Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography

To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images. A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OC...

Full description

Saved in:
Bibliographic Details
Published inTranslational vision science & technology Vol. 9; no. 2; p. 20
Main Authors Heisler, Morgan, Karst, Sonja, Lo, Julian, Mammo, Zaid, Yu, Timothy, Warner, Simon, Maberley, David, Beg, Mirza Faisal, Navajas, Eduardo V., Sarunic, Marinko V.
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 13.04.2020
Subjects
Online AccessGet full text
ISSN2164-2591
2164-2591
DOI10.1167/tvst.9.2.20

Cover

Loading…
Abstract To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images. A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM. The networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease. Ensemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets. Because the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses.
AbstractList To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images. A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM. The networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease. Ensemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets. Because the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses.
To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.PurposeTo evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM.MethodsA total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM.The networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease.ResultsThe networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease.Ensemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets.ConclusionsEnsemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets.Because the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses.Translational RelevanceBecause the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses.
Author Navajas, Eduardo V.
Lo, Julian
Mammo, Zaid
Yu, Timothy
Karst, Sonja
Maberley, David
Beg, Mirza Faisal
Heisler, Morgan
Warner, Simon
Sarunic, Marinko V.
AuthorAffiliation 1 School of Engineering Science, Simon Fraser University , Burnaby, British Columbia , Canada
2 Department of Ophthalmology and Visual Sciences, University of British Columbia , Vancouver, British Columbia , Canada
AuthorAffiliation_xml – name: 1 School of Engineering Science, Simon Fraser University , Burnaby, British Columbia , Canada
– name: 2 Department of Ophthalmology and Visual Sciences, University of British Columbia , Vancouver, British Columbia , Canada
Author_xml – sequence: 1
  givenname: Morgan
  surname: Heisler
  fullname: Heisler, Morgan
  organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 2
  givenname: Sonja
  surname: Karst
  fullname: Karst, Sonja
  organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 3
  givenname: Julian
  surname: Lo
  fullname: Lo, Julian
  organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 4
  givenname: Zaid
  surname: Mammo
  fullname: Mammo, Zaid
  organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 5
  givenname: Timothy
  surname: Yu
  fullname: Yu, Timothy
  organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 6
  givenname: Simon
  surname: Warner
  fullname: Warner, Simon
  organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 7
  givenname: David
  surname: Maberley
  fullname: Maberley, David
  organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 8
  givenname: Mirza Faisal
  surname: Beg
  fullname: Beg, Mirza Faisal
  organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
– sequence: 9
  givenname: Eduardo V.
  surname: Navajas
  fullname: Navajas, Eduardo V.
  organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
– sequence: 10
  givenname: Marinko V.
  surname: Sarunic
  fullname: Sarunic, Marinko V.
  organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32818081$$D View this record in MEDLINE/PubMed
BookMark eNptkdFLHDEQxkOxVKs-9V32USh3TbLZbPIiyGlb4UAQfQ5JdvYuspusSe7A_94cnsWK8zAzML_5Ppj5jg588IDQD4LnhPD2V96mPJdzOqf4CzqihLMZbSQ5eNcfotOUHnEJLhrG-Dd0WFNBBBbkCK2vfYLRDFBdAUzVEnT0zq-qPsTqymkD2dnqrmQfJp3XzwXLYLMLvnpIO_B2KoQeqkVYQwRvoboPY1hFPRX40q_cvj9BX3s9JDjd12P08Pv6fvF3trz9c7O4XM4sY22eSZC2w8JoygXvDesoNy1pet0wjbE0pDda9KKGrrUNxZyYmkppZdO3LZUd1Mfo4lV32pgROgs-Rz2oKbpRx2cVtFP_T7xbq1XYqraWnHBRBM73AjE8bSBlNbpkYRi0h7BJirKaM1zjWhb07L3XP5O38xaAvAI2hpQi9Mq6rHfXK9ZuUASr3RfV7otKKqooLjs_P-y8yX5GvwBq96F3
CitedBy_id crossref_primary_10_1007_s00521_023_09184_7
crossref_primary_10_3390_s22062342
crossref_primary_10_1007_s41666_024_00182_5
crossref_primary_10_1364_BOE_431888
crossref_primary_10_1109_TBME_2020_3027231
crossref_primary_10_1364_BOE_495999
crossref_primary_10_1167_tvst_14_3_6
crossref_primary_10_1038_s41598_024_72375_2
crossref_primary_10_1109_ACCESS_2023_3260027
crossref_primary_10_3390_diagnostics14020121
crossref_primary_10_1007_s11831_022_09720_z
crossref_primary_10_1167_tvst_11_2_39
crossref_primary_10_1007_s10462_022_10185_6
crossref_primary_10_1038_s44172_024_00173_9
crossref_primary_10_1016_j_survophthal_2024_03_004
crossref_primary_10_1371_journal_pone_0296175
crossref_primary_10_1109_ACCESS_2021_3056430
crossref_primary_10_1177_15353702231181182
crossref_primary_10_1016_j_xops_2021_100069
crossref_primary_10_1038_s41746_024_01292_5
crossref_primary_10_1080_21681163_2023_2236233
crossref_primary_10_3390_app11209734
crossref_primary_10_1016_j_sciaf_2023_e01989
crossref_primary_10_1007_s11042_025_20708_2
crossref_primary_10_1016_j_xops_2022_100245
crossref_primary_10_1364_BOE_495627
crossref_primary_10_3389_fcell_2024_1473176
crossref_primary_10_3390_bioengineering11070682
crossref_primary_10_3390_s22093490
crossref_primary_10_3390_biomedicines10010088
crossref_primary_10_1016_j_media_2025_103513
crossref_primary_10_1038_s41598_021_83735_7
crossref_primary_10_1109_ACCESS_2024_3464682
crossref_primary_10_3390_s23125393
crossref_primary_10_1038_s41433_023_02570_4
crossref_primary_10_1038_s41377_022_00740_9
crossref_primary_10_1109_ACCESS_2024_3412961
crossref_primary_10_1109_JSEN_2024_3439748
crossref_primary_10_1371_journal_pone_0244469
crossref_primary_10_3390_diagnostics15060737
crossref_primary_10_1007_s00417_022_05818_z
crossref_primary_10_1016_j_preteyeres_2021_100965
crossref_primary_10_1371_journal_pone_0289211
crossref_primary_10_1038_s41598_021_02479_6
crossref_primary_10_4018_IJIIT_329929
crossref_primary_10_3390_bioengineering10010069
crossref_primary_10_1007_s11831_023_09946_5
crossref_primary_10_1016_j_eswa_2023_120206
crossref_primary_10_1016_j_compbiomed_2021_104795
crossref_primary_10_1016_j_imavis_2024_105292
crossref_primary_10_3390_s22207833
crossref_primary_10_2967_jnumed_122_265244
crossref_primary_10_1080_08164622_2022_2111201
crossref_primary_10_1097_APO_0000000000000405
crossref_primary_10_3390_diagnostics13091620
crossref_primary_10_3390_diagnostics13172770
crossref_primary_10_3390_bioengineering9080366
crossref_primary_10_1016_j_artmed_2024_102803
crossref_primary_10_1016_j_ajo_2021_11_008
crossref_primary_10_1016_j_bspc_2024_106564
crossref_primary_10_1177_15353702211026581
crossref_primary_10_1016_j_compbiomed_2022_105319
crossref_primary_10_1055_a_1961_7137
crossref_primary_10_37391_ijeer_110250
crossref_primary_10_1364_BOE_431992
crossref_primary_10_1109_TBME_2023_3290541
crossref_primary_10_1007_s40123_022_00641_5
crossref_primary_10_32604_cmc_2025_061998
crossref_primary_10_3390_diagnostics12020461
crossref_primary_10_1109_ACCESS_2022_3204029
crossref_primary_10_1167_tvst_11_7_10
crossref_primary_10_4018_JDM_368006
Cites_doi 10.1109/34.58871
10.1167/iovs.13-11913
10.1109/ICCV.2017.74
10.1109/WACV.2018.00097
10.1109/42.845178
10.1167/iovs.17-23498
10.1016/S0140-6736(09)62124-3
10.1038/s41598-019-46294-6
10.1007/BF00116037
10.1167/tvst.8.4.25
10.1167/iovs.15-18901
10.1016/j.neucom.2019.08.079
10.1109/CVPR.2018.00960
10.1001/archopht.1961.00960010368014
10.1007/BF00058655
10.1136/bjophthalmol-2018-313173
10.1167/iovs.17-21787
10.1136/bjophthalmol-2017-311489
10.1097/IAE.0000000000000882
10.1111/aos.13859
10.1016/S0004-3702(02)00190-X
10.1016/0002-9394(50)90988-3
10.1056/NEJMra1005073
10.7717/peerj.6977
10.1167/tvst.7.1.1
10.1109/CVPR.2016.319
10.1371/journal.pone.0219126
10.1006/inco.1995.1136
10.1007/978-1-4899-4541-9
10.2337/dc11-1909
10.1109/TMI.2004.825627
10.1167/tvst.7.6.41
ContentType Journal Article
Copyright Copyright 2020 The Authors.
Copyright 2020 The Authors 2020
Copyright_xml – notice: Copyright 2020 The Authors.
– notice: Copyright 2020 The Authors 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1167/tvst.9.2.20
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Ensemble Deep Learning for DR Detection Using OCTA
EISSN 2164-2591
ExternalDocumentID PMC7396168
32818081
10_1167_tvst_9_2_20
Genre Journal Article
GroupedDBID 53G
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
GROUPED_DOAJ
M~E
OK1
RPM
TRV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-9e9cd08ba2686fb4d26b715fa54a009b1fba8f83ed7c52061b3299c95f7729de3
ISSN 2164-2591
IngestDate Thu Aug 21 18:43:10 EDT 2025
Fri Jul 11 12:34:10 EDT 2025
Thu Apr 03 07:02:17 EDT 2025
Tue Jul 01 02:11:47 EDT 2025
Thu Apr 24 22:57:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
diabetic retinopathy
machine learning
optical coherence tomography
optical coherence tomography angiography
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright 2020 The Authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-9e9cd08ba2686fb4d26b715fa54a009b1fba8f83ed7c52061b3299c95f7729de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1167/tvst.9.2.20
PMID 32818081
PQID 2436403039
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7396168
proquest_miscellaneous_2436403039
pubmed_primary_32818081
crossref_citationtrail_10_1167_tvst_9_2_20
crossref_primary_10_1167_tvst_9_2_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200413
PublicationDateYYYYMMDD 2020-04-13
PublicationDate_xml – month: 4
  year: 2020
  text: 20200413
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Translational vision science & technology
PublicationTitleAlternate Transl Vis Sci Technol
PublicationYear 2020
Publisher The Association for Research in Vision and Ophthalmology
Publisher_xml – name: The Association for Research in Vision and Ophthalmology
References Shi (bib21) 2019; 8
Freund (bib16) 1995
Liu (bib39) 2019
Rajaraman (bib33) 2018; 2018
Zhou (bib20) 2016
Nesper (bib30) 2017; 58
Hoover (bib10) 2000; 19
Heisler (bib29) 2019
Springenberg (bib32) 2014
Jammal (bib24) 2019; 9
Maetschke (bib25) 2019; 14
Mehta (bib22) 2018
Bhanushali (bib34) 2016; 57
de Carlo (bib31) 2015; 35
Antonetti (bib3) 2012; 366
Chattopadhay (bib27) 2018
Ting (bib19) 2019; 103
Friedenwald (bib4) 1950; 86
Li (bib38) August 2019; 369
Yau (bib2) 2012; 35
Friedenwald (bib5) 1950; 33
Demirkaya (bib7) 2013; 54
Cogan (bib6) 1961; 66
Staal (bib9) 2004; 23
Schapire (bib15) 1990; 5
Efron (bib14) 1993
Breiman (bib13) 1996; 24
Johannesen (bib35) 2019; 97
Sandhu (bib37) 2018; 102
Zhou (bib12) 2002; 137
Rajaraman (bib8) 2019
Cheung (bib1) 2010; 376
Hansen (bib11) 1990; 12
Ji (bib18) 2018; 7
Lu (bib23) 2018; 7
Selvaraju (bib26) 2017
Li (bib28) 2018
Freund (bib17) 1995; 121
Lu (bib36) 2018; 59
References_xml – volume: 12
  start-page: 993
  issue: 10
  year: 1990
  ident: bib11
  article-title: Neural network ensembles
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.58871
– volume: 86
  start-page: 253
  issue: 4
  year: 1950
  ident: bib4
  article-title: The vascular lesions of diabetic retinopathy
  publication-title: Bull Johns Hopkins Hosp
– volume: 54
  start-page: 4934
  issue: 7
  year: 2013
  ident: bib7
  article-title: Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-11913
– volume-title: Proceedings of the IEEE International Conference on Computer Vision
  year: 2017
  ident: bib26
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization.
  doi: 10.1109/ICCV.2017.74
– volume-title: Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018
  year: 2018
  ident: bib27
  article-title: Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks.
  doi: 10.1109/WACV.2018.00097
– volume: 19
  start-page: 203
  issue: 3
  year: 2000
  ident: bib10
  article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.845178
– volume: 59
  start-page: 2212
  issue: 6
  year: 2018
  ident: bib36
  article-title: Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography
  publication-title: Investig Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-23498
– volume: 376
  start-page: 124
  issue: 9735
  year: 2010
  ident: bib1
  article-title: Diabetic retinopathy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)62124-3
– volume: 9
  start-page: 9836
  issue: 1
  year: 2019
  ident: bib24
  article-title: Detecting retinal nerve fibre layer segmentation errors on spectral domain-optical coherence tomography with a deep learning algorithm
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-46294-6
– volume: 5
  start-page: 197
  year: 1990
  ident: bib15
  article-title: The Strength of Weak Learnability
  publication-title: Mach Learn
  doi: 10.1007/BF00116037
– volume: 8
  start-page: 25
  issue: 4
  year: 2019
  ident: bib21
  article-title: Automatic classification of anterior chamber angle using ultrasound biomicroscopy and deep learning
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.8.4.25
– volume: 57
  start-page: OCT519
  issue: 9
  year: 2016
  ident: bib34
  article-title: Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.15-18901
– volume: 369
  start-page: 134
  year: August 2019
  ident: bib38
  article-title: Deep learning based early stage diabetic retinopathy detection using optical coherence tomography
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.079
– year: 2018
  ident: bib22
  article-title: Multilabel multiclass classification of OCT images augmented with age, gender and visual acuity data
  publication-title: bioRxiv
– volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  year: 2018
  ident: bib28
  article-title: Tell me where to look: guided attention inference network.
  doi: 10.1109/CVPR.2018.00960
– volume: 66
  start-page: 366
  year: 1961
  ident: bib6
  article-title: Retinal vascular patterns. IV. Diabetic retinopathy
  publication-title: Arch Ophthalmol (Chicago, Ill 1960)
  doi: 10.1001/archopht.1961.00960010368014
– volume: 24
  start-page: 123
  year: 1996
  ident: bib13
  article-title: Bagging predictors
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume: 103
  start-page: 167
  year: 2019
  ident: bib19
  article-title: Artificial intelligence and deep learning in ophthalmology
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2018-313173
– year: 2014
  ident: bib32
  article-title: CoRR
– volume: 2018
  start-page: 718
  year: 2018
  ident: bib33
  article-title: A novel stacked generalization of models for improved TB detection in chest radiographs
  publication-title: Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf
– volume: 58
  start-page: BIO307
  issue: 6
  year: 2017
  ident: bib30
  article-title: Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.17-21787
– volume: 102
  start-page: 1564
  issue: 11
  year: 2018
  ident: bib37
  article-title: Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2017-311489
– volume: 35
  start-page: 2364
  issue: 11
  year: 2015
  ident: bib31
  article-title: Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000882
– year: 2019
  ident: bib29
  article-title: Deep learning vessel segmentation and quantification of the foveal avascular zone using commercial and prototype OCT-A platforms
– volume: 97
  start-page: 7
  issue: 1
  year: 2019
  ident: bib35
  article-title: Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review
  publication-title: Acta Ophthalmol
  doi: 10.1111/aos.13859
– year: 2019
  ident: bib39
  article-title: Transparency guided ensemble convolutional neural networks for stratification of pseudoprogression and true progression of glioblastoma multiform
– volume: 137
  start-page: 239
  issue: 1
  year: 2002
  ident: bib12
  article-title: Ensembling neural networks: many could be better than all
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(02)00190-X
– volume: 33
  start-page: 1187
  issue: 8
  year: 1950
  ident: bib5
  article-title: Diabetic retinopathy
  publication-title: Am J Ophthalmol
  doi: 10.1016/0002-9394(50)90988-3
– volume: 366
  start-page: 1227
  year: 2012
  ident: bib3
  article-title: Diabetic retinopathy
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1005073
– year: 2019
  ident: bib8
  article-title: Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
  publication-title: PeerJ
  doi: 10.7717/peerj.6977
– volume: 7
  start-page: 1
  issue: 1
  year: 2018
  ident: bib18
  article-title: Beyond retinal layers: a deep voting model for automated geographic atrophy segmentation in SD-OCT images
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.7.1.1
– volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  year: 2016
  ident: bib20
  article-title: Learning Deep Features for Discriminative Localization.
  doi: 10.1109/CVPR.2016.319
– volume: 14
  start-page: e0219126
  issue: 7
  year: 2019
  ident: bib25
  article-title: A feature agnostic approach for glaucoma detection in OCT volumes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0219126
– volume: 121
  start-page: 256
  issue: 2
  year: 1995
  ident: bib17
  article-title: Boosting a weak learning algorithm by majority
  publication-title: Inf Comput
  doi: 10.1006/inco.1995.1136
– volume-title: Monographs on Statistics and Applied Probability, No. 57
  year: 1993
  ident: bib14
  article-title: An Introduction to the Bootstrap
  doi: 10.1007/978-1-4899-4541-9
– volume: 35
  start-page: 556
  issue: 3
  year: 2012
  ident: bib2
  article-title: Global prevalence and major risk factors of diabetic retinopathy
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1909
– volume: 23
  start-page: 501
  issue: 4
  year: 2004
  ident: bib9
  article-title: Ridge based vessel segmentation in color images of the retina
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2004.825627
– volume: 7
  start-page: 41
  issue: 6
  year: 2018
  ident: bib23
  article-title: Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images
  publication-title: Transl Vis Sci Technol
  doi: 10.1167/tvst.7.6.41
– start-page: 119
  volume-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
  year: 1995
  ident: bib16
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting.
SSID ssj0000685446
Score 2.4259992
Snippet To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20
SubjectTerms Deep Learning
Diabetes Mellitus
Diabetic Retinopathy - diagnosis
Fluorescein Angiography
Humans
Retinal Vessels
Special Issue
Tomography, Optical Coherence
Title Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography
URI https://www.ncbi.nlm.nih.gov/pubmed/32818081
https://www.proquest.com/docview/2436403039
https://pubmed.ncbi.nlm.nih.gov/PMC7396168
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCQLzKS0baE6uU1nGc-LiCRRVi4UBX2lsUJxO2q92koikS_AR-NeNHXLebw8IlilwnTTKf52HPNybksEaTh3akikpey4irBCJVwTSqRAIZSJjVymRbfBHzM_7pPDkfjf4EWUubTk3K34O8kv-RKrahXDVL9h8k62-KDXiO8sUjShiPt5LxSbOGa019-gCw6kul2sRIm-lisuS7ZdPqjYd_YbcO7NbgNlPg68rOZGuOhq02u2ivXQ3ro-Pm-zKsZ30ZGLerfgrRUtOPenKQxlF3Y7J-Dsu1Ixyeml2kvJbHqNoYgW9tc-ntw-e2J25ve54W-FXNQkrhUvDdTAXTaaORJZpahcYwNIsw3LJYgoE2p5FlADwWatfpsNIXetm5-7nuJnLiyHV7pbX3TJ5PRDQhkEhzfXEuc5az6R1yl2HIwYLw3Fr1LOGG9-Uf2dE98fp3wZ_vOjg3opb95NvAm1k8IPddGEKPLaYekhE0j8hFjyeq8UR7PFHEE-3xRAM8UY8navBEHZ6oxxPd4okGeHpMzj6eLN7PI7cTBw5hnnaRBFlW00wVTGSiVrxiQqWzpC4SXqCTrnBEF1mdxVClZcLQRVQxujmlTGodvFUQPyEHTdvAM0JlUqlKxWIKABxSpjSHn2HYjI56ygDG5G3_-fLSlanXu6Vc5QOyGpND33llq7MMd3vTyyFH7amXxIoG2s06ZzwWHO1cLMfkqZWLv1GsC6Whxzwm6Y7EfAddmX33l2Z5YSq048uImcie3-7xXpB72-Hykhx0PzbwCl3dTr02GPwLFTazDg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Deep+Learning+for+Diabetic+Retinopathy+Detection+Using+Optical+Coherence+Tomography+Angiography&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Heisler%2C+Morgan&rft.au=Karst%2C+Sonja&rft.au=Lo%2C+Julian&rft.au=Mammo%2C+Zaid&rft.date=2020-04-13&rft.issn=2164-2591&rft.eissn=2164-2591&rft.volume=9&rft.issue=2&rft.spage=20&rft_id=info:doi/10.1167%2Ftvst.9.2.20&rft.externalDBID=n%2Fa&rft.externalDocID=10_1167_tvst_9_2_20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon