Detecting hallucinations in large language models using semantic entropy
Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers 3 , 4 . Answering unreliably or without the necessary information prevents adoption in diverse field...
Saved in:
Published in | Nature (London) Vol. 630; no. 8017; pp. 625 - 630 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Large language model (LLM) systems, such as ChatGPT
1
or Gemini
2
, can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers
3
,
4
. Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents
5
or untrue facts in news articles
6
and even posing a risk to human life in medical domains such as radiology
7
. Encouraging truthfulness through supervision or reinforcement has been only partially successful
8
. Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability.
Hallucinations (confabulations) in large language model systems can be tackled by measuring uncertainty about the meanings of generated responses rather than the text itself to improve question-answering accuracy. |
---|---|
AbstractList | Large language model (LLM) systems, such as ChatGPT
1
or Gemini
2
, can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers
3
,
4
. Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents
5
or untrue facts in news articles
6
and even posing a risk to human life in medical domains such as radiology
7
. Encouraging truthfulness through supervision or reinforcement has been only partially successful
8
. Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability.
Hallucinations (confabulations) in large language model systems can be tackled by measuring uncertainty about the meanings of generated responses rather than the text itself to improve question-answering accuracy. Large language model (LLM) systems, such as ChatGPT 1 or Gemini 2 , can show impressive reasoning and question-answering capabilities but often ‘hallucinate’ false outputs and unsubstantiated answers 3,4 . Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents 5 or untrue facts in news articles 6 and even posing a risk to human life in medical domains such as radiology 7 . Encouraging truthfulness through supervision or reinforcement has been only partially successful 8 . Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations—confabulations—which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability. Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show impressive reasoning and question-answering capabilities but often 'hallucinate' false outputs and unsubstantiated answers3,4. Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents5 or untrue facts in news articles6 and even posing a risk to human life in medical domains such as radiology7. Encouraging truthfulness through supervision or reinforcement has been only partially successful8. Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations-confabulations-which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability.Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show impressive reasoning and question-answering capabilities but often 'hallucinate' false outputs and unsubstantiated answers3,4. Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents5 or untrue facts in news articles6 and even posing a risk to human life in medical domains such as radiology7. Encouraging truthfulness through supervision or reinforcement has been only partially successful8. Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations-confabulations-which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability. Large language model (LLM) systems, such as ChatGPT or Gemini , can show impressive reasoning and question-answering capabilities but often 'hallucinate' false outputs and unsubstantiated answers . Answering unreliably or without the necessary information prevents adoption in diverse fields, with problems including fabrication of legal precedents or untrue facts in news articles and even posing a risk to human life in medical domains such as radiology . Encouraging truthfulness through supervision or reinforcement has been only partially successful . Researchers need a general method for detecting hallucinations in LLMs that works even with new and unseen questions to which humans might not know the answer. Here we develop new methods grounded in statistics, proposing entropy-based uncertainty estimators for LLMs to detect a subset of hallucinations-confabulations-which are arbitrary and incorrect generations. Our method addresses the fact that one idea can be expressed in many ways by computing uncertainty at the level of meaning rather than specific sequences of words. Our method works across datasets and tasks without a priori knowledge of the task, requires no task-specific data and robustly generalizes to new tasks not seen before. By detecting when a prompt is likely to produce a confabulation, our method helps users understand when they must take extra care with LLMs and opens up new possibilities for using LLMs that are otherwise prevented by their unreliability. |
Author | Kossen, Jannik Farquhar, Sebastian Gal, Yarin Kuhn, Lorenz |
Author_xml | – sequence: 1 givenname: Sebastian orcidid: 0000-0002-9185-6415 surname: Farquhar fullname: Farquhar, Sebastian email: sebfar@gmail.com organization: OATML, Department of Computer Science, University of Oxford – sequence: 2 givenname: Jannik surname: Kossen fullname: Kossen, Jannik organization: OATML, Department of Computer Science, University of Oxford – sequence: 3 givenname: Lorenz surname: Kuhn fullname: Kuhn, Lorenz organization: OATML, Department of Computer Science, University of Oxford – sequence: 4 givenname: Yarin orcidid: 0000-0002-2733-2078 surname: Gal fullname: Gal, Yarin organization: OATML, Department of Computer Science, University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38898292$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1P3DAQtSpQWaB_oIcqx17SzthOPDlVFf2gElIvcLYcrxOMEntrJ5X493hZitoeuNiW5n2M3ztlRyEGx9hbhA8Igj5miQ21NXBZg5Ica3jFNihVW8uW1BHbAHCqgUR7wk5zvgOABpV8zU4EUUe84xt2-cUtzi4-jNWtmabV-mAWH0OufKgmk0ZXzjCupjzmuHVTrta8R2c3m7B4W7mwpLi7P2fHg5mye_N0n7Gbb1-vLy7rq5_ff1x8vqqtlGqpu23jGhz6joOwRGgtWALeSNlvlWmtkARqkIMSXdO3LWGHKAfs-gGIoO_FGft00N2t_ey2dm9vJr1LfjbpXkfj9b-T4G_1GH9rRKRWNVAU3j8ppPhrdXnRs8_WTeWfLq5ZC1BAXHaEBfrub7Nnlz_5FQA_AGyKOSc3PEMQ9L4kfShJl5L0Y0l6vwD9R7J-eUy9LOynl6niQM3FJ4wu6bu4plACf4n1AHgKpsU |
CitedBy_id | crossref_primary_10_2139_ssrn_4836558 crossref_primary_10_1038_s41592_024_02370_y crossref_primary_10_1007_s00146_025_02189_x crossref_primary_10_3390_fi16120462 crossref_primary_10_1007_s10489_024_05796_1 crossref_primary_10_1016_j_neucom_2025_129829 crossref_primary_10_1080_10875301_2024_2426793 crossref_primary_10_1016_j_ijoa_2024_104249 crossref_primary_10_1136_bmjophth_2024_001824 crossref_primary_10_1093_jamia_ocae202 crossref_primary_10_3390_ai6010012 crossref_primary_10_1007_s10676_024_09802_5 crossref_primary_10_1016_j_eng_2024_12_014 crossref_primary_10_1016_S0140_6736_24_02615_1 crossref_primary_10_1002_spe_3389 crossref_primary_10_3390_app15052536 crossref_primary_10_47912_jscdm_363 crossref_primary_10_1002_ird3_115 crossref_primary_10_3390_app15052292 crossref_primary_10_1016_j_asoc_2025_112700 crossref_primary_10_1016_S2665_9913_24_00400_4 crossref_primary_10_1016_j_ipm_2025_104094 crossref_primary_10_3389_fmed_2024_1495582 crossref_primary_10_1007_s10639_024_13129_5 crossref_primary_10_1038_d41586_025_00068_5 crossref_primary_10_2196_68427 crossref_primary_10_1016_j_inffus_2025_102970 crossref_primary_10_1038_s41591_024_03445_1 crossref_primary_10_1016_j_prrv_2025_01_004 crossref_primary_10_1038_d41586_024_01641_0 crossref_primary_10_2139_ssrn_4694565 crossref_primary_10_2196_59823 crossref_primary_10_1007_s44313_025_00062_w crossref_primary_10_1016_j_tibtech_2025_02_008 crossref_primary_10_61947_uw_PF_2024_75_3_4_12_16 crossref_primary_10_3390_ijms252413371 crossref_primary_10_1016_j_jmsy_2025_01_018 crossref_primary_10_1038_s42256_024_00976_7 crossref_primary_10_1016_j_clsr_2024_106066 crossref_primary_10_34067_KID_0000000000000556 crossref_primary_10_1016_j_xcrm_2024_101875 crossref_primary_10_1109_JBHI_2024_3514659 crossref_primary_10_1093_jac_dkaf077 crossref_primary_10_3390_su17052192 crossref_primary_10_1039_D4DD00178H crossref_primary_10_1097_RHU_0000000000002198 crossref_primary_10_1007_s00134_024_07738_4 crossref_primary_10_1016_j_ipm_2024_104054 crossref_primary_10_1038_s41746_024_01219_0 crossref_primary_10_1016_j_ijhcs_2025_103471 crossref_primary_10_3390_jcm13195971 crossref_primary_10_1016_j_tre_2024_103795 crossref_primary_10_2139_ssrn_4751774 crossref_primary_10_1093_nsr_nwaf028 crossref_primary_10_1111_cas_16395 crossref_primary_10_1038_d41586_024_03940_y crossref_primary_10_3389_fvets_2024_1490030 crossref_primary_10_1038_s41598_024_81052_3 crossref_primary_10_1007_s10506_025_09434_0 crossref_primary_10_1038_s41586_024_08564_w |
Cites_doi | 10.18653/v1/P19-1213 10.1148/radiol.230163 10.18653/v1/2022.findings-emnlp.28 10.18653/v1/P19-1612 10.1162/neco.1992.4.4.590 10.1162/tacl_a_00276 10.18653/v1/2020.emnlp-main.21 10.1613/jair.2985 10.18653/v1/2021.naacl-main.168 10.18653/v1/D18-1437 10.18653/v1/2021.eacl-main.236 10.18653/v1/2023.emnlp-main.557 10.18653/v1/W18-6322 10.1162/tacl_a_00407 10.1016/j.datak.2023.102182 10.1186/s12859-015-0564-6 10.1007/s10590-009-9060-y 10.18653/v1/N18-1101 10.18653/v1/P18-1082 10.1162/tacl_a_00453 10.1162/tacl_a_00483 10.1109/AFGR.2000.840616 10.1145/3571730 10.1109/CVPR52729.2023.02336 10.18653/v1/D16-1128 10.1076/jhin.7.3.225.1855 10.5281/zenodo.10964366 10.1145/3624724 10.18653/v1/2021.findings-acl.81 10.18653/v1/P17-1147 10.18653/v1/2022.dialdoc-1.19 10.18653/v1/D16-1264 10.18653/v1/2020.acl-main.173 10.18653/v1/2020.findings-emnlp.76 10.1016/j.strusafe.2008.06.020 10.1214/aoms/1177728069 10.18653/v1/2021.findings-emnlp.330 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1038/s41586-024-07421-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 630 |
ExternalDocumentID | PMC11186750 38898292 10_1038_s41586_024_07421_0 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 53G 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PKN PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKR UMD UQL VQA VVN WH7 X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~88 ~KM 1VR 2XV 41X 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L AARCD AAYXX ABFSG ABJCF ABUWG ACMFV ACSTC AEUYN AEZWR AFANA AFHIU AFKRA AHWEU AIXLP ALPWD ATHPR AZQEC BBNVY BCU BEC BGLVJ BKEYQ BKSAR BPHCQ BVXVI CCPQU CITATION D1I D1J D1K DWQXO EMH EX3 FYUFA GNUQQ GUQSH HMCUK INR ISR K6- KB. L6V LK5 LK8 M1P M2M M2P M7R M7S NAPCQ NFIDA P62 PATMY PCBAR PDBOC PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 S0X SJFOW UKHRP WOW ~7V .-4 .GJ .HR 00M 08P 0WA 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ AAYOK ABAWZ ABDBF ABDPE ABEFU ABMOR ABNNU ABTAH ACBNA ACBTR ACRPL ACTDY ACUHS ADNMO ADRHT ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 MVM N4W NEJ NPM OHT P-O PEA PM3 QS- R4F RHI SKT SV3 TH9 TUD TUS UAO UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZKG ZY4 ~8M ~G0 7X8 PPXIY PQGLB 5PM AFKWF PJZUB |
ID | FETCH-LOGICAL-c447t-9d5e51fb9203c881cc0c802544bd7a6c34807f4f7395b66819114f19bf0880bb3 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:33:50 EDT 2025 Fri Jul 11 05:59:28 EDT 2025 Thu Apr 03 07:09:01 EDT 2025 Tue Jul 01 02:58:57 EDT 2025 Thu Apr 24 22:50:26 EDT 2025 Fri Feb 21 02:39:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8017 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-9d5e51fb9203c881cc0c802544bd7a6c34807f4f7395b66819114f19bf0880bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9185-6415 0000-0002-2733-2078 |
OpenAccessLink | https://www.nature.com/articles/s41586-024-07421-0 |
PMID | 38898292 |
PQID | 3070824981 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11186750 proquest_miscellaneous_3070824981 pubmed_primary_38898292 crossref_primary_10_1038_s41586_024_07421_0 crossref_citationtrail_10_1038_s41586_024_07421_0 springer_journals_10_1038_s41586_024_07421_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-20 |
PublicationDateYYYYMMDD | 2024-06-20 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | Manakul, P., Liusie, A. & Gales, M. J. F. SelfCheckGPT: Zero-Resource Black-Box hallucination detection for generative large language models. In Findings of the Association for Computational Linguistics: EMNLP 2023 (eds Bouamor, H., Pino, J. & Bali, K.) 9004–9017 (Assoc. Comp. Linguistics, 2023). PadóSCerDGalleyMJurafskyDManningCDMeasuring machine translation quality as semantic equivalence: a metric based on entailment featuresMach. Transl.20092318119310.1007/s10590-009-9060-y Shanahan, M. Talking about large language models. Commun. Assoc. Comp. Machinery67, 68–79 (2024). He, P., Liu, X., Gao, J. & Chen, W. Deberta: decoding-enhanced BERT with disentangled attention. In International Conference on Learning Representationshttps://openreview.net/forum?id=XPZIaotutsD (2021). Williams, A., Nangia, N. & Bowman, S. R. A broad-coverage challenge corpus for sentence understanding through inference. In Proc. 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds Walker, M. et al.) 1112–1122 (Assoc. Comp. Linguistics, 2018). Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. & Gal, Y. Deep deterministic uncertainty: a new simple baseline. In IEEE/CVF Conference on Computer Vision and Pattern Recognition 24384–24394 (Computer Vision Foundation, 2023). CulicoverPWParaphrase generation and information retrieval from stored textMech. Transl. Comput. Linguist.1968117888 Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023). Honovich, O. et al. TRUE: Re-evaluating factual consistency evaluation. In Proc. Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering 161–175 (Association for Computational Linguistics, 2022). Kwiatkowski, T. et al. Natural questions: a benchmark for question answering research. Transact. Assoc. Comput. Linguist.7, 452–466 (2019). Jiang, A. Q. et al. Mistral 7B. Preprint at https://arxiv.org/abs/2310.06825 (2023). Murray, K. & Chiang, D. Correcting length bias in neural machine translation. In Proc. Third Conference on Machine Translation (eds Bojar, O. et al.) 212–223 (Assoc. Comp. Linguistics, 2018). Glushkova, T., Zerva, C., Rei, R. & Martins, A. F. Uncertainty-aware machine translation evaluation. In Findings of the Association for Computational Linguistics: EMNLP 2021 (eds Moens, M-F., Huang, X., Specia, L. & Yih, S.) 3920–3938 (Association for Computational Linguistics, 2021). Barnes, B. & Christiano, P. Progress on AI Safety via Debate. AI Alignment Forumwww.alignmentforum.org/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1 (2020). Baker, S. & Kanade, T. Hallucinating faces. In Proc. Fourth IEEE International Conference on Automatic Face and Gesture Recognition. 83–88 (IEEE, Catalogue no PR00580, 2002). Eliot, L. AI ethics lucidly questioning this whole hallucinating AI popularized trend that has got to stop. Forbes Magazine (24 August 2022). He, R., Ravula, A., Kanagal, B. & Ainslie, J. Realformer: Transformer likes residual attention. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (eds Zhong, C., et al.) 929–943 (Assoc. Comp. Linguistics, 2021). Ji, Z. et al. Survey of hallucination in natural language generation. ACM Comput. Surv.55, 248 (2023). Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T. & Saenko, K. Object hallucination in image captioning. In Proc. 2018 Conference on Empirical Methods in Natural Language Processing (eds Riloff, E., Chiang, D., Hockenmaier, J. & Tsujii, J.) 4035–4045 (Association for Computational Linguistics, 2018). Amodei, D. et al. Concrete problems in AI safety. Preprint at https://arxiv.org/abs/1606.06565 (2016). MacKayDJCInformation-based objective functions for active data selectionNeural Comput.1992459060410.1162/neco.1992.4.4.590 Penedo, G. et al. The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. In Proc. 36th Conference on Neural Information Processing Systems (eds Oh, A. et al.) 79155–79172 (Curran Associates, 2023) Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023). Yu, L., Hermann, K. M., Blunsom, P. & Pulman, S. Deep learning for answer sentence selection. Preprint at https://arxiv.org/abs/1412.1632 (2014). ShenYChatGPT and other large language models are double-edged swordsRadiology2023307e23016310.1148/radiol.23016336700838 Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ questions for machine compression of text. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing (eds Su, J., Duh, K. & Carreras, X.) 2383–2392 (Association for Computational Linguistics, 2016). Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annual Meeting of the Association for Computational Linguistics (eds Jurafsky, D., Chai, J., Schluter, N. & Tetreault, J.) 1906–1919 (Association for Computational Linguistics, 2020). WangYBeckDBaldwinTVerspoorKUncertainty estimation and reduction of pre-trained models for text regressionTransact. Assoc. Comput. Linguist.20221068069610.1162/tacl_a_00483 Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/2312.11805 (2023). TsatsaronisGAn overview of the BIOASQ large-scale biomedical semantic indexing and question answering competitionBMC Bioinformatics20151610.1186/s12859-015-0564-6259251314450488 Malinin, A. & Gales, M. Uncertainty estimation in autoregressive structured prediction. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=jN5y-zb5Q7m (2021). Filippova, K. Controlled hallucinations: learning to generate faithfully from noisy data. In Findings of the Association for Computational Linguistics: EMNLP 2020 (eds Webber, B., Cohn, T., He, Y. & Liu, Y.) 864–870 (Association for Computational Linguistics, 2020). LabanPSchnabelTBennettPNHearstMASummaC: re-visiting NLI-based models for inconsistency detection in summarizationTrans. Assoc. Comput. Linguist.20221016317710.1162/tacl_a_00453 Xiao, T. Z., Gomez, A. N. & Gal, Y. Wat zei je? Detecting out-of-distribution translations with variational transformers. In Workshop on Bayesian Deep Learning at the Conference on Neural Information Processing Systems (NeurIPS, Vancouver, 2019). Schulman, J. Reinforcement learning from human feedback: progress and challenges. Presented at the Berkeley EECS Colloquium. YouTubewww.youtube.com/watch?v=hhiLw5Q_UFg (2023). Xiao, Y. & Wang, W. Y. On hallucination and predictive uncertainty in conditional language generation. In Proc. 16th Conference of the European Chapter of the Association for Computational Linguistics 2734–2744 (Association for Computational Linguistics, 2021). GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023). Lin, S., Hilton, J. & Evans, O. Teaching models to express their uncertainty in words. Transact. Mach. Learn. Res. (2022). Socher, R., Huang, E., Pennin, J., Manning, C. D. & Ng, A. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Proceedings of the 24th Conference on Neural Information Processing Systems (eds Shawe-Taylor, J. et al.) (2011) BrownTLanguage models are few-shot learnersAdv. Neural Inf. Process. Syst.20203318771901 BerriosGConfabulations: a conceptual historyJ. Hist. Neurosci.199872252411:STN:280:DC%2BD3Mngs1yksA%3D%3D10.1076/jhin.7.3.225.185511623845 Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://arxiv.org/abs/2207.05221 (2022). Speaks, J. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford Univ., 2021). Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D. & Marchetti, A. Divide and conquer: crowdsourcing the creation of cross-lingual textual entailment corpora. In Proc. 2011 Conference on Empirical Methods in Natural Language Processing 670–679 (Association for Computational Linguistics, 2011). Schuster, T., Chen, S., Buthpitiya, S., Fabrikant, A. & Metzler, D. Stretching sentence-pair NLI models to reason over long documents and clusters. In Findings of the Association for Computational Linguistics: EMNLP 2022 (eds Goldberg, Y. et al.) 394–412 (Association for Computational Linguistics, 2022). Der KiureghianADitlevsenOAleatory or epistemic? Does it matter?Struct. Saf.20093110511210.1016/j.strusafe.2008.06.020 Falke, T., Ribeiro, L. F. R., Utama, P. A., Dagan, I. & Gurevych, I. Ranking generated summaries by correctness: an interesting but challenging application for natural language inference. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 2214–2220 (Association for Computational Linguistics, 2019). Joshi, M., Choi, E., Weld, D. S. & Zettlemoyer, L. TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. In Proc. 55th Annual Meeting of the Association for Computational Linguistics 1601–1611 (Association for Computational Linguistics. 2017). Lee, K., Chang, M.-W. & Toutanova, K. Latent retrieval for weakly supervised open domain question answering. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 6086–6096 (Association for Computational Linguistics, 2019). Holtzman, A., Buys, J., Du, L., Forbes, M. & Choi, Y. The curious case of neural text degeneration. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=rygGQyrFvH (2020). Evans, O. et al. Truthful AI: developing and governing AI that does not lie. Preprint at https://arxiv.org/abs/2110.06674 (2021). JiangZArakiJDingHNeubigGHow can we know when language models know? On the calibration of language models for question answeringTransact. Assoc. Comput. Linguist.2021996297710.1162/tacl_a_00407 Patel, A., Bhattamishra, S. & Goyal, N. Are NLP models really able to solve simple math word problems? In Proc. 7421_CR60 7421_CR61 7421_CR62 7421_CR63 7421_CR20 I Androutsopoulos (7421_CR54) 2010; 38 7421_CR64 7421_CR6 7421_CR21 7421_CR65 7421_CR9 7421_CR22 7421_CR8 7421_CR3 7421_CR24 7421_CR2 7421_CR5 7421_CR26 7421_CR4 7421_CR27 7421_CR28 7421_CR29 Y Shen (7421_CR7) 2023; 307 DV Lindley (7421_CR25) 1956; 27 7421_CR50 7421_CR51 T Brown (7421_CR57) 2020; 33 Z Jiang (7421_CR16) 2021; 9 7421_CR10 7421_CR11 A Der Kiureghian (7421_CR46) 2009; 31 7421_CR55 7421_CR56 7421_CR13 7421_CR14 7421_CR58 7421_CR15 7421_CR59 7421_CR17 7421_CR18 7421_CR40 7421_CR41 7421_CR42 7421_CR43 7421_CR44 7421_CR45 7421_CR47 7421_CR48 7421_CR49 PW Culicover (7421_CR52) 1968; 11 DJC MacKay (7421_CR23) 1992; 4 G Berrios (7421_CR12) 1998; 7 7421_CR1 P Laban (7421_CR31) 2022; 10 S Padó (7421_CR53) 2009; 23 7421_CR30 7421_CR32 7421_CR33 7421_CR35 7421_CR36 7421_CR37 G Tsatsaronis (7421_CR34) 2015; 16 7421_CR38 7421_CR39 Y Wang (7421_CR19) 2022; 10 |
References_xml | – reference: Opdahl, A. L. et al. Trustworthy journalism through AI. Data Knowl. Eng. 146, 102182 (2023). – reference: Malinin, A. & Gales, M. Uncertainty estimation in autoregressive structured prediction. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=jN5y-zb5Q7m (2021). – reference: Glushkova, T., Zerva, C., Rei, R. & Martins, A. F. Uncertainty-aware machine translation evaluation. In Findings of the Association for Computational Linguistics: EMNLP 2021 (eds Moens, M-F., Huang, X., Specia, L. & Yih, S.) 3920–3938 (Association for Computational Linguistics, 2021). – reference: Shanahan, M. Talking about large language models. Commun. Assoc. Comp. Machinery67, 68–79 (2024). – reference: He, P., Liu, X., Gao, J. & Chen, W. Deberta: decoding-enhanced BERT with disentangled attention. In International Conference on Learning Representationshttps://openreview.net/forum?id=XPZIaotutsD (2021). – reference: Murray, K. & Chiang, D. Correcting length bias in neural machine translation. In Proc. Third Conference on Machine Translation (eds Bojar, O. et al.) 212–223 (Assoc. Comp. Linguistics, 2018). – reference: Gemini: a family of highly capable multimodal models. Preprint at https://arxiv.org/abs/2312.11805 (2023). – reference: Negri, M., Bentivogli, L., Mehdad, Y., Giampiccolo, D. & Marchetti, A. Divide and conquer: crowdsourcing the creation of cross-lingual textual entailment corpora. In Proc. 2011 Conference on Empirical Methods in Natural Language Processing 670–679 (Association for Computational Linguistics, 2011). – reference: Irving, G., Christiano, P. & Amodei, D. AI safety via debate. Preprint at https://arxiv.org/abs/1805.00899 (2018). – reference: Der KiureghianADitlevsenOAleatory or epistemic? Does it matter?Struct. Saf.20093110511210.1016/j.strusafe.2008.06.020 – reference: PadóSCerDGalleyMJurafskyDManningCDMeasuring machine translation quality as semantic equivalence: a metric based on entailment featuresMach. Transl.20092318119310.1007/s10590-009-9060-y – reference: AndroutsopoulosIMalakasiotisPA survey of paraphrasing and textual entailment methodsJ. Artif. Intell. Res.20103813518710.1613/jair.2985 – reference: Lee, K., Chang, M.-W. & Toutanova, K. Latent retrieval for weakly supervised open domain question answering. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 6086–6096 (Association for Computational Linguistics, 2019). – reference: LabanPSchnabelTBennettPNHearstMASummaC: re-visiting NLI-based models for inconsistency detection in summarizationTrans. Assoc. Comput. Linguist.20221016317710.1162/tacl_a_00453 – reference: Manakul, P., Liusie, A. & Gales, M. J. F. SelfCheckGPT: Zero-Resource Black-Box hallucination detection for generative large language models. In Findings of the Association for Computational Linguistics: EMNLP 2023 (eds Bouamor, H., Pino, J. & Bali, K.) 9004–9017 (Assoc. Comp. Linguistics, 2023). – reference: Penedo, G. et al. The RefinedWeb dataset for Falcon LLM: outperforming curated corpora with web data, and web data only. In Proc. 36th Conference on Neural Information Processing Systems (eds Oh, A. et al.) 79155–79172 (Curran Associates, 2023) – reference: Maynez, J., Narayan, S., Bohnet, B. & McDonald, R. On faithfulness and factuality in abstractive summarization. In Proc. 58th Annual Meeting of the Association for Computational Linguistics (eds Jurafsky, D., Chai, J., Schluter, N. & Tetreault, J.) 1906–1919 (Association for Computational Linguistics, 2020). – reference: MacCartney, B. Natural Language Inference (Stanford Univ., 2009). – reference: GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023). – reference: Kwiatkowski, T. et al. Natural questions: a benchmark for question answering research. Transact. Assoc. Comput. Linguist.7, 452–466 (2019). – reference: Socher, R., Huang, E., Pennin, J., Manning, C. D. & Ng, A. Dynamic pooling and unfolding recursive autoencoders for paraphrase detection. In Proceedings of the 24th Conference on Neural Information Processing Systems (eds Shawe-Taylor, J. et al.) (2011) – reference: Williams, A., Nangia, N. & Bowman, S. R. A broad-coverage challenge corpus for sentence understanding through inference. In Proc. 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds Walker, M. et al.) 1112–1122 (Assoc. Comp. Linguistics, 2018). – reference: Patel, A., Bhattamishra, S. & Goyal, N. Are NLP models really able to solve simple math word problems? In Proc. 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds Toutanova, K. et al.) 2080–2094 (Assoc. Comp. Linguistics, 2021). – reference: Kossen, J., jlko/semantic_uncertainty: Initial release v.1.0.0. Zenodohttps://doi.org/10.5281/zenodo.10964366 (2024). – reference: Speaks, J. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford Univ., 2021). – reference: Weiser, B. Lawyer who used ChatGPT faces penalty for made up citations. The New York Times (8 Jun 2023). – reference: Desai, S. & Durrett, G. Calibration of pre-trained transformers. In Proc. 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (eds Webber, B., Cohn, T., He, Y. & Liu, Y.) 295–302 (Association for Computational Linguistics, 2020). – reference: Honovich, O. et al. TRUE: Re-evaluating factual consistency evaluation. In Proc. Second DialDoc Workshop on Document-grounded Dialogue and Conversational Question Answering 161–175 (Association for Computational Linguistics, 2022). – reference: Holtzman, A., Buys, J., Du, L., Forbes, M. & Choi, Y. The curious case of neural text degeneration. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=rygGQyrFvH (2020). – reference: BerriosGConfabulations: a conceptual historyJ. Hist. Neurosci.199872252411:STN:280:DC%2BD3Mngs1yksA%3D%3D10.1076/jhin.7.3.225.185511623845 – reference: Kadavath, S. et al. Language models (mostly) know what they know. Preprint at https://arxiv.org/abs/2207.05221 (2022). – reference: Barnes, B. & Christiano, P. Progress on AI Safety via Debate. AI Alignment Forumwww.alignmentforum.org/posts/Br4xDbYu4Frwrb64a/writeup-progress-on-ai-safety-via-debate-1 (2020). – reference: LindleyDVOn a measure of the information provided by an experimentAnn. Math. Stat.19562798610058393610.1214/aoms/1177728069 – reference: Ji, Z. et al. Survey of hallucination in natural language generation. ACM Comput. Surv.55, 248 (2023). – reference: MacKayDJCInformation-based objective functions for active data selectionNeural Comput.1992459060410.1162/neco.1992.4.4.590 – reference: Falke, T., Ribeiro, L. F. R., Utama, P. A., Dagan, I. & Gurevych, I. Ranking generated summaries by correctness: an interesting but challenging application for natural language inference. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 2214–2220 (Association for Computational Linguistics, 2019). – reference: Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. & Gal, Y. Deep deterministic uncertainty: a new simple baseline. In IEEE/CVF Conference on Computer Vision and Pattern Recognition 24384–24394 (Computer Vision Foundation, 2023). – reference: ShenYChatGPT and other large language models are double-edged swordsRadiology2023307e23016310.1148/radiol.23016336700838 – reference: Evans, O. et al. Truthful AI: developing and governing AI that does not lie. Preprint at https://arxiv.org/abs/2110.06674 (2021). – reference: Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T. & Saenko, K. Object hallucination in image captioning. In Proc. 2018 Conference on Empirical Methods in Natural Language Processing (eds Riloff, E., Chiang, D., Hockenmaier, J. & Tsujii, J.) 4035–4045 (Association for Computational Linguistics, 2018). – reference: Lebret, R., Grangier, D. & Auli, M. Neural text generation from structured data with application to the biography domain. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing (eds Su, J. et al.) 1203–1213 (Association for Computational Linguistics, 2016). – reference: Xiao, Y. & Wang, W. Y. On hallucination and predictive uncertainty in conditional language generation. In Proc. 16th Conference of the European Chapter of the Association for Computational Linguistics 2734–2744 (Association for Computational Linguistics, 2021). – reference: Baker, S. & Kanade, T. Hallucinating faces. In Proc. Fourth IEEE International Conference on Automatic Face and Gesture Recognition. 83–88 (IEEE, Catalogue no PR00580, 2002). – reference: Amodei, D. et al. Concrete problems in AI safety. Preprint at https://arxiv.org/abs/1606.06565 (2016). – reference: CulicoverPWParaphrase generation and information retrieval from stored textMech. Transl. Comput. Linguist.1968117888 – reference: Yu, L., Hermann, K. M., Blunsom, P. & Pulman, S. Deep learning for answer sentence selection. Preprint at https://arxiv.org/abs/1412.1632 (2014). – reference: Jiang, A. Q. et al. Mistral 7B. Preprint at https://arxiv.org/abs/2310.06825 (2023). – reference: Filippova, K. Controlled hallucinations: learning to generate faithfully from noisy data. In Findings of the Association for Computational Linguistics: EMNLP 2020 (eds Webber, B., Cohn, T., He, Y. & Liu, Y.) 864–870 (Association for Computational Linguistics, 2020). – reference: Tay, Y. et al. Charformer: fast character transformers via gradient-based subword tokenization. In Proceedings of the International Conference on Learning Representationshttps://openreview.net/forum?id=JtBRnrlOEFN (2022). – reference: Joshi, M., Choi, E., Weld, D. S. & Zettlemoyer, L. TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension. In Proc. 55th Annual Meeting of the Association for Computational Linguistics 1601–1611 (Association for Computational Linguistics. 2017). – reference: Xiao, T. Z., Gomez, A. N. & Gal, Y. Wat zei je? Detecting out-of-distribution translations with variational transformers. In Workshop on Bayesian Deep Learning at the Conference on Neural Information Processing Systems (NeurIPS, Vancouver, 2019). – reference: Eliot, L. AI ethics lucidly questioning this whole hallucinating AI popularized trend that has got to stop. Forbes Magazine (24 August 2022). – reference: Lin, S., Hilton, J. & Evans, O. Teaching models to express their uncertainty in words. Transact. Mach. Learn. Res. (2022). – reference: BrownTLanguage models are few-shot learnersAdv. Neural Inf. Process. Syst.20203318771901 – reference: Schuster, T., Chen, S., Buthpitiya, S., Fabrikant, A. & Metzler, D. Stretching sentence-pair NLI models to reason over long documents and clusters. In Findings of the Association for Computational Linguistics: EMNLP 2022 (eds Goldberg, Y. et al.) 394–412 (Association for Computational Linguistics, 2022). – reference: JiangZArakiJDingHNeubigGHow can we know when language models know? On the calibration of language models for question answeringTransact. Assoc. Comput. Linguist.2021996297710.1162/tacl_a_00407 – reference: Christiano, P., Cotra, A. & Xu, M. Eliciting Latent Knowledge (Alignment Research Center, 2021); https://docs.google.com/document/d/1WwsnJQstPq91_Yh-Ch2XRL8H_EpsnjrC1dwZXR37PC8/edit. – reference: Schulman, J. Reinforcement learning from human feedback: progress and challenges. Presented at the Berkeley EECS Colloquium. YouTubewww.youtube.com/watch?v=hhiLw5Q_UFg (2023). – reference: Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023). – reference: Fan, A., Lewis, M. & Dauphin, Y. Hierarchical neural story generation. In Proc. 56th Annual Meeting of the Association for Computational Linguistics (eds Gurevych, I. & Miyao, Y.) 889–898 (Association for Computational Linguistics, 2018). – reference: He, R., Ravula, A., Kanagal, B. & Ainslie, J. Realformer: Transformer likes residual attention. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (eds Zhong, C., et al.) 929–943 (Assoc. Comp. Linguistics, 2021). – reference: Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ questions for machine compression of text. In Proc. 2016 Conference on Empirical Methods in Natural Language Processing (eds Su, J., Duh, K. & Carreras, X.) 2383–2392 (Association for Computational Linguistics, 2016). – reference: Kane, H., Kocyigit, Y., Abdalla, A., Ajanoh, P. & Coulibali, M. Towards neural similarity evaluators. In Workshop on Document Intelligence at the 32nd conference on Neural Information Processing (2019). – reference: TsatsaronisGAn overview of the BIOASQ large-scale biomedical semantic indexing and question answering competitionBMC Bioinformatics20151610.1186/s12859-015-0564-6259251314450488 – reference: WangYBeckDBaldwinTVerspoorKUncertainty estimation and reduction of pre-trained models for text regressionTransact. Assoc. Comput. Linguist.20221068069610.1162/tacl_a_00483 – ident: 7421_CR30 doi: 10.18653/v1/P19-1213 – volume: 307 start-page: e230163 year: 2023 ident: 7421_CR7 publication-title: Radiology doi: 10.1148/radiol.230163 – ident: 7421_CR43 doi: 10.18653/v1/2022.findings-emnlp.28 – ident: 7421_CR35 doi: 10.18653/v1/P19-1612 – volume: 4 start-page: 590 year: 1992 ident: 7421_CR23 publication-title: Neural Comput. doi: 10.1162/neco.1992.4.4.590 – ident: 7421_CR59 – ident: 7421_CR36 doi: 10.1162/tacl_a_00276 – ident: 7421_CR17 doi: 10.18653/v1/2020.emnlp-main.21 – volume: 38 start-page: 135 year: 2010 ident: 7421_CR54 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.2985 – ident: 7421_CR37 doi: 10.18653/v1/2021.naacl-main.168 – ident: 7421_CR4 doi: 10.18653/v1/D18-1437 – ident: 7421_CR26 – ident: 7421_CR3 doi: 10.18653/v1/2021.eacl-main.236 – ident: 7421_CR49 – ident: 7421_CR56 – ident: 7421_CR8 – volume: 33 start-page: 1877 year: 2020 ident: 7421_CR57 publication-title: Adv. Neural Inf. Process. Syst. – ident: 7421_CR14 – ident: 7421_CR41 doi: 10.18653/v1/2023.emnlp-main.557 – ident: 7421_CR48 doi: 10.18653/v1/W18-6322 – ident: 7421_CR1 – volume: 9 start-page: 962 year: 2021 ident: 7421_CR16 publication-title: Transact. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00407 – ident: 7421_CR62 – ident: 7421_CR5 – ident: 7421_CR6 doi: 10.1016/j.datak.2023.102182 – volume: 16 year: 2015 ident: 7421_CR34 publication-title: BMC Bioinformatics doi: 10.1186/s12859-015-0564-6 – volume: 23 start-page: 181 year: 2009 ident: 7421_CR53 publication-title: Mach. Transl. doi: 10.1007/s10590-009-9060-y – ident: 7421_CR45 – ident: 7421_CR24 – ident: 7421_CR58 doi: 10.18653/v1/N18-1101 – ident: 7421_CR51 – ident: 7421_CR27 – ident: 7421_CR50 doi: 10.18653/v1/P18-1082 – ident: 7421_CR55 – volume: 11 start-page: 78 year: 1968 ident: 7421_CR52 publication-title: Mech. Transl. Comput. Linguist. – volume: 10 start-page: 163 year: 2022 ident: 7421_CR31 publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00453 – volume: 10 start-page: 680 year: 2022 ident: 7421_CR19 publication-title: Transact. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00483 – ident: 7421_CR20 doi: 10.1109/AFGR.2000.840616 – ident: 7421_CR13 – ident: 7421_CR9 doi: 10.1145/3571730 – ident: 7421_CR15 – ident: 7421_CR40 – ident: 7421_CR38 – ident: 7421_CR63 – ident: 7421_CR2 – ident: 7421_CR44 – ident: 7421_CR42 doi: 10.1109/CVPR52729.2023.02336 – ident: 7421_CR64 doi: 10.18653/v1/D16-1128 – ident: 7421_CR21 – ident: 7421_CR28 – volume: 7 start-page: 225 year: 1998 ident: 7421_CR12 publication-title: J. Hist. Neurosci. doi: 10.1076/jhin.7.3.225.1855 – ident: 7421_CR65 doi: 10.5281/zenodo.10964366 – ident: 7421_CR22 doi: 10.1145/3624724 – ident: 7421_CR61 doi: 10.18653/v1/2021.findings-acl.81 – ident: 7421_CR32 doi: 10.18653/v1/P17-1147 – ident: 7421_CR39 – ident: 7421_CR29 doi: 10.18653/v1/2022.dialdoc-1.19 – ident: 7421_CR33 doi: 10.18653/v1/D16-1264 – ident: 7421_CR10 doi: 10.18653/v1/2020.acl-main.173 – ident: 7421_CR47 – ident: 7421_CR60 – ident: 7421_CR11 doi: 10.18653/v1/2020.findings-emnlp.76 – volume: 31 start-page: 105 year: 2009 ident: 7421_CR46 publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2008.06.020 – volume: 27 start-page: 986 year: 1956 ident: 7421_CR25 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177728069 – ident: 7421_CR18 doi: 10.18653/v1/2021.findings-emnlp.330 |
SSID | ssj0005174 |
Score | 2.7472541 |
Snippet | Large language model (LLM) systems, such as ChatGPT
1
or Gemini
2
, can show impressive reasoning and question-answering capabilities but often ‘hallucinate’... Large language model (LLM) systems, such as ChatGPT or Gemini , can show impressive reasoning and question-answering capabilities but often 'hallucinate' false... Large language model (LLM) systems, such as ChatGPT1 or Gemini2, can show impressive reasoning and question-answering capabilities but often 'hallucinate'... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 625 |
SubjectTerms | 639/705/117 639/705/258 Entropy Hallucinations - diagnosis Hallucinations - psychology Humanities and Social Sciences Humans Language multidisciplinary Science Science (multidisciplinary) Semantics Uncertainty |
Title | Detecting hallucinations in large language models using semantic entropy |
URI | https://link.springer.com/article/10.1038/s41586-024-07421-0 https://www.ncbi.nlm.nih.gov/pubmed/38898292 https://www.proquest.com/docview/3070824981 https://pubmed.ncbi.nlm.nih.gov/PMC11186750 |
Volume | 630 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED_xoUm8TIMNKBuVkXgY2iLiOE0uj1DoKiTQNIHUNyt2HagEKVraB_773TlJUQEh7SUvcRzrzvflO_8O4NAU1uSRk0EUWQbVVjIwueGDfDQ2zTNnPacvr5LhTXwx6o1WIGrvwviifQ9p6dV0Wx12XJGhQS6XjQOO5igEXoV1hm7nXd1P-s9lHS-Ql5uLMqHCN-ZYNkavPMzXhZIvsqXeCA0-wcfGexQn9Xo3YcWVW_DBV3Haags2G0mtxPcGTvroMwzPHCcKaD7BjVPmdlIfAFZiUop7LgQX7aGl8H1xKsHF8Leicg9E9okVvKzp49MXuBmcX_eHQdM_IbBxnM6CbNxzPVmYLAqVRZTWhhY9JpkZp3liFV8nL-KCc3UmSTh0k3EhM1OQ6gmNUduwVk5LtwsiNnmYOBzLnPyB1BV5zyGqQuGY5J1o3gHZElLbBlyce1zca5_kVqhr4msivvbE12EHfiy-eayhNd4dfdDyR5MEcFojL910XmnWWkhRJNIqdmp-LeZTiBlGWdQBXOLkYgCjay-_KSd3HmWbjABSNEU__tkyXTfyXb2zzr3_G_4VNiK_IRPSV99gbfZ37vbJzZmZLqymo5Se2Jf8HPzqwvrp-dXvP12_4_8BVrL4XA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHoR367PCB4ULbZNtzs9yqqsz5OCt9BkU13Qrtjdg__embRdWRXBc9M0zHRemS9fAPZ1ZnQa2sALQ8Ok2jLwdKp5Ix-1aaWJNU7Tt3dx5yG6emw-TkBYn4VxoH1HaencdI0OOyko0CDDZSOPqzkqgSdhmnLtmGFc7bj9Bev4xrxcHZTxJf4yx3gw-pFh_gRKfuuWuiB0sQDzVfYoTsv1LsKEzZdgxqE4TbEEi5WlFuKgopM-XIbOmeVGAc0n-OKUoemVG4CF6OXihYHgot60FO5enEIwGP5JFPaVxN4zgpfVf_tYgYeL8_t2x6vuT_BMFLUGXtJt2maQ6ST0pUEMjPENOk4y3W2lsZF8nDyLMu7V6Tjm0i2IsiDRGbkeX2u5ClN5P7frICKd-rHFbpBSPtCyWdq0iDKT2CV7J5k3IKgFqUxFLs53XLwo1-SWqErhKxK-csJXfgOORu-8ldQaf47eq_WjyAK4rZHmtj8sFHstpCoSaRVrpb5G80nEBMMkbACOaXI0gNm1x5_kvWfHsk1BAKmaog8f10pXlX0Xf6xz43_Dd2G2c397o24u7643YS50P2dMvmsLpgbvQ7tNKc9A77h__BP5d_cX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RUCsuCOgr5bVIPRS1bm2v44yPKBCFlqIeQOK28q53IRI4UZ0c-PfMrO2gAELi7PV6NON57cx-A_BVO6Pz2EZBHBsG1ZZRoHPNB_moTS_PrPGS_nuWDi-S35fdyyVI27swvmnfQ1p6M912h_2qyNEgt8smAWdzlAL_nBTuDaxQvB1y0tVP-w-tHY_Ql5vLMqHEZ_ZZdEhPosynzZKPKqbeEQ3WYa2JIMVhTfMGLNlyE976Tk5TbcJGo62V-NZASh-8h-GR5WIB7Sd4eMrMjOpDwEqMSnHDzeCiPbgUfjZOJbgh_kpU9pZYPzKCyRpP7j7AxeD4vD8MmhkKgUmS3jTIiq7tRk5ncSgNYmRMaNDjkumil6dG8pVylziu1-k05fQtSlyUaUfmJ9RafoTlclzazyASnYepxSLKKSboWZd3LaJ0EgvSeeJ5B6KWkco0AOM85-JG-UK3RFUzXxHzlWe-Cjvwff7OpIbXeHH1fisfRVrApY28tONZpdhyIWWSSFR8quU1308iZhhncQdwQZLzBYywvfikHF17pG1yBEgZFX34Ryt01eh49QKdX163fA_e_TsaqNOTsz9bsBr7fzMl87UNy9P_M7tDUc9U7_pf_B6PT_gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+hallucinations+in+large+language+models+using+semantic+entropy&rft.jtitle=Nature+%28London%29&rft.au=Farquhar%2C+Sebastian&rft.au=Kossen%2C+Jannik&rft.au=Kuhn%2C+Lorenz&rft.au=Gal%2C+Yarin&rft.date=2024-06-20&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=630&rft.issue=8017&rft.spage=625&rft.epage=630&rft_id=info:doi/10.1038%2Fs41586-024-07421-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41586_024_07421_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |