Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes
Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway...
Saved in:
Published in | The Journal of neuroscience Vol. 37; no. 6; pp. 1439 - 1452 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
08.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A
1
receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.
SIGNIFICANCE STATEMENT
Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning. |
---|---|
AbstractList | Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A
receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.
Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning. Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A sub(1) receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity. Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A 1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity. SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning. Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning.Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning. |
Author | Bazhenov, Maxim Bannon, Nicholas M. Chistiakova, Marina Volgushev, Maxim Chen, Jen-Yung |
Author_xml | – sequence: 1 givenname: Nicholas M. orcidid: 0000-0002-6920-2415 surname: Bannon fullname: Bannon, Nicholas M. – sequence: 2 givenname: Marina surname: Chistiakova fullname: Chistiakova, Marina – sequence: 3 givenname: Jen-Yung surname: Chen fullname: Chen, Jen-Yung – sequence: 4 givenname: Maxim surname: Bazhenov fullname: Bazhenov, Maxim – sequence: 5 givenname: Maxim surname: Volgushev fullname: Volgushev, Maxim |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28028196$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVFr2zAUhcXoWNNuf6HocS9OJVmWZBiDELqmpVtLuz4LWb5ONGwps5SO_PsqpAvbXlYQCN1z7uHqfifoyAcPCJ1RMqUVK8-vv1083t8-zK-mrFa8oGLKCBVv0CSrdcE4oUdoQpgkheCSH6OTGH8QQiSh8h06ZoowRWsxQf2sBR-i84AfVq5LEd_1JiZnXdrie1i6ASJuIP0C8HgWY7DOJPcE2PgWL8IAIaZcsLjZ4q-h3fT54Zd4AQnGELferHfifGX8EuJ79LYzfYQPL_cpevxy8X2-KG5uL6_ms5vCci5TURugZdtSruqurToubausFBTy4Y2REgwDqxogpO1UJUlXCctBNdQyJuq6PEWf97nrTTNAa8Gn0fR6PbrBjFsdjNN_K96t9DI86by7uhJVDvj4EjCGnxuISQ8uWuh74yFsoqZKSlVWNWGvsFal5FWGk61nf451mOc3jWwQe4PNu4sjdAcLJXqHXR-w6x12TYVm--RP_zRmfplE2H3P9f9rfwYjBbeM |
CitedBy_id | crossref_primary_10_3390_biom13040715 crossref_primary_10_3389_fncir_2021_803401 crossref_primary_10_3389_fnsyn_2022_889947 crossref_primary_10_1016_j_physbeh_2017_11_026 crossref_primary_10_3389_fncel_2020_00204 crossref_primary_10_1523_JNEUROSCI_3073_20_2021 crossref_primary_10_3389_fphar_2021_672182 crossref_primary_10_1111_ejn_15561 crossref_primary_10_1016_j_neuroscience_2024_01_019 crossref_primary_10_1016_j_simpa_2024_100667 crossref_primary_10_1093_function_zqad041 crossref_primary_10_1186_s12576_023_00893_1 crossref_primary_10_1016_j_phrs_2020_105253 crossref_primary_10_1089_caff_2019_0022 crossref_primary_10_3389_fncom_2018_00049 crossref_primary_10_1177_10738584241236773 crossref_primary_10_3389_fncel_2024_1477985 |
Cites_doi | 10.1523/JNEUROSCI.1156-13.2014 10.1016/j.smrv.2005.05.002 10.1177/074873099129000894 10.1177/1073858414529829 10.3389/fncom.2015.00089 10.1523/JNEUROSCI.22-19-08691.2002 10.1016/S0896-6273(03)00235-6 10.1523/JNEUROSCI.20-23-08812.2000 10.1162/089976601317098501 10.1007/s11302-012-9343-2 10.1103/PhysRevLett.86.364 10.1016/j.neuron.2013.12.025 10.1155/2012/415250 10.1016/S0896-6273(01)00542-6 10.1038/78829 10.1016/S0166-4328(00)00258-8 10.2174/157015908787386087 10.1038/nature05726 10.1111/epi.12511 10.1152/jn.01352.2006 10.1111/j.1460-9568.1997.tb01523.x 10.1016/j.tins.2012.12.003 10.1016/j.conb.2006.05.008 10.1523/JNEUROSCI.5088-12.2013 10.1016/j.brainres.2014.11.008 10.1523/JNEUROSCI.3984-08.2008 10.1073/pnas.0505414102 10.1113/jphysiol.2014.279901 10.1113/jphysiol.2012.227462 10.1113/jphysiol.2012.244392 10.1007/s00221-009-1859-5 10.1073/pnas.1120997109 10.1523/JNEUROSCI.2942-08.2009 10.1016/0006-8993(95)00590-M 10.1038/nature02663 10.1177/1073858413482983 10.1016/S0896-6273(01)00375-0 10.1046/j.0953-816X.2000.01322.x 10.1073/pnas.88.24.11285 10.1152/jn.00376.2004 10.1016/j.neuron.2008.11.024 10.1146/annurev.neuro.24.1.31 10.1038/382363a0 10.1016/S0896-6273(01)00451-2 10.1016/S0306-4522(00)00220-7 10.2174/157015909789152182 10.1146/annurev.neuro.29.051605.112834 10.1073/pnas.0906419106 10.1016/j.smrv.2010.06.005 10.1523/JNEUROSCI.3281-11.2011 10.1016/j.neuroscience.2013.12.018 10.1007/7854_2014_274 10.1523/JNEUROSCI.0552-16.2016 10.1038/nature10009 10.1016/j.bcp.2008.02.024 10.1113/jphysiol.2012.228247 |
ContentType | Journal Article |
Copyright | Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0. Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0 2017 |
Copyright_xml | – notice: Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0. – notice: Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK 5PM |
DOI | 10.1523/JNEUROSCI.2984-16.2016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 1452 |
ExternalDocumentID | PMC5299565 28028196 10_1523_JNEUROSCI_2984_16_2016 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH087631 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AFCFT AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M YBU YHG YKV YNH YSK AFHIN AIZTS CGR CUY CVF ECM EIF NPM RHF 7X8 7TK 5PM |
ID | FETCH-LOGICAL-c447t-9ae13dd1489fd5f47cd8c761e61e4ba77ea2ec8be00df8570f56c4e8b1c226993 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:43:05 EDT 2025 Fri Jul 11 07:06:14 EDT 2025 Thu Jul 10 23:50:34 EDT 2025 Wed Feb 19 02:43:45 EST 2025 Thu Apr 24 23:03:31 EDT 2025 Tue Jul 01 03:47:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | adenosine learning rules heterosynaptic plasticity neuron models synaptic plasticity visual cortex |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-9ae13dd1489fd5f47cd8c761e61e4ba77ea2ec8be00df8570f56c4e8b1c226993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: N.M.B., M.C., and M.V. designed research; N.M.B., J.-Y.C., and M.B. performed research; N.M.B., M.C., and M.V. analyzed data; N.M.B., M.C., and M.V. wrote the paper. N.M. Bannon's present address: Department of Neurobiology, Northwestern University, Evanston, IL 60208. |
ORCID | 0000-0002-6920-2415 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/37/6/1439.full.pdf |
PMID | 28028196 |
PQID | 1853745016 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5299565 proquest_miscellaneous_1877835902 proquest_miscellaneous_1853745016 pubmed_primary_28028196 crossref_primary_10_1523_JNEUROSCI_2984_16_2016 crossref_citationtrail_10_1523_JNEUROSCI_2984_16_2016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-08 20170208 |
PublicationDateYYYYMMDD | 2017-02-08 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2017 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 2023041803233468000_37.6.1439.29 2023041803233468000_37.6.1439.28 2023041803233468000_37.6.1439.27 2023041803233468000_37.6.1439.22 2023041803233468000_37.6.1439.21 2023041803233468000_37.6.1439.20 2023041803233468000_37.6.1439.26 2023041803233468000_37.6.1439.25 2023041803233468000_37.6.1439.24 2023041803233468000_37.6.1439.23 2023041803233468000_37.6.1439.1 2023041803233468000_37.6.1439.40 2023041803233468000_37.6.1439.39 2023041803233468000_37.6.1439.38 2023041803233468000_37.6.1439.9 2023041803233468000_37.6.1439.33 2023041803233468000_37.6.1439.32 2023041803233468000_37.6.1439.7 2023041803233468000_37.6.1439.31 2023041803233468000_37.6.1439.8 2023041803233468000_37.6.1439.30 2023041803233468000_37.6.1439.5 2023041803233468000_37.6.1439.37 Steriade (2023041803233468000_37.6.1439.44) 2001; 139 2023041803233468000_37.6.1439.6 2023041803233468000_37.6.1439.36 Bazhenov (2023041803233468000_37.6.1439.2) 2002; 22 2023041803233468000_37.6.1439.3 2023041803233468000_37.6.1439.35 2023041803233468000_37.6.1439.4 2023041803233468000_37.6.1439.34 van Rossum (2023041803233468000_37.6.1439.51) 2000; 20 2023041803233468000_37.6.1439.50 2023041803233468000_37.6.1439.49 2023041803233468000_37.6.1439.43 2023041803233468000_37.6.1439.42 2023041803233468000_37.6.1439.41 2023041803233468000_37.6.1439.48 2023041803233468000_37.6.1439.47 2023041803233468000_37.6.1439.46 2023041803233468000_37.6.1439.45 2023041803233468000_37.6.1439.19 2023041803233468000_37.6.1439.18 2023041803233468000_37.6.1439.17 2023041803233468000_37.6.1439.16 2023041803233468000_37.6.1439.11 2023041803233468000_37.6.1439.55 2023041803233468000_37.6.1439.10 2023041803233468000_37.6.1439.54 2023041803233468000_37.6.1439.53 2023041803233468000_37.6.1439.52 2023041803233468000_37.6.1439.15 2023041803233468000_37.6.1439.14 2023041803233468000_37.6.1439.13 2023041803233468000_37.6.1439.57 2023041803233468000_37.6.1439.12 2023041803233468000_37.6.1439.56 20970361 - Sleep Med Rev. 2011 Apr;15(2):123-35 22371479 - J Physiol. 2012 May 15;590(10):2253-71 23558179 - Neuroscientist. 2013 Oct;19(5):465-78 15240760 - J Neurophysiol. 2004 Dec;92(6):3338-43 16776579 - Annu Rev Neurosci. 2006;29:37-76 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704 22049443 - J Neurosci. 2011 Nov 2;31(44):16012-25 19499213 - Exp Brain Res. 2009 Dec;199(3-4):377-90 11122337 - Eur J Neurosci. 2000 Dec;12(12):4255-67 17267749 - J Neurophysiol. 2007 Apr;97(4):2965-75 21525926 - Nature. 2011 Apr 28;472(7344):443-7 11029542 - Neuroscience. 2000;99(3):507-17 27559167 - J Neurosci. 2016 Aug 24;36(34):8842-55 19109486 - J Neurosci. 2008 Dec 24;28(52):14031-41 16221767 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15676-81 22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010 1684863 - Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11285-9 17460674 - Nature. 2007 Apr 26;446(7139):1086-90 12741992 - Neuron. 2003 May 8;38(3):461-72 24549722 - Curr Top Behav Neurosci. 2015;25:331-66 23192278 - Purinergic Signal. 2013 Jun;9(2):167-74 16713246 - Curr Opin Neurobiol. 2006 Jun;16(3):312-22 9283820 - Eur J Neurosci. 1997 Aug;9(8):1656-65 11256186 - Arch Ital Biol. 2001 Feb;139(1-2):37-51 24483230 - Epilepsia. 2014 Feb;55(2):233-44 11000420 - Behav Brain Res. 2000 Nov;115(2):183-204 20190965 - Curr Neuropharmacol. 2009 Sep;7(3):238-45 11684002 - Neuron. 2001 Oct 25;32(2):339-50 19193874 - J Neurosci. 2009 Feb 4;29(5):1267-76 22619736 - Neural Plast. 2012;2012:415250 26217218 - Front Comput Neurosci. 2015 Jul 13;9:89 8548323 - Brain Res. 1995 Sep 18;692(1-2):79-85 8684467 - Nature. 1996 Jul 25;382(6589):363-6 15184907 - Nature. 2004 Jul 1;430(6995):78-81 23613526 - J Physiol. 2013 Jul 1;591(13):3371-80 11102489 - J Neurosci. 2000 Dec 1;20(23):8812-21 11516402 - Neuron. 2001 Aug 16;31(3):463-75 19706442 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15037-42 19186164 - Neuron. 2009 Jan 29;61(2):213-9 22421436 - Proc Natl Acad Sci U S A. 2012 Apr 17;109 (16):6265-70 19587854 - Curr Neuropharmacol. 2008 Dec;6(4):329-37 11283304 - Annu Rev Neurosci. 2001;24:31-55 23332692 - Trends Neurosci. 2013 Apr;36(4):248-57 25446444 - Brain Res. 2015 Sep 24;1621:102-13 11177832 - Phys Rev Lett. 2001 Jan 8;86(2):364-7 24411729 - Neuron. 2014 Jan 8;81(1):12-34 25565160 - J Physiol. 2015 Feb 15;593(4):825-41 10643753 - J Biol Rhythms. 1999 Dec;14(6):557-68 24741059 - J Neurosci. 2014 Apr 16;34(16):5689-703 24355495 - Neuroscience. 2014 Feb 28;260:171-84 16376591 - Sleep Med Rev. 2006 Feb;10(1):49-62 18384754 - Biochem Pharmacol. 2008 Jun 1;75(11):2070-9 11705408 - Neural Comput. 2001 Dec;13(12):2709-41 24089497 - J Neurosci. 2013 Oct 2;33(40):15915-29 11754844 - Neuron. 2001 Dec 20;32(6):1149-64 10966623 - Nat Neurosci. 2000 Sep;3(9):919-26 24727248 - Neuroscientist. 2014 Oct;20(5):483-98 |
References_xml | – ident: 2023041803233468000_37.6.1439.27 doi: 10.1523/JNEUROSCI.1156-13.2014 – ident: 2023041803233468000_37.6.1439.46 doi: 10.1016/j.smrv.2005.05.002 – ident: 2023041803233468000_37.6.1439.8 doi: 10.1177/074873099129000894 – ident: 2023041803233468000_37.6.1439.13 doi: 10.1177/1073858414529829 – ident: 2023041803233468000_37.6.1439.14 doi: 10.3389/fncom.2015.00089 – volume: 22 start-page: 8691 year: 2002 ident: 2023041803233468000_37.6.1439.2 article-title: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-19-08691.2002 – ident: 2023041803233468000_37.6.1439.11 doi: 10.1016/S0896-6273(03)00235-6 – volume: 20 start-page: 8812 year: 2000 ident: 2023041803233468000_37.6.1439.51 article-title: Stable Hebbian learning from spike timing-dependent plasticity publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-23-08812.2000 – ident: 2023041803233468000_37.6.1439.23 doi: 10.1162/089976601317098501 – ident: 2023041803233468000_37.6.1439.33 doi: 10.1007/s11302-012-9343-2 – ident: 2023041803233468000_37.6.1439.38 doi: 10.1103/PhysRevLett.86.364 – ident: 2023041803233468000_37.6.1439.48 doi: 10.1016/j.neuron.2013.12.025 – ident: 2023041803233468000_37.6.1439.47 doi: 10.1155/2012/415250 – ident: 2023041803233468000_37.6.1439.41 doi: 10.1016/S0896-6273(01)00542-6 – ident: 2023041803233468000_37.6.1439.43 doi: 10.1038/78829 – ident: 2023041803233468000_37.6.1439.45 doi: 10.1016/S0166-4328(00)00258-8 – ident: 2023041803233468000_37.6.1439.56 doi: 10.2174/157015908787386087 – ident: 2023041803233468000_37.6.1439.31 doi: 10.1038/nature05726 – ident: 2023041803233468000_37.6.1439.50 doi: 10.1111/epi.12511 – ident: 2023041803233468000_37.6.1439.21 doi: 10.1152/jn.01352.2006 – ident: 2023041803233468000_37.6.1439.52 doi: 10.1111/j.1460-9568.1997.tb01523.x – ident: 2023041803233468000_37.6.1439.16 doi: 10.1016/j.tins.2012.12.003 – ident: 2023041803233468000_37.6.1439.17 doi: 10.1016/j.conb.2006.05.008 – ident: 2023041803233468000_37.6.1439.10 doi: 10.1523/JNEUROSCI.5088-12.2013 – ident: 2023041803233468000_37.6.1439.39 doi: 10.1016/j.brainres.2014.11.008 – ident: 2023041803233468000_37.6.1439.34 doi: 10.1523/JNEUROSCI.3984-08.2008 – ident: 2023041803233468000_37.6.1439.37 doi: 10.1073/pnas.0505414102 – ident: 2023041803233468000_37.6.1439.57 doi: 10.1113/jphysiol.2014.279901 – ident: 2023041803233468000_37.6.1439.9 doi: 10.1113/jphysiol.2012.227462 – ident: 2023041803233468000_37.6.1439.24 doi: 10.1113/jphysiol.2012.244392 – ident: 2023041803233468000_37.6.1439.15 doi: 10.1007/s00221-009-1859-5 – ident: 2023041803233468000_37.6.1439.28 doi: 10.1073/pnas.1120997109 – ident: 2023041803233468000_37.6.1439.5 doi: 10.1523/JNEUROSCI.2942-08.2009 – ident: 2023041803233468000_37.6.1439.3 doi: 10.1016/0006-8993(95)00590-M – ident: 2023041803233468000_37.6.1439.22 doi: 10.1038/nature02663 – volume: 139 start-page: 37 year: 2001 ident: 2023041803233468000_37.6.1439.44 article-title: Active neocortical processes during quiescent sleep publication-title: Arch Ital Biol – ident: 2023041803233468000_37.6.1439.6 doi: 10.1177/1073858413482983 – ident: 2023041803233468000_37.6.1439.29 doi: 10.1016/S0896-6273(01)00375-0 – ident: 2023041803233468000_37.6.1439.53 doi: 10.1046/j.0953-816X.2000.01322.x – ident: 2023041803233468000_37.6.1439.32 doi: 10.1073/pnas.88.24.11285 – ident: 2023041803233468000_37.6.1439.40 doi: 10.1152/jn.00376.2004 – ident: 2023041803233468000_37.6.1439.20 doi: 10.1016/j.neuron.2008.11.024 – ident: 2023041803233468000_37.6.1439.18 doi: 10.1146/annurev.neuro.24.1.31 – ident: 2023041803233468000_37.6.1439.30 doi: 10.1038/382363a0 – ident: 2023041803233468000_37.6.1439.42 doi: 10.1016/S0896-6273(01)00451-2 – ident: 2023041803233468000_37.6.1439.36 doi: 10.1016/S0306-4522(00)00220-7 – ident: 2023041803233468000_37.6.1439.4 doi: 10.2174/157015909789152182 – ident: 2023041803233468000_37.6.1439.12 doi: 10.1146/annurev.neuro.29.051605.112834 – ident: 2023041803233468000_37.6.1439.19 doi: 10.1073/pnas.0906419106 – ident: 2023041803233468000_37.6.1439.35 doi: 10.1016/j.smrv.2010.06.005 – ident: 2023041803233468000_37.6.1439.7 doi: 10.1523/JNEUROSCI.3281-11.2011 – ident: 2023041803233468000_37.6.1439.1 doi: 10.1016/j.neuroscience.2013.12.018 – ident: 2023041803233468000_37.6.1439.49 doi: 10.1007/7854_2014_274 – ident: 2023041803233468000_37.6.1439.54 doi: 10.1523/JNEUROSCI.0552-16.2016 – ident: 2023041803233468000_37.6.1439.55 doi: 10.1038/nature10009 – ident: 2023041803233468000_37.6.1439.25 doi: 10.1016/j.bcp.2008.02.024 – ident: 2023041803233468000_37.6.1439.26 doi: 10.1113/jphysiol.2012.228247 – reference: 22421436 - Proc Natl Acad Sci U S A. 2012 Apr 17;109 (16):6265-70 – reference: 1684863 - Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11285-9 – reference: 18384754 - Biochem Pharmacol. 2008 Jun 1;75(11):2070-9 – reference: 19193874 - J Neurosci. 2009 Feb 4;29(5):1267-76 – reference: 19587854 - Curr Neuropharmacol. 2008 Dec;6(4):329-37 – reference: 16776579 - Annu Rev Neurosci. 2006;29:37-76 – reference: 24741059 - J Neurosci. 2014 Apr 16;34(16):5689-703 – reference: 11177832 - Phys Rev Lett. 2001 Jan 8;86(2):364-7 – reference: 23192278 - Purinergic Signal. 2013 Jun;9(2):167-74 – reference: 19706442 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15037-42 – reference: 11684002 - Neuron. 2001 Oct 25;32(2):339-50 – reference: 23558179 - Neuroscientist. 2013 Oct;19(5):465-78 – reference: 19186164 - Neuron. 2009 Jan 29;61(2):213-9 – reference: 17460674 - Nature. 2007 Apr 26;446(7139):1086-90 – reference: 11754844 - Neuron. 2001 Dec 20;32(6):1149-64 – reference: 12741992 - Neuron. 2003 May 8;38(3):461-72 – reference: 10966623 - Nat Neurosci. 2000 Sep;3(9):919-26 – reference: 27559167 - J Neurosci. 2016 Aug 24;36(34):8842-55 – reference: 24483230 - Epilepsia. 2014 Feb;55(2):233-44 – reference: 16376591 - Sleep Med Rev. 2006 Feb;10(1):49-62 – reference: 22049443 - J Neurosci. 2011 Nov 2;31(44):16012-25 – reference: 23613526 - J Physiol. 2013 Jul 1;591(13):3371-80 – reference: 26217218 - Front Comput Neurosci. 2015 Jul 13;9:89 – reference: 11029542 - Neuroscience. 2000;99(3):507-17 – reference: 20970361 - Sleep Med Rev. 2011 Apr;15(2):123-35 – reference: 24355495 - Neuroscience. 2014 Feb 28;260:171-84 – reference: 16221767 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15676-81 – reference: 24549722 - Curr Top Behav Neurosci. 2015;25:331-66 – reference: 25446444 - Brain Res. 2015 Sep 24;1621:102-13 – reference: 15240760 - J Neurophysiol. 2004 Dec;92(6):3338-43 – reference: 10643753 - J Biol Rhythms. 1999 Dec;14(6):557-68 – reference: 11122337 - Eur J Neurosci. 2000 Dec;12(12):4255-67 – reference: 8548323 - Brain Res. 1995 Sep 18;692(1-2):79-85 – reference: 11516402 - Neuron. 2001 Aug 16;31(3):463-75 – reference: 20190965 - Curr Neuropharmacol. 2009 Sep;7(3):238-45 – reference: 8684467 - Nature. 1996 Jul 25;382(6589):363-6 – reference: 17267749 - J Neurophysiol. 2007 Apr;97(4):2965-75 – reference: 16713246 - Curr Opin Neurobiol. 2006 Jun;16(3):312-22 – reference: 24727248 - Neuroscientist. 2014 Oct;20(5):483-98 – reference: 11256186 - Arch Ital Biol. 2001 Feb;139(1-2):37-51 – reference: 21525926 - Nature. 2011 Apr 28;472(7344):443-7 – reference: 22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010 – reference: 24089497 - J Neurosci. 2013 Oct 2;33(40):15915-29 – reference: 11705408 - Neural Comput. 2001 Dec;13(12):2709-41 – reference: 23332692 - Trends Neurosci. 2013 Apr;36(4):248-57 – reference: 19109486 - J Neurosci. 2008 Dec 24;28(52):14031-41 – reference: 11000420 - Behav Brain Res. 2000 Nov;115(2):183-204 – reference: 19499213 - Exp Brain Res. 2009 Dec;199(3-4):377-90 – reference: 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704 – reference: 22619736 - Neural Plast. 2012;2012:415250 – reference: 9283820 - Eur J Neurosci. 1997 Aug;9(8):1656-65 – reference: 11102489 - J Neurosci. 2000 Dec 1;20(23):8812-21 – reference: 15184907 - Nature. 2004 Jul 1;430(6995):78-81 – reference: 25565160 - J Physiol. 2015 Feb 15;593(4):825-41 – reference: 22371479 - J Physiol. 2012 May 15;590(10):2253-71 – reference: 11283304 - Annu Rev Neurosci. 2001;24:31-55 – reference: 24411729 - Neuron. 2014 Jan 8;81(1):12-34 |
SSID | ssj0007017 |
Score | 2.3193333 |
Snippet | Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term... Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1439 |
SubjectTerms | Adenosine - physiology Adenosine A1 Receptor Antagonists - pharmacology Animals Homeostasis - drug effects Homeostasis - physiology Male Neuronal Plasticity - drug effects Neuronal Plasticity - physiology Organ Culture Techniques Rats Rats, Wistar Receptor, Adenosine A1 - physiology Visual Cortex - drug effects Visual Cortex - physiology |
Title | Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28028196 https://www.proquest.com/docview/1853745016 https://www.proquest.com/docview/1877835902 https://pubmed.ncbi.nlm.nih.gov/PMC5299565 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97KX0a27ZDc0GHsZTm1PsuzHEDbajoRBW-iejC9yG9rYoXbC0v-4_7RzJMVW0kK3vphgWbbi8_noO9K5EPIJvi8gDWHmeIErHRZ5KXxSEXdkmnsyyn1PBhg7PJ4EB6fs6Iyf9Xp_LK-lRZMOsps740oeIlU4B3LFKNn_kGx7UzgBv0G-cAQJw_GfZDzMMdU38sTji2nR1FiCCPMua2Z9rhIxrR2xWjks9YYB1kevMJxomiEFHVe5KuRVnsNMBO-6qldlMsdGHX9Q2yy2iydTTNbKidnt0SdlaWK5psp-rr-MB50vgdIsl9UyMfFCpoi3bjTxIrJ0fi3MxKrueAMt1VL3-D2d2QsWMAmij3PYLVha3qiT7fFpxecLMGmZrt4zkEYx-2onyLM1t04XYxBqq2EggZE1pXtMZ8m9NV1wlbbiaIJek8ejw4EfhQxQix5_gd0BxD6fKRD5oYtbj1vZuxUf-DkewSDB3uSPyGMfrBZl4R_-aImBcFUB6PbvmYB1GMT-3UPATNXmeZu06ZYttO3Sa3Gkk13y1ECCDjVSn5GeLJ-TvWGZNNVsRT9T5W6s9nH2yFULXqrBSzvwUgNeasBLLfBSAC-1wEvTFe3ASzfBSw14X5DT799ORgeOKf3hZIyJxokS6X3Nc7DVoyLnBROYwkIEoDk8ydJECJn4MgtT6bp5gTUaCh5kTIapl4E9AZz7JdkBlMvXhALDdkUaArEvMOg6CiVnOQ9zoKrcLVy_T_j6zcaZyYuP5VmuYrSPQThxK5wYhRN7QYzC6ZP9tt9cZ4a5t8fHteBiUOK4M5eUslrUMZJmwfg91whcpY1wxK-0sNvnrlHSJ2IDBu0FmER-s6WcXqhk8gaybx7c8y150n3l78hOc72Q74GoN-kHBf-_197sog |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adenosine+Shifts+Plasticity+Regimes+between+Associative+and+Homeostatic+by+Modulating+Heterosynaptic+Changes&rft.jtitle=The+Journal+of+neuroscience&rft.au=Bannon%2C+Nicholas+M.&rft.au=Chistiakova%2C+Marina&rft.au=Chen%2C+Jen-Yung&rft.au=Bazhenov%2C+Maxim&rft.date=2017-02-08&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=37&rft.issue=6&rft.spage=1439&rft.epage=1452&rft_id=info:doi/10.1523%2FJNEUROSCI.2984-16.2016&rft_id=info%3Apmid%2F28028196&rft.externalDocID=PMC5299565 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |