Transcriptome analysis reveals the oxidative damage and immune-suppression of leech (Whitmania pigra Whitman) intestine induced by high-temperature stress
Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress...
Saved in:
Published in | Aquaculture reports Vol. 35; p. 102026 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches.
•High-temperature stress affected the antioxidant ability in leech.•High-temperature stress affected the immune ability in leech.•Transcriptome analysis identified 275 up-regulate and 150 down-regulate genes in leech. |
---|---|
AbstractList | Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches.
•High-temperature stress affected the antioxidant ability in leech.•High-temperature stress affected the immune ability in leech.•Transcriptome analysis identified 275 up-regulate and 150 down-regulate genes in leech. Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches. Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra Whitman has received little attention. Therefore, the aim of this study was to investigate the possible mechanisms of high-temperature stress in W. pigra using transcriptome analysis and detection of antioxidant markers. Samples were collected at 1 d, 3 d, 5 d, and 7 d under stress in two experimental groups: the control group at 27 °C and the high-temperature stress group at 35 °C. High-temperature stress caused oxidative damage in the leech intestine, as indicated by decreased antioxidant enzyme activities (superoxide dismutase and total antioxidant capacity) and increased lipid hydroperoxide malondialdehyde. Transcriptome analysis revealed 425 DEGs in leech intestine during high-temperature stress, with 275 up-regulated and 150 down-regulated genes. According to KEGG enrichment analysis, 425 DEGs were involved in the immune system and induced abnormal expression of disease-related genes. Furthermore, when leeches were exposed to high-temperature stress, B-cell lymphoma-2, heat shock protein 70, heat shock protein 90, and nuclear factor erythroid 2-related factor 2 mRNAs were dramatically upregulated, whereas activating transcription factor, inhibitor of Nuclear factor kappa-B, sequestosome 1, and toll-like receptor 4 mRNAs were significantly downregulated. In conclusion, 35 °C high-temperature stress impaired leech intestinal function by decreasing antioxidant capacity, causing oxidative damage, and suppressing the activation of immune capacity. This study contributes to future research on the detailed mechanisms of high-temperature stress in leeches. |
ArticleNumber | 102026 |
Author | Zheng, Xiaochuan Liu, Bo Wang, Haihua Ma, Benhe Zheng, Yi Li, Zhengzhong Liu, Shengli Wang, Shuaibing Liu, Shijie Xiong, Liangwei |
Author_xml | – sequence: 1 givenname: Liangwei surname: Xiong fullname: Xiong, Liangwei organization: Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China – sequence: 2 givenname: Xiaochuan surname: Zheng fullname: Zheng, Xiaochuan organization: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China – sequence: 3 givenname: Yi surname: Zheng fullname: Zheng, Yi organization: Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China – sequence: 4 givenname: Shuaibing surname: Wang fullname: Wang, Shuaibing organization: Jiangsu Agri-animal Husbandry Vocational College, Taizhou, PR China – sequence: 5 givenname: Zhengzhong orcidid: 0009-0003-1712-8828 surname: Li fullname: Li, Zhengzhong organization: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China – sequence: 6 givenname: Shijie surname: Liu fullname: Liu, Shijie organization: Department of chemical and biological engineering, University of Sheffield, Sheffield S1 3JD, UK – sequence: 7 givenname: Haihua surname: Wang fullname: Wang, Haihua organization: Jiangxi Institute of Fisheries Sciences, Nanchang, PR China – sequence: 8 givenname: Benhe surname: Ma fullname: Ma, Benhe organization: Jiangxi Institute of Fisheries Sciences, Nanchang, PR China – sequence: 9 givenname: Shengli surname: Liu fullname: Liu, Shengli organization: Shandong Lonct Enzymes Co., Ltd. Linyi 276400, PR China – sequence: 10 givenname: Bo orcidid: 0000-0002-9537-4552 surname: Liu fullname: Liu, Bo email: liub@ffrc.cn organization: Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China |
BookMark | eNqFUctuFDEQHKEgEUK-gIuP4TCL7fG8DhxQxCNSJC5BHK0eu2e3VzP2xPZE7K_ka_FmI4Q4wKnL7apqt-t1cea8w6J4K_hGcNG832_gPuCykVyq3MmleVGcy6qWZS0qdfYHflVcxrjnnIu26oRU58XjXQAXTaAl-RkZOJgOkSIL-IAwRZZ2yPxPspDoAZmFGbZHlmU0z6vDMq7LEjBG8o75kU2IZseufuwozeAI2ELbAOz5_I6RSxgTOczIrgYtGw5sR9tdmXBeMEBaA7KYjpZvipdjfgJePteL4vvnT3fXX8vbb19urj_elkapNpX9iCiGzgyjlR23qu9Ui8Y2ApRoh0HZkVfYtdKaAftBZlQZKTBf8WaUEquL4ubkaz3s9RJohnDQHkg_NXzYagiJzIS6Rgm1bCrDB6MaLrvO9k3VK96AgaE12evq5LUEf7_mVfVM0eA0gUO_Rl2Jumq7vmvrTK1OVBN8jAHH36MF18dg9V4_BauPwepTsFnV_6UylHI43qUANP1H--GkxfybD4RBR0PocgoU0KS8Lv1T_wsZwMXF |
CitedBy_id | crossref_primary_10_1007_s11033_024_10016_7 crossref_primary_10_1016_j_cbd_2024_101406 |
Cites_doi | 10.1016/j.jprot.2020.103866 10.1016/j.fsi.2011.04.011 10.1016/j.bbrc.2014.10.135 10.1016/j.aquaculture.2014.07.007 10.1016/j.psj.2020.05.019 10.1007/s10695-022-01052-w 10.1007/s00438-002-0727-9 10.1073/pnas.0403627101 10.1128/CMR.10.1.1 10.1016/j.jembe.2015.02.018 10.1016/j.acthis.2014.02.008 10.1016/j.fsi.2018.07.049 10.1016/j.aquaculture.2020.735645 10.1006/abbi.1997.0237 10.3109/02656736.2012.729173 10.1007/s13205-015-0306-5 10.1016/j.fsi.2014.03.004 10.1126/science.1071059 10.1016/j.cbpb.2017.12.012 10.1016/j.freeradbiomed.2011.11.038 10.1074/jbc.M111.312694 10.1016/j.gene.2017.03.041 10.1016/j.jss.2019.07.094 10.1016/j.jtherbio.2017.11.006 10.1016/j.margen.2015.12.001 10.1242/jeb.019950 10.1146/annurev.physiol.61.1.243 10.4161/temp.28844 10.1007/s11160-010-9164-8 10.1016/j.talanta.2011.06.056 10.1006/meth.2001.1262 10.1007/s10695-015-0170-6 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.aqrep.2024.102026 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2352-5134 |
ExternalDocumentID | oai_doaj_org_article_5e2a5263c0bc460288d9639406acab7c 10_1016_j_aqrep_2024_102026 S2352513424001145 |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION 7S9 L.6 |
ID | FETCH-LOGICAL-c447t-9fee1b8cbfd280d49847ecd61a417bb4df03e872dcbe9b28723c21e7bb06f22e3 |
IEDL.DBID | DOA |
ISSN | 2352-5134 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Fri Aug 22 20:41:25 EDT 2025 Tue Jul 01 01:33:05 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Sat Sep 07 15:50:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Antioxidant capacity High-temperature stress Whitmania pigra Transcriptome analysis |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-9fee1b8cbfd280d49847ecd61a417bb4df03e872dcbe9b28723c21e7bb06f22e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9537-4552 0009-0003-1712-8828 |
OpenAccessLink | https://doaj.org/article/5e2a5263c0bc460288d9639406acab7c |
PQID | 3153789875 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e2a5263c0bc460288d9639406acab7c proquest_miscellaneous_3153789875 crossref_primary_10_1016_j_aqrep_2024_102026 crossref_citationtrail_10_1016_j_aqrep_2024_102026 elsevier_sciencedirect_doi_10_1016_j_aqrep_2024_102026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 20240401 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Aquaculture reports |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Shi, Wang, Liu (bib33) 2020; 229 Li, Huang, Liu (bib20) 2017; 619 Huang, Yasunami, Carlson (bib13) 1997 Livak, Schmittgen (bib25) 2001; 25 Matzinger (bib26) 2002; 296 Wang, Liu, Li (bib39) 2016; 42 Carney Almroth, Asker, Wassmur (bib2) 2015; 468 Montilla, Johnson, Pearce (bib29) 2014; 1 Shi, Liu, Guo (bib34) 2006; 31 Li, Li, Zhou (bib21) 2018; 71 Basu, Paichha, Swain (bib1) 2015; 5 Kansanen, Jyrkkänen, Levonen (bib17) 2012 Zhang, Tian, Li (bib42) 2014; 433 Chen, Li, Li (bib3) 2011; 85 Zhang, Zhang (bib43) 2013 Feder, Hofmann (bib8) 1999 Gracey, Fraser, Li (bib12) 2004; 101 Yang, Zhao, Yang (bib40) 2018; 217 Liu, Li, Lu (bib23) 2012; 28 Qian, Xue (bib31) 2016; 25 Wang, Wang, Wang (bib37) 2014; 36 Ju, Dunham, Liu (bib15) 2002; 268 Dawood, Alkafafy, Sewilam (bib5) 2022; 48 Liu, Li, Lu (bib24) 2012; 28 Miller, Britigan (bib28) 1997 Freeman, Crapo (bib10) 1982 Rados (bib32) 2004; 38 Fu, Chen, Zhang (bib11) 2011; 31 Liu, Gao, Liu (bib22) 2022; 11 Chou, Hsiao, Chen (bib4) 2008; 211 Song, Liu, Xie (bib35) 2017; 7 Yao, Liu, Li (bib41) 2020; 245 Jia, Chen, Wang (bib14) 2020; 529 Wang, Zhao, Wang (bib38) 2014; 455 Deane, Woo (bib6) 2011; 21 Fan, Mao, Wu (bib7) 2014; 38 Kanak, Dogan, Eroglu (bib16) 2014; 40 Li, Cao, Wang (bib19) 2014; 116 Niture, Jaiswal (bib30) 2012; 287 Song, Liu, Xu (bib36) 2018; 81 Feidantsis, Georgoulis, Giantsis (bib9) 2021; 255 Kumar, Thorat, Kochewad (bib18) 2024; 14 Miao, Si, Xie (bib27) 2020; 99 Gracey (10.1016/j.aqrep.2024.102026_bib12) 2004; 101 Liu (10.1016/j.aqrep.2024.102026_bib22) 2022; 11 Feder (10.1016/j.aqrep.2024.102026_bib8) 1999 Huang (10.1016/j.aqrep.2024.102026_bib13) 1997 Shi (10.1016/j.aqrep.2024.102026_bib34) 2006; 31 Jia (10.1016/j.aqrep.2024.102026_bib14) 2020; 529 Wang (10.1016/j.aqrep.2024.102026_bib38) 2014; 455 Ju (10.1016/j.aqrep.2024.102026_bib15) 2002; 268 Miao (10.1016/j.aqrep.2024.102026_bib27) 2020; 99 Basu (10.1016/j.aqrep.2024.102026_bib1) 2015; 5 Chen (10.1016/j.aqrep.2024.102026_bib3) 2011; 85 Wang (10.1016/j.aqrep.2024.102026_bib37) 2014; 36 Zhang (10.1016/j.aqrep.2024.102026_bib43) 2013 Wang (10.1016/j.aqrep.2024.102026_bib39) 2016; 42 Liu (10.1016/j.aqrep.2024.102026_bib24) 2012; 28 Song (10.1016/j.aqrep.2024.102026_bib36) 2018; 81 Deane (10.1016/j.aqrep.2024.102026_bib6) 2011; 21 Li (10.1016/j.aqrep.2024.102026_bib20) 2017; 619 Zhang (10.1016/j.aqrep.2024.102026_bib42) 2014; 433 Kumar (10.1016/j.aqrep.2024.102026_bib18) 2024; 14 Carney Almroth (10.1016/j.aqrep.2024.102026_bib2) 2015; 468 Matzinger (10.1016/j.aqrep.2024.102026_bib26) 2002; 296 Chou (10.1016/j.aqrep.2024.102026_bib4) 2008; 211 Qian (10.1016/j.aqrep.2024.102026_bib31) 2016; 25 Feidantsis (10.1016/j.aqrep.2024.102026_bib9) 2021; 255 Kansanen (10.1016/j.aqrep.2024.102026_bib17) 2012 Montilla (10.1016/j.aqrep.2024.102026_bib29) 2014; 1 Song (10.1016/j.aqrep.2024.102026_bib35) 2017; 7 Yao (10.1016/j.aqrep.2024.102026_bib41) 2020; 245 Li (10.1016/j.aqrep.2024.102026_bib19) 2014; 116 Shi (10.1016/j.aqrep.2024.102026_bib33) 2020; 229 Fan (10.1016/j.aqrep.2024.102026_bib7) 2014; 38 Livak (10.1016/j.aqrep.2024.102026_bib25) 2001; 25 Miller (10.1016/j.aqrep.2024.102026_bib28) 1997 Kanak (10.1016/j.aqrep.2024.102026_bib16) 2014; 40 Yang (10.1016/j.aqrep.2024.102026_bib40) 2018; 217 Freeman (10.1016/j.aqrep.2024.102026_bib10) 1982 Dawood (10.1016/j.aqrep.2024.102026_bib5) 2022; 48 Li (10.1016/j.aqrep.2024.102026_bib21) 2018; 71 Liu (10.1016/j.aqrep.2024.102026_bib23) 2012; 28 Fu (10.1016/j.aqrep.2024.102026_bib11) 2011; 31 Rados (10.1016/j.aqrep.2024.102026_bib32) 2004; 38 Niture (10.1016/j.aqrep.2024.102026_bib30) 2012; 287 |
References_xml | – volume: 40 start-page: 1083 year: 2014 end-page: 1091 ident: bib16 article-title: Effects of fish size on the response of antioxidant systems of publication-title: Fish. Physiol. Biochem. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib25 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 publication-title: Methods – volume: 229 year: 2020 ident: bib33 article-title: Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech ( publication-title: J. Proteom. – volume: 5 start-page: 1021 year: 2015 end-page: 1030 ident: bib1 article-title: Modulation of publication-title: 3 Biotech – volume: 28 start-page: 756 year: 2012 end-page: 765 ident: bib24 article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation publication-title: Int J. Hyperth. – volume: 268 start-page: 87 year: 2002 end-page: 95 ident: bib15 article-title: Differential gene expression in the brain of channel catfish ( publication-title: Mol. Genet. Genom. – volume: 287 start-page: 9873 year: 2012 end-page: 9886 ident: bib30 article-title: 2 protein up-regulates antiapoptotic protein publication-title: J. Biol. Chem. – volume: 71 start-page: 142 year: 2018 end-page: 152 ident: bib21 article-title: Autophagy involved in the activation of the publication-title: J. Therm. Biol. – volume: 21 start-page: 153 year: 2011 end-page: 185 ident: bib6 article-title: Advances and perspectives on the regulation and expression of piscine heat shock proteins publication-title: Rev. Fish. Biol. Fish. – volume: 38 start-page: 140 year: 2014 end-page: 148 ident: bib7 article-title: ATF4 (activating transcription factor 4) from grass carp ( publication-title: Fish. Shellfish Inmunl. – volume: 619 start-page: 1 year: 2017 end-page: 9 ident: bib20 article-title: Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout ( publication-title: Gene – volume: 217 start-page: 60 year: 2018 end-page: 69 ident: bib40 article-title: Characterization of 2-Cys peroxiredoxin 3 and 4 in common carp and the immune response against bacterial infection publication-title: Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. – volume: 38 start-page: 9 year: 2004 ident: bib32 article-title: Beyond bloodletting: FDA gives leeches a medical makeover publication-title: FDA Consum – volume: 81 start-page: 446 year: 2018 end-page: 455 ident: bib36 article-title: Oxidized fish oil injury stress in publication-title: Fish. Shellfish Immunol. – volume: 433 start-page: 458 year: 2014 end-page: 466 ident: bib42 article-title: The effects of fructooligosaccharide on the immune response, antioxidant capability and publication-title: Aquaculture – volume: 85 start-page: 1634 year: 2011 end-page: 1641 ident: bib3 article-title: Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography publication-title: Talanta – volume: 211 start-page: 3077 year: 2008 end-page: 3084 ident: bib4 article-title: Effects of hypothermia on gene expression in zebrafish gills:upregulation in differentiation and function of ionocytes as compensatory responses publication-title: J. Exp. Biol. – volume: 1 start-page: 42 year: 2014 end-page: 50 ident: bib29 article-title: Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle publication-title: Temperature – volume: 245 start-page: 441 year: 2020 end-page: 452 ident: bib41 article-title: Aqueous extract of publication-title: J. Surg. Res. – year: 1997 ident: bib28 article-title: Role of oxidants in microbial pathophysiology publication-title: Clin. Microbiol. Rev. – year: 1997 ident: bib13 article-title: Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts publication-title: Arch. Biochem. Biophys. – year: 2012 ident: bib17 article-title: Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids publication-title: Free Radic. Biol. Med. – volume: 468 start-page: 130 year: 2015 end-page: 137 ident: bib2 article-title: Warmer water temperature results in oxidative damage in an antarctic fish, the publication-title: J. Exp. Mar. Bio. Ecol. – volume: 31 start-page: 118 year: 2011 end-page: 125 ident: bib11 article-title: Cloning and expression of a heat shock protein ( publication-title: Fish. Shellfish Immunol. – year: 2013 ident: bib43 article-title: The effect of probiotics on lipid metabolism publication-title: in: lipid metabolism – volume: 101 start-page: 16970 year: 2004 end-page: 16975 ident: bib12 article-title: Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 year: 2017 ident: bib35 article-title: Comparative proteomic analysis of liver antioxidant mechanisms in publication-title: Sci. Rep. – volume: 255 year: 2021 ident: bib9 article-title: Treatment with ascorbic acid normalizes the aerobic capacity, antioxidant defence, and cell death pathways in thermally stressed publication-title: Comp. Biochem. Physilo. B-Biochem. Mol. Biol. – volume: 36 start-page: 241 year: 2014 end-page: 246 ident: bib37 article-title: Effects of different temperature and food on growth and survival rates of the young leech of publication-title: J. Fujian Fish. – volume: 31 start-page: 1944 year: 2006 end-page: 1946 ident: bib34 article-title: Studies on growth and intake law of publication-title: Zhongguo Zhongyao Zazhi – volume: 48 start-page: 397 year: 2022 end-page: 408 ident: bib5 article-title: The antioxidant responses of gills, intestines and livers and blood immunity of common carp ( publication-title: Fish. Physiol. Biochem. – volume: 296 start-page: 301 year: 2002 end-page: 305 ident: bib26 article-title: The danger model: A renewed sense of self publication-title: Science – year: 1982 ident: bib10 article-title: Biology of disease publication-title: Free radicals and tissue injury – volume: 529 year: 2020 ident: bib14 article-title: Physiological response of juvenile turbot ( publication-title: Aquaculture – volume: 14 start-page: 11273 year: 2024 ident: bib18 article-title: Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFκB mechanism in fish publication-title: Sci. Rep. – volume: 11 start-page: 3 year: 2022 ident: bib22 article-title: Application of transcriptome analysis to understand the adverse effects of hypotonic stress on different development stages in the giant freshwater prawn publication-title: Antioxidants – volume: 99 start-page: 4113 year: 2020 end-page: 4122 ident: bib27 article-title: Effects of acute heat stress at different ambient temperature on hepatic redox status in broilers publication-title: Poult. Sci. – volume: 25 start-page: 95 year: 2016 end-page: 102 ident: bib31 article-title: Liver transcriptome sequencing and de novo annotation of the large yellow croaker ( publication-title: Mar. Genom. – volume: 455 start-page: 119 year: 2014 end-page: 125 ident: bib38 article-title: An extract from medical leech improve the function of endothelial cells publication-title: Biochem. Biophys. Res. Commun. – year: 1999 ident: bib8 article-title: Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology publication-title: Annu. Rev. Physiol. – volume: 28 start-page: 756 year: 2012 end-page: 765 ident: bib23 article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation publication-title: Int. J. Hyperth. – volume: 116 start-page: 883 year: 2014 end-page: 890 ident: bib19 article-title: Scrotal heat induced the publication-title: Acta Histochem. – volume: 42 start-page: 701 year: 2016 end-page: 710 ident: bib39 article-title: Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 ( publication-title: Fish. Physiol. Biochem. – volume: 14 start-page: 11273 issue: 1 year: 2024 ident: 10.1016/j.aqrep.2024.102026_bib18 article-title: Manganese nutrient mitigates ammonia, arsenic toxicity and high temperature stress using gene regulation via NFκB mechanism in fish publication-title: Sci. Rep. – volume: 229 year: 2020 ident: 10.1016/j.aqrep.2024.102026_bib33 article-title: Proteome and phosphoproteome profiling reveals the regulation mechanism of hibernation in a freshwater leech (Whitmania pigra) publication-title: J. Proteom. doi: 10.1016/j.jprot.2020.103866 – volume: 31 start-page: 118 year: 2011 ident: 10.1016/j.aqrep.2024.102026_bib11 article-title: Cloning and expression of a heat shock protein (HSP) 90 gene in the haemocytes of Crassostrea hongkongensis under osmotic stress and bacterial challenge publication-title: Fish. Shellfish Immunol. doi: 10.1016/j.fsi.2011.04.011 – volume: 455 start-page: 119 year: 2014 ident: 10.1016/j.aqrep.2024.102026_bib38 article-title: An extract from medical leech improve the function of endothelial cells in vitro and attenuates atherosclerosis in ApoE null mice by reducing macrophages in the lesions publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.10.135 – volume: 433 start-page: 458 year: 2014 ident: 10.1016/j.aqrep.2024.102026_bib42 article-title: The effects of fructooligosaccharide on the immune response, antioxidant capability and HSP70 and HSP90 expressions in blunt snout bream (Megalobrama amblycephala Yih) under high heat stress publication-title: Aquaculture doi: 10.1016/j.aquaculture.2014.07.007 – volume: 99 start-page: 4113 year: 2020 ident: 10.1016/j.aqrep.2024.102026_bib27 article-title: Effects of acute heat stress at different ambient temperature on hepatic redox status in broilers publication-title: Poult. Sci. doi: 10.1016/j.psj.2020.05.019 – year: 2013 ident: 10.1016/j.aqrep.2024.102026_bib43 article-title: The effect of probiotics on lipid metabolism – year: 1982 ident: 10.1016/j.aqrep.2024.102026_bib10 article-title: Biology of disease – volume: 7 year: 2017 ident: 10.1016/j.aqrep.2024.102026_bib35 article-title: Comparative proteomic analysis of liver antioxidant mechanisms in Megalobrama amblycephala stimulated with dietary emodin publication-title: Sci. Rep. – volume: 48 start-page: 397 issue: 2 year: 2022 ident: 10.1016/j.aqrep.2024.102026_bib5 article-title: The antioxidant responses of gills, intestines and livers and blood immunity of common carp (Cyprinus carpio) exposed to salinity and temperature stressors publication-title: Fish. Physiol. Biochem. doi: 10.1007/s10695-022-01052-w – volume: 268 start-page: 87 year: 2002 ident: 10.1016/j.aqrep.2024.102026_bib15 article-title: Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation publication-title: Mol. Genet. Genom. doi: 10.1007/s00438-002-0727-9 – volume: 101 start-page: 16970 year: 2004 ident: 10.1016/j.aqrep.2024.102026_bib12 article-title: Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0403627101 – volume: 40 start-page: 1083 year: 2014 ident: 10.1016/j.aqrep.2024.102026_bib16 article-title: Effects of fish size on the response of antioxidant systems of Oreochromis niloticus following metal exposures publication-title: Fish. Physiol. Biochem. – volume: 38 start-page: 9 year: 2004 ident: 10.1016/j.aqrep.2024.102026_bib32 article-title: Beyond bloodletting: FDA gives leeches a medical makeover publication-title: FDA Consum – volume: 255 year: 2021 ident: 10.1016/j.aqrep.2024.102026_bib9 article-title: Treatment with ascorbic acid normalizes the aerobic capacity, antioxidant defence, and cell death pathways in thermally stressed Mytilus galloprovincialis publication-title: Comp. Biochem. Physilo. B-Biochem. Mol. Biol. – volume: 11 start-page: 3 year: 2022 ident: 10.1016/j.aqrep.2024.102026_bib22 article-title: Application of transcriptome analysis to understand the adverse effects of hypotonic stress on different development stages in the giant freshwater prawn Macrobrachium rosenbergii post-larvae publication-title: Antioxidants – year: 1997 ident: 10.1016/j.aqrep.2024.102026_bib28 article-title: Role of oxidants in microbial pathophysiology publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.10.1.1 – volume: 36 start-page: 241 year: 2014 ident: 10.1016/j.aqrep.2024.102026_bib37 article-title: Effects of different temperature and food on growth and survival rates of the young leech of Whitmania pigra publication-title: J. Fujian Fish. – volume: 468 start-page: 130 year: 2015 ident: 10.1016/j.aqrep.2024.102026_bib2 article-title: Warmer water temperature results in oxidative damage in an antarctic fish, the bald notothen publication-title: J. Exp. Mar. Bio. Ecol. doi: 10.1016/j.jembe.2015.02.018 – volume: 116 start-page: 883 year: 2014 ident: 10.1016/j.aqrep.2024.102026_bib19 article-title: Scrotal heat induced the Nrf2-driven antioxidant response during oxidative stress and apoptosis in the mouse testis publication-title: Acta Histochem. doi: 10.1016/j.acthis.2014.02.008 – volume: 81 start-page: 446 year: 2018 ident: 10.1016/j.aqrep.2024.102026_bib36 article-title: Oxidized fish oil injury stress in Megalobrama amblycephala: Evaluated by growth, intestinal physiology, and transcriptome-based PI3K-Akt/NF-κB/TCR inflammatory signaling publication-title: Fish. Shellfish Immunol. doi: 10.1016/j.fsi.2018.07.049 – volume: 529 year: 2020 ident: 10.1016/j.aqrep.2024.102026_bib14 article-title: Physiological response of juvenile turbot (Scophthalmus maximus. L) during hyperthermal stress publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735645 – year: 1997 ident: 10.1016/j.aqrep.2024.102026_bib13 article-title: Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1997.0237 – volume: 28 start-page: 756 year: 2012 ident: 10.1016/j.aqrep.2024.102026_bib23 article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation publication-title: Int. J. Hyperth. doi: 10.3109/02656736.2012.729173 – volume: 5 start-page: 1021 year: 2015 ident: 10.1016/j.aqrep.2024.102026_bib1 article-title: Modulation of TLR2, TLR4, TLR5, NOD1 and NOD2 receptor gene expressions and their downstream signaling molecules following thermal stress in the Indian major carp catla (Catla catla) publication-title: 3 Biotech doi: 10.1007/s13205-015-0306-5 – volume: 38 start-page: 140 issue: 1 year: 2014 ident: 10.1016/j.aqrep.2024.102026_bib7 article-title: ATF4 (activating transcription factor 4) from grass carp (Ctenopharyngodon idella) modulates the transcription initiation of GRP78 and GRP94 in CIK cells publication-title: Fish. Shellfish Inmunl. doi: 10.1016/j.fsi.2014.03.004 – volume: 296 start-page: 301 year: 2002 ident: 10.1016/j.aqrep.2024.102026_bib26 article-title: The danger model: A renewed sense of self publication-title: Science doi: 10.1126/science.1071059 – volume: 217 start-page: 60 year: 2018 ident: 10.1016/j.aqrep.2024.102026_bib40 article-title: Characterization of 2-Cys peroxiredoxin 3 and 4 in common carp and the immune response against bacterial infection publication-title: Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. doi: 10.1016/j.cbpb.2017.12.012 – year: 2012 ident: 10.1016/j.aqrep.2024.102026_bib17 article-title: Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.11.038 – volume: 287 start-page: 9873 year: 2012 ident: 10.1016/j.aqrep.2024.102026_bib30 article-title: Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.312694 – volume: 619 start-page: 1 year: 2017 ident: 10.1016/j.aqrep.2024.102026_bib20 article-title: Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss) publication-title: Gene doi: 10.1016/j.gene.2017.03.041 – volume: 245 start-page: 441 year: 2020 ident: 10.1016/j.aqrep.2024.102026_bib41 article-title: Aqueous extract of Whitmania Pigra whitman alleviates thrombus burden via sirtuin 1/NF-κB Pathway publication-title: J. Surg. Res. doi: 10.1016/j.jss.2019.07.094 – volume: 71 start-page: 142 year: 2018 ident: 10.1016/j.aqrep.2024.102026_bib21 article-title: Autophagy involved in the activation of the Nrf2-antioxidant system in testes of heat-exposed mice publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2017.11.006 – volume: 25 start-page: 95 year: 2016 ident: 10.1016/j.aqrep.2024.102026_bib31 article-title: Liver transcriptome sequencing and de novo annotation of the large yellow croaker (Larimichthy crocea) under heat and cold stress publication-title: Mar. Genom. doi: 10.1016/j.margen.2015.12.001 – volume: 211 start-page: 3077 year: 2008 ident: 10.1016/j.aqrep.2024.102026_bib4 article-title: Effects of hypothermia on gene expression in zebrafish gills:upregulation in differentiation and function of ionocytes as compensatory responses publication-title: J. Exp. Biol. doi: 10.1242/jeb.019950 – year: 1999 ident: 10.1016/j.aqrep.2024.102026_bib8 article-title: Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev.physiol.61.1.243 – volume: 31 start-page: 1944 year: 2006 ident: 10.1016/j.aqrep.2024.102026_bib34 article-title: Studies on growth and intake law of Whitmania pigra with temperature publication-title: Zhongguo Zhongyao Zazhi – volume: 1 start-page: 42 year: 2014 ident: 10.1016/j.aqrep.2024.102026_bib29 article-title: Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle publication-title: Temperature doi: 10.4161/temp.28844 – volume: 28 start-page: 756 year: 2012 ident: 10.1016/j.aqrep.2024.102026_bib24 article-title: Reduction of intestinal mucosal immune function in heat-stressed rats and bacterial translocation publication-title: Int J. Hyperth. doi: 10.3109/02656736.2012.729173 – volume: 21 start-page: 153 issue: 2 year: 2011 ident: 10.1016/j.aqrep.2024.102026_bib6 article-title: Advances and perspectives on the regulation and expression of piscine heat shock proteins publication-title: Rev. Fish. Biol. Fish. doi: 10.1007/s11160-010-9164-8 – volume: 85 start-page: 1634 year: 2011 ident: 10.1016/j.aqrep.2024.102026_bib3 article-title: Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography publication-title: Talanta doi: 10.1016/j.talanta.2011.06.056 – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.aqrep.2024.102026_bib25 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 42 start-page: 701 year: 2016 ident: 10.1016/j.aqrep.2024.102026_bib39 article-title: Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss publication-title: Fish. Physiol. Biochem. doi: 10.1007/s10695-015-0170-6 |
SSID | ssj0001738124 |
Score | 2.2775085 |
Snippet | Temperature is a key component in regulating the survival and growth of aquatic animals. However, the mechanism of high-temperature stress in Whitmania pigra... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102026 |
SubjectTerms | antioxidant activity Antioxidant capacity antioxidant enzymes aquaculture B-lymphocytes heat-shock protein 70 heat-shock protein 90 High-temperature stress intestines lipid peroxides malondialdehyde superoxide dismutase temperature Toll-like receptor 4 transcription factors Transcriptome analysis transcriptomics Whitmania pigra |
Title | Transcriptome analysis reveals the oxidative damage and immune-suppression of leech (Whitmania pigra Whitman) intestine induced by high-temperature stress |
URI | https://dx.doi.org/10.1016/j.aqrep.2024.102026 https://www.proquest.com/docview/3153789875 https://doaj.org/article/5e2a5263c0bc460288d9639406acab7c |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lb9QwEMct1BMcEE-xQNEgcQCJiF3bcZxji1pVSHCiUm-WH5OyqE2W7a4EX4VPy4zjVFsO5cItDyeO4rH_M8n4ZyHeqGgoCDC-iqnBinklVZA68QQfqyVqXwcOFD9_MSen-tNZfbaz1BfnhI144PHFfahR-loaFechakNqaBPZTEs65KMPTeTRlzRvJ5jKX1caxco1YYZyQpf_sUYmVErNvIKMU9iRokzsv6FIf43NWXCOH4j7xVOEg_EJH4o72D8S9w7O14WWgY_F76w0ud8Plwi-AEaAsUxkVkDOHQw_lynDvSH5Sxo8qFSCJc8Kwepquyp5sD0MHVwgxm_wltfMYyqGh9XyfO2h7L8DRkvQiNAjbSUyiQThFzDvuGLAVaEzwzj75Ik4PT76-vGkKostVFHrZlO1HeIi2Bi6JO086ZZkC2MyC68XTQg6dXOFtpEpBmwDxVlSRblAOjU3nZSonoq9fujxmYCQgrL8Bw-10raW5IGi1YFJ8l0y2M2EnN67i4VEzgtiXLgp5ey7y43luLHc2Fgz8f76otUI4ri9-CE36HVRpmjnA2RbrtiW-5dtzYSZzMEVh2R0NOhWy9trfz0Zj6Puyv9gfI_D9sopUpjGthQlPv8fT_hC3OVqx1Sil2Jvs97iPnlJm_Aqd4g_TrkTHw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+reveals+the+oxidative+damage+and+immune-suppression+of+leech+%28Whitmania+pigra+Whitman%29+intestine+induced+by+high-temperature+stress&rft.jtitle=Aquaculture+reports&rft.au=Xiong%2C+Liangwei&rft.au=Zheng%2C+Xiaochuan&rft.au=Zheng%2C+Yi&rft.au=Wang%2C+Shuaibing&rft.date=2024-04-01&rft.issn=2352-5134&rft.eissn=2352-5134&rft.volume=35+p.102026-&rft_id=info:doi/10.1016%2Fj.aqrep.2024.102026&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-5134&client=summon |