Antioxidant Nanomaterial Based on Core–Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs
The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nano...
Saved in:
Published in | Nanomaterials (Basel, Switzerland) Vol. 9; no. 2; p. 214 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
06.02.2019
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs. |
---|---|
AbstractList | The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs. The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe 2+ -chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs. The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs. The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs. The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe -chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs. |
Author | Morales, Javier Günther, Germán Arriagada, Francisco Nos, Jaume Nonell, Santi Olea-Azar, Claudio |
AuthorAffiliation | 1 Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; farriagadajs@ug.uchile.cl 3 Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; jaimenosa@iqs.url.edu (J.N.); santi.nonell@iqs.url.edu (S.N.) 2 Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; ggunther@ciq.uchile.cl 4 Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; caolea@ciq.uchile.cl |
AuthorAffiliation_xml | – name: 2 Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; ggunther@ciq.uchile.cl – name: 3 Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; jaimenosa@iqs.url.edu (J.N.); santi.nonell@iqs.url.edu (S.N.) – name: 4 Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; caolea@ciq.uchile.cl – name: 1 Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; farriagadajs@ug.uchile.cl |
Author_xml | – sequence: 1 givenname: Francisco surname: Arriagada fullname: Arriagada, Francisco – sequence: 2 givenname: Germán orcidid: 0000-0002-4733-8426 surname: Günther fullname: Günther, Germán – sequence: 3 givenname: Jaume surname: Nos fullname: Nos, Jaume – sequence: 4 givenname: Santi orcidid: 0000-0002-8900-5291 surname: Nonell fullname: Nonell, Santi – sequence: 5 givenname: Claudio surname: Olea-Azar fullname: Olea-Azar, Claudio – sequence: 6 givenname: Javier surname: Morales fullname: Morales, Javier |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30736331$$D View this record in MEDLINE/PubMed |
BookMark | eNptks9uEzEQxi1UREvoiTvyEQkteO3dtc0BKQ3_KlUUKcDV8tqziauNndq7pb3xDvCEPAlOUqoU4Yut8effN56Zx-jABw8IPS3JS8YkeeW1D5JQQsvqATqihMuikrI82DsfouOULkhesmSiZo_QISOcNYyVR-jX1A8uXDur_YA_ZdhKDxCd7vGJTmBx8HgWIvz-8XO-hL7Hc9c7o7fKtF5ChIS_u2GJ52PstIHiJIze4pnuOnAGT42zr_EUf45h5ZLzC_wNls70gLsQ8fnGNrv7Yg4-ucFdAX4bx0V6gh52uk9wfLtP0Nf3777MPhZn5x9OZ9OzwlQVHwopqKQ1tMCFLG0DoPOfTNPxmlvDq7aDRreS6qayHAzvjJQU6lrUDbHCEMsm6HTHtUFfqHV0Kx1vVNBObQMhLpSOwyZfJY2oJKetNlRUmjJBjDC8gZLQrua5sBP0Zsdaj-0KrAE_RN3fg96_8W6pFuFKNRXJYJkBz28BMVyOkAaVS2ZyzbWHMCZFS0kqIWpeZ-mzfa87k79tzYIXO4GJIaUI3Z2kJGozN2pvbrK6_Edt3LBtTE7U9f998wdFqMj4 |
CitedBy_id | crossref_primary_10_3390_pharmaceutics13030421 crossref_primary_10_1016_j_ceramint_2024_01_378 crossref_primary_10_1016_j_matchemphys_2024_129026 crossref_primary_10_1007_s42247_024_00932_6 crossref_primary_10_3390_pharmaceutics12040376 crossref_primary_10_1016_j_joen_2020_07_003 crossref_primary_10_3390_bioengineering7030104 crossref_primary_10_3390_pharmaceutics12040302 crossref_primary_10_3390_mi14020383 crossref_primary_10_3390_ma12050828 crossref_primary_10_3390_ma13163478 crossref_primary_10_3390_antiox10101551 crossref_primary_10_3390_nano13020370 crossref_primary_10_1002_appl_202400043 crossref_primary_10_4155_tde_2020_0093 crossref_primary_10_1016_j_jddst_2023_105212 crossref_primary_10_3390_biom14081031 crossref_primary_10_2217_nnm_2021_0335 |
Cites_doi | 10.1016/j.nantod.2017.06.008 10.1111/j.1751-1097.1973.tb06352.x 10.1371/journal.pone.0121276 10.1016/j.jconrel.2010.04.029 10.1021/acsami.7b09510 10.1006/abbi.1994.1485 10.1016/j.cis.2016.08.001 10.1016/j.jconrel.2017.03.270 10.1016/j.cis.2015.10.009 10.1016/j.msec.2015.10.022 10.1039/C7NJ03410E 10.1016/j.nantod.2013.04.007 10.1111/j.1467-2494.1995.tb00113.x 10.1016/j.colsurfa.2015.03.039 10.1039/9781782622208-00023 10.1089/109662003772519831 10.1016/j.ymeth.2016.06.007 10.1016/S0378-5173(00)00358-6 10.3390/nano8040230 10.1016/j.colsurfb.2018.02.019 10.1016/j.saa.2010.04.026 10.1021/cm0011559 10.1021/jf048693g 10.1016/j.ijpharm.2017.07.058 10.1016/S0023-6438(95)80008-5 10.1007/978-0-387-46312-4 10.1038/srep05080 10.1016/j.ijpharm.2017.09.066 10.1039/b804333g 10.1021/am301751s 10.1016/j.ijpharm.2013.09.018 10.1002/adma.201104763 10.1021/cr00050a003 10.1016/j.polymer.2017.02.029 10.1371/journal.pone.0164507 10.1371/journal.pone.0040548 10.2174/1389450117666160603023037 10.1080/10408391003698677 10.1021/jf0496797 10.1038/nnano.2012.207 10.1039/C6NR00600K 10.1021/acs.molpharmaceut.6b00190 10.3390/ijms150916351 10.1039/9781782622208 10.1016/S0076-6879(00)19006-8 10.1021/cr100449n 10.1016/S0891-5849(98)00313-X 10.1016/j.jconrel.2016.01.041 10.1016/j.foodchem.2008.09.001 10.1021/jf00099a002 10.1016/0021-9797(68)90272-5 10.1039/C6TB00126B 10.1039/b902195g 10.1016/j.jcis.2015.12.011 10.1016/j.jcis.2012.10.073 10.1039/TF9565201130 10.1016/1010-6030(93)87009-C 10.1021/la2022177 10.1021/jp045121q 10.1016/S0278-6915(01)00020-5 10.1007/s00204-011-0774-2 10.1016/j.jconrel.2017.03.221 10.1016/0003-2697(90)90267-D 10.1016/S0308-8146(02)00429-6 10.1016/j.ijpharm.2018.08.004 10.1016/S0308-8146(00)00223-5 10.3109/10715762.2014.965702 |
ContentType | Journal Article |
Copyright | 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/nano9020214 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-4991 |
ExternalDocumentID | oai_doaj_org_article_9c84972bac284a2380c8c76e102f5791 PMC6409729 30736331 10_3390_nano9020214 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico grantid: 1160757 – fundername: Comisión Nacional de Investigación Científica y Tecnológica grantid: 21160932 – fundername: Spanish Ministerio de Economía y Competitividad grantid: CTQ2016-78454-C2-1-R |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I GROUPED_DOAJ HCIFZ HYE I-F KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM 7X8 PQGLB 5PM PUEGO |
ID | FETCH-LOGICAL-c447t-982925ebe7891d6eea633c6f757dc74bfe6ab92a64d7ec7fc992e558560d8c0d3 |
IEDL.DBID | DOA |
ISSN | 2079-4991 |
IngestDate | Wed Aug 27 01:32:00 EDT 2025 Thu Aug 21 14:32:33 EDT 2025 Fri Jul 11 08:27:37 EDT 2025 Thu Apr 03 07:10:44 EDT 2025 Thu Apr 24 22:57:55 EDT 2025 Tue Jul 01 01:16:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | polyphenols antioxidant singlet oxygen silica nanoparticles nanocarrier caffeic acid core–shell |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-982925ebe7891d6eea633c6f757dc74bfe6ab92a64d7ec7fc992e558560d8c0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4733-8426 0000-0002-8900-5291 |
OpenAccessLink | https://doaj.org/article/9c84972bac284a2380c8c76e102f5791 |
PMID | 30736331 |
PQID | 2190488575 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9c84972bac284a2380c8c76e102f5791 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6409729 proquest_miscellaneous_2190488575 pubmed_primary_30736331 crossref_primary_10_3390_nano9020214 crossref_citationtrail_10_3390_nano9020214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-06 |
PublicationDateYYYYMMDD | 2019-02-06 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Nanomaterials (Basel, Switzerland) |
PublicationTitleAlternate | Nanomaterials (Basel) |
PublicationYear | 2019 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Berlier (ref_43) 2013; 457 Li (ref_18) 2016; 8 Arts (ref_29) 2001; 39 ref_56 ref_54 Rabin (ref_58) 1956; 52 Xu (ref_15) 2016; 59 ref_17 Li (ref_12) 2017; 534 Grabarek (ref_50) 1990; 185 ref_59 Precupas (ref_68) 2017; 41 Dinis (ref_42) 1994; 315 Giannakopoulos (ref_25) 2005; 109 (ref_2) 2001; 13 Cilliers (ref_26) 1990; 38 Moure (ref_24) 2001; 72 Monopoli (ref_66) 2012; 7 Sigel (ref_57) 1982; 82 Nonell (ref_45) 2000; 319 Foley (ref_60) 1999; 26 Bartczak (ref_49) 2011; 27 Wibowo (ref_9) 2016; 236 Cheng (ref_6) 2017; 259 Khung (ref_11) 2015; 226 Mura (ref_51) 2014; 48 ref_63 Zhu (ref_3) 2017; 259 Montenegro (ref_23) 1995; 17 Koroleva (ref_53) 2014; 15 Visioli (ref_21) 2011; 51 Young (ref_62) 1973; 17 Estevez (ref_32) 2016; 466 Chen (ref_40) 2014; 4 Nos (ref_46) 2016; 109 Cuvelier (ref_41) 1995; 28 Nafisi (ref_13) 2018; 550 Tang (ref_14) 2013; 8 Peng (ref_65) 2016; 225 Baeza (ref_16) 2018; 19 Massaro (ref_55) 2016; 4 Rahmani (ref_35) 2016; 13 Zhang (ref_5) 2010; 145 Fink (ref_38) 1968; 26 Schlipf (ref_34) 2015; 478 ref_31 Sapino (ref_4) 2017; 530 Tang (ref_30) 2017; 112 Berlier (ref_19) 2013; 393 ref_39 ref_37 Khan (ref_33) 2017; 9 Iu (ref_61) 1993; 71 (ref_52) 2012; 86 Hassan (ref_1) 2017; 15 Tang (ref_10) 2012; 24 Papadopoulou (ref_67) 2005; 53 Paria (ref_7) 2012; 112 Li (ref_47) 2010; 77 Deligiannakis (ref_36) 2012; 4 Saija (ref_22) 2000; 199 Kapusta (ref_44) 2008; 7 ref_48 Shi (ref_20) 2003; 6 ref_8 (ref_28) 2009; 113 Rohn (ref_64) 2004; 52 Bkowska (ref_27) 2003; 81 |
References_xml | – volume: 15 start-page: 91 year: 2017 ident: ref_1 article-title: Evolution and clinical translation of drug delivery nanomaterials publication-title: Nano Today doi: 10.1016/j.nantod.2017.06.008 – volume: 17 start-page: 233 year: 1973 ident: ref_62 article-title: ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN BY AMINES-III. EVIDENCE FOR A CHARGE-TRANSFER-LIKE COMPLEX publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1973.tb06352.x – ident: ref_54 doi: 10.1371/journal.pone.0121276 – volume: 145 start-page: 257 year: 2010 ident: ref_5 article-title: Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2010.04.029 – volume: 9 start-page: 32114 year: 2017 ident: ref_33 article-title: Adsorption and Recovery of Polyphenolic Flavonoids Using TiO2-Functionalized Mesoporous Silica Nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b09510 – volume: 315 start-page: 161 year: 1994 ident: ref_42 article-title: Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1994.1485 – volume: 236 start-page: 83 year: 2016 ident: ref_9 article-title: Interfacial engineering for silica nanocapsules publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2016.08.001 – volume: 259 start-page: e132 year: 2017 ident: ref_6 article-title: Folic acid-targeted polydopamine-based surface modification of mesoporous silica nanoparticles as delivery vehicles for cancer therapy publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2017.03.270 – volume: 226 start-page: 166 year: 2015 ident: ref_11 article-title: Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2015.10.009 – volume: 59 start-page: 258 year: 2016 ident: ref_15 article-title: Mesoporous silica nanoparticles combining Au particles as glutathione and pH dual-sensitive nanocarriers for doxorubicin publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.10.022 – volume: 41 start-page: 15003 year: 2017 ident: ref_68 article-title: Complex interaction of caffeic acid with bovine serum albumin: calorimetric, spectroscopic and molecular docking evidence publication-title: New J. Chem. doi: 10.1039/C7NJ03410E – volume: 8 start-page: 290 year: 2013 ident: ref_14 article-title: Nonporous silica nanoparticles for nanomedicine application publication-title: Nano Today doi: 10.1016/j.nantod.2013.04.007 – volume: 17 start-page: 91 year: 1995 ident: ref_23 article-title: Protective effect evaluation of free radical scavengers on UVB induced human cutaneous erythema by skin reflectance spectrophotometry publication-title: Int. J. Cosmet. Sci. doi: 10.1111/j.1467-2494.1995.tb00113.x – volume: 478 start-page: 15 year: 2015 ident: ref_34 article-title: Flavonoid adsorption and stability on titania-functionalized silica nanoparticles publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2015.03.039 – ident: ref_63 doi: 10.1039/9781782622208-00023 – volume: 6 start-page: 291 year: 2003 ident: ref_20 article-title: Polyphenolics in Grape Seeds—Biochemistry and Functionality publication-title: J. Med. Food doi: 10.1089/109662003772519831 – volume: 109 start-page: 64 year: 2016 ident: ref_46 article-title: Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media publication-title: Methods doi: 10.1016/j.ymeth.2016.06.007 – volume: 199 start-page: 39 year: 2000 ident: ref_22 article-title: In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents publication-title: Int. J. Pharm. doi: 10.1016/S0378-5173(00)00358-6 – ident: ref_8 doi: 10.3390/nano8040230 – ident: ref_17 doi: 10.1016/j.colsurfb.2018.02.019 – volume: 77 start-page: 680 year: 2010 ident: ref_47 article-title: Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2010.04.026 – volume: 13 start-page: 308 year: 2001 ident: ref_2 article-title: A New Property of MCM-41: Drug Delivery System publication-title: Chem. Mater. doi: 10.1021/cm0011559 – volume: 53 start-page: 158 year: 2005 ident: ref_67 article-title: Interaction of Flavonoids with Bovine Serum Albumin: A Fluorescence Quenching Study publication-title: J. Agric. Food Chem. doi: 10.1021/jf048693g – volume: 530 start-page: 239 year: 2017 ident: ref_4 article-title: Mesoporous silica nanoparticles as a promising skin delivery system for methotrexate publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.07.058 – volume: 28 start-page: 25 year: 1995 ident: ref_41 article-title: Use of a free radical method to evaluate antioxidant activity publication-title: LWT - Food Sci. Technol. doi: 10.1016/S0023-6438(95)80008-5 – ident: ref_48 doi: 10.1007/978-0-387-46312-4 – ident: ref_56 – volume: 4 start-page: 5080 year: 2014 ident: ref_40 article-title: Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy publication-title: Sci. Rep. doi: 10.1038/srep05080 – volume: 534 start-page: 71 year: 2017 ident: ref_12 article-title: Dual targeting mesoporous silica nanoparticles for inhibiting tumour cell invasion and metastasis publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2017.09.066 – volume: 7 start-page: 1003 year: 2008 ident: ref_44 article-title: Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b804333g – volume: 4 start-page: 6609 year: 2012 ident: ref_36 article-title: Antioxidant and Antiradical SiO2 Nanoparticles Covalently Functionalized with Gallic Acid publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301751s – volume: 457 start-page: 177 year: 2013 ident: ref_43 article-title: MCM-41 as a useful vector for rutin topical formulations: Synthesis, characterization and testing publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2013.09.018 – volume: 24 start-page: 1504 year: 2012 ident: ref_10 article-title: Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery publication-title: Adv. Mater. doi: 10.1002/adma.201104763 – volume: 82 start-page: 385 year: 1982 ident: ref_57 article-title: Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands publication-title: Chem. Rev. doi: 10.1021/cr00050a003 – volume: 112 start-page: 369 year: 2017 ident: ref_30 article-title: Thermal-oxidative effect of a co-condensed nanosilica-based antioxidant in polypropylene publication-title: Polymer doi: 10.1016/j.polymer.2017.02.029 – ident: ref_31 doi: 10.1371/journal.pone.0164507 – ident: ref_59 doi: 10.1371/journal.pone.0040548 – volume: 19 start-page: 213 year: 2018 ident: ref_16 article-title: Targeted Mesoporous Silica Nanocarriers in Oncology publication-title: Curr. Drug Targets doi: 10.2174/1389450117666160603023037 – volume: 51 start-page: 524 year: 2011 ident: ref_21 article-title: Polyphenols and human health: A prospectus publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408391003698677 – volume: 52 start-page: 4725 year: 2004 ident: ref_64 article-title: Antioxidant Activity of Protein-Bound Quercetin publication-title: J. Agric. Food Chem. doi: 10.1021/jf0496797 – volume: 7 start-page: 779 year: 2012 ident: ref_66 article-title: Biomolecular coronas provide the biological identity of nanosized materials publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.207 – volume: 8 start-page: 8600 year: 2016 ident: ref_18 article-title: Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery publication-title: Nanoscale doi: 10.1039/C6NR00600K – volume: 13 start-page: 2647 year: 2016 ident: ref_35 article-title: Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.6b00190 – volume: 15 start-page: 16351 year: 2014 ident: ref_53 article-title: Evaluation of the Antiradical Properties of Phenolic Acids publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms150916351 – ident: ref_37 doi: 10.1039/9781782622208 – volume: 319 start-page: 37 year: 2000 ident: ref_45 article-title: Time-resolved singlet oxygen detection publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(00)19006-8 – volume: 112 start-page: 2373 year: 2012 ident: ref_7 article-title: Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications publication-title: Chem. Rev. doi: 10.1021/cr100449n – volume: 26 start-page: 1202 year: 1999 ident: ref_60 article-title: Singlet oxygen quenching and the redox properties of hydroxycinnamic acids publication-title: Free Radical Biol. Med. doi: 10.1016/S0891-5849(98)00313-X – volume: 225 start-page: 121 year: 2016 ident: ref_65 article-title: The potential of protein–nanomaterial interaction for advanced drug delivery publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2016.01.041 – volume: 113 start-page: 859 year: 2009 ident: ref_28 article-title: Chemical studies of anthocyanins: A review publication-title: Food Chem. doi: 10.1016/j.foodchem.2008.09.001 – volume: 38 start-page: 1789 year: 1990 ident: ref_26 article-title: Caffeic acid autoxidation and the effects of thiols publication-title: J. Agric. Food Chem. doi: 10.1021/jf00099a002 – volume: 26 start-page: 62 year: 1968 ident: ref_38 article-title: Controlled growth of monodisperse silica spheres in the micron size range publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 4 start-page: 2229 year: 2016 ident: ref_55 article-title: A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin publication-title: J. Mater. Chem. B doi: 10.1039/C6TB00126B – ident: ref_39 doi: 10.1039/b902195g – volume: 466 start-page: 44 year: 2016 ident: ref_32 article-title: Quercetin conjugated silica particles as novel biofunctional hybrid materials for biological applications publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2015.12.011 – volume: 393 start-page: 109 year: 2013 ident: ref_19 article-title: Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: positive effect of surface functionalization publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.10.073 – volume: 52 start-page: 1130 year: 1956 ident: ref_58 article-title: The chelation of metal ions by dipeptides and related substances. Part 3.—The sites of co-ordination publication-title: Trans. Faraday Soc. doi: 10.1039/TF9565201130 – volume: 71 start-page: 55 year: 1993 ident: ref_61 article-title: Quenching of singlet molecular oxygen (1ΔgO2) in silica gel-solvent heterogeneous system II. A direct time-resolved study publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/1010-6030(93)87009-C – volume: 27 start-page: 10119 year: 2011 ident: ref_49 article-title: Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling publication-title: Langmuir doi: 10.1021/la2022177 – volume: 109 start-page: 2223 year: 2005 ident: ref_25 article-title: Influence of Pb(II) on the Radical Properties of Humic Substances and Model Compounds publication-title: J. Phys. Chem. A doi: 10.1021/jp045121q – volume: 39 start-page: 787 year: 2001 ident: ref_29 article-title: Masking of antioxidant capacity by the interaction of flavonoids with protein publication-title: Food Chem. Toxicol. doi: 10.1016/S0278-6915(01)00020-5 – volume: 86 start-page: 345 year: 2012 ident: ref_52 article-title: Antioxidant activity of food constituents: an overview publication-title: Arch. Toxicol. doi: 10.1007/s00204-011-0774-2 – volume: 259 start-page: e104 year: 2017 ident: ref_3 article-title: Enhance drug sensitivity of cancer stem cells using functionalized mesoporous silica nanoparticles publication-title: J. Controll. Release doi: 10.1016/j.jconrel.2017.03.221 – volume: 185 start-page: 131 year: 1990 ident: ref_50 article-title: Zero-length crosslinking procedure with the use of active esters publication-title: Anal. Biochem. doi: 10.1016/0003-2697(90)90267-D – volume: 81 start-page: 349 year: 2003 ident: ref_27 article-title: The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex publication-title: Food Chem. doi: 10.1016/S0308-8146(02)00429-6 – volume: 550 start-page: 325 year: 2018 ident: ref_13 article-title: Mesoporous silica nanoparticles for enhanced lidocaine skin delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.08.004 – volume: 72 start-page: 145 year: 2001 ident: ref_24 article-title: Natural antioxidants from residual sources publication-title: Food Chem. doi: 10.1016/S0308-8146(00)00223-5 – volume: 48 start-page: 1473 year: 2014 ident: ref_51 article-title: New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: spectroscopic, electrochemistry, and cellular studies publication-title: Free Radic. Res. doi: 10.3109/10715762.2014.965702 |
SSID | ssj0000913853 |
Score | 2.1958659 |
Snippet | The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 214 |
SubjectTerms | antioxidant caffeic acid core–shell nanocarrier polyphenols silica nanoparticles singlet oxygen |
Title | Antioxidant Nanomaterial Based on Core–Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30736331 https://www.proquest.com/docview/2190488575 https://pubmed.ncbi.nlm.nih.gov/PMC6409729 https://doaj.org/article/9c84972bac284a2380c8c76e102f5791 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXOCA-GcLrIzUE1LUxEn8w2136VIhUSqWot4ix560kVCCsrtSj7wDPCFPwoyzXWVRJS5ck7HszExmPtvjz4wdaG1FmcQ2slbaCDN-HFmpaJM3L8ETNXJGp5E_nsjjs-zDeX4-uOqLasJ6euBecYfG6cwoUVqHgdRigomddkoCJsYqV-HcusCcN5hMhRhskhQTUX8gL8V5_WFjm9YgNhJJtpOCAlP_TfDy7yrJQdqZP2D3N3iRT_pxPmS3oHnE7g1YBB-zXxOqWLyqPSqJY7RsEYQGv-JTTFGetw2ftR38_vFzQVWffFHTQl2QXBKpACw5rcbyxbqrrINoSjct8ZmtKqgdn7jav-UTftq16BLYIf8KlzQWjnCXf6JuybbRgirhKXbyd936YvmEnc2PvsyOo81lC5HLMrWKjBZG5GhSpU3iJYCVaepkpXLlncrKCqQtjbAy8wqcqpwxAnKcbMjYaxf79Cnba9oGnjOe2gSkouYapdHYuVdxmYICkZcIEUfszbX-C7dhIqcLMb4VOCMhYxUDY43YwVb4e0_AcbPYlAy5FSHW7PAAfanY-FLxL18asdfXblCgSmnrxDbQrpcFxnUKdYhtR-xZ7xbbrihK4sdia7XjMDtj2X3T1JeByVsS25gw-_9j8C_YXQRzJlSUy5dsb9Wt4RUCplU5Zrf1_P2Y3ZkenZx-Hoc_5Q97Cxk1 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant+Nanomaterial+Based+on+Core%E2%80%93Shell+Silica+Nanospheres+with+Surface-Bound+Caffeic+Acid%3A+A+Promising+Vehicle+for+Oxidation-Sensitive+Drugs&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Francisco+Arriagada&rft.au=Germ%C3%A1n+G%C3%BCnther&rft.au=Jaume+Nos&rft.au=Santi+Nonell&rft.date=2019-02-06&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=9&rft.issue=2&rft.spage=214&rft_id=info:doi/10.3390%2Fnano9020214&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9c84972bac284a2380c8c76e102f5791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon |