bib20
  article-title: Performance evaluation of small-scale vertical axis wind turbine by optimized best position blade pitching at different tip speed ratios
  publication-title: J Inst Eng
– volume: 12
  start-page: 1419
  year: 2008
  end-page: 1434
  ident: bib12
  article-title: Evaluation of different turbine concepts for wind power
  publication-title: Renew Sustain Energy Rev
– year: 2006
  ident: bib2
  article-title: Wind energy in the built environment: concentrator effects of buildings
– year: 2002
  ident: bib35
  article-title: Wind turbine design: with emphasis on Darrieus concept
– volume: 8
  year: 2016
  ident: bib9
  article-title: Variable pitch blades: an approach for improving performance of Darrieus wind turbine
  publication-title: J Renew Sustain Energy
– volume: 125
  start-page: 425
  year: 2003
  end-page: 432
  ident: bib11
  article-title: Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines
  publication-title: Trans Am Soc Mech Eng J Solar Energy Eng
– volume: 42
  start-page: 228
  year: 2013
  end-page: 244
  ident: bib22
  article-title: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity
  publication-title: J Fluids Struct
– volume: 57
  start-page: 144
  year: 2015
  end-page: 158
  ident: bib23
  article-title: Modeling dynamic stall of a straight blade vertical axis wind turbine
  publication-title: J Fluids Struct
– volume: 81
  start-page: 122
  year: 2015
  end-page: 132
  ident: bib14
  article-title: Pitch optimization in small-size darrieus wind turbines
  publication-title: Energy Procedia
– year: 2009
  ident: bib3
  article-title: Urban wind energy
– volume: vol. 7
  start-page: 20
  year: 2008
  ident: bib30
  article-title: Effect of local air compressibility on the aerodynamics of rectangular prisms at Mach number below 0.3
  publication-title: 6th international colloquium on bluff body aerodynamics from
– volume: 5
  start-page: 905379
  year: 2013
  ident: bib32
  article-title: Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD
  publication-title: Adv Mech Eng
– year: 2015
  ident: bib31
  article-title: Ansys fluent udf manual
– volume: 27
  start-page: 3299
  year: 2013
  end-page: 3307
  ident: bib26
  article-title: Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine
  publication-title: J Mech Sci Technol
– volume: 95
  start-page: 109
  year: 2016
  end-page: 126
  ident: bib5
  article-title: Starting torque improvement using j-shaped straight-bladed darrieus vertical axis wind turbine by means of numerical simulation
  publication-title: Renew Energy
– volume: 2009
  year: 2009
  ident: bib13
  article-title: H-darrieus wind turbine with blade pitch control
  publication-title: Int J Rotating Mach
– volume: 112
  start-page: 146
  year: 2016
  ident: 10.1016/j.energy.2019.07.162_bib1
  article-title: Unsteady aerodynamics simulation of a full-scale horizontal axis wind turbine using CFD methodology
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.12.084
– volume: 57
  start-page: 144
  year: 2015
  ident: 10.1016/j.energy.2019.07.162_bib23
  article-title: Modeling dynamic stall of a straight blade vertical axis wind turbine
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2015.06.003
– volume: 42
  start-page: 228
  year: 2013
  ident: 10.1016/j.energy.2019.07.162_bib22
  article-title: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2013.05.005
– year: 2015
  ident: 10.1016/j.energy.2019.07.162_bib34
– volume: 29
  start-page: 1638
  year: 2008
  ident: 10.1016/j.energy.2019.07.162_bib38
  article-title: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities
  publication-title: Int J Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.07.001
– volume: 212
  start-page: 1107
  year: 2018
  ident: 10.1016/j.energy.2019.07.162_bib15
  article-title: Optimization of blade pitch in h-rotor vertical axis wind turbines through computational fluid dynamics simulations
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.035
– ident: 10.1016/j.energy.2019.07.162_bib10
– year: 2015
  ident: 10.1016/j.energy.2019.07.162_bib31
– volume: 166
  start-page: 471
  year: 2019
  ident: 10.1016/j.energy.2019.07.162_bib24
  article-title: Investigation of wake characteristics for the offshore floating vertical axis wind turbines in pitch and surge motions of platforms
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.101
– volume: 125
  start-page: 425
  year: 2003
  ident: 10.1016/j.energy.2019.07.162_bib11
  article-title: Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines
  publication-title: Trans Am Soc Mech Eng J Solar Energy Eng
  doi: 10.1115/1.1629751
– ident: 10.1016/j.energy.2019.07.162_bib4
– volume: 8
  year: 2016
  ident: 10.1016/j.energy.2019.07.162_bib9
  article-title: Variable pitch blades: an approach for improving performance of Darrieus wind turbine
  publication-title: J Renew Sustain Energy
  doi: 10.1063/1.4964310
– volume: 97
  start-page: 97
  year: 2016
  ident: 10.1016/j.energy.2019.07.162_bib17
  article-title: Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.05.056
– volume: 138
  year: 2016
  ident: 10.1016/j.energy.2019.07.162_bib19
  article-title: Geometrical parameters influencing the aerodynamic efficiency of a small-scale self-pitch high-solidity VAWT
  publication-title: J Sol Energy Eng
  doi: 10.1115/1.4032794
– volume: 5
  start-page: 905379
  year: 2013
  ident: 10.1016/j.energy.2019.07.162_bib32
  article-title: Aerodynamic performance prediction of straight-bladed vertical axis wind turbine based on CFD
  publication-title: Adv Mech Eng
  doi: 10.1155/2013/905379
– volume: 12
  start-page: 1419
  year: 2008
  ident: 10.1016/j.energy.2019.07.162_bib12
  article-title: Evaluation of different turbine concepts for wind power
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2006.05.017
– year: 1980
  ident: 10.1016/j.energy.2019.07.162_bib6
– volume: vol. 7
  start-page: 20
  year: 2008
  ident: 10.1016/j.energy.2019.07.162_bib30
  article-title: Effect of local air compressibility on the aerodynamics of rectangular prisms at Mach number below 0.3
– volume: 139
  start-page: 111
  year: 2015
  ident: 10.1016/j.energy.2019.07.162_bib29
  article-title: Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2015.01.004
– year: 2002
  ident: 10.1016/j.energy.2019.07.162_bib35
– year: 2009
  ident: 10.1016/j.energy.2019.07.162_bib3
– volume: 197
  start-page: 132
  year: 2017
  ident: 10.1016/j.energy.2019.07.162_bib16
  article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.128
– ident: 10.1016/j.energy.2019.07.162_bib7
– volume: 1
  start-page: 4
  year: 1997
  ident: 10.1016/j.energy.2019.07.162_bib33
  article-title: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach
  publication-title: Advances in DNS/LES
– year: 2014
  ident: 10.1016/j.energy.2019.07.162_bib8
– volume: 95
  start-page: 109
  year: 2016
  ident: 10.1016/j.energy.2019.07.162_bib5
  article-title: Starting torque improvement using j-shaped straight-bladed darrieus vertical axis wind turbine by means of numerical simulation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.069
– year: 2006
  ident: 10.1016/j.energy.2019.07.162_bib2
– volume: 85
  start-page: 419
  year: 2016
  ident: 10.1016/j.energy.2019.07.162_bib36
  article-title: Critical issues in the CFD simulation of Darrieus wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.06.048
– volume: 133
  start-page: 235
  year: 2017
  ident: 10.1016/j.energy.2019.07.162_bib37
  article-title: Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.11.067
– start-page: 1
  year: 2018
  ident: 10.1016/j.energy.2019.07.162_bib20
  article-title: Performance evaluation of small-scale vertical axis wind turbine by optimized best position blade pitching at different tip speed ratios
  publication-title: J Inst Eng
– volume: 117
  start-page: 206
  year: 2016
  ident: 10.1016/j.energy.2019.07.162_bib21
  article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.03.034
– year: 1981
  ident: 10.1016/j.energy.2019.07.162_bib28
– volume: 81
  start-page: 122
  year: 2015
  ident: 10.1016/j.energy.2019.07.162_bib14
  article-title: Pitch optimization in small-size darrieus wind turbines
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.12.067
– volume: 114
  start-page: 1353
  year: 2017
  ident: 10.1016/j.energy.2019.07.162_bib18
  article-title: Pitch angle control for a small-scale darrieus vertical axis wind turbine with straight blades (h-type vawt)
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.07.068
– volume: 41
  start-page: 74
  year: 2017
  ident: 10.1016/j.energy.2019.07.162_bib27
  article-title: Predicted and measured performance of a vertical axis wind turbine with passive variable pitch compared to fixed pitch
  publication-title: Wind Eng
  doi: 10.1177/0309524X16677884
– volume: 2009
  year: 2009
  ident: 10.1016/j.energy.2019.07.162_bib13
  article-title: H-darrieus wind turbine with blade pitch control
  publication-title: Int J Rotating Mach
  doi: 10.1155/2009/505343
– volume: 83
  start-page: 407
  year: 2015
  ident: 10.1016/j.energy.2019.07.162_bib25
  article-title: Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.04.043
– volume: 27
  start-page: 3299
  year: 2013
  ident: 10.1016/j.energy.2019.07.162_bib26
  article-title: Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-013-0852-x
– year: 2001
  ident: 10.1016/j.energy.2019.07.162_bib39
SSID ssj0005899
Score 2.417494
Snippet The Darrieus vertical axis wind-turbine (VAWT) has been the subject of numerous recent studies aimed at improving its aerodynamic performance in order to...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115832
SubjectTerms 3D DES
Aerodynamic loads
Aerodynamics
blades
CFD
Computer simulation
Detached eddy simulation
Engineering Sciences
Finite element method
Fluids mechanics
Mathematical analysis
mathematical models
Mechanics
Noise reduction
Numerical analysis
Rotation
Three dimensional flow
Tip speed
torque
Turbine blades
Turbines
UDF
Urban areas
Variable-pitch
Variation
VAWT
Vertical axis wind turbines
wind
Wind power
Wind tunnels
Wind turbines
Title Experimental and numerical analysis of a novel Darrieus rotor with variable pitch mechanism at low TSR
URI https://dx.doi.org/10.1016/j.energy.2019.07.162
https://www.proquest.com/docview/2310644152
https://www.proquest.com/docview/2305235817
https://hal.science/hal-02464150
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4Be4ALWmAR5SUv4mqaNHYex4otKttdDjy0vVm242q7KknVtOW2v31n8igPCSHtKUoyjiPPePzZnm8McC7RK4aod24D43FhnMdjYWNubSfynfVERR_7eRP2H8T3oRyuwWXDhaGwytr3Vz699Nb1k3bdmu3peNy-w1oQbwjscgGiGjEkBruIyMov_r4I84jLMyRJmJN0Q58rY7xcya-jAK_kolxp6bw3PK3_pjjJN-66HIOuPsN2DR5Zt_q_HVhz2S5sNtziYhf2e8-8NRSsO26xB6Pei0z-TGcpyxbVXg3dVXlJWD5immX50k3YNz3DOfSiYLMcJ-WMVmvZEqfVRLRi0zGqmj06Ig2Pi0em52ySP7H7u9sv8HDVu7_s8_qIBW6xreZcI-KKjU4TmSaJ82waecnIdKRxTiMWi9NUOi0QIoVahkkknZcipAx8jTjL1-gt9mEjyzN3ACw0qbQCS6CKhXMjE5mg_KbRphMEugVB07LK1vnH6RiMiWoCzf6oSh-K9KG8SKE-WsBXpaZV_o0P5KNGaeqVHSkcIj4oeYY6XlVCabf73R-KniGOCRHoeEu_BceNCai6sxeKIDLBSonf-Lp6jd2U9l505vIFydD6u4z96PC___AItuiuYkIew8Z8tnAnCInm5rS0-VP41L0e9G_oOrj9NfgHG-INug
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4Be2AviMei7QKLF-3VNGnsPI4Iirq7hQMUqTfLdlzRVUmqpi03fjszeXQBCSHtMck4sTKe8Wd7vhmAnxK9Yoh65zYwHhfGeTwWNubWdiLfWU9U9LGr67B3J34P5XANzhsuDIVV1r6_8umlt67vtOu_2Z6Ox-1b_AriDYEmFyCqEcN1-CTQfKmMwenTiziPuCwiSdKcxBv-XBnk5UqCHUV4JaflVkvnvflp_Z4CJd_463ISutyGrRo9srOqgzuw5rJd2GzIxcUu7Hf_EddQsLbcYg9G3Rep_JnOUpYtqsMauqoSk7B8xDTL8qWbsAs9w0X0omCzHFfljLZr2RLX1cS0YtMx6po9OGINj4sHpudskj-ywe3NF7i77A7Oe7yuscCtENGca4RcsdFpItMkcZ5NIy8ZmY40zmkEY3GaSqcFYqRQyzCJpPNSxJSBrxFo-RrdxT5sZHnmvgILTSqtwBaoY-HcyEQmKN9ptOkEgW5B0PxZZesE5FQHY6KaSLO_qtKHIn0oL1KojxbwVatplYDjA_moUZp6NZAUzhEftDxBHa8-Qnm3e2d9RfcQyISIdLyl34LDZgio2toLRRiZcKXEd_xYPUY7pcMXnbl8QTK0AS9jP_r23z08hs3e4Kqv-r-u_xzAZ3pS0SIPYWM-W7gjxEdz870c_8-2kQ2l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+numerical+analysis+of+a+novel+Darrieus+rotor+with+variable+pitch+mechanism+at+low+TSR&rft.jtitle=Energy+%28Oxford%29&rft.au=Zouzou%2C+B&rft.au=Dobrev%2C+I&rft.au=Massouh%2C+F&rft.au=Dizene%2C+R&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=186&rft.spage=1&rft_id=info:doi/10.1016%2Fj.energy.2019.07.162&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon