Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography
To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images. A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OC...
Saved in:
Published in | Translational vision science & technology Vol. 9; no. 2; p. 20 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Association for Research in Vision and Ophthalmology
13.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2164-2591 2164-2591 |
DOI | 10.1167/tvst.9.2.20 |
Cover
Loading…
Abstract | To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.
A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM.
The networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease.
Ensemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets.
Because the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses. |
---|---|
AbstractList | To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.
A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM.
The networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease.
Ensemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets.
Because the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses. To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.PurposeTo evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography (OCTA) images and their corresponding co-registered structural images.A total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM.MethodsA total of 463 volumes from 380 eyes were acquired using the 3 × 3-mm OCTA protocol on the Zeiss Plex Elite system. Enface images of the superficial and deep capillary plexus were exported from both the optical coherence tomography and OCTA data. Component neural networks were constructed using single data-types and fine-tuned using VGG19, ResNet50, and DenseNet architectures pretrained on ImageNet weights. These networks were then ensembled using majority soft voting and stacking techniques. Results were compared with a classifier using manually engineered features. Class activation maps (CAMs) were created using the original CAM algorithm and Grad-CAM.The networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease.ResultsThe networks trained with the VGG19 architecture outperformed the networks trained on deeper architectures. Ensemble networks constructed using the four fine-tuned VGG19 architectures achieved accuracies of 0.92 and 0.90 for the majority soft voting and stacking methods respectively. Both ensemble methods outperformed the highest single data-type network and the network trained on hand-crafted features. Grad-CAM was shown to more accurately highlight areas of disease.Ensemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets.ConclusionsEnsemble learning increases the predictive accuracy of CNNs for classifying referable DR on OCTA datasets.Because the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses.Translational RelevanceBecause the diagnostic accuracy of OCTA images is shown to be greater than the manually extracted features currently used in the literature, the proposed methods may be beneficial toward developing clinically valuable solutions for DR diagnoses. |
Author | Navajas, Eduardo V. Lo, Julian Mammo, Zaid Yu, Timothy Karst, Sonja Maberley, David Beg, Mirza Faisal Heisler, Morgan Warner, Simon Sarunic, Marinko V. |
AuthorAffiliation | 1 School of Engineering Science, Simon Fraser University , Burnaby, British Columbia , Canada 2 Department of Ophthalmology and Visual Sciences, University of British Columbia , Vancouver, British Columbia , Canada |
AuthorAffiliation_xml | – name: 1 School of Engineering Science, Simon Fraser University , Burnaby, British Columbia , Canada – name: 2 Department of Ophthalmology and Visual Sciences, University of British Columbia , Vancouver, British Columbia , Canada |
Author_xml | – sequence: 1 givenname: Morgan surname: Heisler fullname: Heisler, Morgan organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 2 givenname: Sonja surname: Karst fullname: Karst, Sonja organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 3 givenname: Julian surname: Lo fullname: Lo, Julian organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 4 givenname: Zaid surname: Mammo fullname: Mammo, Zaid organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 5 givenname: Timothy surname: Yu fullname: Yu, Timothy organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 6 givenname: Simon surname: Warner fullname: Warner, Simon organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 7 givenname: David surname: Maberley fullname: Maberley, David organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 8 givenname: Mirza Faisal surname: Beg fullname: Beg, Mirza Faisal organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada – sequence: 9 givenname: Eduardo V. surname: Navajas fullname: Navajas, Eduardo V. organization: Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada – sequence: 10 givenname: Marinko V. surname: Sarunic fullname: Sarunic, Marinko V. organization: School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32818081$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdFLHDEQxkOxVKs-9V32USh3TbLZbPIiyGlb4UAQfQ5JdvYuspusSe7A_94cnsWK8zAzML_5Ppj5jg588IDQD4LnhPD2V96mPJdzOqf4CzqihLMZbSQ5eNcfotOUHnEJLhrG-Dd0WFNBBBbkCK2vfYLRDFBdAUzVEnT0zq-qPsTqymkD2dnqrmQfJp3XzwXLYLMLvnpIO_B2KoQeqkVYQwRvoboPY1hFPRX40q_cvj9BX3s9JDjd12P08Pv6fvF3trz9c7O4XM4sY22eSZC2w8JoygXvDesoNy1pet0wjbE0pDda9KKGrrUNxZyYmkppZdO3LZUd1Mfo4lV32pgROgs-Rz2oKbpRx2cVtFP_T7xbq1XYqraWnHBRBM73AjE8bSBlNbpkYRi0h7BJirKaM1zjWhb07L3XP5O38xaAvAI2hpQi9Mq6rHfXK9ZuUASr3RfV7otKKqooLjs_P-y8yX5GvwBq96F3 |
CitedBy_id | crossref_primary_10_1007_s00521_023_09184_7 crossref_primary_10_3390_s22062342 crossref_primary_10_1007_s41666_024_00182_5 crossref_primary_10_1364_BOE_431888 crossref_primary_10_1109_TBME_2020_3027231 crossref_primary_10_1364_BOE_495999 crossref_primary_10_1167_tvst_14_3_6 crossref_primary_10_1038_s41598_024_72375_2 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_3390_diagnostics14020121 crossref_primary_10_1007_s11831_022_09720_z crossref_primary_10_1167_tvst_11_2_39 crossref_primary_10_1007_s10462_022_10185_6 crossref_primary_10_1038_s44172_024_00173_9 crossref_primary_10_1016_j_survophthal_2024_03_004 crossref_primary_10_1371_journal_pone_0296175 crossref_primary_10_1109_ACCESS_2021_3056430 crossref_primary_10_1177_15353702231181182 crossref_primary_10_1016_j_xops_2021_100069 crossref_primary_10_1038_s41746_024_01292_5 crossref_primary_10_1080_21681163_2023_2236233 crossref_primary_10_3390_app11209734 crossref_primary_10_1016_j_sciaf_2023_e01989 crossref_primary_10_1007_s11042_025_20708_2 crossref_primary_10_1016_j_xops_2022_100245 crossref_primary_10_1364_BOE_495627 crossref_primary_10_3389_fcell_2024_1473176 crossref_primary_10_3390_bioengineering11070682 crossref_primary_10_3390_s22093490 crossref_primary_10_3390_biomedicines10010088 crossref_primary_10_1016_j_media_2025_103513 crossref_primary_10_1038_s41598_021_83735_7 crossref_primary_10_1109_ACCESS_2024_3464682 crossref_primary_10_3390_s23125393 crossref_primary_10_1038_s41433_023_02570_4 crossref_primary_10_1038_s41377_022_00740_9 crossref_primary_10_1109_ACCESS_2024_3412961 crossref_primary_10_1109_JSEN_2024_3439748 crossref_primary_10_1371_journal_pone_0244469 crossref_primary_10_3390_diagnostics15060737 crossref_primary_10_1007_s00417_022_05818_z crossref_primary_10_1016_j_preteyeres_2021_100965 crossref_primary_10_1371_journal_pone_0289211 crossref_primary_10_1038_s41598_021_02479_6 crossref_primary_10_4018_IJIIT_329929 crossref_primary_10_3390_bioengineering10010069 crossref_primary_10_1007_s11831_023_09946_5 crossref_primary_10_1016_j_eswa_2023_120206 crossref_primary_10_1016_j_compbiomed_2021_104795 crossref_primary_10_1016_j_imavis_2024_105292 crossref_primary_10_3390_s22207833 crossref_primary_10_2967_jnumed_122_265244 crossref_primary_10_1080_08164622_2022_2111201 crossref_primary_10_1097_APO_0000000000000405 crossref_primary_10_3390_diagnostics13091620 crossref_primary_10_3390_diagnostics13172770 crossref_primary_10_3390_bioengineering9080366 crossref_primary_10_1016_j_artmed_2024_102803 crossref_primary_10_1016_j_ajo_2021_11_008 crossref_primary_10_1016_j_bspc_2024_106564 crossref_primary_10_1177_15353702211026581 crossref_primary_10_1016_j_compbiomed_2022_105319 crossref_primary_10_1055_a_1961_7137 crossref_primary_10_37391_ijeer_110250 crossref_primary_10_1364_BOE_431992 crossref_primary_10_1109_TBME_2023_3290541 crossref_primary_10_1007_s40123_022_00641_5 crossref_primary_10_32604_cmc_2025_061998 crossref_primary_10_3390_diagnostics12020461 crossref_primary_10_1109_ACCESS_2022_3204029 crossref_primary_10_1167_tvst_11_7_10 crossref_primary_10_4018_JDM_368006 |
Cites_doi | 10.1109/34.58871 10.1167/iovs.13-11913 10.1109/ICCV.2017.74 10.1109/WACV.2018.00097 10.1109/42.845178 10.1167/iovs.17-23498 10.1016/S0140-6736(09)62124-3 10.1038/s41598-019-46294-6 10.1007/BF00116037 10.1167/tvst.8.4.25 10.1167/iovs.15-18901 10.1016/j.neucom.2019.08.079 10.1109/CVPR.2018.00960 10.1001/archopht.1961.00960010368014 10.1007/BF00058655 10.1136/bjophthalmol-2018-313173 10.1167/iovs.17-21787 10.1136/bjophthalmol-2017-311489 10.1097/IAE.0000000000000882 10.1111/aos.13859 10.1016/S0004-3702(02)00190-X 10.1016/0002-9394(50)90988-3 10.1056/NEJMra1005073 10.7717/peerj.6977 10.1167/tvst.7.1.1 10.1109/CVPR.2016.319 10.1371/journal.pone.0219126 10.1006/inco.1995.1136 10.1007/978-1-4899-4541-9 10.2337/dc11-1909 10.1109/TMI.2004.825627 10.1167/tvst.7.6.41 |
ContentType | Journal Article |
Copyright | Copyright 2020 The Authors. Copyright 2020 The Authors 2020 |
Copyright_xml | – notice: Copyright 2020 The Authors. – notice: Copyright 2020 The Authors 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1167/tvst.9.2.20 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Ensemble Deep Learning for DR Detection Using OCTA |
EISSN | 2164-2591 |
ExternalDocumentID | PMC7396168 32818081 10_1167_tvst_9_2_20 |
Genre | Journal Article |
GroupedDBID | 53G AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION EBS EJD GROUPED_DOAJ M~E OK1 RPM TRV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-9e9cd08ba2686fb4d26b715fa54a009b1fba8f83ed7c52061b3299c95f7729de3 |
ISSN | 2164-2591 |
IngestDate | Thu Aug 21 18:43:10 EDT 2025 Fri Jul 11 12:34:10 EDT 2025 Thu Apr 03 07:02:17 EDT 2025 Tue Jul 01 02:11:47 EDT 2025 Thu Apr 24 22:57:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning diabetic retinopathy machine learning optical coherence tomography optical coherence tomography angiography |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright 2020 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-9e9cd08ba2686fb4d26b715fa54a009b1fba8f83ed7c52061b3299c95f7729de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1167/tvst.9.2.20 |
PMID | 32818081 |
PQID | 2436403039 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7396168 proquest_miscellaneous_2436403039 pubmed_primary_32818081 crossref_citationtrail_10_1167_tvst_9_2_20 crossref_primary_10_1167_tvst_9_2_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200413 |
PublicationDateYYYYMMDD | 2020-04-13 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200413 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Translational vision science & technology |
PublicationTitleAlternate | Transl Vis Sci Technol |
PublicationYear | 2020 |
Publisher | The Association for Research in Vision and Ophthalmology |
Publisher_xml | – name: The Association for Research in Vision and Ophthalmology |
References | Shi (bib21) 2019; 8 Freund (bib16) 1995 Liu (bib39) 2019 Rajaraman (bib33) 2018; 2018 Zhou (bib20) 2016 Nesper (bib30) 2017; 58 Hoover (bib10) 2000; 19 Heisler (bib29) 2019 Springenberg (bib32) 2014 Jammal (bib24) 2019; 9 Maetschke (bib25) 2019; 14 Mehta (bib22) 2018 Bhanushali (bib34) 2016; 57 de Carlo (bib31) 2015; 35 Antonetti (bib3) 2012; 366 Chattopadhay (bib27) 2018 Ting (bib19) 2019; 103 Friedenwald (bib4) 1950; 86 Li (bib38) August 2019; 369 Yau (bib2) 2012; 35 Friedenwald (bib5) 1950; 33 Demirkaya (bib7) 2013; 54 Cogan (bib6) 1961; 66 Staal (bib9) 2004; 23 Schapire (bib15) 1990; 5 Efron (bib14) 1993 Breiman (bib13) 1996; 24 Johannesen (bib35) 2019; 97 Sandhu (bib37) 2018; 102 Zhou (bib12) 2002; 137 Rajaraman (bib8) 2019 Cheung (bib1) 2010; 376 Hansen (bib11) 1990; 12 Ji (bib18) 2018; 7 Lu (bib23) 2018; 7 Selvaraju (bib26) 2017 Li (bib28) 2018 Freund (bib17) 1995; 121 Lu (bib36) 2018; 59 |
References_xml | – volume: 12 start-page: 993 issue: 10 year: 1990 ident: bib11 article-title: Neural network ensembles publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.58871 – volume: 86 start-page: 253 issue: 4 year: 1950 ident: bib4 article-title: The vascular lesions of diabetic retinopathy publication-title: Bull Johns Hopkins Hosp – volume: 54 start-page: 4934 issue: 7 year: 2013 ident: bib7 article-title: Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-11913 – volume-title: Proceedings of the IEEE International Conference on Computer Vision year: 2017 ident: bib26 article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization. doi: 10.1109/ICCV.2017.74 – volume-title: Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018 year: 2018 ident: bib27 article-title: Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. doi: 10.1109/WACV.2018.00097 – volume: 19 start-page: 203 issue: 3 year: 2000 ident: bib10 article-title: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response publication-title: IEEE Trans Med Imaging doi: 10.1109/42.845178 – volume: 59 start-page: 2212 issue: 6 year: 2018 ident: bib36 article-title: Evaluation of automatically quantified foveal avascular zone metrics for diagnosis of diabetic retinopathy using optical coherence tomography angiography publication-title: Investig Ophthalmol Vis Sci doi: 10.1167/iovs.17-23498 – volume: 376 start-page: 124 issue: 9735 year: 2010 ident: bib1 article-title: Diabetic retinopathy publication-title: Lancet doi: 10.1016/S0140-6736(09)62124-3 – volume: 9 start-page: 9836 issue: 1 year: 2019 ident: bib24 article-title: Detecting retinal nerve fibre layer segmentation errors on spectral domain-optical coherence tomography with a deep learning algorithm publication-title: Sci Rep doi: 10.1038/s41598-019-46294-6 – volume: 5 start-page: 197 year: 1990 ident: bib15 article-title: The Strength of Weak Learnability publication-title: Mach Learn doi: 10.1007/BF00116037 – volume: 8 start-page: 25 issue: 4 year: 2019 ident: bib21 article-title: Automatic classification of anterior chamber angle using ultrasound biomicroscopy and deep learning publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.8.4.25 – volume: 57 start-page: OCT519 issue: 9 year: 2016 ident: bib34 article-title: Linking retinal microvasculature features with severity of diabetic retinopathy using optical coherence tomography angiography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.15-18901 – volume: 369 start-page: 134 year: August 2019 ident: bib38 article-title: Deep learning based early stage diabetic retinopathy detection using optical coherence tomography publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.079 – year: 2018 ident: bib22 article-title: Multilabel multiclass classification of OCT images augmented with age, gender and visual acuity data publication-title: bioRxiv – volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition year: 2018 ident: bib28 article-title: Tell me where to look: guided attention inference network. doi: 10.1109/CVPR.2018.00960 – volume: 66 start-page: 366 year: 1961 ident: bib6 article-title: Retinal vascular patterns. IV. Diabetic retinopathy publication-title: Arch Ophthalmol (Chicago, Ill 1960) doi: 10.1001/archopht.1961.00960010368014 – volume: 24 start-page: 123 year: 1996 ident: bib13 article-title: Bagging predictors publication-title: Mach Learn doi: 10.1007/BF00058655 – volume: 103 start-page: 167 year: 2019 ident: bib19 article-title: Artificial intelligence and deep learning in ophthalmology publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2018-313173 – year: 2014 ident: bib32 article-title: CoRR – volume: 2018 start-page: 718 year: 2018 ident: bib33 article-title: A novel stacked generalization of models for improved TB detection in chest radiographs publication-title: Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf – volume: 58 start-page: BIO307 issue: 6 year: 2017 ident: bib30 article-title: Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.17-21787 – volume: 102 start-page: 1564 issue: 11 year: 2018 ident: bib37 article-title: Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2017-311489 – volume: 35 start-page: 2364 issue: 11 year: 2015 ident: bib31 article-title: Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography publication-title: Retina doi: 10.1097/IAE.0000000000000882 – year: 2019 ident: bib29 article-title: Deep learning vessel segmentation and quantification of the foveal avascular zone using commercial and prototype OCT-A platforms – volume: 97 start-page: 7 issue: 1 year: 2019 ident: bib35 article-title: Optical coherence tomography angiography and microvascular changes in diabetic retinopathy: a systematic review publication-title: Acta Ophthalmol doi: 10.1111/aos.13859 – year: 2019 ident: bib39 article-title: Transparency guided ensemble convolutional neural networks for stratification of pseudoprogression and true progression of glioblastoma multiform – volume: 137 start-page: 239 issue: 1 year: 2002 ident: bib12 article-title: Ensembling neural networks: many could be better than all publication-title: Artif Intell doi: 10.1016/S0004-3702(02)00190-X – volume: 33 start-page: 1187 issue: 8 year: 1950 ident: bib5 article-title: Diabetic retinopathy publication-title: Am J Ophthalmol doi: 10.1016/0002-9394(50)90988-3 – volume: 366 start-page: 1227 year: 2012 ident: bib3 article-title: Diabetic retinopathy publication-title: N Engl J Med doi: 10.1056/NEJMra1005073 – year: 2019 ident: bib8 article-title: Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images publication-title: PeerJ doi: 10.7717/peerj.6977 – volume: 7 start-page: 1 issue: 1 year: 2018 ident: bib18 article-title: Beyond retinal layers: a deep voting model for automated geographic atrophy segmentation in SD-OCT images publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.7.1.1 – volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition year: 2016 ident: bib20 article-title: Learning Deep Features for Discriminative Localization. doi: 10.1109/CVPR.2016.319 – volume: 14 start-page: e0219126 issue: 7 year: 2019 ident: bib25 article-title: A feature agnostic approach for glaucoma detection in OCT volumes publication-title: PLoS One doi: 10.1371/journal.pone.0219126 – volume: 121 start-page: 256 issue: 2 year: 1995 ident: bib17 article-title: Boosting a weak learning algorithm by majority publication-title: Inf Comput doi: 10.1006/inco.1995.1136 – volume-title: Monographs on Statistics and Applied Probability, No. 57 year: 1993 ident: bib14 article-title: An Introduction to the Bootstrap doi: 10.1007/978-1-4899-4541-9 – volume: 35 start-page: 556 issue: 3 year: 2012 ident: bib2 article-title: Global prevalence and major risk factors of diabetic retinopathy publication-title: Diabetes Care doi: 10.2337/dc11-1909 – volume: 23 start-page: 501 issue: 4 year: 2004 ident: bib9 article-title: Ridge based vessel segmentation in color images of the retina publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2004.825627 – volume: 7 start-page: 41 issue: 6 year: 2018 ident: bib23 article-title: Deep learning-based automated classification of multi-categorical abnormalities from optical coherence tomography images publication-title: Transl Vis Sci Technol doi: 10.1167/tvst.7.6.41 – start-page: 119 volume-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) year: 1995 ident: bib16 article-title: A decision-theoretic generalization of on-line learning and an application to boosting. |
SSID | ssj0000685446 |
Score | 2.4259992 |
Snippet | To evaluate the role of ensemble learning techniques with deep learning in classifying diabetic retinopathy (DR) in optical coherence tomography angiography... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20 |
SubjectTerms | Deep Learning Diabetes Mellitus Diabetic Retinopathy - diagnosis Fluorescein Angiography Humans Retinal Vessels Special Issue Tomography, Optical Coherence |
Title | Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32818081 https://www.proquest.com/docview/2436403039 https://pubmed.ncbi.nlm.nih.gov/PMC7396168 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGCQLzKS0baE6uU1nGc-LiCRRVi4UBX2lsUJxO2q92koikS_AR-NeNHXLebw8IlilwnTTKf52HPNybksEaTh3akikpey4irBCJVwTSqRAIZSJjVymRbfBHzM_7pPDkfjf4EWUubTk3K34O8kv-RKrahXDVL9h8k62-KDXiO8sUjShiPt5LxSbOGa019-gCw6kul2sRIm-lisuS7ZdPqjYd_YbcO7NbgNlPg68rOZGuOhq02u2ivXQ3ro-Pm-zKsZ30ZGLerfgrRUtOPenKQxlF3Y7J-Dsu1Ixyeml2kvJbHqNoYgW9tc-ntw-e2J25ve54W-FXNQkrhUvDdTAXTaaORJZpahcYwNIsw3LJYgoE2p5FlADwWatfpsNIXetm5-7nuJnLiyHV7pbX3TJ5PRDQhkEhzfXEuc5az6R1yl2HIwYLw3Fr1LOGG9-Uf2dE98fp3wZ_vOjg3opb95NvAm1k8IPddGEKPLaYekhE0j8hFjyeq8UR7PFHEE-3xRAM8UY8navBEHZ6oxxPd4okGeHpMzj6eLN7PI7cTBw5hnnaRBFlW00wVTGSiVrxiQqWzpC4SXqCTrnBEF1mdxVClZcLQRVQxujmlTGodvFUQPyEHTdvAM0JlUqlKxWIKABxSpjSHn2HYjI56ygDG5G3_-fLSlanXu6Vc5QOyGpND33llq7MMd3vTyyFH7amXxIoG2s06ZzwWHO1cLMfkqZWLv1GsC6Whxzwm6Y7EfAddmX33l2Z5YSq048uImcie3-7xXpB72-Hykhx0PzbwCl3dTr02GPwLFTazDg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+Deep+Learning+for+Diabetic+Retinopathy+Detection+Using+Optical+Coherence+Tomography+Angiography&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Heisler%2C+Morgan&rft.au=Karst%2C+Sonja&rft.au=Lo%2C+Julian&rft.au=Mammo%2C+Zaid&rft.date=2020-04-13&rft.issn=2164-2591&rft.eissn=2164-2591&rft.volume=9&rft.issue=2&rft.spage=20&rft_id=info:doi/10.1167%2Ftvst.9.2.20&rft.externalDBID=n%2Fa&rft.externalDocID=10_1167_tvst_9_2_20 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon |