Antioxidant Nanomaterial Based on Core–Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs

The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nano...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 9; no. 2; p. 214
Main Authors Arriagada, Francisco, Günther, Germán, Nos, Jaume, Nonell, Santi, Olea-Azar, Claudio, Morales, Javier
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 06.02.2019
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
AbstractList The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe 2+ -chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core–shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe2+-chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences. To achieve the above goals, surface functionalization is critical. Here, we report a hybrid nanocarrier consisting of core⁻shell silica nanospheres and the antioxidant caffeic acid linked to the surface, to evaluate their in vitro antioxidant capacity, their capability to protect oxidation-sensitive compounds incorporated in nanoparticles, and to study the interaction with bovine serum albumin protein. The results show that the radical-scavenging activity of immobilized caffeic acid is attenuated in the silica nanospheres; however, other antioxidant properties such as Fe -chelating activity and singlet oxygen quenching are enhanced. In addition, caffeic acid is protected from binding to proteins by the nanoparticle, suggesting that this nanosystem is more likely to maintain the antioxidant activity of caffeic acid in biological media. Finally, the natural antioxidant barrier on the nanocarrier is able to delay the degradation of a compound incorporated into this nanovehicle. Considering all findings, this work proposes a suitable tool for pharmaceutical and cosmetic industries as an antioxidant nanocarrier for oxidation-sensitive drugs.
Author Morales, Javier
Günther, Germán
Arriagada, Francisco
Nos, Jaume
Nonell, Santi
Olea-Azar, Claudio
AuthorAffiliation 1 Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; farriagadajs@ug.uchile.cl
3 Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; jaimenosa@iqs.url.edu (J.N.); santi.nonell@iqs.url.edu (S.N.)
2 Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; ggunther@ciq.uchile.cl
4 Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; caolea@ciq.uchile.cl
AuthorAffiliation_xml – name: 2 Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; ggunther@ciq.uchile.cl
– name: 3 Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; jaimenosa@iqs.url.edu (J.N.); santi.nonell@iqs.url.edu (S.N.)
– name: 4 Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; caolea@ciq.uchile.cl
– name: 1 Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile; farriagadajs@ug.uchile.cl
Author_xml – sequence: 1
  givenname: Francisco
  surname: Arriagada
  fullname: Arriagada, Francisco
– sequence: 2
  givenname: Germán
  orcidid: 0000-0002-4733-8426
  surname: Günther
  fullname: Günther, Germán
– sequence: 3
  givenname: Jaume
  surname: Nos
  fullname: Nos, Jaume
– sequence: 4
  givenname: Santi
  orcidid: 0000-0002-8900-5291
  surname: Nonell
  fullname: Nonell, Santi
– sequence: 5
  givenname: Claudio
  surname: Olea-Azar
  fullname: Olea-Azar, Claudio
– sequence: 6
  givenname: Javier
  surname: Morales
  fullname: Morales, Javier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30736331$$D View this record in MEDLINE/PubMed
BookMark eNptks9uEzEQxi1UREvoiTvyEQkteO3dtc0BKQ3_KlUUKcDV8tqziauNndq7pb3xDvCEPAlOUqoU4Yut8effN56Zx-jABw8IPS3JS8YkeeW1D5JQQsvqATqihMuikrI82DsfouOULkhesmSiZo_QISOcNYyVR-jX1A8uXDur_YA_ZdhKDxCd7vGJTmBx8HgWIvz-8XO-hL7Hc9c7o7fKtF5ChIS_u2GJ52PstIHiJIze4pnuOnAGT42zr_EUf45h5ZLzC_wNls70gLsQ8fnGNrv7Yg4-ucFdAX4bx0V6gh52uk9wfLtP0Nf3777MPhZn5x9OZ9OzwlQVHwopqKQ1tMCFLG0DoPOfTNPxmlvDq7aDRreS6qayHAzvjJQU6lrUDbHCEMsm6HTHtUFfqHV0Kx1vVNBObQMhLpSOwyZfJY2oJKetNlRUmjJBjDC8gZLQrua5sBP0Zsdaj-0KrAE_RN3fg96_8W6pFuFKNRXJYJkBz28BMVyOkAaVS2ZyzbWHMCZFS0kqIWpeZ-mzfa87k79tzYIXO4GJIaUI3Z2kJGozN2pvbrK6_Edt3LBtTE7U9f998wdFqMj4
CitedBy_id crossref_primary_10_3390_pharmaceutics13030421
crossref_primary_10_1016_j_ceramint_2024_01_378
crossref_primary_10_1016_j_matchemphys_2024_129026
crossref_primary_10_1007_s42247_024_00932_6
crossref_primary_10_3390_pharmaceutics12040376
crossref_primary_10_1016_j_joen_2020_07_003
crossref_primary_10_3390_bioengineering7030104
crossref_primary_10_3390_pharmaceutics12040302
crossref_primary_10_3390_mi14020383
crossref_primary_10_3390_ma12050828
crossref_primary_10_3390_ma13163478
crossref_primary_10_3390_antiox10101551
crossref_primary_10_3390_nano13020370
crossref_primary_10_1002_appl_202400043
crossref_primary_10_4155_tde_2020_0093
crossref_primary_10_1016_j_jddst_2023_105212
crossref_primary_10_3390_biom14081031
crossref_primary_10_2217_nnm_2021_0335
Cites_doi 10.1016/j.nantod.2017.06.008
10.1111/j.1751-1097.1973.tb06352.x
10.1371/journal.pone.0121276
10.1016/j.jconrel.2010.04.029
10.1021/acsami.7b09510
10.1006/abbi.1994.1485
10.1016/j.cis.2016.08.001
10.1016/j.jconrel.2017.03.270
10.1016/j.cis.2015.10.009
10.1016/j.msec.2015.10.022
10.1039/C7NJ03410E
10.1016/j.nantod.2013.04.007
10.1111/j.1467-2494.1995.tb00113.x
10.1016/j.colsurfa.2015.03.039
10.1039/9781782622208-00023
10.1089/109662003772519831
10.1016/j.ymeth.2016.06.007
10.1016/S0378-5173(00)00358-6
10.3390/nano8040230
10.1016/j.colsurfb.2018.02.019
10.1016/j.saa.2010.04.026
10.1021/cm0011559
10.1021/jf048693g
10.1016/j.ijpharm.2017.07.058
10.1016/S0023-6438(95)80008-5
10.1007/978-0-387-46312-4
10.1038/srep05080
10.1016/j.ijpharm.2017.09.066
10.1039/b804333g
10.1021/am301751s
10.1016/j.ijpharm.2013.09.018
10.1002/adma.201104763
10.1021/cr00050a003
10.1016/j.polymer.2017.02.029
10.1371/journal.pone.0164507
10.1371/journal.pone.0040548
10.2174/1389450117666160603023037
10.1080/10408391003698677
10.1021/jf0496797
10.1038/nnano.2012.207
10.1039/C6NR00600K
10.1021/acs.molpharmaceut.6b00190
10.3390/ijms150916351
10.1039/9781782622208
10.1016/S0076-6879(00)19006-8
10.1021/cr100449n
10.1016/S0891-5849(98)00313-X
10.1016/j.jconrel.2016.01.041
10.1016/j.foodchem.2008.09.001
10.1021/jf00099a002
10.1016/0021-9797(68)90272-5
10.1039/C6TB00126B
10.1039/b902195g
10.1016/j.jcis.2015.12.011
10.1016/j.jcis.2012.10.073
10.1039/TF9565201130
10.1016/1010-6030(93)87009-C
10.1021/la2022177
10.1021/jp045121q
10.1016/S0278-6915(01)00020-5
10.1007/s00204-011-0774-2
10.1016/j.jconrel.2017.03.221
10.1016/0003-2697(90)90267-D
10.1016/S0308-8146(02)00429-6
10.1016/j.ijpharm.2018.08.004
10.1016/S0308-8146(00)00223-5
10.3109/10715762.2014.965702
ContentType Journal Article
Copyright 2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano9020214
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_9c84972bac284a2380c8c76e102f5791
PMC6409729
30736331
10_3390_nano9020214
Genre Journal Article
GrantInformation_xml – fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  grantid: 1160757
– fundername: Comisión Nacional de Investigación Científica y Tecnológica
  grantid: 21160932
– fundername: Spanish Ministerio de Economía y Competitividad
  grantid: CTQ2016-78454-C2-1-R
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c447t-982925ebe7891d6eea633c6f757dc74bfe6ab92a64d7ec7fc992e558560d8c0d3
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 01:32:00 EDT 2025
Thu Aug 21 14:32:33 EDT 2025
Fri Jul 11 08:27:37 EDT 2025
Thu Apr 03 07:10:44 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Tue Jul 01 01:16:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords polyphenols
antioxidant
singlet oxygen
silica nanoparticles
nanocarrier
caffeic acid
core–shell
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-982925ebe7891d6eea633c6f757dc74bfe6ab92a64d7ec7fc992e558560d8c0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4733-8426
0000-0002-8900-5291
OpenAccessLink https://doaj.org/article/9c84972bac284a2380c8c76e102f5791
PMID 30736331
PQID 2190488575
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9c84972bac284a2380c8c76e102f5791
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6409729
proquest_miscellaneous_2190488575
pubmed_primary_30736331
crossref_primary_10_3390_nano9020214
crossref_citationtrail_10_3390_nano9020214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-06
PublicationDateYYYYMMDD 2019-02-06
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-06
  day: 06
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2019
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Berlier (ref_43) 2013; 457
Li (ref_18) 2016; 8
Arts (ref_29) 2001; 39
ref_56
ref_54
Rabin (ref_58) 1956; 52
Xu (ref_15) 2016; 59
ref_17
Li (ref_12) 2017; 534
Grabarek (ref_50) 1990; 185
ref_59
Precupas (ref_68) 2017; 41
Dinis (ref_42) 1994; 315
Giannakopoulos (ref_25) 2005; 109
(ref_2) 2001; 13
Cilliers (ref_26) 1990; 38
Moure (ref_24) 2001; 72
Monopoli (ref_66) 2012; 7
Sigel (ref_57) 1982; 82
Nonell (ref_45) 2000; 319
Foley (ref_60) 1999; 26
Bartczak (ref_49) 2011; 27
Wibowo (ref_9) 2016; 236
Cheng (ref_6) 2017; 259
Khung (ref_11) 2015; 226
Mura (ref_51) 2014; 48
ref_63
Zhu (ref_3) 2017; 259
Montenegro (ref_23) 1995; 17
Koroleva (ref_53) 2014; 15
Visioli (ref_21) 2011; 51
Young (ref_62) 1973; 17
Estevez (ref_32) 2016; 466
Chen (ref_40) 2014; 4
Nos (ref_46) 2016; 109
Cuvelier (ref_41) 1995; 28
Nafisi (ref_13) 2018; 550
Tang (ref_14) 2013; 8
Peng (ref_65) 2016; 225
Baeza (ref_16) 2018; 19
Massaro (ref_55) 2016; 4
Rahmani (ref_35) 2016; 13
Zhang (ref_5) 2010; 145
Fink (ref_38) 1968; 26
Schlipf (ref_34) 2015; 478
ref_31
Sapino (ref_4) 2017; 530
Tang (ref_30) 2017; 112
Berlier (ref_19) 2013; 393
ref_39
ref_37
Khan (ref_33) 2017; 9
Iu (ref_61) 1993; 71
(ref_52) 2012; 86
Hassan (ref_1) 2017; 15
Tang (ref_10) 2012; 24
Papadopoulou (ref_67) 2005; 53
Paria (ref_7) 2012; 112
Li (ref_47) 2010; 77
Deligiannakis (ref_36) 2012; 4
Saija (ref_22) 2000; 199
Kapusta (ref_44) 2008; 7
ref_48
Shi (ref_20) 2003; 6
ref_8
(ref_28) 2009; 113
Rohn (ref_64) 2004; 52
Bkowska (ref_27) 2003; 81
References_xml – volume: 15
  start-page: 91
  year: 2017
  ident: ref_1
  article-title: Evolution and clinical translation of drug delivery nanomaterials
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.06.008
– volume: 17
  start-page: 233
  year: 1973
  ident: ref_62
  article-title: ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN BY AMINES-III. EVIDENCE FOR A CHARGE-TRANSFER-LIKE COMPLEX
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1973.tb06352.x
– ident: ref_54
  doi: 10.1371/journal.pone.0121276
– volume: 145
  start-page: 257
  year: 2010
  ident: ref_5
  article-title: Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan
  publication-title: J. Controll. Release
  doi: 10.1016/j.jconrel.2010.04.029
– volume: 9
  start-page: 32114
  year: 2017
  ident: ref_33
  article-title: Adsorption and Recovery of Polyphenolic Flavonoids Using TiO2-Functionalized Mesoporous Silica Nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b09510
– volume: 315
  start-page: 161
  year: 1994
  ident: ref_42
  article-title: Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1994.1485
– volume: 236
  start-page: 83
  year: 2016
  ident: ref_9
  article-title: Interfacial engineering for silica nanocapsules
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2016.08.001
– volume: 259
  start-page: e132
  year: 2017
  ident: ref_6
  article-title: Folic acid-targeted polydopamine-based surface modification of mesoporous silica nanoparticles as delivery vehicles for cancer therapy
  publication-title: J. Controll. Release
  doi: 10.1016/j.jconrel.2017.03.270
– volume: 226
  start-page: 166
  year: 2015
  ident: ref_11
  article-title: Surface modification strategies on mesoporous silica nanoparticles for anti-biofouling zwitterionic film grafting
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2015.10.009
– volume: 59
  start-page: 258
  year: 2016
  ident: ref_15
  article-title: Mesoporous silica nanoparticles combining Au particles as glutathione and pH dual-sensitive nanocarriers for doxorubicin
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.10.022
– volume: 41
  start-page: 15003
  year: 2017
  ident: ref_68
  article-title: Complex interaction of caffeic acid with bovine serum albumin: calorimetric, spectroscopic and molecular docking evidence
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ03410E
– volume: 8
  start-page: 290
  year: 2013
  ident: ref_14
  article-title: Nonporous silica nanoparticles for nanomedicine application
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2013.04.007
– volume: 17
  start-page: 91
  year: 1995
  ident: ref_23
  article-title: Protective effect evaluation of free radical scavengers on UVB induced human cutaneous erythema by skin reflectance spectrophotometry
  publication-title: Int. J. Cosmet. Sci.
  doi: 10.1111/j.1467-2494.1995.tb00113.x
– volume: 478
  start-page: 15
  year: 2015
  ident: ref_34
  article-title: Flavonoid adsorption and stability on titania-functionalized silica nanoparticles
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2015.03.039
– ident: ref_63
  doi: 10.1039/9781782622208-00023
– volume: 6
  start-page: 291
  year: 2003
  ident: ref_20
  article-title: Polyphenolics in Grape Seeds—Biochemistry and Functionality
  publication-title: J. Med. Food
  doi: 10.1089/109662003772519831
– volume: 109
  start-page: 64
  year: 2016
  ident: ref_46
  article-title: Anthracene-based fluorescent nanoprobes for singlet oxygen detection in biological media
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.06.007
– volume: 199
  start-page: 39
  year: 2000
  ident: ref_22
  article-title: In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents
  publication-title: Int. J. Pharm.
  doi: 10.1016/S0378-5173(00)00358-6
– ident: ref_8
  doi: 10.3390/nano8040230
– ident: ref_17
  doi: 10.1016/j.colsurfb.2018.02.019
– volume: 77
  start-page: 680
  year: 2010
  ident: ref_47
  article-title: Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2010.04.026
– volume: 13
  start-page: 308
  year: 2001
  ident: ref_2
  article-title: A New Property of MCM-41:  Drug Delivery System
  publication-title: Chem. Mater.
  doi: 10.1021/cm0011559
– volume: 53
  start-page: 158
  year: 2005
  ident: ref_67
  article-title: Interaction of Flavonoids with Bovine Serum Albumin:  A Fluorescence Quenching Study
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf048693g
– volume: 530
  start-page: 239
  year: 2017
  ident: ref_4
  article-title: Mesoporous silica nanoparticles as a promising skin delivery system for methotrexate
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.07.058
– volume: 28
  start-page: 25
  year: 1995
  ident: ref_41
  article-title: Use of a free radical method to evaluate antioxidant activity
  publication-title: LWT - Food Sci. Technol.
  doi: 10.1016/S0023-6438(95)80008-5
– ident: ref_48
  doi: 10.1007/978-0-387-46312-4
– ident: ref_56
– volume: 4
  start-page: 5080
  year: 2014
  ident: ref_40
  article-title: Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy
  publication-title: Sci. Rep.
  doi: 10.1038/srep05080
– volume: 534
  start-page: 71
  year: 2017
  ident: ref_12
  article-title: Dual targeting mesoporous silica nanoparticles for inhibiting tumour cell invasion and metastasis
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2017.09.066
– volume: 7
  start-page: 1003
  year: 2008
  ident: ref_44
  article-title: Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b804333g
– volume: 4
  start-page: 6609
  year: 2012
  ident: ref_36
  article-title: Antioxidant and Antiradical SiO2 Nanoparticles Covalently Functionalized with Gallic Acid
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301751s
– volume: 457
  start-page: 177
  year: 2013
  ident: ref_43
  article-title: MCM-41 as a useful vector for rutin topical formulations: Synthesis, characterization and testing
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2013.09.018
– volume: 24
  start-page: 1504
  year: 2012
  ident: ref_10
  article-title: Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104763
– volume: 82
  start-page: 385
  year: 1982
  ident: ref_57
  article-title: Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands
  publication-title: Chem. Rev.
  doi: 10.1021/cr00050a003
– volume: 112
  start-page: 369
  year: 2017
  ident: ref_30
  article-title: Thermal-oxidative effect of a co-condensed nanosilica-based antioxidant in polypropylene
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.02.029
– ident: ref_31
  doi: 10.1371/journal.pone.0164507
– ident: ref_59
  doi: 10.1371/journal.pone.0040548
– volume: 19
  start-page: 213
  year: 2018
  ident: ref_16
  article-title: Targeted Mesoporous Silica Nanocarriers in Oncology
  publication-title: Curr. Drug Targets
  doi: 10.2174/1389450117666160603023037
– volume: 51
  start-page: 524
  year: 2011
  ident: ref_21
  article-title: Polyphenols and human health: A prospectus
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408391003698677
– volume: 52
  start-page: 4725
  year: 2004
  ident: ref_64
  article-title: Antioxidant Activity of Protein-Bound Quercetin
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0496797
– volume: 7
  start-page: 779
  year: 2012
  ident: ref_66
  article-title: Biomolecular coronas provide the biological identity of nanosized materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.207
– volume: 8
  start-page: 8600
  year: 2016
  ident: ref_18
  article-title: Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery
  publication-title: Nanoscale
  doi: 10.1039/C6NR00600K
– volume: 13
  start-page: 2647
  year: 2016
  ident: ref_35
  article-title: Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.6b00190
– volume: 15
  start-page: 16351
  year: 2014
  ident: ref_53
  article-title: Evaluation of the Antiradical Properties of Phenolic Acids
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms150916351
– ident: ref_37
  doi: 10.1039/9781782622208
– volume: 319
  start-page: 37
  year: 2000
  ident: ref_45
  article-title: Time-resolved singlet oxygen detection
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(00)19006-8
– volume: 112
  start-page: 2373
  year: 2012
  ident: ref_7
  article-title: Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr100449n
– volume: 26
  start-page: 1202
  year: 1999
  ident: ref_60
  article-title: Singlet oxygen quenching and the redox properties of hydroxycinnamic acids
  publication-title: Free Radical Biol. Med.
  doi: 10.1016/S0891-5849(98)00313-X
– volume: 225
  start-page: 121
  year: 2016
  ident: ref_65
  article-title: The potential of protein–nanomaterial interaction for advanced drug delivery
  publication-title: J. Controll. Release
  doi: 10.1016/j.jconrel.2016.01.041
– volume: 113
  start-page: 859
  year: 2009
  ident: ref_28
  article-title: Chemical studies of anthocyanins: A review
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2008.09.001
– volume: 38
  start-page: 1789
  year: 1990
  ident: ref_26
  article-title: Caffeic acid autoxidation and the effects of thiols
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf00099a002
– volume: 26
  start-page: 62
  year: 1968
  ident: ref_38
  article-title: Controlled growth of monodisperse silica spheres in the micron size range
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(68)90272-5
– volume: 4
  start-page: 2229
  year: 2016
  ident: ref_55
  article-title: A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB00126B
– ident: ref_39
  doi: 10.1039/b902195g
– volume: 466
  start-page: 44
  year: 2016
  ident: ref_32
  article-title: Quercetin conjugated silica particles as novel biofunctional hybrid materials for biological applications
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2015.12.011
– volume: 393
  start-page: 109
  year: 2013
  ident: ref_19
  article-title: Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: positive effect of surface functionalization
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2012.10.073
– volume: 52
  start-page: 1130
  year: 1956
  ident: ref_58
  article-title: The chelation of metal ions by dipeptides and related substances. Part 3.—The sites of co-ordination
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/TF9565201130
– volume: 71
  start-page: 55
  year: 1993
  ident: ref_61
  article-title: Quenching of singlet molecular oxygen (1ΔgO2) in silica gel-solvent heterogeneous system II. A direct time-resolved study
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/1010-6030(93)87009-C
– volume: 27
  start-page: 10119
  year: 2011
  ident: ref_49
  article-title: Preparation of Peptide-Functionalized Gold Nanoparticles Using One Pot EDC/Sulfo-NHS Coupling
  publication-title: Langmuir
  doi: 10.1021/la2022177
– volume: 109
  start-page: 2223
  year: 2005
  ident: ref_25
  article-title: Influence of Pb(II) on the Radical Properties of Humic Substances and Model Compounds
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp045121q
– volume: 39
  start-page: 787
  year: 2001
  ident: ref_29
  article-title: Masking of antioxidant capacity by the interaction of flavonoids with protein
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/S0278-6915(01)00020-5
– volume: 86
  start-page: 345
  year: 2012
  ident: ref_52
  article-title: Antioxidant activity of food constituents: an overview
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-011-0774-2
– volume: 259
  start-page: e104
  year: 2017
  ident: ref_3
  article-title: Enhance drug sensitivity of cancer stem cells using functionalized mesoporous silica nanoparticles
  publication-title: J. Controll. Release
  doi: 10.1016/j.jconrel.2017.03.221
– volume: 185
  start-page: 131
  year: 1990
  ident: ref_50
  article-title: Zero-length crosslinking procedure with the use of active esters
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(90)90267-D
– volume: 81
  start-page: 349
  year: 2003
  ident: ref_27
  article-title: The effects of heating, UV irradiation, and storage on stability of the anthocyanin–polyphenol copigment complex
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(02)00429-6
– volume: 550
  start-page: 325
  year: 2018
  ident: ref_13
  article-title: Mesoporous silica nanoparticles for enhanced lidocaine skin delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.08.004
– volume: 72
  start-page: 145
  year: 2001
  ident: ref_24
  article-title: Natural antioxidants from residual sources
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(00)00223-5
– volume: 48
  start-page: 1473
  year: 2014
  ident: ref_51
  article-title: New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: spectroscopic, electrochemistry, and cellular studies
  publication-title: Free Radic. Res.
  doi: 10.3109/10715762.2014.965702
SSID ssj0000913853
Score 2.1958659
Snippet The design of efficient, biocompatible, and easily prepared vehicles for drug delivery is a subject of great interest for medicine and pharmaceutical sciences....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 214
SubjectTerms antioxidant
caffeic acid
core–shell
nanocarrier
polyphenols
silica nanoparticles
singlet oxygen
Title Antioxidant Nanomaterial Based on Core–Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs
URI https://www.ncbi.nlm.nih.gov/pubmed/30736331
https://www.proquest.com/docview/2190488575
https://pubmed.ncbi.nlm.nih.gov/PMC6409729
https://doaj.org/article/9c84972bac284a2380c8c76e102f5791
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXOCA-GcLrIzUE1LUxEn8w2136VIhUSqWot4ix560kVCCsrtSj7wDPCFPwoyzXWVRJS5ck7HszExmPtvjz4wdaG1FmcQ2slbaCDN-HFmpaJM3L8ETNXJGp5E_nsjjs-zDeX4-uOqLasJ6euBecYfG6cwoUVqHgdRigomddkoCJsYqV-HcusCcN5hMhRhskhQTUX8gL8V5_WFjm9YgNhJJtpOCAlP_TfDy7yrJQdqZP2D3N3iRT_pxPmS3oHnE7g1YBB-zXxOqWLyqPSqJY7RsEYQGv-JTTFGetw2ftR38_vFzQVWffFHTQl2QXBKpACw5rcbyxbqrrINoSjct8ZmtKqgdn7jav-UTftq16BLYIf8KlzQWjnCXf6JuybbRgirhKXbyd936YvmEnc2PvsyOo81lC5HLMrWKjBZG5GhSpU3iJYCVaepkpXLlncrKCqQtjbAy8wqcqpwxAnKcbMjYaxf79Cnba9oGnjOe2gSkouYapdHYuVdxmYICkZcIEUfszbX-C7dhIqcLMb4VOCMhYxUDY43YwVb4e0_AcbPYlAy5FSHW7PAAfanY-FLxL18asdfXblCgSmnrxDbQrpcFxnUKdYhtR-xZ7xbbrihK4sdia7XjMDtj2X3T1JeByVsS25gw-_9j8C_YXQRzJlSUy5dsb9Wt4RUCplU5Zrf1_P2Y3ZkenZx-Hoc_5Q97Cxk1
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant+Nanomaterial+Based+on+Core%E2%80%93Shell+Silica+Nanospheres+with+Surface-Bound+Caffeic+Acid%3A+A+Promising+Vehicle+for+Oxidation-Sensitive+Drugs&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Francisco+Arriagada&rft.au=Germ%C3%A1n+G%C3%BCnther&rft.au=Jaume+Nos&rft.au=Santi+Nonell&rft.date=2019-02-06&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=9&rft.issue=2&rft.spage=214&rft_id=info:doi/10.3390%2Fnano9020214&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9c84972bac284a2380c8c76e102f5791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon