The CSRP2BP histone acetyltransferase drives smooth muscle gene expression

The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle g...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 45; no. 6; pp. 3046 - 3058
Main Authors Ma, Yanlin, Li, Qi, Li, Ankang, Wei, Yunjian, Long, Ping, Jiang, Xinxing, Sun, Fei, Weiskirchen, Ralf, Wu, Bangyong, Liang, Chao, Grötzinger, Joachim, Wei, Yanxing, Yu, Wei, Mercola, Mark, Huang, Yuanhua, Wang, Jun, Yu, Yanhong, Schwartz, Robert J.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 07.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.
AbstractList The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.
The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.
The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not sufficient for regulating smooth muscle cell development. It associates with other cardiovascular specific cofactors to regulate smooth muscle gene expression. Previously, we showed that the transcription co-factor CRP2 was a regulator of smooth muscle gene expression. Here, we report that CSRP2BP, a coactivator for CRP2, is a histone acetyltransferase and a driver of smooth muscle gene expression. CSRP2BP directly interacted with SRF, CRP2 and myocardin. CSRP2BP synergistically activated smooth muscle gene promoters in an SRF-dependent manner. A combination of SRF, GATA6 and CRP2 required CSRP2BP for robust smooth muscle gene promoter activity. Knock-down of Csrp2bp in smooth muscle cells resulted in reduced smooth muscle gene expression. We conclude that the CSRP2BP histone acetyltransferase is a coactivator for CRP2 that works synergistically with SRF and myocardin to regulate smooth muscle gene expression.
Author Sun, Fei
Huang, Yuanhua
Jiang, Xinxing
Li, Qi
Yu, Wei
Li, Ankang
Liang, Chao
Wu, Bangyong
Wang, Jun
Weiskirchen, Ralf
Schwartz, Robert J.
Long, Ping
Ma, Yanlin
Wei, Yanxing
Wei, Yunjian
Grötzinger, Joachim
Mercola, Mark
Yu, Yanhong
AuthorAffiliation 8 Stem Cell and Regeneration Program, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
1 Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
9 Texas Heart Institute, Houston, TX 77030, USA
6 Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
3 The Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
5 Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
4 Graduate Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030, USA
2 Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of
AuthorAffiliation_xml – name: 2 Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The Key Laboratory of Tropical Diseases and Translational Medicine of The Ministry of Education, Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan 570102, China
– name: 5 Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
– name: 6 Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany
– name: 9 Texas Heart Institute, Houston, TX 77030, USA
– name: 7 Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
– name: 1 Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
– name: 8 Stem Cell and Regeneration Program, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
– name: 4 Graduate Program in Cardiovascular Sciences, Baylor College of Medicine, Houston, TX 77030, USA
– name: 3 The Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Yanlin
  surname: Ma
  fullname: Ma, Yanlin
– sequence: 2
  givenname: Qi
  surname: Li
  fullname: Li, Qi
– sequence: 3
  givenname: Ankang
  surname: Li
  fullname: Li, Ankang
– sequence: 4
  givenname: Yunjian
  surname: Wei
  fullname: Wei, Yunjian
– sequence: 5
  givenname: Ping
  surname: Long
  fullname: Long, Ping
– sequence: 6
  givenname: Xinxing
  surname: Jiang
  fullname: Jiang, Xinxing
– sequence: 7
  givenname: Fei
  surname: Sun
  fullname: Sun, Fei
– sequence: 8
  givenname: Ralf
  surname: Weiskirchen
  fullname: Weiskirchen, Ralf
– sequence: 9
  givenname: Bangyong
  surname: Wu
  fullname: Wu, Bangyong
– sequence: 10
  givenname: Chao
  surname: Liang
  fullname: Liang, Chao
– sequence: 11
  givenname: Joachim
  surname: Grötzinger
  fullname: Grötzinger, Joachim
– sequence: 12
  givenname: Yanxing
  surname: Wei
  fullname: Wei, Yanxing
– sequence: 13
  givenname: Wei
  surname: Yu
  fullname: Yu, Wei
– sequence: 14
  givenname: Mark
  surname: Mercola
  fullname: Mercola, Mark
– sequence: 15
  givenname: Yuanhua
  surname: Huang
  fullname: Huang, Yuanhua
– sequence: 16
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
– sequence: 17
  givenname: Yanhong
  surname: Yu
  fullname: Yu, Yanhong
– sequence: 18
  givenname: Robert J.
  surname: Schwartz
  fullname: Schwartz, Robert J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27940555$$D View this record in MEDLINE/PubMed
BookMark eNptkUtPAyEURonR2FZduTezNDFjgWFeGxNtfKaJxseaULi06MxQYabafy_G1qhxxYJzzwf3G6DNxjaA0D7BxwSXybARbjh9eSOU5huoT5KMxqzM6Cbq4wSnMcGs6KGB988YE0ZSto16NC8ZTtO0j24eZxCNHu7v6NldNDO-De5ISGiXVetE4zU44SFSzizAR762tp1FdedlBdEUAgvvcwfeG9vsoi0tKg97q3MHPV2cP46u4vHt5fXodBxLxvI2LplSusCszFXChM4kSwhgpUVaCJWDphmwgiZYq4QwWeSKlmyipQbFJhkNH95BJ1_eeTepQUlowksrPnemFm7JrTD8901jZnxqFzxNijIr8iA4XAmcfe3At7w2XkJViQZs5zkpUpplIYkE9OBn1nfIeoEBIF-AdNZ7B5pL04o2rCNEm4oTzD9L4qEkviopzBz9mVlr_6M_AJRwlng
CitedBy_id crossref_primary_10_1007_s00395_022_00924_9
crossref_primary_10_1111_exd_15151
crossref_primary_10_1186_s13046_023_02839_2
crossref_primary_10_1007_s12035_024_04115_6
crossref_primary_10_1242_jcs_226852
crossref_primary_10_1038_s41598_017_17450_7
crossref_primary_10_1002_ange_201704745
crossref_primary_10_1247_csf_23060
crossref_primary_10_1002_anie_201704745
crossref_primary_10_1038_s41580_021_00441_y
crossref_primary_10_1247_csf_23004
crossref_primary_10_1016_j_bbagrm_2020_194614
crossref_primary_10_1186_s12967_024_05243_2
crossref_primary_10_1371_journal_pone_0183085
Cites_doi 10.1016/j.yexcr.2010.02.026
10.1128/MCB.01599-08
10.1074/jbc.M806936200
10.1038/35040593
10.1006/dbio.1997.8808
10.1006/dbio.1997.8621
10.1161/hh1101.091339
10.1006/bbrc.2000.3187
10.1111/j.1432-0436.1988.tb00091.x
10.1038/nsmb.1397
10.1016/S0021-9258(19)84476-9
10.1083/jcb.107.6.2575
10.1073/pnas.222561499
10.1038/nature02382
10.1101/gr.4108706
10.1146/annurev.biochem.70.1.81
10.1074/jbc.M209998200
10.1074/jbc.270.22.13460
10.1016/S0092-8674(01)00404-4
10.1128/MCB.25.1.364-376.2005
10.1016/j.febslet.2013.03.013
10.1016/S0959-437X(00)00173-8
10.1172/JCI115470
10.1016/S1534-5807(02)00396-9
10.1002/cm.10022
10.1002/dvdy.24349
10.1038/nrm2145
10.1128/MCB.11.10.5090
10.1083/jcb.109.6.2929
10.1073/pnas.1232341100
10.1073/pnas.0605635103
10.1161/01.RES.0000016504.08608.B9
10.1006/dbio.1994.1226
10.1074/jbc.274.13.8506
10.1371/journal.pone.0020803
10.1021/acschembio.5b00841
ContentType Journal Article
Copyright The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
Copyright_xml – notice: The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkw1227
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 3058
ExternalDocumentID PMC5389687
27940555
10_1093_nar_gkw1227
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAPPN
ADIXU
AFULF
BTTYL
CGR
CUY
CVF
ECM
EIF
M49
M~E
NPM
ROX
7X8
5PM
ID FETCH-LOGICAL-c447t-94ddf80497d34af6c431e0dfa58ad7ef26e48230fd314c87d294bfcfed4b62093
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 13:37:04 EDT 2025
Fri Jul 11 02:59:48 EDT 2025
Wed Feb 19 02:33:29 EST 2025
Thu Apr 24 23:02:26 EDT 2025
Tue Jul 01 02:07:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-94ddf80497d34af6c431e0dfa58ad7ef26e48230fd314c87d294bfcfed4b62093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1093/nar/gkw1227
PMID 27940555
PQID 1852660931
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5389687
proquest_miscellaneous_1852660931
pubmed_primary_27940555
crossref_citationtrail_10_1093_nar_gkw1227
crossref_primary_10_1093_nar_gkw1227
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-07
PublicationDateYYYYMMDD 2017-04-07
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-07
  day: 07
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2017
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References ( key 20170508163853_B12) 2006; 16
( key 20170508163853_B14) 2003; 4
( key 20170508163853_B15) 2002; 99
( key 20170508163853_B32) 2010; 316
( key 20170508163853_B21) 2001; 70
( key 20170508163853_B34) 2001; 70
( key 20170508163853_B8) 1995; 270
( key 20170508163853_B36) 2016; 245
( key 20170508163853_B30) 2013; 587
( key 20170508163853_B37) 2011; 6
( key 20170508163853_B9) 1998; 194
( key 20170508163853_B18) 2003; 100
( key 20170508163853_B16) 2004; 428
( key 20170508163853_B1) 1988; 107
( key 20170508163853_B11) 1986; 6
( key 20170508163853_B5) 2002; 51
( key 20170508163853_B4) 1991; 88
( key 20170508163853_B24) 2005; 25
( key 20170508163853_B33) 2007; 8
( key 20170508163853_B40) 1991; 11
( key 20170508163853_B6) 1994; 164
( key 20170508163853_B35) 2000; 274
( key 20170508163853_B22) 2003; 278
( key 20170508163853_B10) 1986; 261
( key 20170508163853_B3) 1988; 39
( key 20170508163853_B25) 2002; 90
( key 20170508163853_B29) 2008; 15
( key 20170508163853_B17) 2001; 105
( key 20170508163853_B39) 2001; 11
( key 20170508163853_B20) 2000; 408
( key 20170508163853_B2) 1989; 109
( key 20170508163853_B31) 2010; 41
( key 20170508163853_B27) 2008; 283
( key 20170508163853_B13) 1997; 187
( key 20170508163853_B26) 1999; 274
( key 20170508163853_B38) 2016; 11
( key 20170508163853_B28) 2009; 29
( key 20170508163853_B19) 2007; 104
( key 20170508163853_B23) 2001; 88
( key 20170508163853_B7) 2006; 116
References_xml – volume: 316
  start-page: 1271
  year: 2010
  ident: key 20170508163853_B32
  article-title: Mesenchymal stem cell-conditioned medium accelerates skin wound healing: an in vitro study of fibroblast and keratinocyte scratch assays
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2010.02.026
– volume: 41
  start-page: 758
  year: 2010
  ident: key 20170508163853_B31
  article-title: Isolation of human umbilical arterial smooth muscle cells (HUASMC)
  publication-title: J. Vis. Exp.
– volume: 29
  start-page: 1176
  year: 2009
  ident: key 20170508163853_B28
  article-title: The double-histone-acetyltransferase complex ATAC is essential for mammalian development
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01599-08
– volume: 6
  start-page: 2125
  year: 1986
  ident: key 20170508163853_B11
  article-title: Upstream regions of the human cardiac actin gene that modulate its transcription in muscle cells: presence of an evolutionarily conserved repeated motif Mol
  publication-title: Cell Biol.
– volume: 283
  start-page: 33808
  year: 2008
  ident: key 20170508163853_B27
  article-title: Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806936200
– volume: 408
  start-page: 106
  year: 2000
  ident: key 20170508163853_B20
  article-title: Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation
  publication-title: Nature
  doi: 10.1038/35040593
– volume: 194
  start-page: 18
  year: 1998
  ident: key 20170508163853_B9
  article-title: The developmentally regulated expression of serum response factor plays a key role in the control of smooth muscle-specific genes
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1997.8808
– volume: 187
  start-page: 311
  year: 1997
  ident: key 20170508163853_B13
  article-title: Evidence for serum response factor-mediated regulatory networks governing SM22alpha transcription in smooth, skeletal, and cardiac muscle cells
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1997.8621
– volume: 88
  start-page: 1127
  year: 2001
  ident: key 20170508163853_B23
  article-title: Recruitment of serum response factor and hyperacetylation of histones at smooth muscle-specific regulatory regions during differentiation of a novel P19-derived in vitro smooth muscle differentiation system
  publication-title: Circ. Res.
  doi: 10.1161/hh1101.091339
– volume: 274
  start-page: 655
  year: 2000
  ident: key 20170508163853_B35
  article-title: The cysteine- and glycine-rich LIM domain protein CRP2 specifically interacts with a novel human protein (CRP2BP)
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3187
– volume: 39
  start-page: 161
  year: 1988
  ident: key 20170508163853_B3
  article-title: Alpha-smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles
  publication-title: Differentiation
  doi: 10.1111/j.1432-0436.1988.tb00091.x
– volume: 15
  start-page: 364
  year: 2008
  ident: key 20170508163853_B29
  article-title: ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1397
– volume: 261
  start-page: 8965
  year: 1986
  ident: key 20170508163853_B10
  article-title: Structure and complete nucleotide sequence of the chicken alpha-smooth muscle (aortic) actin gene. An actin gene which produces multiple messenger RNAs
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)84476-9
– volume: 107
  start-page: 2575
  year: 1988
  ident: key 20170508163853_B1
  article-title: Sequential activation of alpha-actin genes during avian cardiogenesis: vascular smooth muscle alpha-actin gene transcripts mark the onset of cardiomyocyte differentiation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.107.6.2575
– volume: 99
  start-page: 14855
  year: 2002
  ident: key 20170508163853_B15
  article-title: Potentiation of serum response factor activity by a family of myocardin-related transcription factors
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.222561499
– volume: 428
  start-page: 185
  year: 2004
  ident: key 20170508163853_B16
  article-title: Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression
  publication-title: Nature
  doi: 10.1038/nature02382
– volume: 16
  start-page: 197
  year: 2006
  ident: key 20170508163853_B12
  article-title: Defining the mammalian CArGome
  publication-title: Genome Res.
  doi: 10.1101/gr.4108706
– volume: 116
  start-page: 36
  year: 2006
  ident: key 20170508163853_B7
  article-title: Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo
  publication-title: J. Clin. Invest.
– volume: 70
  start-page: 81
  year: 2001
  ident: key 20170508163853_B34
  article-title: Histone acetyltransferases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.70.1.81
– volume: 278
  start-page: 20047
  year: 2003
  ident: key 20170508163853_B22
  article-title: Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209998200
– volume: 270
  start-page: 13460
  year: 1995
  ident: key 20170508163853_B8
  article-title: Structure and expression of a smooth muscle cell-specific gene, SM22 alpha
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.22.13460
– volume: 105
  start-page: 851
  year: 2001
  ident: key 20170508163853_B17
  article-title: Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00404-4
– volume: 25
  start-page: 364
  year: 2005
  ident: key 20170508163853_B24
  article-title: Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.1.364-376.2005
– volume: 587
  start-page: 1489
  year: 2013
  ident: key 20170508163853_B30
  article-title: Identification of a histone acetyltransferase as a novel regulator of Drosophila intestinal stem cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2013.03.013
– volume: 11
  start-page: 155
  year: 2001
  ident: key 20170508163853_B39
  article-title: Histone acetyltransferases: function, structure, and catalysis
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(00)00173-8
– volume: 88
  start-page: 1581
  year: 1991
  ident: key 20170508163853_B4
  article-title: The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI115470
– volume: 4
  start-page: 107
  year: 2003
  ident: key 20170508163853_B14
  article-title: Cysteine-rich LIM-only proteins CRP1 and CRP2 are potent smooth muscle differentiation cofactors
  publication-title: Dev. Cell
  doi: 10.1016/S1534-5807(02)00396-9
– volume: 51
  start-page: 177
  year: 2002
  ident: key 20170508163853_B5
  article-title: Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation
  publication-title: Cell Motil. Cytoskeleton
  doi: 10.1002/cm.10022
– volume: 245
  start-page: 379
  year: 2016
  ident: key 20170508163853_B36
  article-title: cis-Regulatory control of Mesp1 expression by YY1 and SP1 during mouse embryogenesis
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.24349
– volume: 70
  start-page: 80
  year: 2001
  ident: key 20170508163853_B21
  article-title: Histone acetyltransferases
  publication-title: Annu. Rev. Biochem
– volume: 8
  start-page: 284
  year: 2007
  ident: key 20170508163853_B33
  article-title: Histone acetyltransferase complexes: one size doesn't fit all
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2145
– volume: 11
  start-page: 5090
  year: 1991
  ident: key 20170508163853_B40
  article-title: Activation of skeletal alpha-actin gene transcription: the cooperative formation of serum response factor-binding complexes over positive cis-acting promoter serum response elements displaces a negative-acting nuclear factor enriched in replicating myoblasts and nonmyogenic cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.11.10.5090
– volume: 109
  start-page: 2929
  year: 1989
  ident: key 20170508163853_B2
  article-title: Cellular distribution of smooth muscle actins during mammalian embryogenesis: expression of the alpha-vascular but not the gamma-enteric isoform in differentiating striated myocytes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.109.6.2929
– volume: 100
  start-page: 7129
  year: 2003
  ident: key 20170508163853_B18
  article-title: Myocardin is a master regulator of smooth muscle gene expression
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1232341100
– volume: 104
  start-page: 157
  year: 2007
  ident: key 20170508163853_B19
  article-title: LIM-only protein, CRP2, switched on smooth muscle gene activity in adult cardiac myocytes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0605635103
– volume: 90
  start-page: 858
  year: 2002
  ident: key 20170508163853_B25
  article-title: Histone acetylation and recruitment of serum responsive factor and CREB-binding protein onto SM22 promoter during SM22 gene expression
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000016504.08608.B9
– volume: 164
  start-page: 588
  year: 1994
  ident: key 20170508163853_B6
  article-title: Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers
  publication-title: Dev. Biol.
  doi: 10.1006/dbio.1994.1226
– volume: 274
  start-page: 8506
  year: 1999
  ident: key 20170508163853_B26
  article-title: Activation of serum response factor by RhoA is mediated by the nuclear factor-kappaB and C/EBP transcription factors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.13.8506
– volume: 6
  start-page: e20803
  year: 2011
  ident: key 20170508163853_B37
  article-title: Expression of sumoylation deficient Nkx2.5 mutant in Nkx2.5 haploinsufficient mice leads to congenital heart defects
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0020803
– volume: 11
  start-page: 632
  year: 2016
  ident: key 20170508163853_B38
  article-title: Molecular Basis for Histone Acetyltransferase Regulation by Binding Partners, Associated Domains, and Autoacetylation
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.5b00841
SSID ssj0014154
Score 2.3044758
Snippet The expression of nearly all smooth muscle genes are controlled by serum response factor binding sites in their promoter regions. However, SRF alone is not...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3046
SubjectTerms Acetylation
Animals
Cell Line
Cell Nucleus - enzymology
Cells, Cultured
Chromatin - enzymology
Gene Expression
Gene Expression Regulation
Gene regulation, Chromatin and Epigenetics
Histone Acetyltransferases - metabolism
Histones - metabolism
Humans
Mice
Myocytes, Smooth Muscle - enzymology
Myocytes, Smooth Muscle - metabolism
Nuclear Proteins - metabolism
Promoter Regions, Genetic
Rats
Trans-Activators - metabolism
Transcription Factors - metabolism
Title The CSRP2BP histone acetyltransferase drives smooth muscle gene expression
URI https://www.ncbi.nlm.nih.gov/pubmed/27940555
https://www.proquest.com/docview/1852660931
https://pubmed.ncbi.nlm.nih.gov/PMC5389687
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZge4AXxDZ-FNhkpIkHprA2cZzksVSbpklMAzZpPEWJf4yy1Z3aVGj89dzZTppsRQJeqjZxncrfV9_Zd_eZkF3JEsZEnAZo_gIWRyooAetARwUr-xIMIMfi5E8n_OicHV_EF8tj7mx1SVV-EL9W1pX8D6pwDXDFKtl_QLbpFC7Ae8AXXgFheP1rjEdfv5yGH0-dcLBBcQxV3V5X1h9VM7BRe3JmpWXnkymgsjdZzKEXPDlZoby_S4M1bR_1BCWOUcZVjCUGFVr7XXbr2s7aBSpsNNk8NiXg87j7eWiuCm8XbejHXvy2MD9qRvrNBjBgmKPiDKJyE6Stssq6M6gThPRMaU-HGHZdOU87DSuDOeSHl1c_B6ETCGhhdjOxoIUwX6Am2dJcNUmE9a2HZD2ENQIeX5H0D5oQEngmzBdkwtP24Vn7_kkoAO2_2_VG7i0x7mbKtlyPs6fkiV8z0KEjwAZ5oMwm2RqaoppObuk7arN4bXhkkzwa1Sf4bZFj4Af1_KCeH_QeP6jjB3X8oI4fFPlBl_x4Rs4PD85GR4E_OyMQjCVVkDEpdQrLv0RGrNBcgKOo-lIXcVrIROmQK4YxVi2jARNpIsOMlVpoJVnJQxiw52TNwK96SagAIqSq5JmQMdOin2aKp2GRlrHQsCDOeuR9PYa58MLyeL7Jde4SHKIcxj73Y98ju03jG6ensrrZ2xqMHAYNg1iFUdPFPMdif86h-aBHXjhwmo5qVHsk6cDWNEAt9e4dM_5uNdXB7mc8TV79sc_X5PHyD_GGrFWzhdoGf7Qqdyzvduxuzm_PR5AG
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+CSRP2BP+histone+acetyltransferase+drives+smooth+muscle+gene+expression&rft.jtitle=Nucleic+acids+research&rft.au=Ma%2C+Yanlin&rft.au=Li%2C+Qi&rft.au=Li%2C+Ankang&rft.au=Wei%2C+Yunjian&rft.date=2017-04-07&rft.eissn=1362-4962&rft.volume=45&rft.issue=6&rft.spage=3046&rft_id=info:doi/10.1093%2Fnar%2Fgkw1227&rft_id=info%3Apmid%2F27940555&rft.externalDocID=27940555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon