A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training

Objective: Individuals with neurological damage (e.g., stroke or cerebral palsy) often experience a significant loss of arm function. Robotic devices that address muscle strength deficits in a task-specific manner can assist in the recovery of arm function; however, current devices are typically lar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 66; no. 2; pp. 496 - 508
Main Authors Washabaugh, Edward P., Guo, Jane, Chang, Chih-Kang, Remy, C. David, Krishnan, Chandramouli
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: Individuals with neurological damage (e.g., stroke or cerebral palsy) often experience a significant loss of arm function. Robotic devices that address muscle strength deficits in a task-specific manner can assist in the recovery of arm function; however, current devices are typically large, bulky, and expensive to be routinely used in the clinic or at home. This study sought to address this issue by developing a portable planar passive rehabilitation robot, PaRRo. Methods: We designed PaRRo with a mechanical layout that incorporated kinematic redundancies to generate forces that directly oppose the user's movement. Cost-efficient eddy current brakes were used to provide scalable resistances. The lengths of the robots linkages were optimized to have a reasonably large workspace for human planar reaching. We then performed theoretical analysis of the robot's resistive force generating capacity and steerable workspace using MATLAB simulations. We also validated a prototype device by having a subject move the end-effector along different paths at a set velocity using a metronome while simultaneously collecting surface electromyography (EMG) and end-effector forces felt by the user. Results: Results from simulation experiments indicated that the robot was capable of producing sufficient end-effector forces for functional resistance training. We also found the end-effector forces from the user were similar to the theoretical forces expected at any direction of motion. EMG results indicated that the device was capable of providing adjustable resistances based on subjects' ability levels, as the muscle activation levels scaled with increasing magnet exposures. Conclusion: These results indicate that PaRRo is a feasible approach to provide functional resistance training to the muscles along the upper-extremity. Significance: The proposed robotic device could provide a technological breakthrough that will make rehabilitation robots accessible for small outpatient rehabilitation centers and in-home therapy.
AbstractList Loss of arm function is common in individuals with neurological damage, such as stroke or cerebral palsy. Robotic devices that address muscle strength deficits in a task-specific manner can assist in the recovery of arm function; however, current devices are typically large, bulky, and expensive to be routinely used in the clinic or at home. This study sought to address this issue by developing a portable planar passive rehabilitation robot, PaRRo.OBJECTIVELoss of arm function is common in individuals with neurological damage, such as stroke or cerebral palsy. Robotic devices that address muscle strength deficits in a task-specific manner can assist in the recovery of arm function; however, current devices are typically large, bulky, and expensive to be routinely used in the clinic or at home. This study sought to address this issue by developing a portable planar passive rehabilitation robot, PaRRo.We designed PaRRo with a mechanical layout that incorporated kinematic redundancies to generate forces that directly oppose the user's movement. Cost-efficient eddy current brakes were used to provide scalable resistances. The lengths of the robot's linkages were optimized to have a reasonably large workspace for human planar reaching. We then performed theoretical analysis of the robot's resistive force generating capacity and steerable workspace using MATLAB simulations. We also validated the device by having a subject move the end-effector along different paths at a set velocity using a metronome while simultaneously collecting surface electromyography (EMG) and end-effector forces felt by the user.METHODSWe designed PaRRo with a mechanical layout that incorporated kinematic redundancies to generate forces that directly oppose the user's movement. Cost-efficient eddy current brakes were used to provide scalable resistances. The lengths of the robot's linkages were optimized to have a reasonably large workspace for human planar reaching. We then performed theoretical analysis of the robot's resistive force generating capacity and steerable workspace using MATLAB simulations. We also validated the device by having a subject move the end-effector along different paths at a set velocity using a metronome while simultaneously collecting surface electromyography (EMG) and end-effector forces felt by the user.Results from simulation experiments indicated that the robot was capable of producing sufficient end-effector forces for functional resistance training. We also found the endpoint forces from the user were similar to the theoretical forces expected at any direction of motion. EMG results indicated that the device was capable of providing adjustable resistances based on subjects' ability levels, as the muscle activation levels scaled with increasing magnet exposures.RESULTSResults from simulation experiments indicated that the robot was capable of producing sufficient end-effector forces for functional resistance training. We also found the endpoint forces from the user were similar to the theoretical forces expected at any direction of motion. EMG results indicated that the device was capable of providing adjustable resistances based on subjects' ability levels, as the muscle activation levels scaled with increasing magnet exposures.These results indicate that PaRRo is a feasible approach to provide functional resistance training to the muscles along the upper extremity.CONCLUSIONThese results indicate that PaRRo is a feasible approach to provide functional resistance training to the muscles along the upper extremity.The proposed robotic device could provide a technological breakthrough that will make rehabilitation robots accessible for small outpatient rehabilitation centers and in-home therapy.SIGNIFICANCEThe proposed robotic device could provide a technological breakthrough that will make rehabilitation robots accessible for small outpatient rehabilitation centers and in-home therapy.
Objective: Individuals with neurological damage (e.g., stroke or cerebral palsy) often experience a significant loss of arm function. Robotic devices that address muscle strength deficits in a task-specific manner can assist in the recovery of arm function; however, current devices are typically large, bulky, and expensive to be routinely used in the clinic or at home. This study sought to address this issue by developing a portable planar passive rehabilitation robot, PaRRo. Methods: We designed PaRRo with a mechanical layout that incorporated kinematic redundancies to generate forces that directly oppose the user's movement. Cost-efficient eddy current brakes were used to provide scalable resistances. The lengths of the robots linkages were optimized to have a reasonably large workspace for human planar reaching. We then performed theoretical analysis of the robot's resistive force generating capacity and steerable workspace using MATLAB simulations. We also validated a prototype device by having a subject move the end-effector along different paths at a set velocity using a metronome while simultaneously collecting surface electromyography (EMG) and end-effector forces felt by the user. Results: Results from simulation experiments indicated that the robot was capable of producing sufficient end-effector forces for functional resistance training. We also found the end-effector forces from the user were similar to the theoretical forces expected at any direction of motion. EMG results indicated that the device was capable of providing adjustable resistances based on subjects’ ability levels, as the muscle activation levels scaled with increasing magnet exposures. Conclusion: These results indicate that PaRRo is a feasible approach to provide functional resistance training to the muscles along the upper-extremity. Significance: The proposed robotic device could provide a technological breakthrough that will make rehabilitation robots accessible for small outpatient rehabilitation centers and in-home therapy.
Loss of arm function is common in individuals with neurological damage, such as stroke or cerebral palsy. Robotic devices that address muscle strength deficits in a task-specific manner can assist in the recovery of arm function; however, current devices are typically large, bulky, and expensive to be routinely used in the clinic or at home. This study sought to address this issue by developing a portable planar passive rehabilitation robot, PaRRo. We designed PaRRo with a mechanical layout that incorporated kinematic redundancies to generate forces that directly oppose the user's movement. Cost-efficient eddy current brakes were used to provide scalable resistances. The lengths of the robot's linkages were optimized to have a reasonably large workspace for human planar reaching. We then performed theoretical analysis of the robot's resistive force generating capacity and steerable workspace using MATLAB simulations. We also validated the device by having a subject move the end-effector along different paths at a set velocity using a metronome while simultaneously collecting surface electromyography (EMG) and end-effector forces felt by the user. Results from simulation experiments indicated that the robot was capable of producing sufficient end-effector forces for functional resistance training. We also found the endpoint forces from the user were similar to the theoretical forces expected at any direction of motion. EMG results indicated that the device was capable of providing adjustable resistances based on subjects' ability levels, as the muscle activation levels scaled with increasing magnet exposures. These results indicate that PaRRo is a feasible approach to provide functional resistance training to the muscles along the upper extremity. The proposed robotic device could provide a technological breakthrough that will make rehabilitation robots accessible for small outpatient rehabilitation centers and in-home therapy.
Author Guo, Jane
Chang, Chih-Kang
Remy, C. David
Krishnan, Chandramouli
Washabaugh, Edward P.
Author_xml – sequence: 1
  givenname: Edward P.
  orcidid: 0000-0002-1038-0954
  surname: Washabaugh
  fullname: Washabaugh, Edward P.
  organization: Department of Biomedical EngineeringUniversity of Michigan
– sequence: 2
  givenname: Jane
  orcidid: 0000-0003-4864-5740
  surname: Guo
  fullname: Guo, Jane
  organization: Department of Biomedical EngineeringUniversity of Michigan
– sequence: 3
  givenname: Chih-Kang
  surname: Chang
  fullname: Chang, Chih-Kang
  organization: Department of Physical Medicine and RehabilitationUniversity of Michigan
– sequence: 4
  givenname: C. David
  orcidid: 0000-0002-4072-8034
  surname: Remy
  fullname: Remy, C. David
  organization: Robotics and Motion Laboratory (RAM Lab) and the Department of Mechanical Engineering and Michigan RoboticsUniversity of Michigan
– sequence: 5
  givenname: Chandramouli
  orcidid: 0000-0002-7278-7389
  surname: Krishnan
  fullname: Krishnan, Chandramouli
  email: mouli@umich.edu
  organization: Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), the Department of Physical Medicine and RehabilitationMichigan Robotics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993459$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1URNPCB0BIaCUuXDb4b2xfkEqVAlIRVZVeuFhe72zramMH21vRb4-jhAh64GTZ83vjmfdO0FGIARB6TfCcEKw_rD59W84pJmpOFddC4WdoRoRQLRWMHKEZrqVWU82P0UnO9_XKFV-8QMdUa8240DP046y5iqnYboTmyubsH6C5hjvb-dEXW3wMzXXsYmmGmJqbzQZSu_xVEqx9eWwupuC2iB2rJvtcbHDQrJL1wYfbl-j5YMcMr_bnKbq5WK7Ov7SX3z9_PT-7bB3nsrRaSEIGLpRS1GHmpJa07xzWAgsQEgMojuuL7Ujf494Bc4uuE4oyOQjeK3aKPu76bqZuDRUIJdnRbJJf2_RoovXm30rwd-Y2PpgFF1hKUhu83zdI8ecEuZi1zw7G0QaIUzYULxTjjChR0XdP0Ps4pWpApYjEsjosWaXe_j3RYZQ_tleA7ACXYs4JhgNCsNlGa7bRmm20Zh9t1cgnGrdPqC7lx_8q3-yUHgAOPymmKa9r_QYJH7Fi
CODEN IEBEAX
CitedBy_id crossref_primary_10_37394_23201_2022_21_30
crossref_primary_10_1007_s11370_023_00509_y
crossref_primary_10_1109_TNSRE_2022_3158339
crossref_primary_10_1142_S0219843623500056
crossref_primary_10_1109_TASE_2023_3291751
crossref_primary_10_1109_ACCESS_2019_2949197
crossref_primary_10_1016_j_ohx_2022_e00299
crossref_primary_10_1109_TIE_2023_3273270
crossref_primary_10_3233_RNN_231367
crossref_primary_10_1017_S0263574722000881
crossref_primary_10_1017_S026357472200128X
crossref_primary_10_1109_ACCESS_2019_2938566
crossref_primary_10_3390_robotics11020045
crossref_primary_10_54097_hset_v71i_14656
crossref_primary_10_1115_1_4049440
crossref_primary_10_1109_TBME_2019_2924689
crossref_primary_10_1017_S0263574725000128
crossref_primary_10_1017_wtc_2021_13
crossref_primary_10_1016_j_bspc_2020_102074
crossref_primary_10_3233_RNN_201010
crossref_primary_10_1016_j_mechatronics_2024_103188
crossref_primary_10_1177_17298814211003461
crossref_primary_10_1016_j_clinbiomech_2022_105629
crossref_primary_10_1016_j_cogr_2024_09_001
crossref_primary_10_1016_j_iot_2025_101525
crossref_primary_10_1109_TBME_2020_3038582
crossref_primary_10_1007_s10846_023_01854_x
crossref_primary_10_1088_1757_899X_788_1_012069
crossref_primary_10_3389_frobt_2021_610529
crossref_primary_10_1016_j_jbiomech_2021_110936
crossref_primary_10_1109_TOH_2023_3330368
crossref_primary_10_1177_1941738120955184
crossref_primary_10_1016_j_jnrt_2024_100135
crossref_primary_10_1016_j_mechatronics_2023_103112
crossref_primary_10_1109_THMS_2024_3486123
crossref_primary_10_3390_s19214681
crossref_primary_10_1080_10447318_2022_2050545
crossref_primary_10_1007_s40430_021_03073_7
crossref_primary_10_1186_s12938_023_01133_8
crossref_primary_10_1109_TNSRE_2020_3008565
crossref_primary_10_3389_frai_2024_1441955
crossref_primary_10_3390_s18113611
crossref_primary_10_1109_TBME_2020_3036095
crossref_primary_10_1016_j_mex_2023_102312
crossref_primary_10_1109_TMECH_2023_3257853
crossref_primary_10_3389_fneur_2024_1371332
Cites_doi 10.1177/1545968308326635
10.1161/01.STR.31.10.2390
10.1001/archneurol.2009.182
10.1016/S1053-8135(97)00014-0
10.1007/s10439-018-2020-z
10.1186/1743-0003-10-1
10.1152/jn.2000.84.2.853
10.1161/01.STR.21.2.247
10.1109/TMECH.2008.2004623
10.1016/j.apmr.2011.12.018
10.3389/fnins.2017.00526
10.1155/NP.2001.121
10.1055/s-2005-923533
10.1310/tsr2001-62
10.2522/ptj.20080128
10.1186/1743-0003-8-27
10.1186/1743-0003-11-3
10.1038/14826
10.1249/00005768-199505000-00006
10.1097/MD.0000000000003291
10.1016/0967-0661(95)00202-4
10.1044/1092-4388(2008/018)
10.1109/ICORR.2007.4428401
10.1126/science.1107799
10.1016/j.apmr.2017.04.022
10.1682/JRRD.2005.04.0076
10.1177/1545968313498649
10.1523/JNEUROSCI.14-05-03208.1994
10.1109/ROBOT.2008.4543512
10.1097/00002060-200007000-00009
10.1177/0269215506070792
10.1177/1545968309343216
10.1152/jn.1997.78.1.554
10.1109/7333.948460
10.1097/PHM.0b013e318186b4bc
10.1177/0278364909100976
10.1097/01.PHM.0000137313.14480.CE
10.2478/s13230-012-0009-0
10.1016/j.pmr.2015.06.008
10.1109/ICORR.2011.5975514
10.1002/oti.275
10.1152/jn.90334.2008
10.1109/ICORR.2013.6650360
10.1186/1471-2377-14-52
10.1186/1743-0003-6-20
10.1177/1545968317723750
10.1371/journal.pone.0087987
10.1002/9780470549148
10.1109/ICORR.2007.4428519
10.1177/02783640122067561
10.1007/s10439-016-1553-2
10.1139/h2012-022
10.2522/ptj.20060310
10.1016/j.medengphy.2011.10.004
10.1016/j.jbiomech.2014.11.048
10.1556/IMAS.5.2013.2.1
10.3233/RNN-170782
10.1310/tsr1505-397
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2018.2849580
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 508
ExternalDocumentID PMC6450771
29993459
10_1109_TBME_2018_2849580
8392434
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Disability and Rehabilitation Engineering Program of the National Science Foundation
  grantid: 1804053
– fundername: University of Michigan MCubed seed funding
– fundername: NSF Graduate Research Fellowship
  grantid: DGE 1256260
– fundername: National Institutes of Health
  grantid: R01 EB019834; R21 HD092614
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB019834
– fundername: NICHD NIH HHS
  grantid: P2C HD086844
– fundername: NICHD NIH HHS
  grantid: R21 HD092614
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-95711f458882c03c7972dbc09505e570ee8402dbab1dd0dce3c6bb58237f54d83
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 14:08:26 EDT 2025
Thu Jul 10 21:09:57 EDT 2025
Mon Jun 30 08:38:07 EDT 2025
Thu Apr 03 07:05:07 EDT 2025
Thu Apr 24 23:12:03 EDT 2025
Tue Jul 01 03:28:30 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-95711f458882c03c7972dbc09505e570ee8402dbab1dd0dce3c6bb58237f54d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally
ORCID 0000-0003-4864-5740
0000-0002-1038-0954
0000-0002-4072-8034
0000-0002-7278-7389
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6450771
PMID 29993459
PQID 2170701473
PQPubID 85474
PageCount 13
ParticipantIDs crossref_primary_10_1109_TBME_2018_2849580
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6450771
proquest_journals_2170701473
ieee_primary_8392434
pubmed_primary_29993459
crossref_citationtrail_10_1109_TBME_2018_2849580
proquest_miscellaneous_2068343185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References cho (ref40) 0
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
ref17
ref19
ref18
hubbard (ref13) 2009; 16
ref51
ref50
book (ref38) 1996
ref46
ref45
ref48
ref47
ref42
xu (ref28) 0
gao (ref44) 2010; 29
cd (ref57) 2012; 11
ref49
collins (ref41) 2005; 307
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
hesse (ref16) 2007; 43
ref37
ref36
baharom (ref55) 0
ref31
ref30
ref33
ref32
ref2
gao (ref64) 2010; 29
ref1
ref39
ref24
ref23
ref26
ref25
ref20
ref63
ref66
ref22
ref65
ref21
ref27
ref29
goswami (ref43) 0
ref60
ref62
ref61
References_xml – ident: ref27
  doi: 10.1177/1545968308326635
– ident: ref18
  doi: 10.1161/01.STR.31.10.2390
– ident: ref8
  doi: 10.1001/archneurol.2009.182
– ident: ref1
  doi: 10.1016/S1053-8135(97)00014-0
– ident: ref39
  doi: 10.1007/s10439-018-2020-z
– ident: ref25
  doi: 10.1186/1743-0003-10-1
– ident: ref49
  doi: 10.1152/jn.2000.84.2.853
– ident: ref5
  doi: 10.1161/01.STR.21.2.247
– ident: ref53
  doi: 10.1109/TMECH.2008.2004623
– ident: ref30
  doi: 10.1016/j.apmr.2011.12.018
– ident: ref66
  doi: 10.3389/fnins.2017.00526
– ident: ref14
  doi: 10.1155/NP.2001.121
– ident: ref3
  doi: 10.1055/s-2005-923533
– ident: ref6
  doi: 10.1310/tsr2001-62
– ident: ref52
  doi: 10.2522/ptj.20080128
– ident: ref21
  doi: 10.1186/1743-0003-8-27
– volume: 43
  start-page: 463
  year: 2007
  ident: ref16
  article-title: A new mechanical arm trainer to intensify the upper limb rehabilitation of severely affected patients after stroke: Design, concept and first case series
  publication-title: Europa Medicophysica
– ident: ref9
  doi: 10.1186/1743-0003-11-3
– ident: ref48
  doi: 10.1038/14826
– ident: ref15
  doi: 10.1249/00005768-199505000-00006
– ident: ref59
  doi: 10.1097/MD.0000000000003291
– ident: ref54
  doi: 10.1016/0967-0661(95)00202-4
– year: 1996
  ident: ref38
  publication-title: The Concept and Implementation of a Passive Trajectory Enhancing Robot
– ident: ref24
  doi: 10.1044/1092-4388(2008/018)
– ident: ref34
  doi: 10.1109/ICORR.2007.4428401
– volume: 307
  start-page: 1082
  year: 2005
  ident: ref41
  article-title: Efficient bipedal robots based on passive-dynamic walkers
  publication-title: Science
  doi: 10.1126/science.1107799
– ident: ref31
  doi: 10.1016/j.apmr.2017.04.022
– ident: ref7
  doi: 10.1682/JRRD.2005.04.0076
– ident: ref65
  doi: 10.1177/1545968313498649
– ident: ref46
  doi: 10.1523/JNEUROSCI.14-05-03208.1994
– start-page: 47
  year: 0
  ident: ref40
  article-title: Performance analysis of a 2-link haptic device with electric brakes
  publication-title: Proc 11th Symp Haptic Interfaces Virtual Environ Teleoperator Syst
– ident: ref37
  doi: 10.1109/ROBOT.2008.4543512
– ident: ref62
  doi: 10.1097/00002060-200007000-00009
– ident: ref63
  doi: 10.1177/0269215506070792
– ident: ref26
  doi: 10.1177/1545968309343216
– ident: ref47
  doi: 10.1152/jn.1997.78.1.554
– ident: ref22
  doi: 10.1109/7333.948460
– ident: ref17
  doi: 10.1097/PHM.0b013e318186b4bc
– volume: 29
  start-page: 353
  year: 2010
  ident: ref44
  article-title: Steerability in planar dissipative passive robots
  publication-title: Int J Robot Res
  doi: 10.1177/0278364909100976
– volume: 29
  start-page: 353
  year: 2010
  ident: ref64
  article-title: Steerability in planar dissipative passive robots
  publication-title: Int J Rob Res
  doi: 10.1177/0278364909100976
– ident: ref33
  doi: 10.1097/01.PHM.0000137313.14480.CE
– ident: ref23
  doi: 10.2478/s13230-012-0009-0
– start-page: 3602
  year: 0
  ident: ref28
  article-title: An intelligent control framework for robot-aided resistance training using hybrid system modeling and impedance estimation
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref2
  doi: 10.1016/j.pmr.2015.06.008
– ident: ref51
  doi: 10.1109/ICORR.2011.5975514
– volume: 16
  start-page: 175
  year: 2009
  ident: ref13
  article-title: Task-specific training: Evidence for and translation to clinical practice
  publication-title: Occupational Therapy International
  doi: 10.1002/oti.275
– ident: ref50
  doi: 10.1152/jn.90334.2008
– volume: 11
  start-page: 1
  year: 2012
  ident: ref57
  article-title: Anthropometric reference data for children and adults: United states, 2007-2010
  publication-title: Vital Health Stat
– ident: ref35
  doi: 10.1109/ICORR.2013.6650360
– ident: ref4
  doi: 10.1186/1471-2377-14-52
– ident: ref20
  doi: 10.1186/1743-0003-6-20
– start-page: 279
  year: 0
  ident: ref43
  article-title: Passive robotics: An exploration of mechanical computation
  publication-title: Proc IEEE Int Conf Robot Autom
– ident: ref29
  doi: 10.1177/1545968317723750
– ident: ref11
  doi: 10.1371/journal.pone.0087987
– ident: ref56
  doi: 10.1002/9780470549148
– ident: ref36
  doi: 10.1109/ICORR.2007.4428519
– ident: ref42
  doi: 10.1177/02783640122067561
– ident: ref45
  doi: 10.1007/s10439-016-1553-2
– ident: ref61
  doi: 10.1139/h2012-022
– ident: ref12
  doi: 10.2522/ptj.20060310
– ident: ref19
  doi: 10.1016/j.medengphy.2011.10.004
– ident: ref58
  doi: 10.1016/j.jbiomech.2014.11.048
– start-page: 1
  year: 0
  ident: ref55
  article-title: Eddy current braking study for brake disc of aluminium, copper and zink
  publication-title: Proc Regional Postgraduate Conf Eng Sci
– ident: ref60
  doi: 10.1556/IMAS.5.2013.2.1
– ident: ref32
  doi: 10.3233/RNN-170782
– ident: ref10
  doi: 10.1310/tsr1505-397
SSID ssj0014846
Score 2.481321
Snippet Objective: Individuals with neurological damage (e.g., stroke or cerebral palsy) often experience a significant loss of arm function. Robotic devices that...
Loss of arm function is common in individuals with neurological damage, such as stroke or cerebral palsy. Robotic devices that address muscle strength deficits...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 496
SubjectTerms Actuators
Arm
Biomechanical Phenomena
Brakes
Eddy current brakes
Eddy currents
Electromyography
Equipment Design
Female
Force
Generating capacity
Humans
Immune system
kinematics
magnetic braking
Male
Mechanism design
Muscle contraction
Muscle strength
Muscle, Skeletal - physiology
Muscles
Neurological Rehabilitation - instrumentation
Neurological Rehabilitation - methods
Paralysis
Physical training
reaching
Rehabilitation
Rehabilitation robots
Resistance training
Resistance Training - instrumentation
Resistance Training - methods
Resists
Robotics - instrumentation
Robots
Strength training
Stroke
Theoretical analysis
therapy
Training
Title A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training
URI https://ieeexplore.ieee.org/document/8392434
https://www.ncbi.nlm.nih.gov/pubmed/29993459
https://www.proquest.com/docview/2170701473
https://www.proquest.com/docview/2068343185
https://pubmed.ncbi.nlm.nih.gov/PMC6450771
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7aPozuYT_abvOWDRX6VOZUsqVIesxGQhmklJJA2YuxZIWWZXZIHRj763eyFZOUUvZmLNlIvpP0ne_uO4AzOxfKCJvEaHi5mFvB4lwkKlZ5IgXLcysbsufJ1eByxn_cits9-NrlwjjnmuAz1_eXjS-_qOza_yq78Ic5T_k-7KPh1uZqdR4DrtqkHMpwASeaBw8mo_pi-m0y8kFcqo97sRbKV3_DXVin3DOUbh1HTX2Vp6Dm44jJrSNo_Bomm8G3kSe_-uva9O3fR7yO_zu7N_AqYFEybJXnLey58ghebjEUHsGLSfC9H8PPIWnCTs3CkWuE3LhNkpsdnm9yU5mqJgiDyWy5dKt49Kdeud-I88kYj8_2ryM-8-AxKyobmYb6FCcwG4-m3y_jUJkhtpzLOtZCMjb3Sa4qsTS1UsukMBbhGhVOSOoc2o14JzesKCh-tdQOjBGeGGcueKHSd3BQVqX7AMQyOecGgaNOFU-o07yQ2iBKsbnSLKcR0I2AMhum46tnLLLGfKE68-LNvHizIN4IzrtHli1nx3Odj70ouo5BChH0NlqQhVX9kKH5hjsk4zKN4LRrxvXonSx56ao19qEDlXKfkx7B-1ZpundvlC4CuaNOXQfP9b3bUt7fNZzfA47AXbKPT4_2ExzinHQbTd6Dg3q1dp8RLNXmS7NK_gHPQA6L
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIfHxwMc2IDDASDwh0tmJXduPA7UqsExoaqWJlyh2XIG2JVWXSoi_nnPiRu00Id6i2Ins3Nn3c-7udwDv7VwoI2wS48HLxdwKFhciUbEqEilYUVjZkj1np8PJjH89F-c78LHPhXHOtcFnbuAvW19-WduV_1V25I05T_kduIt2XyRdtlbvM-CqS8uhDJdwonnwYTKqj6afspEP41ID3I21UL7-G-7DOuWeo3TDILUVVm4DmzdjJjeM0PgxZOvhd7EnF4NVYwb2zw1mx_-d3xN4FNAoOe7U5ynsuGoPHm5wFO7BvSx43_fhxzFpA0_NpSPfEXTjRknOtpi-yVlt6oYgECazxcIt49HvZumuEOmTMRrQ7r8jPnPtUSuqG5mGChUHMBuPpp8ncajNEFvOZRNrIRmb-zRXlViaWqllUhqLgI0KJyR1Dk-OeKcwrCwpfrXUDo0RnhpnLnip0mewW9WVewHEMjnnBqGjThVPqNO8lNogTrGF0qygEdC1gHIbpuPrZ1zm7QGG6tyLN_fizYN4I_jQP7LoWDv-1Xnfi6LvGKQQweFaC_Kwrq9zPMDhHsm4TCN41zfjivRulqJy9Qr70KFKuc9Kj-B5pzT9u9dKF4HcUqe-g2f73m6pfv1sWb-HHKG7ZC9vH-1buD-ZZif5yZfTb6_gAc5Pd7Hlh7DbLFfuNUKnxrxpV8xfDTwR1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Portable+Passive+Rehabilitation+Robot+for+Upper-Extremity+Functional+Resistance+Training&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Washabaugh%2C+Edward+P.&rft.au=Guo%2C+Jane&rft.au=Chang%2C+Chih-Kang&rft.au=Remy%2C+C.+David&rft.date=2019-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=66&rft.issue=2&rft.spage=496&rft.epage=508&rft_id=info:doi/10.1109%2FTBME.2018.2849580&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2018_2849580
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon