Transcriptome analysis reveals the oxidative damage and immune-suppression of leech (Whitmania pigra Whitman) intestine induced by high-temperature stress

Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress...

Full description

Saved in:
Bibliographic Details
Published inAquaculture reports Vol. 35; p. 102026
Main Authors Xiong, Liangwei, Zheng, Xiaochuan, Zheng, Yi, Wang, Shuaibing, Li, Zhengzhong, Liu, Shijie, Wang, Haihua, Ma, Benhe, Liu, Shengli, Liu, Bo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches. •High-temperature stress affected the antioxidant ability in leech.•High-temperature stress affected the immune ability in leech.•Transcriptome analysis identified 275 up-regulate and 150 down-regulate genes in leech.
AbstractList Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches. •High-temperature stress affected the antioxidant ability in leech.•High-temperature stress affected the immune ability in leech.•Transcriptome analysis identified 275 up-regulate and 150 down-regulate genes in leech.
Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches.
Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches.
ArticleNumber 102026
Author Zheng, Xiaochuan
Liu, Bo
Wang, Haihua
Ma, Benhe
Zheng, Yi
Li, Zhengzhong
Liu, Shengli
Wang, Shuaibing
Liu, Shijie
Xiong, Liangwei
Author_xml – sequence: 1
  givenname: Liangwei
  surname: Xiong
  fullname: Xiong, Liangwei
  organization: Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China
– sequence: 2
  givenname: Xiaochuan
  surname: Zheng
  fullname: Zheng, Xiaochuan
  organization: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
– sequence: 3
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
  organization: Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China
– sequence: 4
  givenname: Shuaibing
  surname: Wang
  fullname: Wang, Shuaibing
  organization: Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China
– sequence: 5
  givenname: Zhengzhong
  orcidid: 0009-0003-1712-8828
  surname: Li
  fullname: Li, Zhengzhong
  organization: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
– sequence: 6
  givenname: Shijie
  surname: Liu
  fullname: Liu, Shijie
  organization: Department of chemical and biological engineering, University of Sheffield, Sheffield S1 3JD, UK
– sequence: 7
  givenname: Haihua
  surname: Wang
  fullname: Wang, Haihua
  organization: Jiangxi Institute of Fisheries Sciences, Nanchang, PR China
– sequence: 8
  givenname: Benhe
  surname: Ma
  fullname: Ma, Benhe
  organization: Jiangxi Institute of Fisheries Sciences, Nanchang, PR China
– sequence: 9
  givenname: Shengli
  surname: Liu
  fullname: Liu, Shengli
  organization: Shandong Lonct Enzymes Co., Ltd. Linyi 276400, PR China
– sequence: 10
  givenname: Bo
  orcidid: 0000-0002-9537-4552
  surname: Liu
  fullname: Liu, Bo
  email: liub@ffrc.cn
  organization: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
BookMark eNqFUctuFDEQHKEgEUK-gIuP4TCL7fG8DhxQxCNSJC5BHK0eu2e3VzP2xPZE7K_ka_FmI4Q4wKnL7apqt-t1cea8w6J4K_hGcNG832_gPuCykVyq3MmleVGcy6qWZS0qdfYHflVcxrjnnIu26oRU58XjXQAXTaAl-RkZOJgOkSIL-IAwRZZ2yPxPspDoAZmFGbZHlmU0z6vDMq7LEjBG8o75kU2IZseufuwozeAI2ELbAOz5_I6RSxgTOczIrgYtGw5sR9tdmXBeMEBaA7KYjpZvipdjfgJePteL4vvnT3fXX8vbb19urj_elkapNpX9iCiGzgyjlR23qu9Ui8Y2ApRoh0HZkVfYtdKaAftBZlQZKTBf8WaUEquL4ubkaz3s9RJohnDQHkg_NXzYagiJzIS6Rgm1bCrDB6MaLrvO9k3VK96AgaE12evq5LUEf7_mVfVM0eA0gUO_Rl2Jumq7vmvrTK1OVBN8jAHH36MF18dg9V4_BauPwepTsFnV_6UylHI43qUANP1H--GkxfybD4RBR0PocgoU0KS8Lv1T_wsZwMXF
CitedBy_id crossref_primary_10_1007_s11033_024_10016_7
crossref_primary_10_1016_j_cbd_2024_101406
Cites_doi 10.1016/j.jprot.2020.103866
10.1016/j.fsi.2011.04.011
10.1016/j.bbrc.2014.10.135
10.1016/j.aquaculture.2014.07.007
10.1016/j.psj.2020.05.019
10.1007/s10695-022-01052-w
10.1007/s00438-002-0727-9
10.1073/pnas.0403627101
10.1128/CMR.10.1.1
10.1016/j.jembe.2015.02.018
10.1016/j.acthis.2014.02.008
10.1016/j.fsi.2018.07.049
10.1016/j.aquaculture.2020.735645
10.1006/abbi.1997.0237
10.3109/02656736.2012.729173
10.1007/s13205-015-0306-5
10.1016/j.fsi.2014.03.004
10.1126/science.1071059
10.1016/j.cbpb.2017.12.012
10.1016/j.freeradbiomed.2011.11.038
10.1074/jbc.M111.312694
10.1016/j.gene.2017.03.041
10.1016/j.jss.2019.07.094
10.1016/j.jtherbio.2017.11.006
10.1016/j.margen.2015.12.001
10.1242/jeb.019950
10.1146/annurev.physiol.61.1.243
10.4161/temp.28844
10.1007/s11160-010-9164-8
10.1016/j.talanta.2011.06.056
10.1006/meth.2001.1262
10.1007/s10695-015-0170-6
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.aqrep.2024.102026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2352-5134
ExternalDocumentID oai_doaj_org_article_5e2a5263c0bc460288d9639406acab7c
10_1016_j_aqrep_2024_102026
S2352513424001145
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7S9
L.6
ID FETCH-LOGICAL-c447t-9fee1b8cbfd280d49847ecd61a417bb4df03e872dcbe9b28723c21e7bb06f22e3
IEDL.DBID DOA
ISSN 2352-5134
IngestDate Wed Aug 27 01:27:40 EDT 2025
Fri Aug 22 20:41:25 EDT 2025
Tue Jul 01 01:33:05 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Sat Sep 07 15:50:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Antioxidant capacity
High-temperature stress
Whitmania pigra
Transcriptome analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-9fee1b8cbfd280d49847ecd61a417bb4df03e872dcbe9b28723c21e7bb06f22e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9537-4552
0009-0003-1712-8828
OpenAccessLink https://doaj.org/article/5e2a5263c0bc460288d9639406acab7c
PQID 3153789875
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_5e2a5263c0bc460288d9639406acab7c
proquest_miscellaneous_3153789875
crossref_primary_10_1016_j_aqrep_2024_102026
crossref_citationtrail_10_1016_j_aqrep_2024_102026
elsevier_sciencedirect_doi_10_1016_j_aqrep_2024_102026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
20240401
2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Aquaculture reports
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Shi, Wang, Liu (bib33) 2020; 229
Li, Huang, Liu (bib20) 2017; 619
Huang, Yasunami, Carlson (bib13) 1997
Livak, Schmittgen (bib25) 2001; 25
Matzinger (bib26) 2002; 296
Wang, Liu, Li (bib39) 2016; 42
Carney Almroth, Asker, Wassmur (bib2) 2015; 468
Montilla, Johnson, Pearce (bib29) 2014; 1
Shi, Liu, Guo (bib34) 2006; 31
Li, Li, Zhou (bib21) 2018; 71
Basu, Paichha, Swain (bib1) 2015; 5
Kansanen, Jyrkkänen, Levonen (bib17) 2012
Zhang, Tian, Li (bib42) 2014; 433
Chen, Li, Li (bib3) 2011; 85
Zhang, Zhang (bib43) 2013
Feder, Hofmann (bib8) 1999
Gracey, Fraser, Li (bib12) 2004; 101
Yang, Zhao, Yang (bib40) 2018; 217
Liu, Li, Lu (bib23) 2012; 28
Qian, Xue (bib31) 2016; 25
Wang, Wang, Wang (bib37) 2014; 36
Ju, Dunham, Liu (bib15) 2002; 268
Dawood, Alkafafy, Sewilam (bib5) 2022; 48
Liu, Li, Lu (bib24) 2012; 28
Miller, Britigan (bib28) 1997
Freeman, Crapo (bib10) 1982
Rados (bib32) 2004; 38
Fu, Chen, Zhang (bib11) 2011; 31
Liu, Gao, Liu (bib22) 2022; 11
Chou, Hsiao, Chen (bib4) 2008; 211
Song, Liu, Xie (bib35) 2017; 7
Yao, Liu, Li (bib41) 2020; 245
Jia, Chen, Wang (bib14) 2020; 529
Wang, Zhao, Wang (bib38) 2014; 455
Deane, Woo (bib6) 2011; 21
Fan, Mao, Wu (bib7) 2014; 38
Kanak, Dogan, Eroglu (bib16) 2014; 40
Li, Cao, Wang (bib19) 2014; 116
Niture, Jaiswal (bib30) 2012; 287
Song, Liu, Xu (bib36) 2018; 81
Feidantsis, Georgoulis, Giantsis (bib9) 2021; 255
Kumar, Thorat, Kochewad (bib18) 2024; 14
Miao, Si, Xie (bib27) 2020; 99
Gracey (10.1016/j.aqrep.2024.102026_bib12) 2004; 101
Liu (10.1016/j.aqrep.2024.102026_bib22) 2022; 11
Feder (10.1016/j.aqrep.2024.102026_bib8) 1999
Huang (10.1016/j.aqrep.2024.102026_bib13) 1997
Shi (10.1016/j.aqrep.2024.102026_bib34) 2006; 31
Jia (10.1016/j.aqrep.2024.102026_bib14) 2020; 529
Wang (10.1016/j.aqrep.2024.102026_bib38) 2014; 455
Ju (10.1016/j.aqrep.2024.102026_bib15) 2002; 268
Miao (10.1016/j.aqrep.2024.102026_bib27) 2020; 99
Basu (10.1016/j.aqrep.2024.102026_bib1) 2015; 5
Chen (10.1016/j.aqrep.2024.102026_bib3) 2011; 85
Wang (10.1016/j.aqrep.2024.102026_bib37) 2014; 36
Zhang (10.1016/j.aqrep.2024.102026_bib43) 2013
Wang (10.1016/j.aqrep.2024.102026_bib39) 2016; 42
Liu (10.1016/j.aqrep.2024.102026_bib24) 2012; 28
Song (10.1016/j.aqrep.2024.102026_bib36) 2018; 81
Deane (10.1016/j.aqrep.2024.102026_bib6) 2011; 21
Li (10.1016/j.aqrep.2024.102026_bib20) 2017; 619
Zhang (10.1016/j.aqrep.2024.102026_bib42) 2014; 433
Kumar (10.1016/j.aqrep.2024.102026_bib18) 2024; 14
Carney Almroth (10.1016/j.aqrep.2024.102026_bib2) 2015; 468
Matzinger (10.1016/j.aqrep.2024.102026_bib26) 2002; 296
Chou (10.1016/j.aqrep.2024.102026_bib4) 2008; 211
Qian (10.1016/j.aqrep.2024.102026_bib31) 2016; 25
Feidantsis (10.1016/j.aqrep.2024.102026_bib9) 2021; 255
Kansanen (10.1016/j.aqrep.2024.102026_bib17) 2012
Montilla (10.1016/j.aqrep.2024.102026_bib29) 2014; 1
Song (10.1016/j.aqrep.2024.102026_bib35) 2017; 7
Yao (10.1016/j.aqrep.2024.102026_bib41) 2020; 245
Li (10.1016/j.aqrep.2024.102026_bib19) 2014; 116
Shi (10.1016/j.aqrep.2024.102026_bib33) 2020; 229
Fan (10.1016/j.aqrep.2024.102026_bib7) 2014; 38
Livak (10.1016/j.aqrep.2024.102026_bib25) 2001; 25
Miller (10.1016/j.aqrep.2024.102026_bib28) 1997
Kanak (10.1016/j.aqrep.2024.102026_bib16) 2014; 40
Yang (10.1016/j.aqrep.2024.102026_bib40) 2018; 217
Freeman (10.1016/j.aqrep.2024.102026_bib10) 1982
Dawood (10.1016/j.aqrep.2024.102026_bib5) 2022; 48
Li (10.1016/j.aqrep.2024.102026_bib21) 2018; 71
Liu (10.1016/j.aqrep.2024.102026_bib23) 2012; 28
Fu (10.1016/j.aqrep.2024.102026_bib11) 2011; 31
Rados (10.1016/j.aqrep.2024.102026_bib32) 2004; 38
Niture (10.1016/j.aqrep.2024.102026_bib30) 2012; 287
References_xml – volume: 40
  start-page: 1083
  year: 2014
  end-page: 1091
  ident: bib16
  article-title: Effects of fish size on the response of antioxidant systems of
  publication-title: Fish. Physiol. Biochem.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: bib25
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2
  publication-title: Methods
– volume: 229
  year: 2020
  ident: bib33
  article-title: Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (
  publication-title: J. Proteom.
– volume: 5
  start-page: 1021
  year: 2015
  end-page: 1030
  ident: bib1
  article-title: Modulation of
  publication-title: 3 Biotech
– volume: 28
  start-page: 756
  year: 2012
  end-page: 765
  ident: bib24
  article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation
  publication-title: Int J. Hyperth.
– volume: 268
  start-page: 87
  year: 2002
  end-page: 95
  ident: bib15
  article-title: Differential gene expression in the brain of channel catfish (
  publication-title: Mol. Genet. Genom.
– volume: 287
  start-page: 9873
  year: 2012
  end-page: 9886
  ident: bib30
  article-title: 2 protein up-regulates antiapoptotic protein
  publication-title: J. Biol. Chem.
– volume: 71
  start-page: 142
  year: 2018
  end-page: 152
  ident: bib21
  article-title: Autophagy involved in the activation of the
  publication-title: J. Therm. Biol.
– volume: 21
  start-page: 153
  year: 2011
  end-page: 185
  ident: bib6
  article-title: Advances and perspectives on the regulation and expression of piscine heat shock proteins
  publication-title: Rev. Fish. Biol. Fish.
– volume: 38
  start-page: 140
  year: 2014
  end-page: 148
  ident: bib7
  article-title: ATF4 (activating transcription factor 4) from grass carp (
  publication-title: Fish. Shellfish Inmunl.
– volume: 619
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib20
  article-title: Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (
  publication-title: Gene
– volume: 217
  start-page: 60
  year: 2018
  end-page: 69
  ident: bib40
  article-title: Characterization of 2-Cys peroxiredoxin 3 and 4 in common carp and the immune response against bacterial infection
  publication-title: Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.
– volume: 38
  start-page: 9
  year: 2004
  ident: bib32
  article-title: Beyond bloodletting: FDA gives leeches a medical makeover
  publication-title: FDA Consum
– volume: 81
  start-page: 446
  year: 2018
  end-page: 455
  ident: bib36
  article-title: Oxidized fish oil injury stress in
  publication-title: Fish. Shellfish Immunol.
– volume: 433
  start-page: 458
  year: 2014
  end-page: 466
  ident: bib42
  article-title: The effects of fructooligosaccharide on the immune response, antioxidant capability and
  publication-title: Aquaculture
– volume: 85
  start-page: 1634
  year: 2011
  end-page: 1641
  ident: bib3
  article-title: Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography
  publication-title: Talanta
– volume: 211
  start-page: 3077
  year: 2008
  end-page: 3084
  ident: bib4
  article-title: Effects of hypothermia on gene expression in zebrafish gills:upregulation in differentiation and function of ionocytes as compensatory responses
  publication-title: J. Exp. Biol.
– volume: 1
  start-page: 42
  year: 2014
  end-page: 50
  ident: bib29
  article-title: Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle
  publication-title: Temperature
– volume: 245
  start-page: 441
  year: 2020
  end-page: 452
  ident: bib41
  article-title: Aqueous extract of
  publication-title: J. Surg. Res.
– year: 1997
  ident: bib28
  article-title: Role of oxidants in microbial pathophysiology
  publication-title: Clin. Microbiol. Rev.
– year: 1997
  ident: bib13
  article-title: Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts
  publication-title: Arch. Biochem. Biophys.
– year: 2012
  ident: bib17
  article-title: Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids
  publication-title: Free Radic. Biol. Med.
– volume: 468
  start-page: 130
  year: 2015
  end-page: 137
  ident: bib2
  article-title: Warmer water temperature results in oxidative damage in an antarctic fish, the
  publication-title: J. Exp. Mar. Bio. Ecol.
– volume: 31
  start-page: 118
  year: 2011
  end-page: 125
  ident: bib11
  article-title: Cloning and expression of a heat shock protein (
  publication-title: Fish. Shellfish Immunol.
– year: 2013
  ident: bib43
  article-title: The effect of probiotics on lipid metabolism
  publication-title: in: lipid metabolism
– volume: 101
  start-page: 16970
  year: 2004
  end-page: 16975
  ident: bib12
  article-title: Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  year: 2017
  ident: bib35
  article-title: Comparative proteomic analysis of liver antioxidant mechanisms in
  publication-title: Sci. Rep.
– volume: 255
  year: 2021
  ident: bib9
  article-title: Treatment with ascorbic acid normalizes the aerobic capacity, antioxidant defence, and cell death pathways in thermally stressed
  publication-title: Comp. Biochem. Physilo. B-Biochem. Mol. Biol.
– volume: 36
  start-page: 241
  year: 2014
  end-page: 246
  ident: bib37
  article-title: Effects of different temperature and food on growth and survival rates of the young leech of
  publication-title: J. Fujian Fish.
– volume: 31
  start-page: 1944
  year: 2006
  end-page: 1946
  ident: bib34
  article-title: Studies on growth and intake law of
  publication-title: Zhongguo Zhongyao Zazhi
– volume: 48
  start-page: 397
  year: 2022
  end-page: 408
  ident: bib5
  article-title: The antioxidant responses of gills, intestines and livers and blood immunity of common carp (
  publication-title: Fish. Physiol. Biochem.
– volume: 296
  start-page: 301
  year: 2002
  end-page: 305
  ident: bib26
  article-title: The danger model: A renewed sense of self
  publication-title: Science
– year: 1982
  ident: bib10
  article-title: Biology of disease
  publication-title: Free radicals and tissue injury
– volume: 529
  year: 2020
  ident: bib14
  article-title: Physiological response of juvenile turbot (
  publication-title: Aquaculture
– volume: 14
  start-page: 11273
  year: 2024
  ident: bib18
  article-title: Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFκB mechanism in fish
  publication-title: Sci. Rep.
– volume: 11
  start-page: 3
  year: 2022
  ident: bib22
  article-title: Application of transcriptome analysis to understand the adverse effects of hypotonic stress on different development stages in the giant freshwater prawn
  publication-title: Antioxidants
– volume: 99
  start-page: 4113
  year: 2020
  end-page: 4122
  ident: bib27
  article-title: Effects of acute heat stress at different ambient temperature on hepatic redox status in broilers
  publication-title: Poult. Sci.
– volume: 25
  start-page: 95
  year: 2016
  end-page: 102
  ident: bib31
  article-title: Liver transcriptome sequencing and de novo annotation of the large yellow croaker (
  publication-title: Mar. Genom.
– volume: 455
  start-page: 119
  year: 2014
  end-page: 125
  ident: bib38
  article-title: An extract from medical leech improve the function of endothelial cells
  publication-title: Biochem. Biophys. Res. Commun.
– year: 1999
  ident: bib8
  article-title: Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology
  publication-title: Annu. Rev. Physiol.
– volume: 28
  start-page: 756
  year: 2012
  end-page: 765
  ident: bib23
  article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation
  publication-title: Int. J. Hyperth.
– volume: 116
  start-page: 883
  year: 2014
  end-page: 890
  ident: bib19
  article-title: Scrotal heat induced the
  publication-title: Acta Histochem.
– volume: 42
  start-page: 701
  year: 2016
  end-page: 710
  ident: bib39
  article-title: Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (
  publication-title: Fish. Physiol. Biochem.
– volume: 14
  start-page: 11273
  issue: 1
  year: 2024
  ident: 10.1016/j.aqrep.2024.102026_bib18
  article-title: Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFκB mechanism in fish
  publication-title: Sci. Rep.
– volume: 229
  year: 2020
  ident: 10.1016/j.aqrep.2024.102026_bib33
  article-title: Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (Whitmania pigra)
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2020.103866
– volume: 31
  start-page: 118
  year: 2011
  ident: 10.1016/j.aqrep.2024.102026_bib11
  article-title: Cloning and expression of a heat shock protein (HSP) 90 gene in the haemocytes of Crassostrea hongkongensis under osmotic stress and bacterial challenge
  publication-title: Fish. Shellfish Immunol.
  doi: 10.1016/j.fsi.2011.04.011
– volume: 455
  start-page: 119
  year: 2014
  ident: 10.1016/j.aqrep.2024.102026_bib38
  article-title: An extract from medical leech improve the function of endothelial cells in vitro and attenuates atherosclerosis in ApoE null mice by reducing macrophages in the lesions
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.10.135
– volume: 433
  start-page: 458
  year: 2014
  ident: 10.1016/j.aqrep.2024.102026_bib42
  article-title: The effects of fructooligosaccharide on the immune response, antioxidant capability and HSP70 and HSP90 expressions in blunt snout bream (Megalobrama amblycephala Yih) under high heat stress
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2014.07.007
– volume: 99
  start-page: 4113
  year: 2020
  ident: 10.1016/j.aqrep.2024.102026_bib27
  article-title: Effects of acute heat stress at different ambient temperature on hepatic redox status in broilers
  publication-title: Poult. Sci.
  doi: 10.1016/j.psj.2020.05.019
– year: 2013
  ident: 10.1016/j.aqrep.2024.102026_bib43
  article-title: The effect of probiotics on lipid metabolism
– year: 1982
  ident: 10.1016/j.aqrep.2024.102026_bib10
  article-title: Biology of disease
– volume: 7
  year: 2017
  ident: 10.1016/j.aqrep.2024.102026_bib35
  article-title: Comparative proteomic analysis of liver antioxidant mechanisms in Megalobrama amblycephala stimulated with dietary emodin
  publication-title: Sci. Rep.
– volume: 48
  start-page: 397
  issue: 2
  year: 2022
  ident: 10.1016/j.aqrep.2024.102026_bib5
  article-title: The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors
  publication-title: Fish. Physiol. Biochem.
  doi: 10.1007/s10695-022-01052-w
– volume: 268
  start-page: 87
  year: 2002
  ident: 10.1016/j.aqrep.2024.102026_bib15
  article-title: Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation
  publication-title: Mol. Genet. Genom.
  doi: 10.1007/s00438-002-0727-9
– volume: 101
  start-page: 16970
  year: 2004
  ident: 10.1016/j.aqrep.2024.102026_bib12
  article-title: Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0403627101
– volume: 40
  start-page: 1083
  year: 2014
  ident: 10.1016/j.aqrep.2024.102026_bib16
  article-title: Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures
  publication-title: Fish. Physiol. Biochem.
– volume: 38
  start-page: 9
  year: 2004
  ident: 10.1016/j.aqrep.2024.102026_bib32
  article-title: Beyond bloodletting: FDA gives leeches a medical makeover
  publication-title: FDA Consum
– volume: 255
  year: 2021
  ident: 10.1016/j.aqrep.2024.102026_bib9
  article-title: Treatment with ascorbic acid normalizes the aerobic capacity, antioxidant defence, and cell death pathways in thermally stressed Mytilus galloprovincialis
  publication-title: Comp. Biochem. Physilo. B-Biochem. Mol. Biol.
– volume: 11
  start-page: 3
  year: 2022
  ident: 10.1016/j.aqrep.2024.102026_bib22
  article-title: Application of transcriptome analysis to understand the adverse effects of hypotonic stress on different development stages in the giant freshwater prawn Macrobrachium rosenbergii post-larvae
  publication-title: Antioxidants
– year: 1997
  ident: 10.1016/j.aqrep.2024.102026_bib28
  article-title: Role of oxidants in microbial pathophysiology
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.10.1.1
– volume: 36
  start-page: 241
  year: 2014
  ident: 10.1016/j.aqrep.2024.102026_bib37
  article-title: Effects of different temperature and food on growth and survival rates of the young leech of Whitmania pigra
  publication-title: J. Fujian Fish.
– volume: 468
  start-page: 130
  year: 2015
  ident: 10.1016/j.aqrep.2024.102026_bib2
  article-title: Warmer water temperature results in oxidative damage in an antarctic fish, the bald notothen
  publication-title: J. Exp. Mar. Bio. Ecol.
  doi: 10.1016/j.jembe.2015.02.018
– volume: 116
  start-page: 883
  year: 2014
  ident: 10.1016/j.aqrep.2024.102026_bib19
  article-title: Scrotal heat induced the Nrf2-driven antioxidant response during oxidative stress and apoptosis in the mouse testis
  publication-title: Acta Histochem.
  doi: 10.1016/j.acthis.2014.02.008
– volume: 81
  start-page: 446
  year: 2018
  ident: 10.1016/j.aqrep.2024.102026_bib36
  article-title: Oxidized fish oil injury stress in Megalobrama amblycephala: Evaluated by growth, intestinal physiology, and transcriptome-based PI3K-Akt/NF-κB/TCR inflammatory signaling
  publication-title: Fish. Shellfish Immunol.
  doi: 10.1016/j.fsi.2018.07.049
– volume: 529
  year: 2020
  ident: 10.1016/j.aqrep.2024.102026_bib14
  article-title: Physiological response of juvenile turbot (Scophthalmus maximus. L) during hyperthermal stress
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.735645
– year: 1997
  ident: 10.1016/j.aqrep.2024.102026_bib13
  article-title: Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1997.0237
– volume: 28
  start-page: 756
  year: 2012
  ident: 10.1016/j.aqrep.2024.102026_bib23
  article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2012.729173
– volume: 5
  start-page: 1021
  year: 2015
  ident: 10.1016/j.aqrep.2024.102026_bib1
  article-title: Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla)
  publication-title: 3 Biotech
  doi: 10.1007/s13205-015-0306-5
– volume: 38
  start-page: 140
  issue: 1
  year: 2014
  ident: 10.1016/j.aqrep.2024.102026_bib7
  article-title: ATF4 (activating transcription factor 4) from grass carp (Ctenopharyngodon idella) modulates the transcription initiation of GRP78 and GRP94 in CIK cells
  publication-title: Fish. Shellfish Inmunl.
  doi: 10.1016/j.fsi.2014.03.004
– volume: 296
  start-page: 301
  year: 2002
  ident: 10.1016/j.aqrep.2024.102026_bib26
  article-title: The danger model: A renewed sense of self
  publication-title: Science
  doi: 10.1126/science.1071059
– volume: 217
  start-page: 60
  year: 2018
  ident: 10.1016/j.aqrep.2024.102026_bib40
  article-title: Characterization of 2-Cys peroxiredoxin 3 and 4 in common carp and the immune response against bacterial infection
  publication-title: Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.
  doi: 10.1016/j.cbpb.2017.12.012
– year: 2012
  ident: 10.1016/j.aqrep.2024.102026_bib17
  article-title: Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.11.038
– volume: 287
  start-page: 9873
  year: 2012
  ident: 10.1016/j.aqrep.2024.102026_bib30
  article-title: Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.312694
– volume: 619
  start-page: 1
  year: 2017
  ident: 10.1016/j.aqrep.2024.102026_bib20
  article-title: Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss)
  publication-title: Gene
  doi: 10.1016/j.gene.2017.03.041
– volume: 245
  start-page: 441
  year: 2020
  ident: 10.1016/j.aqrep.2024.102026_bib41
  article-title: Aqueous extract of Whitmania Pigra whitman alleviates thrombus burden via sirtuin 1/NF-κB Pathway
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2019.07.094
– volume: 71
  start-page: 142
  year: 2018
  ident: 10.1016/j.aqrep.2024.102026_bib21
  article-title: Autophagy involved in the activation of the Nrf2-antioxidant system in testes of heat-exposed mice
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2017.11.006
– volume: 25
  start-page: 95
  year: 2016
  ident: 10.1016/j.aqrep.2024.102026_bib31
  article-title: Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress
  publication-title: Mar. Genom.
  doi: 10.1016/j.margen.2015.12.001
– volume: 211
  start-page: 3077
  year: 2008
  ident: 10.1016/j.aqrep.2024.102026_bib4
  article-title: Effects of hypothermia on gene expression in zebrafish gills:upregulation in differentiation and function of ionocytes as compensatory responses
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.019950
– year: 1999
  ident: 10.1016/j.aqrep.2024.102026_bib8
  article-title: Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev.physiol.61.1.243
– volume: 31
  start-page: 1944
  year: 2006
  ident: 10.1016/j.aqrep.2024.102026_bib34
  article-title: Studies on growth and intake law of Whitmania pigra with temperature
  publication-title: Zhongguo Zhongyao Zazhi
– volume: 1
  start-page: 42
  year: 2014
  ident: 10.1016/j.aqrep.2024.102026_bib29
  article-title: Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle
  publication-title: Temperature
  doi: 10.4161/temp.28844
– volume: 28
  start-page: 756
  year: 2012
  ident: 10.1016/j.aqrep.2024.102026_bib24
  article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation
  publication-title: Int J. Hyperth.
  doi: 10.3109/02656736.2012.729173
– volume: 21
  start-page: 153
  issue: 2
  year: 2011
  ident: 10.1016/j.aqrep.2024.102026_bib6
  article-title: Advances and perspectives on the regulation and expression of piscine heat shock proteins
  publication-title: Rev. Fish. Biol. Fish.
  doi: 10.1007/s11160-010-9164-8
– volume: 85
  start-page: 1634
  year: 2011
  ident: 10.1016/j.aqrep.2024.102026_bib3
  article-title: Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.06.056
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.1016/j.aqrep.2024.102026_bib25
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 42
  start-page: 701
  year: 2016
  ident: 10.1016/j.aqrep.2024.102026_bib39
  article-title: Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss
  publication-title: Fish. Physiol. Biochem.
  doi: 10.1007/s10695-015-0170-6
SSID ssj0001738124
Score 2.2775085
Snippet Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102026
SubjectTerms antioxidant activity
Antioxidant capacity
antioxidant enzymes
aquaculture
B-lymphocytes
heat-shock protein 70
heat-shock protein 90
High-temperature stress
intestines
lipid peroxides
malondialdehyde
superoxide dismutase
temperature
Toll-like receptor 4
transcription factors
Transcriptome analysis
transcriptomics
Whitmania pigra
Title Transcriptome analysis reveals the oxidative damage and immune-suppression of leech (Whitmania pigra Whitman) intestine induced by high-temperature stress
URI https://dx.doi.org/10.1016/j.aqrep.2024.102026
https://www.proquest.com/docview/3153789875
https://doaj.org/article/5e2a5263c0bc460288d9639406acab7c
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEMct1BMcEE-xQNEgcQCJiF3bcZxji1pVSHCiUm-WH5OyqE2W7a4EX4VPy4zjVFsO5cItDyeO4rH_M8n4ZyHeqGgoCDC-iqnBinklVZA68QQfqyVqXwcOFD9_MSen-tNZfbaz1BfnhI144PHFfahR-loaFechakNqaBPZTEs65KMPTeTRlzRvJ5jKX1caxco1YYZyQpf_sUYmVErNvIKMU9iRokzsv6FIf43NWXCOH4j7xVOEg_EJH4o72D8S9w7O14WWgY_F76w0ud8Plwi-AEaAsUxkVkDOHQw_lynDvSH5Sxo8qFSCJc8Kwepquyp5sD0MHVwgxm_wltfMYyqGh9XyfO2h7L8DRkvQiNAjbSUyiQThFzDvuGLAVaEzwzj75Ik4PT76-vGkKostVFHrZlO1HeIi2Bi6JO086ZZkC2MyC68XTQg6dXOFtpEpBmwDxVlSRblAOjU3nZSonoq9fujxmYCQgrL8Bw-10raW5IGi1YFJ8l0y2M2EnN67i4VEzgtiXLgp5ey7y43luLHc2Fgz8f76otUI4ri9-CE36HVRpmjnA2RbrtiW-5dtzYSZzMEVh2R0NOhWy9trfz0Zj6Puyv9gfI_D9sopUpjGthQlPv8fT_hC3OVqx1Sil2Jvs97iPnlJm_Aqd4g_TrkTHw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+reveals+the+oxidative+damage+and+immune-suppression+of+leech+%28Whitmania+pigra+Whitman%29+intestine+induced+by+high-temperature+stress&rft.jtitle=Aquaculture+reports&rft.au=Xiong%2C+Liangwei&rft.au=Zheng%2C+Xiaochuan&rft.au=Zheng%2C+Yi&rft.au=Wang%2C+Shuaibing&rft.date=2024-04-01&rft.issn=2352-5134&rft.eissn=2352-5134&rft.volume=35+p.102026-&rft_id=info:doi/10.1016%2Fj.aqrep.2024.102026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-5134&client=summon