Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes

Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 37; no. 6; pp. 1439 - 1452
Main Authors Bannon, Nicholas M., Chistiakova, Marina, Chen, Jen-Yung, Bazhenov, Maxim, Volgushev, Maxim
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 08.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A 1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity. SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning.
AbstractList Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity. Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning.
Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A sub(1) receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.
Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A 1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity. SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning.
Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning.Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term plasticity. Hebbian-type long-term plasticity introduces intrinsic positive feedback on synaptic weight changes, making them prone to runaway dynamics. We previously demonstrated that co-occurring, weight-dependent heterosynaptic plasticity can robustly prevent runaway dynamics. Here we show that at neocortical synapses in slices from rat visual cortex, adenosine modulates the weight dependence of heterosynaptic plasticity: blockade of adenosine A1 receptors abolished weight dependence, while increased adenosine level strengthened it. Using model simulations, we found that the strength of weight dependence determines the ability of heterosynaptic plasticity to prevent runaway dynamics of synaptic weights imposed by Hebbian-type learning. Changing the weight dependence of heterosynaptic plasticity within an experimentally observed range gradually shifted the operating point of neurons between an unbalancing regime dominated by associative plasticity and a homeostatic regime of tightly constrained synaptic changes. Because adenosine tone is a natural correlate of activity level (activity increases adenosine tone) and brain state (elevated adenosine tone increases sleep pressure), modulation of heterosynaptic plasticity by adenosine represents an endogenous mechanism that translates changes of the brain state into a shift of the regime of synaptic plasticity and learning. We speculate that adenosine modulation may provide a mechanism for fine-tuning of plasticity and learning according to brain state and activity.SIGNIFICANCE STATEMENT Associative learning depends on brain state and is impaired when the subject is sleepy or tired. However, the link between changes of brain state and modulation of synaptic plasticity and learning remains elusive. Here we show that adenosine regulates weight dependence of heterosynaptic plasticity: adenosine strengthened weight dependence of heterosynaptic plasticity; blockade of adenosine A1 receptors abolished it. In model neurons, such changes of the weight dependence of heterosynaptic plasticity shifted their operating point between regimes dominated by associative plasticity or by synaptic homeostasis. Because adenosine tone is a natural correlate of activity level and brain state, modulation of plasticity by adenosine represents an endogenous mechanism for translation of brain state changes into a shift of the regime of synaptic plasticity and learning.
Author Bazhenov, Maxim
Bannon, Nicholas M.
Chistiakova, Marina
Volgushev, Maxim
Chen, Jen-Yung
Author_xml – sequence: 1
  givenname: Nicholas M.
  orcidid: 0000-0002-6920-2415
  surname: Bannon
  fullname: Bannon, Nicholas M.
– sequence: 2
  givenname: Marina
  surname: Chistiakova
  fullname: Chistiakova, Marina
– sequence: 3
  givenname: Jen-Yung
  surname: Chen
  fullname: Chen, Jen-Yung
– sequence: 4
  givenname: Maxim
  surname: Bazhenov
  fullname: Bazhenov, Maxim
– sequence: 5
  givenname: Maxim
  surname: Volgushev
  fullname: Volgushev, Maxim
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28028196$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFr2zAUhcXoWNNuf6HocS9OJVmWZBiDELqmpVtLuz4LWb5ONGwps5SO_PsqpAvbXlYQCN1z7uHqfifoyAcPCJ1RMqUVK8-vv1083t8-zK-mrFa8oGLKCBVv0CSrdcE4oUdoQpgkheCSH6OTGH8QQiSh8h06ZoowRWsxQf2sBR-i84AfVq5LEd_1JiZnXdrie1i6ASJuIP0C8HgWY7DOJPcE2PgWL8IAIaZcsLjZ4q-h3fT54Zd4AQnGELferHfifGX8EuJ79LYzfYQPL_cpevxy8X2-KG5uL6_ms5vCci5TURugZdtSruqurToubausFBTy4Y2REgwDqxogpO1UJUlXCctBNdQyJuq6PEWf97nrTTNAa8Gn0fR6PbrBjFsdjNN_K96t9DI86by7uhJVDvj4EjCGnxuISQ8uWuh74yFsoqZKSlVWNWGvsFal5FWGk61nf451mOc3jWwQe4PNu4sjdAcLJXqHXR-w6x12TYVm--RP_zRmfplE2H3P9f9rfwYjBbeM
CitedBy_id crossref_primary_10_3390_biom13040715
crossref_primary_10_3389_fncir_2021_803401
crossref_primary_10_3389_fnsyn_2022_889947
crossref_primary_10_1016_j_physbeh_2017_11_026
crossref_primary_10_3389_fncel_2020_00204
crossref_primary_10_1523_JNEUROSCI_3073_20_2021
crossref_primary_10_3389_fphar_2021_672182
crossref_primary_10_1111_ejn_15561
crossref_primary_10_1016_j_neuroscience_2024_01_019
crossref_primary_10_1016_j_simpa_2024_100667
crossref_primary_10_1093_function_zqad041
crossref_primary_10_1186_s12576_023_00893_1
crossref_primary_10_1016_j_phrs_2020_105253
crossref_primary_10_1089_caff_2019_0022
crossref_primary_10_3389_fncom_2018_00049
crossref_primary_10_1177_10738584241236773
crossref_primary_10_3389_fncel_2024_1477985
Cites_doi 10.1523/JNEUROSCI.1156-13.2014
10.1016/j.smrv.2005.05.002
10.1177/074873099129000894
10.1177/1073858414529829
10.3389/fncom.2015.00089
10.1523/JNEUROSCI.22-19-08691.2002
10.1016/S0896-6273(03)00235-6
10.1523/JNEUROSCI.20-23-08812.2000
10.1162/089976601317098501
10.1007/s11302-012-9343-2
10.1103/PhysRevLett.86.364
10.1016/j.neuron.2013.12.025
10.1155/2012/415250
10.1016/S0896-6273(01)00542-6
10.1038/78829
10.1016/S0166-4328(00)00258-8
10.2174/157015908787386087
10.1038/nature05726
10.1111/epi.12511
10.1152/jn.01352.2006
10.1111/j.1460-9568.1997.tb01523.x
10.1016/j.tins.2012.12.003
10.1016/j.conb.2006.05.008
10.1523/JNEUROSCI.5088-12.2013
10.1016/j.brainres.2014.11.008
10.1523/JNEUROSCI.3984-08.2008
10.1073/pnas.0505414102
10.1113/jphysiol.2014.279901
10.1113/jphysiol.2012.227462
10.1113/jphysiol.2012.244392
10.1007/s00221-009-1859-5
10.1073/pnas.1120997109
10.1523/JNEUROSCI.2942-08.2009
10.1016/0006-8993(95)00590-M
10.1038/nature02663
10.1177/1073858413482983
10.1016/S0896-6273(01)00375-0
10.1046/j.0953-816X.2000.01322.x
10.1073/pnas.88.24.11285
10.1152/jn.00376.2004
10.1016/j.neuron.2008.11.024
10.1146/annurev.neuro.24.1.31
10.1038/382363a0
10.1016/S0896-6273(01)00451-2
10.1016/S0306-4522(00)00220-7
10.2174/157015909789152182
10.1146/annurev.neuro.29.051605.112834
10.1073/pnas.0906419106
10.1016/j.smrv.2010.06.005
10.1523/JNEUROSCI.3281-11.2011
10.1016/j.neuroscience.2013.12.018
10.1007/7854_2014_274
10.1523/JNEUROSCI.0552-16.2016
10.1038/nature10009
10.1016/j.bcp.2008.02.024
10.1113/jphysiol.2012.228247
ContentType Journal Article
Copyright Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0.
Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0 2017
Copyright_xml – notice: Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0.
– notice: Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.2984-16.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE
Neurosciences Abstracts
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 1452
ExternalDocumentID PMC5299565
28028196
10_1523_JNEUROSCI_2984_16_2016
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH087631
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7TK
5PM
ID FETCH-LOGICAL-c447t-9ae13dd1489fd5f47cd8c761e61e4ba77ea2ec8be00df8570f56c4e8b1c226993
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:43:05 EDT 2025
Fri Jul 11 07:06:14 EDT 2025
Thu Jul 10 23:50:34 EDT 2025
Wed Feb 19 02:43:45 EST 2025
Thu Apr 24 23:03:31 EDT 2025
Tue Jul 01 03:47:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords adenosine
learning rules
heterosynaptic plasticity
neuron models
synaptic plasticity
visual cortex
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2017 the authors 0270-6474/17/371439-14$15.00/0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-9ae13dd1489fd5f47cd8c761e61e4ba77ea2ec8be00df8570f56c4e8b1c226993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: N.M.B., M.C., and M.V. designed research; N.M.B., J.-Y.C., and M.B. performed research; N.M.B., M.C., and M.V. analyzed data; N.M.B., M.C., and M.V. wrote the paper.
N.M. Bannon's present address: Department of Neurobiology, Northwestern University, Evanston, IL 60208.
ORCID 0000-0002-6920-2415
OpenAccessLink https://www.jneurosci.org/content/jneuro/37/6/1439.full.pdf
PMID 28028196
PQID 1853745016
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5299565
proquest_miscellaneous_1877835902
proquest_miscellaneous_1853745016
pubmed_primary_28028196
crossref_primary_10_1523_JNEUROSCI_2984_16_2016
crossref_citationtrail_10_1523_JNEUROSCI_2984_16_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-08
20170208
PublicationDateYYYYMMDD 2017-02-08
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2017
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803233468000_37.6.1439.29
2023041803233468000_37.6.1439.28
2023041803233468000_37.6.1439.27
2023041803233468000_37.6.1439.22
2023041803233468000_37.6.1439.21
2023041803233468000_37.6.1439.20
2023041803233468000_37.6.1439.26
2023041803233468000_37.6.1439.25
2023041803233468000_37.6.1439.24
2023041803233468000_37.6.1439.23
2023041803233468000_37.6.1439.1
2023041803233468000_37.6.1439.40
2023041803233468000_37.6.1439.39
2023041803233468000_37.6.1439.38
2023041803233468000_37.6.1439.9
2023041803233468000_37.6.1439.33
2023041803233468000_37.6.1439.32
2023041803233468000_37.6.1439.7
2023041803233468000_37.6.1439.31
2023041803233468000_37.6.1439.8
2023041803233468000_37.6.1439.30
2023041803233468000_37.6.1439.5
2023041803233468000_37.6.1439.37
Steriade (2023041803233468000_37.6.1439.44) 2001; 139
2023041803233468000_37.6.1439.6
2023041803233468000_37.6.1439.36
Bazhenov (2023041803233468000_37.6.1439.2) 2002; 22
2023041803233468000_37.6.1439.3
2023041803233468000_37.6.1439.35
2023041803233468000_37.6.1439.4
2023041803233468000_37.6.1439.34
van Rossum (2023041803233468000_37.6.1439.51) 2000; 20
2023041803233468000_37.6.1439.50
2023041803233468000_37.6.1439.49
2023041803233468000_37.6.1439.43
2023041803233468000_37.6.1439.42
2023041803233468000_37.6.1439.41
2023041803233468000_37.6.1439.48
2023041803233468000_37.6.1439.47
2023041803233468000_37.6.1439.46
2023041803233468000_37.6.1439.45
2023041803233468000_37.6.1439.19
2023041803233468000_37.6.1439.18
2023041803233468000_37.6.1439.17
2023041803233468000_37.6.1439.16
2023041803233468000_37.6.1439.11
2023041803233468000_37.6.1439.55
2023041803233468000_37.6.1439.10
2023041803233468000_37.6.1439.54
2023041803233468000_37.6.1439.53
2023041803233468000_37.6.1439.52
2023041803233468000_37.6.1439.15
2023041803233468000_37.6.1439.14
2023041803233468000_37.6.1439.13
2023041803233468000_37.6.1439.57
2023041803233468000_37.6.1439.12
2023041803233468000_37.6.1439.56
20970361 - Sleep Med Rev. 2011 Apr;15(2):123-35
22371479 - J Physiol. 2012 May 15;590(10):2253-71
23558179 - Neuroscientist. 2013 Oct;19(5):465-78
15240760 - J Neurophysiol. 2004 Dec;92(6):3338-43
16776579 - Annu Rev Neurosci. 2006;29:37-76
12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704
22049443 - J Neurosci. 2011 Nov 2;31(44):16012-25
19499213 - Exp Brain Res. 2009 Dec;199(3-4):377-90
11122337 - Eur J Neurosci. 2000 Dec;12(12):4255-67
17267749 - J Neurophysiol. 2007 Apr;97(4):2965-75
21525926 - Nature. 2011 Apr 28;472(7344):443-7
11029542 - Neuroscience. 2000;99(3):507-17
27559167 - J Neurosci. 2016 Aug 24;36(34):8842-55
19109486 - J Neurosci. 2008 Dec 24;28(52):14031-41
16221767 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15676-81
22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010
1684863 - Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11285-9
17460674 - Nature. 2007 Apr 26;446(7139):1086-90
12741992 - Neuron. 2003 May 8;38(3):461-72
24549722 - Curr Top Behav Neurosci. 2015;25:331-66
23192278 - Purinergic Signal. 2013 Jun;9(2):167-74
16713246 - Curr Opin Neurobiol. 2006 Jun;16(3):312-22
9283820 - Eur J Neurosci. 1997 Aug;9(8):1656-65
11256186 - Arch Ital Biol. 2001 Feb;139(1-2):37-51
24483230 - Epilepsia. 2014 Feb;55(2):233-44
11000420 - Behav Brain Res. 2000 Nov;115(2):183-204
20190965 - Curr Neuropharmacol. 2009 Sep;7(3):238-45
11684002 - Neuron. 2001 Oct 25;32(2):339-50
19193874 - J Neurosci. 2009 Feb 4;29(5):1267-76
22619736 - Neural Plast. 2012;2012:415250
26217218 - Front Comput Neurosci. 2015 Jul 13;9:89
8548323 - Brain Res. 1995 Sep 18;692(1-2):79-85
8684467 - Nature. 1996 Jul 25;382(6589):363-6
15184907 - Nature. 2004 Jul 1;430(6995):78-81
23613526 - J Physiol. 2013 Jul 1;591(13):3371-80
11102489 - J Neurosci. 2000 Dec 1;20(23):8812-21
11516402 - Neuron. 2001 Aug 16;31(3):463-75
19706442 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15037-42
19186164 - Neuron. 2009 Jan 29;61(2):213-9
22421436 - Proc Natl Acad Sci U S A. 2012 Apr 17;109 (16):6265-70
19587854 - Curr Neuropharmacol. 2008 Dec;6(4):329-37
11283304 - Annu Rev Neurosci. 2001;24:31-55
23332692 - Trends Neurosci. 2013 Apr;36(4):248-57
25446444 - Brain Res. 2015 Sep 24;1621:102-13
11177832 - Phys Rev Lett. 2001 Jan 8;86(2):364-7
24411729 - Neuron. 2014 Jan 8;81(1):12-34
25565160 - J Physiol. 2015 Feb 15;593(4):825-41
10643753 - J Biol Rhythms. 1999 Dec;14(6):557-68
24741059 - J Neurosci. 2014 Apr 16;34(16):5689-703
24355495 - Neuroscience. 2014 Feb 28;260:171-84
16376591 - Sleep Med Rev. 2006 Feb;10(1):49-62
18384754 - Biochem Pharmacol. 2008 Jun 1;75(11):2070-9
11705408 - Neural Comput. 2001 Dec;13(12):2709-41
24089497 - J Neurosci. 2013 Oct 2;33(40):15915-29
11754844 - Neuron. 2001 Dec 20;32(6):1149-64
10966623 - Nat Neurosci. 2000 Sep;3(9):919-26
24727248 - Neuroscientist. 2014 Oct;20(5):483-98
References_xml – ident: 2023041803233468000_37.6.1439.27
  doi: 10.1523/JNEUROSCI.1156-13.2014
– ident: 2023041803233468000_37.6.1439.46
  doi: 10.1016/j.smrv.2005.05.002
– ident: 2023041803233468000_37.6.1439.8
  doi: 10.1177/074873099129000894
– ident: 2023041803233468000_37.6.1439.13
  doi: 10.1177/1073858414529829
– ident: 2023041803233468000_37.6.1439.14
  doi: 10.3389/fncom.2015.00089
– volume: 22
  start-page: 8691
  year: 2002
  ident: 2023041803233468000_37.6.1439.2
  article-title: Model of thalamocortical slow-wave sleep oscillations and transitions to activated states
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-19-08691.2002
– ident: 2023041803233468000_37.6.1439.11
  doi: 10.1016/S0896-6273(03)00235-6
– volume: 20
  start-page: 8812
  year: 2000
  ident: 2023041803233468000_37.6.1439.51
  article-title: Stable Hebbian learning from spike timing-dependent plasticity
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-23-08812.2000
– ident: 2023041803233468000_37.6.1439.23
  doi: 10.1162/089976601317098501
– ident: 2023041803233468000_37.6.1439.33
  doi: 10.1007/s11302-012-9343-2
– ident: 2023041803233468000_37.6.1439.38
  doi: 10.1103/PhysRevLett.86.364
– ident: 2023041803233468000_37.6.1439.48
  doi: 10.1016/j.neuron.2013.12.025
– ident: 2023041803233468000_37.6.1439.47
  doi: 10.1155/2012/415250
– ident: 2023041803233468000_37.6.1439.41
  doi: 10.1016/S0896-6273(01)00542-6
– ident: 2023041803233468000_37.6.1439.43
  doi: 10.1038/78829
– ident: 2023041803233468000_37.6.1439.45
  doi: 10.1016/S0166-4328(00)00258-8
– ident: 2023041803233468000_37.6.1439.56
  doi: 10.2174/157015908787386087
– ident: 2023041803233468000_37.6.1439.31
  doi: 10.1038/nature05726
– ident: 2023041803233468000_37.6.1439.50
  doi: 10.1111/epi.12511
– ident: 2023041803233468000_37.6.1439.21
  doi: 10.1152/jn.01352.2006
– ident: 2023041803233468000_37.6.1439.52
  doi: 10.1111/j.1460-9568.1997.tb01523.x
– ident: 2023041803233468000_37.6.1439.16
  doi: 10.1016/j.tins.2012.12.003
– ident: 2023041803233468000_37.6.1439.17
  doi: 10.1016/j.conb.2006.05.008
– ident: 2023041803233468000_37.6.1439.10
  doi: 10.1523/JNEUROSCI.5088-12.2013
– ident: 2023041803233468000_37.6.1439.39
  doi: 10.1016/j.brainres.2014.11.008
– ident: 2023041803233468000_37.6.1439.34
  doi: 10.1523/JNEUROSCI.3984-08.2008
– ident: 2023041803233468000_37.6.1439.37
  doi: 10.1073/pnas.0505414102
– ident: 2023041803233468000_37.6.1439.57
  doi: 10.1113/jphysiol.2014.279901
– ident: 2023041803233468000_37.6.1439.9
  doi: 10.1113/jphysiol.2012.227462
– ident: 2023041803233468000_37.6.1439.24
  doi: 10.1113/jphysiol.2012.244392
– ident: 2023041803233468000_37.6.1439.15
  doi: 10.1007/s00221-009-1859-5
– ident: 2023041803233468000_37.6.1439.28
  doi: 10.1073/pnas.1120997109
– ident: 2023041803233468000_37.6.1439.5
  doi: 10.1523/JNEUROSCI.2942-08.2009
– ident: 2023041803233468000_37.6.1439.3
  doi: 10.1016/0006-8993(95)00590-M
– ident: 2023041803233468000_37.6.1439.22
  doi: 10.1038/nature02663
– volume: 139
  start-page: 37
  year: 2001
  ident: 2023041803233468000_37.6.1439.44
  article-title: Active neocortical processes during quiescent sleep
  publication-title: Arch Ital Biol
– ident: 2023041803233468000_37.6.1439.6
  doi: 10.1177/1073858413482983
– ident: 2023041803233468000_37.6.1439.29
  doi: 10.1016/S0896-6273(01)00375-0
– ident: 2023041803233468000_37.6.1439.53
  doi: 10.1046/j.0953-816X.2000.01322.x
– ident: 2023041803233468000_37.6.1439.32
  doi: 10.1073/pnas.88.24.11285
– ident: 2023041803233468000_37.6.1439.40
  doi: 10.1152/jn.00376.2004
– ident: 2023041803233468000_37.6.1439.20
  doi: 10.1016/j.neuron.2008.11.024
– ident: 2023041803233468000_37.6.1439.18
  doi: 10.1146/annurev.neuro.24.1.31
– ident: 2023041803233468000_37.6.1439.30
  doi: 10.1038/382363a0
– ident: 2023041803233468000_37.6.1439.42
  doi: 10.1016/S0896-6273(01)00451-2
– ident: 2023041803233468000_37.6.1439.36
  doi: 10.1016/S0306-4522(00)00220-7
– ident: 2023041803233468000_37.6.1439.4
  doi: 10.2174/157015909789152182
– ident: 2023041803233468000_37.6.1439.12
  doi: 10.1146/annurev.neuro.29.051605.112834
– ident: 2023041803233468000_37.6.1439.19
  doi: 10.1073/pnas.0906419106
– ident: 2023041803233468000_37.6.1439.35
  doi: 10.1016/j.smrv.2010.06.005
– ident: 2023041803233468000_37.6.1439.7
  doi: 10.1523/JNEUROSCI.3281-11.2011
– ident: 2023041803233468000_37.6.1439.1
  doi: 10.1016/j.neuroscience.2013.12.018
– ident: 2023041803233468000_37.6.1439.49
  doi: 10.1007/7854_2014_274
– ident: 2023041803233468000_37.6.1439.54
  doi: 10.1523/JNEUROSCI.0552-16.2016
– ident: 2023041803233468000_37.6.1439.55
  doi: 10.1038/nature10009
– ident: 2023041803233468000_37.6.1439.25
  doi: 10.1016/j.bcp.2008.02.024
– ident: 2023041803233468000_37.6.1439.26
  doi: 10.1113/jphysiol.2012.228247
– reference: 22421436 - Proc Natl Acad Sci U S A. 2012 Apr 17;109 (16):6265-70
– reference: 1684863 - Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11285-9
– reference: 18384754 - Biochem Pharmacol. 2008 Jun 1;75(11):2070-9
– reference: 19193874 - J Neurosci. 2009 Feb 4;29(5):1267-76
– reference: 19587854 - Curr Neuropharmacol. 2008 Dec;6(4):329-37
– reference: 16776579 - Annu Rev Neurosci. 2006;29:37-76
– reference: 24741059 - J Neurosci. 2014 Apr 16;34(16):5689-703
– reference: 11177832 - Phys Rev Lett. 2001 Jan 8;86(2):364-7
– reference: 23192278 - Purinergic Signal. 2013 Jun;9(2):167-74
– reference: 19706442 - Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15037-42
– reference: 11684002 - Neuron. 2001 Oct 25;32(2):339-50
– reference: 23558179 - Neuroscientist. 2013 Oct;19(5):465-78
– reference: 19186164 - Neuron. 2009 Jan 29;61(2):213-9
– reference: 17460674 - Nature. 2007 Apr 26;446(7139):1086-90
– reference: 11754844 - Neuron. 2001 Dec 20;32(6):1149-64
– reference: 12741992 - Neuron. 2003 May 8;38(3):461-72
– reference: 10966623 - Nat Neurosci. 2000 Sep;3(9):919-26
– reference: 27559167 - J Neurosci. 2016 Aug 24;36(34):8842-55
– reference: 24483230 - Epilepsia. 2014 Feb;55(2):233-44
– reference: 16376591 - Sleep Med Rev. 2006 Feb;10(1):49-62
– reference: 22049443 - J Neurosci. 2011 Nov 2;31(44):16012-25
– reference: 23613526 - J Physiol. 2013 Jul 1;591(13):3371-80
– reference: 26217218 - Front Comput Neurosci. 2015 Jul 13;9:89
– reference: 11029542 - Neuroscience. 2000;99(3):507-17
– reference: 20970361 - Sleep Med Rev. 2011 Apr;15(2):123-35
– reference: 24355495 - Neuroscience. 2014 Feb 28;260:171-84
– reference: 16221767 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15676-81
– reference: 24549722 - Curr Top Behav Neurosci. 2015;25:331-66
– reference: 25446444 - Brain Res. 2015 Sep 24;1621:102-13
– reference: 15240760 - J Neurophysiol. 2004 Dec;92(6):3338-43
– reference: 10643753 - J Biol Rhythms. 1999 Dec;14(6):557-68
– reference: 11122337 - Eur J Neurosci. 2000 Dec;12(12):4255-67
– reference: 8548323 - Brain Res. 1995 Sep 18;692(1-2):79-85
– reference: 11516402 - Neuron. 2001 Aug 16;31(3):463-75
– reference: 20190965 - Curr Neuropharmacol. 2009 Sep;7(3):238-45
– reference: 8684467 - Nature. 1996 Jul 25;382(6589):363-6
– reference: 17267749 - J Neurophysiol. 2007 Apr;97(4):2965-75
– reference: 16713246 - Curr Opin Neurobiol. 2006 Jun;16(3):312-22
– reference: 24727248 - Neuroscientist. 2014 Oct;20(5):483-98
– reference: 11256186 - Arch Ital Biol. 2001 Feb;139(1-2):37-51
– reference: 21525926 - Nature. 2011 Apr 28;472(7344):443-7
– reference: 22641778 - J Physiol. 2012 Aug 15;590(16):3987-4010
– reference: 24089497 - J Neurosci. 2013 Oct 2;33(40):15915-29
– reference: 11705408 - Neural Comput. 2001 Dec;13(12):2709-41
– reference: 23332692 - Trends Neurosci. 2013 Apr;36(4):248-57
– reference: 19109486 - J Neurosci. 2008 Dec 24;28(52):14031-41
– reference: 11000420 - Behav Brain Res. 2000 Nov;115(2):183-204
– reference: 19499213 - Exp Brain Res. 2009 Dec;199(3-4):377-90
– reference: 12351744 - J Neurosci. 2002 Oct 1;22(19):8691-704
– reference: 22619736 - Neural Plast. 2012;2012:415250
– reference: 9283820 - Eur J Neurosci. 1997 Aug;9(8):1656-65
– reference: 11102489 - J Neurosci. 2000 Dec 1;20(23):8812-21
– reference: 15184907 - Nature. 2004 Jul 1;430(6995):78-81
– reference: 25565160 - J Physiol. 2015 Feb 15;593(4):825-41
– reference: 22371479 - J Physiol. 2012 May 15;590(10):2253-71
– reference: 11283304 - Annu Rev Neurosci. 2001;24:31-55
– reference: 24411729 - Neuron. 2014 Jan 8;81(1):12-34
SSID ssj0007017
Score 2.3193333
Snippet Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep–wake cycle, modulating synaptic transmission and short-term...
Endogenous extracellular adenosine level fluctuates in an activity-dependent manner and with sleep-wake cycle, modulating synaptic transmission and short-term...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1439
SubjectTerms Adenosine - physiology
Adenosine A1 Receptor Antagonists - pharmacology
Animals
Homeostasis - drug effects
Homeostasis - physiology
Male
Neuronal Plasticity - drug effects
Neuronal Plasticity - physiology
Organ Culture Techniques
Rats
Rats, Wistar
Receptor, Adenosine A1 - physiology
Visual Cortex - drug effects
Visual Cortex - physiology
Title Adenosine Shifts Plasticity Regimes between Associative and Homeostatic by Modulating Heterosynaptic Changes
URI https://www.ncbi.nlm.nih.gov/pubmed/28028196
https://www.proquest.com/docview/1853745016
https://www.proquest.com/docview/1877835902
https://pubmed.ncbi.nlm.nih.gov/PMC5299565
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97KX0a27ZDc0GHsZTm1PsuzHEDbajoRBW-iejC9yG9rYoXbC0v-4_7RzJMVW0kK3vphgWbbi8_noO9K5EPIJvi8gDWHmeIErHRZ5KXxSEXdkmnsyyn1PBhg7PJ4EB6fs6Iyf9Xp_LK-lRZMOsps740oeIlU4B3LFKNn_kGx7UzgBv0G-cAQJw_GfZDzMMdU38sTji2nR1FiCCPMua2Z9rhIxrR2xWjks9YYB1kevMJxomiEFHVe5KuRVnsNMBO-6qldlMsdGHX9Q2yy2iydTTNbKidnt0SdlaWK5psp-rr-MB50vgdIsl9UyMfFCpoi3bjTxIrJ0fi3MxKrueAMt1VL3-D2d2QsWMAmij3PYLVha3qiT7fFpxecLMGmZrt4zkEYx-2onyLM1t04XYxBqq2EggZE1pXtMZ8m9NV1wlbbiaIJek8ejw4EfhQxQix5_gd0BxD6fKRD5oYtbj1vZuxUf-DkewSDB3uSPyGMfrBZl4R_-aImBcFUB6PbvmYB1GMT-3UPATNXmeZu06ZYttO3Sa3Gkk13y1ECCDjVSn5GeLJ-TvWGZNNVsRT9T5W6s9nH2yFULXqrBSzvwUgNeasBLLfBSAC-1wEvTFe3ASzfBSw14X5DT799ORgeOKf3hZIyJxokS6X3Nc7DVoyLnBROYwkIEoDk8ydJECJn4MgtT6bp5gTUaCh5kTIapl4E9AZz7JdkBlMvXhALDdkUaArEvMOg6CiVnOQ9zoKrcLVy_T_j6zcaZyYuP5VmuYrSPQThxK5wYhRN7QYzC6ZP9tt9cZ4a5t8fHteBiUOK4M5eUslrUMZJmwfg91whcpY1wxK-0sNvnrlHSJ2IDBu0FmER-s6WcXqhk8gaybx7c8y150n3l78hOc72Q74GoN-kHBf-_197sog
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adenosine+Shifts+Plasticity+Regimes+between+Associative+and+Homeostatic+by+Modulating+Heterosynaptic+Changes&rft.jtitle=The+Journal+of+neuroscience&rft.au=Bannon%2C+Nicholas+M.&rft.au=Chistiakova%2C+Marina&rft.au=Chen%2C+Jen-Yung&rft.au=Bazhenov%2C+Maxim&rft.date=2017-02-08&rft.pub=Society+for+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=37&rft.issue=6&rft.spage=1439&rft.epage=1452&rft_id=info:doi/10.1523%2FJNEUROSCI.2984-16.2016&rft_id=info%3Apmid%2F28028196&rft.externalDocID=PMC5299565
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon