Detecting hallucinations in large language models using semantic entropy

Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers 3 , 4 . Answering unreliably or without the necessary information prevents adoption in diverse field...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 630; no. 8017; pp. 625 - 630
Main Authors Farquhar, Sebastian, Kossen, Jannik, Kuhn, Lorenz, Gal, Yarin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers 3 , 4 . Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents 5 or untrue facts in news articles 6 and even posing a risk to human life in medical domains such as radiology 7 . Encouraging truthfulness through supervision or reinforcement has been only partially successful 8 . Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability. Hallucinations (confabulations) in large language model systems can be tackled by measuring uncertainty about the meanings of generated responses rather than the text itself to improve question-answering accuracy.
AbstractList Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers 3 , 4 . Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents 5 or untrue facts in news articles 6 and even posing a risk to human life in medical domains such as radiology 7 . Encouraging truthfulness through supervision or reinforcement has been only partially successful 8 . Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability. Hallucinations (confabulations) in large language model systems can be tackled by measuring uncertainty about the meanings of generated responses rather than the text itself to improve question-answering accuracy.
Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers 3,4 . Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents 5 or untrue facts in news articles 6 and even posing a risk to human life in medical domains such as radiology 7 . Encouraging truthfulness through supervision or reinforcement has been only partially successful 8 . Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability.
Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show impressive reasoning and question-answering capabilities but often 'hallucinate' false outputs and unsubstantiated answers3,4. Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents5 or untrue facts in news articles6 and even posing a risk to human life in medical domains such as radiology7. Encouraging truthfulness through supervision or reinforcement has been only partially successful8. Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations-confabulations-which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability.Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show impressive reasoning and question-answering capabilities but often 'hallucinate' false outputs and unsubstantiated answers3,4. Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents5 or untrue facts in news articles6 and even posing a risk to human life in medical domains such as radiology7. Encouraging truthfulness through supervision or reinforcement has been only partially successful8. Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations-confabulations-which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability.
Large language model (LLM) systems, such as ChatGPT or Gemini , can show impressive reasoning and question-answering capabilities but often 'hallucinate' false outputs and unsubstantiated answers . Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents or untrue facts in news articles and even posing a risk to human life in medical domains such as radiology . Encouraging truthfulness through supervision or reinforcement has been only partially successful . Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations-confabulations-which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability.
Author Kossen, Jannik
Farquhar, Sebastian
Gal, Yarin
Kuhn, Lorenz
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0002-9185-6415
  surname: Farquhar
  fullname: Farquhar, Sebastian
  email: sebfar@gmail.com
  organization: OATML, Department of Computer Science, University of Oxford
– sequence: 2
  givenname: Jannik
  surname: Kossen
  fullname: Kossen, Jannik
  organization: OATML, Department of Computer Science, University of Oxford
– sequence: 3
  givenname: Lorenz
  surname: Kuhn
  fullname: Kuhn, Lorenz
  organization: OATML, Department of Computer Science, University of Oxford
– sequence: 4
  givenname: Yarin
  orcidid: 0000-0002-2733-2078
  surname: Gal
  fullname: Gal, Yarin
  organization: OATML, Department of Computer Science, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38898292$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1P3DAQtSpQWaB_oIcqx17SzthOPDlVFf2gElIvcLYcrxOMEntrJ5X493hZitoeuNiW5n2M3ztlRyEGx9hbhA8Igj5miQ21NXBZg5Ica3jFNihVW8uW1BHbAHCqgUR7wk5zvgOABpV8zU4EUUe84xt2-cUtzi4-jNWtmabV-mAWH0OufKgmk0ZXzjCupjzmuHVTrta8R2c3m7B4W7mwpLi7P2fHg5mye_N0n7Gbb1-vLy7rq5_ff1x8vqqtlGqpu23jGhz6joOwRGgtWALeSNlvlWmtkARqkIMSXdO3LWGHKAfs-gGIoO_FGft00N2t_ey2dm9vJr1LfjbpXkfj9b-T4G_1GH9rRKRWNVAU3j8ppPhrdXnRs8_WTeWfLq5ZC1BAXHaEBfrub7Nnlz_5FQA_AGyKOSc3PEMQ9L4kfShJl5L0Y0l6vwD9R7J-eUy9LOynl6niQM3FJ4wu6bu4plACf4n1AHgKpsU
CitedBy_id crossref_primary_10_2139_ssrn_4836558
crossref_primary_10_1038_s41592_024_02370_y
crossref_primary_10_1007_s00146_025_02189_x
crossref_primary_10_3390_fi16120462
crossref_primary_10_1007_s10489_024_05796_1
crossref_primary_10_1016_j_neucom_2025_129829
crossref_primary_10_1080_10875301_2024_2426793
crossref_primary_10_1016_j_ijoa_2024_104249
crossref_primary_10_1136_bmjophth_2024_001824
crossref_primary_10_1093_jamia_ocae202
crossref_primary_10_3390_ai6010012
crossref_primary_10_1007_s10676_024_09802_5
crossref_primary_10_1016_j_eng_2024_12_014
crossref_primary_10_1016_S0140_6736_24_02615_1
crossref_primary_10_1002_spe_3389
crossref_primary_10_3390_app15052536
crossref_primary_10_47912_jscdm_363
crossref_primary_10_1002_ird3_115
crossref_primary_10_3390_app15052292
crossref_primary_10_1016_j_asoc_2025_112700
crossref_primary_10_1016_S2665_9913_24_00400_4
crossref_primary_10_1016_j_ipm_2025_104094
crossref_primary_10_3389_fmed_2024_1495582
crossref_primary_10_1007_s10639_024_13129_5
crossref_primary_10_1038_d41586_025_00068_5
crossref_primary_10_2196_68427
crossref_primary_10_1016_j_inffus_2025_102970
crossref_primary_10_1038_s41591_024_03445_1
crossref_primary_10_1016_j_prrv_2025_01_004
crossref_primary_10_1038_d41586_024_01641_0
crossref_primary_10_2139_ssrn_4694565
crossref_primary_10_2196_59823
crossref_primary_10_1007_s44313_025_00062_w
crossref_primary_10_1016_j_tibtech_2025_02_008
crossref_primary_10_61947_uw_PF_2024_75_3_4_12_16
crossref_primary_10_3390_ijms252413371
crossref_primary_10_1016_j_jmsy_2025_01_018
crossref_primary_10_1038_s42256_024_00976_7
crossref_primary_10_1016_j_clsr_2024_106066
crossref_primary_10_34067_KID_0000000000000556
crossref_primary_10_1016_j_xcrm_2024_101875
crossref_primary_10_1109_JBHI_2024_3514659
crossref_primary_10_1093_jac_dkaf077
crossref_primary_10_3390_su17052192
crossref_primary_10_1039_D4DD00178H
crossref_primary_10_1097_RHU_0000000000002198
crossref_primary_10_1007_s00134_024_07738_4
crossref_primary_10_1016_j_ipm_2024_104054
crossref_primary_10_1038_s41746_024_01219_0
crossref_primary_10_1016_j_ijhcs_2025_103471
crossref_primary_10_3390_jcm13195971
crossref_primary_10_1016_j_tre_2024_103795
crossref_primary_10_2139_ssrn_4751774
crossref_primary_10_1093_nsr_nwaf028
crossref_primary_10_1111_cas_16395
crossref_primary_10_1038_d41586_024_03940_y
crossref_primary_10_3389_fvets_2024_1490030
crossref_primary_10_1038_s41598_024_81052_3
crossref_primary_10_1007_s10506_025_09434_0
crossref_primary_10_1038_s41586_024_08564_w
Cites_doi 10.18653/v1/P19-1213
10.1148/radiol.230163
10.18653/v1/2022.findings-emnlp.28
10.18653/v1/P19-1612
10.1162/neco.1992.4.4.590
10.1162/tacl_a_00276
10.18653/v1/2020.emnlp-main.21
10.1613/jair.2985
10.18653/v1/2021.naacl-main.168
10.18653/v1/D18-1437
10.18653/v1/2021.eacl-main.236
10.18653/v1/2023.emnlp-main.557
10.18653/v1/W18-6322
10.1162/tacl_a_00407
10.1016/j.datak.2023.102182
10.1186/s12859-015-0564-6
10.1007/s10590-009-9060-y
10.18653/v1/N18-1101
10.18653/v1/P18-1082
10.1162/tacl_a_00453
10.1162/tacl_a_00483
10.1109/AFGR.2000.840616
10.1145/3571730
10.1109/CVPR52729.2023.02336
10.18653/v1/D16-1128
10.1076/jhin.7.3.225.1855
10.5281/zenodo.10964366
10.1145/3624724
10.18653/v1/2021.findings-acl.81
10.18653/v1/P17-1147
10.18653/v1/2022.dialdoc-1.19
10.18653/v1/D16-1264
10.18653/v1/2020.acl-main.173
10.18653/v1/2020.findings-emnlp.76
10.1016/j.strusafe.2008.06.020
10.1214/aoms/1177728069
10.18653/v1/2021.findings-emnlp.330
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1038/s41586-024-07421-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 630
ExternalDocumentID PMC11186750
38898292
10_1038_s41586_024_07421_0
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
53G
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PKN
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKR
UMD
UQL
VQA
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~88
~KM
1VR
2XV
41X
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
AARCD
AAYXX
ABFSG
ABJCF
ABUWG
ACMFV
ACSTC
AEUYN
AEZWR
AFANA
AFHIU
AFKRA
AHWEU
AIXLP
ALPWD
ATHPR
AZQEC
BBNVY
BCU
BEC
BGLVJ
BKEYQ
BKSAR
BPHCQ
BVXVI
CCPQU
CITATION
D1I
D1J
D1K
DWQXO
EMH
EX3
FYUFA
GNUQQ
GUQSH
HMCUK
INR
ISR
K6-
KB.
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
NAPCQ
NFIDA
P62
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
S0X
SJFOW
UKHRP
WOW
~7V
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
MVM
N4W
NEJ
NPM
OHT
P-O
PEA
PM3
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
7X8
PPXIY
PQGLB
5PM
AFKWF
PJZUB
ID FETCH-LOGICAL-c447t-9d5e51fb9203c881cc0c802544bd7a6c34807f4f7395b66819114f19bf0880bb3
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:33:50 EDT 2025
Fri Jul 11 05:59:28 EDT 2025
Thu Apr 03 07:09:01 EDT 2025
Tue Jul 01 02:58:57 EDT 2025
Thu Apr 24 22:50:26 EDT 2025
Fri Feb 21 02:39:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8017
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-9d5e51fb9203c881cc0c802544bd7a6c34807f4f7395b66819114f19bf0880bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9185-6415
0000-0002-2733-2078
OpenAccessLink https://www.nature.com/articles/s41586-024-07421-0
PMID 38898292
PQID 3070824981
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11186750
proquest_miscellaneous_3070824981
pubmed_primary_38898292
crossref_primary_10_1038_s41586_024_07421_0
crossref_citationtrail_10_1038_s41586_024_07421_0
springer_journals_10_1038_s41586_024_07421_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-20
PublicationDateYYYYMMDD 2024-06-20
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2024
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References Manakul, P., Liusie, A. & Gales, M. J. F. SelfCheckGPT: Zero-Resource Black-Box hallucination detection for generative large language models. In Findings of the Association for Computational Linguistics: EMNLP 2023 (eds Bouamor, H., Pino, J. & Bali, K.) 9004–9017 (Assoc. Comp. Linguistics, 2023).
PadóSCerDGalleyMJurafskyDManningCDMeasuring machine translation quality as semantic equivalence: a metric based on entailment featuresMach. Transl.20092318119310.1007/s10590-009-9060-y
Shanahan, M. Talking about large language models. Commun. Assoc. Comp. Machinery67, 68–79 (2024).
He, P., Liu, X., Gao, J. & Chen, W. Deberta: decoding-enhanced BERT with disentangled attention. In International Conference on Learning Representationshttps://openreview.net/forum?id=XPZIaotutsD (2021).
Williams, A., Nangia, N. & Bowman, S. R. A broad-coverage challenge corpus for sentence understanding through inference. In Proc. 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds Walker, M. et al.) 1112–1122 (Assoc. Comp. Linguistics, 2018).
Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. & Gal, Y. Deep deterministic uncertainty: a new simple baseline. In IEEE/CVF Conference on Computer Vision and Pattern Recognition 24384–24394 (Computer Vision Foundation, 2023).
CulicoverPWParaphrase generation and information retrieval from stored textMech. Transl. Comput. Linguist.1968117888
Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023).
Honovich, O. et al. TRUE: Re-evaluating factual consistency evaluation. In Proc. Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering 161–175 (Association for Computational Linguistics, 2022).
Kwiatkowski, T. et al. Natural questions: a benchmark for question answering research. Transact. Assoc. Comput. Linguist.7, 452–466 (2019).
Jiang, A. Q. et al. Mistral 7B. Preprint at https://arxiv.org/abs/2310.06825 (2023).
Murray, K. & Chiang, D. Correcting length bias in neural machine translation. In Proc. Third Conference on Machine Translation (eds Bojar, O. et al.) 212–223 (Assoc. Comp. Linguistics, 2018).
Glushkova, T., Zerva, C., Rei, R. & Martins, A. F. Uncertainty-aware machine translation evaluation. In Findings of the Association for Computational Linguistics: EMNLP 2021 (eds Moens, M-F., Huang, X., Specia, L. & Yih, S.) 3920–3938 (Association for Computational Linguistics, 2021).
Barnes, B. & Christiano, P. Progress on AI Safety via Debate. AI Alignment Forumwww.alignmentforum.org/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1 (2020).
Baker, S. & Kanade, T. Hallucinating faces. In Proc. Fourth IEEE International Conference on Automatic Face and Gesture Recognition. 83–88 (IEEE, Catalogue no PR00580, 2002).
Eliot, L. AI ethics lucidly questioning this whole hallucinating AI popularized trend that has got to stop. Forbes Magazine (24 August 2022).
He, R., Ravula, A., Kanagal, B. & Ainslie, J. Realformer: Transformer likes residual attention. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (eds Zhong, C., et al.) 929–943 (Assoc. Comp. Linguistics, 2021).
Ji, Z. et al. Survey of hallucination in natural language generation. ACM Comput. Surv.55, 248 (2023).
Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T. & Saenko, K. Object hallucination in image captioning. In Proc. 2018 Conference on Empirical Methods in Natural Language Processing (eds Riloff, E., Chiang, D., Hockenmaier, J. & Tsujii, J.) 4035–4045 (Association for Computational Linguistics, 2018).
Amodei, D. et al. Concrete problems in AI safety. Preprint at https://arxiv.org/abs/1606.06565 (2016).
MacKayDJCInformation-based objective functions for active data selectionNeural Comput.1992459060410.1162/neco.1992.4.4.590
Penedo, G. et al. The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. In Proc. 36th Conference on Neural Information Processing Systems (eds Oh, A. et al.) 79155–79172 (Curran Associates, 2023)
Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).
Yu, L., Hermann, K. M., Blunsom, P. & Pulman, S. Deep learning for answer sentence selection. Preprint at https://arxiv.org/abs/1412.1632 (2014).
ShenYChatGPT and other large language models are double-edged swordsRadiology2023307e23016310.1148/radiol.23016336700838
Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ questions for machine compression of text. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing (eds Su, J., Duh, K. & Carreras, X.) 2383–2392 (Association for Computational Linguistics, 2016).
Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annual Meeting of the Association for Computational Linguistics (eds Jurafsky, D., Chai, J., Schluter, N. & Tetreault, J.) 1906–1919 (Association for Computational Linguistics, 2020).
WangYBeckDBaldwinTVerspoorKUncertainty estimation and reduction of pre-trained models for text regressionTransact. Assoc. Comput. Linguist.20221068069610.1162/tacl_a_00483
Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/2312.11805 (2023).
TsatsaronisGAn overview of the BIOASQ large-scale biomedical semantic indexing and question answering competitionBMC Bioinformatics20151610.1186/s12859-015-0564-6259251314450488
Malinin, A. & Gales, M. Uncertainty estimation in autoregressive structured prediction. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=jN5y-zb5Q7m (2021).
Filippova, K. Controlled hallucinations: learning to generate faithfully from noisy data. In Findings of the Association for Computational Linguistics: EMNLP 2020 (eds Webber, B., Cohn, T., He, Y. & Liu, Y.) 864–870 (Association for Computational Linguistics, 2020).
LabanPSchnabelTBennettPNHearstMASummaC: re-visiting NLI-based models for inconsistency detection in summarizationTrans. Assoc. Comput. Linguist.20221016317710.1162/tacl_a_00453
Xiao, T. Z., Gomez, A. N. & Gal, Y. Wat zei je? Detecting out-of-distribution translations with variational transformers. In Workshop on Bayesian Deep Learning at the Conference on Neural Information Processing Systems (NeurIPS, Vancouver, 2019).
Schulman, J. Reinforcement learning from human feedback: progress and challenges. Presented at the Berkeley EECS Colloquium. YouTubewww.youtube.com/watch?v=hhiLw5Q_UFg (2023).
Xiao, Y. & Wang, W. Y. On hallucination and predictive uncertainty in conditional language generation. In Proc. 16th Conference of the European Chapter of the Association for Computational Linguistics 2734–2744 (Association for Computational Linguistics, 2021).
GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
Lin, S., Hilton, J. & Evans, O. Teaching models to express their uncertainty in words. Transact. Mach. Learn. Res. (2022).
Socher, R., Huang, E., Pennin, J., Manning, C. D. & Ng, A. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Proceedings of the 24th Conference on Neural Information Processing Systems (eds Shawe-Taylor, J. et al.) (2011)
BrownTLanguage models are few-shot learnersAdv. Neural Inf. Process. Syst.20203318771901
BerriosGConfabulations: a conceptual historyJ. Hist. Neurosci.199872252411:STN:280:DC%2BD3Mngs1yksA%3D%3D10.1076/jhin.7.3.225.185511623845
Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://arxiv.org/abs/2207.05221 (2022).
Speaks, J. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford Univ., 2021).
Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D. & Marchetti, A. Divide and conquer: crowdsourcing the creation of cross-lingual textual entailment corpora. In Proc. 2011 Conference on Empirical Methods in Natural Language Processing 670–679 (Association for Computational Linguistics, 2011).
Schuster, T., Chen, S., Buthpitiya, S., Fabrikant, A. & Metzler, D. Stretching sentence-pair NLI models to reason over long documents and clusters. In Findings of the Association for Computational Linguistics: EMNLP 2022 (eds Goldberg, Y. et al.) 394–412 (Association for Computational Linguistics, 2022).
Der KiureghianADitlevsenOAleatory or epistemic? Does it matter?Struct. Saf.20093110511210.1016/j.strusafe.2008.06.020
Falke, T., Ribeiro, L. F. R., Utama, P. A., Dagan, I. & Gurevych, I. Ranking generated summaries by correctness: an interesting but challenging application for natural language inference. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 2214–2220 (Association for Computational Linguistics, 2019).
Joshi, M., Choi, E., Weld, D. S. & Zettlemoyer, L. TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. In Proc. 55th Annual Meeting of the Association for Computational Linguistics 1601–1611 (Association for Computational Linguistics. 2017).
Lee, K., Chang, M.-W. & Toutanova, K. Latent retrieval for weakly supervised open domain question answering. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 6086–6096 (Association for Computational Linguistics, 2019).
Holtzman, A., Buys, J., Du, L., Forbes, M. & Choi, Y. The curious case of neural text degeneration. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=rygGQyrFvH (2020).
Evans, O. et al. Truthful AI: developing and governing AI that does not lie. Preprint at https://arxiv.org/abs/2110.06674 (2021).
JiangZArakiJDingHNeubigGHow can we know when language models know? On the calibration of language models for question answeringTransact. Assoc. Comput. Linguist.2021996297710.1162/tacl_a_00407
Patel, A., Bhattamishra, S. & Goyal, N. Are NLP models really able to solve simple math word problems? In Proc.
7421_CR60
7421_CR61
7421_CR62
7421_CR63
7421_CR20
I Androutsopoulos (7421_CR54) 2010; 38
7421_CR64
7421_CR6
7421_CR21
7421_CR65
7421_CR9
7421_CR22
7421_CR8
7421_CR3
7421_CR24
7421_CR2
7421_CR5
7421_CR26
7421_CR4
7421_CR27
7421_CR28
7421_CR29
Y Shen (7421_CR7) 2023; 307
DV Lindley (7421_CR25) 1956; 27
7421_CR50
7421_CR51
T Brown (7421_CR57) 2020; 33
Z Jiang (7421_CR16) 2021; 9
7421_CR10
7421_CR11
A Der Kiureghian (7421_CR46) 2009; 31
7421_CR55
7421_CR56
7421_CR13
7421_CR14
7421_CR58
7421_CR15
7421_CR59
7421_CR17
7421_CR18
7421_CR40
7421_CR41
7421_CR42
7421_CR43
7421_CR44
7421_CR45
7421_CR47
7421_CR48
7421_CR49
PW Culicover (7421_CR52) 1968; 11
DJC MacKay (7421_CR23) 1992; 4
G Berrios (7421_CR12) 1998; 7
7421_CR1
P Laban (7421_CR31) 2022; 10
S Padó (7421_CR53) 2009; 23
7421_CR30
7421_CR32
7421_CR33
7421_CR35
7421_CR36
7421_CR37
G Tsatsaronis (7421_CR34) 2015; 16
7421_CR38
7421_CR39
Y Wang (7421_CR19) 2022; 10
References_xml – reference: Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023).
– reference: Malinin, A. & Gales, M. Uncertainty estimation in autoregressive structured prediction. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=jN5y-zb5Q7m (2021).
– reference: Glushkova, T., Zerva, C., Rei, R. & Martins, A. F. Uncertainty-aware machine translation evaluation. In Findings of the Association for Computational Linguistics: EMNLP 2021 (eds Moens, M-F., Huang, X., Specia, L. & Yih, S.) 3920–3938 (Association for Computational Linguistics, 2021).
– reference: Shanahan, M. Talking about large language models. Commun. Assoc. Comp. Machinery67, 68–79 (2024).
– reference: He, P., Liu, X., Gao, J. & Chen, W. Deberta: decoding-enhanced BERT with disentangled attention. In International Conference on Learning Representationshttps://openreview.net/forum?id=XPZIaotutsD (2021).
– reference: Murray, K. & Chiang, D. Correcting length bias in neural machine translation. In Proc. Third Conference on Machine Translation (eds Bojar, O. et al.) 212–223 (Assoc. Comp. Linguistics, 2018).
– reference: Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/2312.11805 (2023).
– reference: Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D. & Marchetti, A. Divide and conquer: crowdsourcing the creation of cross-lingual textual entailment corpora. In Proc. 2011 Conference on Empirical Methods in Natural Language Processing 670–679 (Association for Computational Linguistics, 2011).
– reference: Irving, G., Christiano, P. & Amodei, D. AI safety via debate. Preprint at https://arxiv.org/abs/1805.00899 (2018).
– reference: Der KiureghianADitlevsenOAleatory or epistemic? Does it matter?Struct. Saf.20093110511210.1016/j.strusafe.2008.06.020
– reference: PadóSCerDGalleyMJurafskyDManningCDMeasuring machine translation quality as semantic equivalence: a metric based on entailment featuresMach. Transl.20092318119310.1007/s10590-009-9060-y
– reference: AndroutsopoulosIMalakasiotisPA survey of paraphrasing and textual entailment methodsJ. Artif. Intell. Res.20103813518710.1613/jair.2985
– reference: Lee, K., Chang, M.-W. & Toutanova, K. Latent retrieval for weakly supervised open domain question answering. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 6086–6096 (Association for Computational Linguistics, 2019).
– reference: LabanPSchnabelTBennettPNHearstMASummaC: re-visiting NLI-based models for inconsistency detection in summarizationTrans. Assoc. Comput. Linguist.20221016317710.1162/tacl_a_00453
– reference: Manakul, P., Liusie, A. & Gales, M. J. F. SelfCheckGPT: Zero-Resource Black-Box hallucination detection for generative large language models. In Findings of the Association for Computational Linguistics: EMNLP 2023 (eds Bouamor, H., Pino, J. & Bali, K.) 9004–9017 (Assoc. Comp. Linguistics, 2023).
– reference: Penedo, G. et al. The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. In Proc. 36th Conference on Neural Information Processing Systems (eds Oh, A. et al.) 79155–79172 (Curran Associates, 2023)
– reference: Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annual Meeting of the Association for Computational Linguistics (eds Jurafsky, D., Chai, J., Schluter, N. & Tetreault, J.) 1906–1919 (Association for Computational Linguistics, 2020).
– reference: MacCartney, B. Natural Language Inference (Stanford Univ., 2009).
– reference: GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
– reference: Kwiatkowski, T. et al. Natural questions: a benchmark for question answering research. Transact. Assoc. Comput. Linguist.7, 452–466 (2019).
– reference: Socher, R., Huang, E., Pennin, J., Manning, C. D. & Ng, A. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Proceedings of the 24th Conference on Neural Information Processing Systems (eds Shawe-Taylor, J. et al.) (2011)
– reference: Williams, A., Nangia, N. & Bowman, S. R. A broad-coverage challenge corpus for sentence understanding through inference. In Proc. 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds Walker, M. et al.) 1112–1122 (Assoc. Comp. Linguistics, 2018).
– reference: Patel, A., Bhattamishra, S. & Goyal, N. Are NLP models really able to solve simple math word problems? In Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds Toutanova, K. et al.) 2080–2094 (Assoc. Comp. Linguistics, 2021).
– reference: Kossen, J., jlko/semantic_uncertainty: Initial release v.1.0.0. Zenodohttps://doi.org/10.5281/zenodo.10964366 (2024).
– reference: Speaks, J. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford Univ., 2021).
– reference: Weiser, B. Lawyer who used ChatGPT faces penalty for made up citations. The New York Times (8 Jun 2023).
– reference: Desai, S. & Durrett, G. Calibration of pre-trained transformers. In Proc. 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (eds Webber, B., Cohn, T., He, Y. & Liu, Y.) 295–302 (Association for Computational Linguistics, 2020).
– reference: Honovich, O. et al. TRUE: Re-evaluating factual consistency evaluation. In Proc. Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering 161–175 (Association for Computational Linguistics, 2022).
– reference: Holtzman, A., Buys, J., Du, L., Forbes, M. & Choi, Y. The curious case of neural text degeneration. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=rygGQyrFvH (2020).
– reference: BerriosGConfabulations: a conceptual historyJ. Hist. Neurosci.199872252411:STN:280:DC%2BD3Mngs1yksA%3D%3D10.1076/jhin.7.3.225.185511623845
– reference: Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://arxiv.org/abs/2207.05221 (2022).
– reference: Barnes, B. & Christiano, P. Progress on AI Safety via Debate. AI Alignment Forumwww.alignmentforum.org/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1 (2020).
– reference: LindleyDVOn a measure of the information provided by an experimentAnn. Math. Stat.19562798610058393610.1214/aoms/1177728069
– reference: Ji, Z. et al. Survey of hallucination in natural language generation. ACM Comput. Surv.55, 248 (2023).
– reference: MacKayDJCInformation-based objective functions for active data selectionNeural Comput.1992459060410.1162/neco.1992.4.4.590
– reference: Falke, T., Ribeiro, L. F. R., Utama, P. A., Dagan, I. & Gurevych, I. Ranking generated summaries by correctness: an interesting but challenging application for natural language inference. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 2214–2220 (Association for Computational Linguistics, 2019).
– reference: Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. & Gal, Y. Deep deterministic uncertainty: a new simple baseline. In IEEE/CVF Conference on Computer Vision and Pattern Recognition 24384–24394 (Computer Vision Foundation, 2023).
– reference: ShenYChatGPT and other large language models are double-edged swordsRadiology2023307e23016310.1148/radiol.23016336700838
– reference: Evans, O. et al. Truthful AI: developing and governing AI that does not lie. Preprint at https://arxiv.org/abs/2110.06674 (2021).
– reference: Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T. & Saenko, K. Object hallucination in image captioning. In Proc. 2018 Conference on Empirical Methods in Natural Language Processing (eds Riloff, E., Chiang, D., Hockenmaier, J. & Tsujii, J.) 4035–4045 (Association for Computational Linguistics, 2018).
– reference: Lebret, R., Grangier, D. & Auli, M. Neural text generation from structured data with application to the biography domain. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing (eds Su, J. et al.) 1203–1213 (Association for Computational Linguistics, 2016).
– reference: Xiao, Y. & Wang, W. Y. On hallucination and predictive uncertainty in conditional language generation. In Proc. 16th Conference of the European Chapter of the Association for Computational Linguistics 2734–2744 (Association for Computational Linguistics, 2021).
– reference: Baker, S. & Kanade, T. Hallucinating faces. In Proc. Fourth IEEE International Conference on Automatic Face and Gesture Recognition. 83–88 (IEEE, Catalogue no PR00580, 2002).
– reference: Amodei, D. et al. Concrete problems in AI safety. Preprint at https://arxiv.org/abs/1606.06565 (2016).
– reference: CulicoverPWParaphrase generation and information retrieval from stored textMech. Transl. Comput. Linguist.1968117888
– reference: Yu, L., Hermann, K. M., Blunsom, P. & Pulman, S. Deep learning for answer sentence selection. Preprint at https://arxiv.org/abs/1412.1632 (2014).
– reference: Jiang, A. Q. et al. Mistral 7B. Preprint at https://arxiv.org/abs/2310.06825 (2023).
– reference: Filippova, K. Controlled hallucinations: learning to generate faithfully from noisy data. In Findings of the Association for Computational Linguistics: EMNLP 2020 (eds Webber, B., Cohn, T., He, Y. & Liu, Y.) 864–870 (Association for Computational Linguistics, 2020).
– reference: Tay, Y. et al. Charformer: fast character transformers via gradient-based subword tokenization. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=JtBRnrlOEFN (2022).
– reference: Joshi, M., Choi, E., Weld, D. S. & Zettlemoyer, L. TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. In Proc. 55th Annual Meeting of the Association for Computational Linguistics 1601–1611 (Association for Computational Linguistics. 2017).
– reference: Xiao, T. Z., Gomez, A. N. & Gal, Y. Wat zei je? Detecting out-of-distribution translations with variational transformers. In Workshop on Bayesian Deep Learning at the Conference on Neural Information Processing Systems (NeurIPS, Vancouver, 2019).
– reference: Eliot, L. AI ethics lucidly questioning this whole hallucinating AI popularized trend that has got to stop. Forbes Magazine (24 August 2022).
– reference: Lin, S., Hilton, J. & Evans, O. Teaching models to express their uncertainty in words. Transact. Mach. Learn. Res. (2022).
– reference: BrownTLanguage models are few-shot learnersAdv. Neural Inf. Process. Syst.20203318771901
– reference: Schuster, T., Chen, S., Buthpitiya, S., Fabrikant, A. & Metzler, D. Stretching sentence-pair NLI models to reason over long documents and clusters. In Findings of the Association for Computational Linguistics: EMNLP 2022 (eds Goldberg, Y. et al.) 394–412 (Association for Computational Linguistics, 2022).
– reference: JiangZArakiJDingHNeubigGHow can we know when language models know? On the calibration of language models for question answeringTransact. Assoc. Comput. Linguist.2021996297710.1162/tacl_a_00407
– reference: Christiano, P., Cotra, A. & Xu, M. Eliciting Latent Knowledge (Alignment Research Center, 2021); https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit.
– reference: Schulman, J. Reinforcement learning from human feedback: progress and challenges. Presented at the Berkeley EECS Colloquium. YouTubewww.youtube.com/watch?v=hhiLw5Q_UFg (2023).
– reference: Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).
– reference: Fan, A., Lewis, M. & Dauphin, Y. Hierarchical neural story generation. In Proc. 56th Annual Meeting of the Association for Computational Linguistics (eds Gurevych, I. & Miyao, Y.) 889–898 (Association for Computational Linguistics, 2018).
– reference: He, R., Ravula, A., Kanagal, B. & Ainslie, J. Realformer: Transformer likes residual attention. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (eds Zhong, C., et al.) 929–943 (Assoc. Comp. Linguistics, 2021).
– reference: Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ questions for machine compression of text. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing (eds Su, J., Duh, K. & Carreras, X.) 2383–2392 (Association for Computational Linguistics, 2016).
– reference: Kane, H., Kocyigit, Y., Abdalla, A., Ajanoh, P. & Coulibali, M. Towards neural similarity evaluators. In Workshop on Document Intelligence at the 32nd conference on Neural Information Processing (2019).
– reference: TsatsaronisGAn overview of the BIOASQ large-scale biomedical semantic indexing and question answering competitionBMC Bioinformatics20151610.1186/s12859-015-0564-6259251314450488
– reference: WangYBeckDBaldwinTVerspoorKUncertainty estimation and reduction of pre-trained models for text regressionTransact. Assoc. Comput. Linguist.20221068069610.1162/tacl_a_00483
– ident: 7421_CR30
  doi: 10.18653/v1/P19-1213
– volume: 307
  start-page: e230163
  year: 2023
  ident: 7421_CR7
  publication-title: Radiology
  doi: 10.1148/radiol.230163
– ident: 7421_CR43
  doi: 10.18653/v1/2022.findings-emnlp.28
– ident: 7421_CR35
  doi: 10.18653/v1/P19-1612
– volume: 4
  start-page: 590
  year: 1992
  ident: 7421_CR23
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.4.590
– ident: 7421_CR59
– ident: 7421_CR36
  doi: 10.1162/tacl_a_00276
– ident: 7421_CR17
  doi: 10.18653/v1/2020.emnlp-main.21
– volume: 38
  start-page: 135
  year: 2010
  ident: 7421_CR54
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.2985
– ident: 7421_CR37
  doi: 10.18653/v1/2021.naacl-main.168
– ident: 7421_CR4
  doi: 10.18653/v1/D18-1437
– ident: 7421_CR26
– ident: 7421_CR3
  doi: 10.18653/v1/2021.eacl-main.236
– ident: 7421_CR49
– ident: 7421_CR56
– ident: 7421_CR8
– volume: 33
  start-page: 1877
  year: 2020
  ident: 7421_CR57
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 7421_CR14
– ident: 7421_CR41
  doi: 10.18653/v1/2023.emnlp-main.557
– ident: 7421_CR48
  doi: 10.18653/v1/W18-6322
– ident: 7421_CR1
– volume: 9
  start-page: 962
  year: 2021
  ident: 7421_CR16
  publication-title: Transact. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00407
– ident: 7421_CR62
– ident: 7421_CR5
– ident: 7421_CR6
  doi: 10.1016/j.datak.2023.102182
– volume: 16
  year: 2015
  ident: 7421_CR34
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-015-0564-6
– volume: 23
  start-page: 181
  year: 2009
  ident: 7421_CR53
  publication-title: Mach. Transl.
  doi: 10.1007/s10590-009-9060-y
– ident: 7421_CR45
– ident: 7421_CR24
– ident: 7421_CR58
  doi: 10.18653/v1/N18-1101
– ident: 7421_CR51
– ident: 7421_CR27
– ident: 7421_CR50
  doi: 10.18653/v1/P18-1082
– ident: 7421_CR55
– volume: 11
  start-page: 78
  year: 1968
  ident: 7421_CR52
  publication-title: Mech. Transl. Comput. Linguist.
– volume: 10
  start-page: 163
  year: 2022
  ident: 7421_CR31
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00453
– volume: 10
  start-page: 680
  year: 2022
  ident: 7421_CR19
  publication-title: Transact. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00483
– ident: 7421_CR20
  doi: 10.1109/AFGR.2000.840616
– ident: 7421_CR13
– ident: 7421_CR9
  doi: 10.1145/3571730
– ident: 7421_CR15
– ident: 7421_CR40
– ident: 7421_CR38
– ident: 7421_CR63
– ident: 7421_CR2
– ident: 7421_CR44
– ident: 7421_CR42
  doi: 10.1109/CVPR52729.2023.02336
– ident: 7421_CR64
  doi: 10.18653/v1/D16-1128
– ident: 7421_CR21
– ident: 7421_CR28
– volume: 7
  start-page: 225
  year: 1998
  ident: 7421_CR12
  publication-title: J. Hist. Neurosci.
  doi: 10.1076/jhin.7.3.225.1855
– ident: 7421_CR65
  doi: 10.5281/zenodo.10964366
– ident: 7421_CR22
  doi: 10.1145/3624724
– ident: 7421_CR61
  doi: 10.18653/v1/2021.findings-acl.81
– ident: 7421_CR32
  doi: 10.18653/v1/P17-1147
– ident: 7421_CR39
– ident: 7421_CR29
  doi: 10.18653/v1/2022.dialdoc-1.19
– ident: 7421_CR33
  doi: 10.18653/v1/D16-1264
– ident: 7421_CR10
  doi: 10.18653/v1/2020.acl-main.173
– ident: 7421_CR47
– ident: 7421_CR60
– ident: 7421_CR11
  doi: 10.18653/v1/2020.findings-emnlp.76
– volume: 31
  start-page: 105
  year: 2009
  ident: 7421_CR46
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2008.06.020
– volume: 27
  start-page: 986
  year: 1956
  ident: 7421_CR25
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177728069
– ident: 7421_CR18
  doi: 10.18653/v1/2021.findings-emnlp.330
SSID ssj0005174
Score 2.7472541
Snippet Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’...
Large language model (LLM) systems, such as ChatGPT or Gemini , can show impressive reasoning and question-answering capabilities but often 'hallucinate' false...
Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show impressive reasoning and question-answering capabilities but often 'hallucinate'...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 625
SubjectTerms 639/705/117
639/705/258
Entropy
Hallucinations - diagnosis
Hallucinations - psychology
Humanities and Social Sciences
Humans
Language
multidisciplinary
Science
Science (multidisciplinary)
Semantics
Uncertainty
Title Detecting hallucinations in large language models using semantic entropy
URI https://link.springer.com/article/10.1038/s41586-024-07421-0
https://www.ncbi.nlm.nih.gov/pubmed/38898292
https://www.proquest.com/docview/3070824981
https://pubmed.ncbi.nlm.nih.gov/PMC11186750
Volume 630
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_xoUm8TIMNKBuVkXgY2iLiOE0uj1DoKiTQNIHUNyt2HagEKVraB_773TlJUQEh7SUvcRzrzvflO_8O4NAU1uSRk0EUWQbVVjIwueGDfDQ2zTNnPacvr5LhTXwx6o1WIGrvwviifQ9p6dV0Wx12XJGhQS6XjQOO5igEXoV1hm7nXd1P-s9lHS-Ql5uLMqHCN-ZYNkavPMzXhZIvsqXeCA0-wcfGexQn9Xo3YcWVW_DBV3Haags2G0mtxPcGTvroMwzPHCcKaD7BjVPmdlIfAFZiUop7LgQX7aGl8H1xKsHF8Leicg9E9okVvKzp49MXuBmcX_eHQdM_IbBxnM6CbNxzPVmYLAqVRZTWhhY9JpkZp3liFV8nL-KCc3UmSTh0k3EhM1OQ6gmNUduwVk5LtwsiNnmYOBzLnPyB1BV5zyGqQuGY5J1o3gHZElLbBlyce1zca5_kVqhr4msivvbE12EHfiy-eayhNd4dfdDyR5MEcFojL910XmnWWkhRJNIqdmp-LeZTiBlGWdQBXOLkYgCjay-_KSd3HmWbjABSNEU__tkyXTfyXb2zzr3_G_4VNiK_IRPSV99gbfZ37vbJzZmZLqymo5Se2Jf8HPzqwvrp-dXvP12_4_8BVrL4XA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoR367PCB4ULbZNtzs9yqqsz5OCt9BkU13Qrtjdg__embRdWRXBc9M0zHRemS9fAPZ1ZnQa2sALQ8Ok2jLwdKp5Ix-1aaWJNU7Tt3dx5yG6emw-TkBYn4VxoH1HaencdI0OOyko0CDDZSOPqzkqgSdhmnLtmGFc7bj9Bev4xrxcHZTxJf4yx3gw-pFh_gRKfuuWuiB0sQDzVfYoTsv1LsKEzZdgxqE4TbEEi5WlFuKgopM-XIbOmeVGAc0n-OKUoemVG4CF6OXihYHgot60FO5enEIwGP5JFPaVxN4zgpfVf_tYgYeL8_t2x6vuT_BMFLUGXtJt2maQ6ST0pUEMjPENOk4y3W2lsZF8nDyLMu7V6Tjm0i2IsiDRGbkeX2u5ClN5P7frICKd-rHFbpBSPtCyWdq0iDKT2CV7J5k3IKgFqUxFLs53XLwo1-SWqErhKxK-csJXfgOORu-8ldQaf47eq_WjyAK4rZHmtj8sFHstpCoSaRVrpb5G80nEBMMkbACOaXI0gNm1x5_kvWfHsk1BAKmaog8f10pXlX0Xf6xz43_Dd2G2c397o24u7643YS50P2dMvmsLpgbvQ7tNKc9A77h__BP5d_cX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RUCsuCOgr5bVIPRS1bm2v44yPKBCFlqIeQOK28q53IRI4UZ0c-PfMrO2gAELi7PV6NON57cx-A_BVO6Pz2EZBHBsG1ZZRoHPNB_moTS_PrPGS_nuWDi-S35fdyyVI27swvmnfQ1p6M912h_2qyNEgt8smAWdzlAL_nBTuDaxQvB1y0tVP-w-tHY_Ql5vLMqHEZ_ZZdEhPosynzZKPKqbeEQ3WYa2JIMVhTfMGLNlyE976Tk5TbcJGo62V-NZASh-8h-GR5WIB7Sd4eMrMjOpDwEqMSnHDzeCiPbgUfjZOJbgh_kpU9pZYPzKCyRpP7j7AxeD4vD8MmhkKgUmS3jTIiq7tRk5ncSgNYmRMaNDjkumil6dG8pVylziu1-k05fQtSlyUaUfmJ9RafoTlclzazyASnYepxSLKKSboWZd3LaJ0EgvSeeJ5B6KWkco0AOM85-JG-UK3RFUzXxHzlWe-Cjvwff7OpIbXeHH1fisfRVrApY28tONZpdhyIWWSSFR8quU1308iZhhncQdwQZLzBYywvfikHF17pG1yBEgZFX34Ryt01eh49QKdX163fA_e_TsaqNOTsz9bsBr7fzMl87UNy9P_M7tDUc9U7_pf_B6PT_gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+hallucinations+in+large+language+models+using+semantic+entropy&rft.jtitle=Nature+%28London%29&rft.au=Farquhar%2C+Sebastian&rft.au=Kossen%2C+Jannik&rft.au=Kuhn%2C+Lorenz&rft.au=Gal%2C+Yarin&rft.date=2024-06-20&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=630&rft.issue=8017&rft.spage=625&rft.epage=630&rft_id=info:doi/10.1038%2Fs41586-024-07421-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_024_07421_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon