How is Gaze Influenced by Image Transformations? Dataset and Model
Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo vari...
Saved in:
Published in | IEEE transactions on image processing Vol. 29; pp. 2287 - 2300 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at: https://github.com/CZHQuality/Sal-CFS-GAN. |
---|---|
AbstractList | Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at: https://github.com/CZHQuality/Sal-CFS-GAN. Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at.Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at. Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at. |
Author | Che, Zhaohui Borji, Ali Guo, Guodong Min, Xiongkuo Le Callet, Patrick Zhai, Guangtao |
Author_xml | – sequence: 1 givenname: Zhaohui orcidid: 0000-0002-7323-4348 surname: Che fullname: Che, Zhaohui email: chezhaohui@sjtu.edu.cn organization: Shanghai Key Laboratory of Digital Media Processing and Transmissions, Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Ali orcidid: 0000-0001-8198-0335 surname: Borji fullname: Borji, Ali email: aliborji@gmail.com organization: MarkableAI Inc., Brooklyn, NY, USA – sequence: 3 givenname: Guangtao orcidid: 0000-0001-8165-9322 surname: Zhai fullname: Zhai, Guangtao email: zhaiguangtao@sjtu.edu.cn organization: Shanghai Key Laboratory of Digital Media Processing and Transmissions, Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Xiongkuo surname: Min fullname: Min, Xiongkuo email: minxiongkuo@sjtu.edu.cn organization: Shanghai Key Laboratory of Digital Media Processing and Transmissions, Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Guodong orcidid: 0000-0001-9583-0055 surname: Guo fullname: Guo, Guodong email: guoguodong01@baidu.com organization: Baidu Research, Institute of Deep Learning, Beijing, China – sequence: 6 givenname: Patrick surname: Le Callet fullname: Le Callet, Patrick email: patrick.lecallet@univ-nantes.fr organization: Équipe Image, Perception et Interaction, Laboratoire des Sciences du Numérique de Nantes, Université de Nantes, Nantes, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31613763$$D View this record in MEDLINE/PubMed https://hal.science/hal-02417513$$DView record in HAL |
BookMark | eNp9kUtv1DAUhS3Uij5gj4SEIrGhiwy-tuPHCrWldEYaBIthbd0kNqRK4mInVOXX42GmXXRRb2xZ3zlX95wTcjCG0RHyBugCgJqPm9X3BaNgFsyISlfqBTkGI6CkVLCD_KaVKhUIc0ROUrqhFEQF8iU54iCBK8mPycUy3BVdKq7xrytWo-9nNzauLer7YjXgT1dsIo7Jhzjg1IUxfSo-44TJTQWObfE1tK5_RQ499sm93t-n5MeXq83lslx_u15dnq_LRgg1lYaD0lrqFpmQ1DhQAgytNaOq9tK3rXeNQaSa18pJ9NzlIxnzteceUfNTcrbz_YW9vY3dgPHeBuzs8nxtt3-UCVAV8D-Q2Q879jaG37NLkx261Li-x9GFOVnGqWRgjFQZff8EvQlzHPMmmeJaMs0Ey9S7PTXXg2sf5z8kmQG5A5oYUorO26ab_mc2Rex6C9RuK7O5MrutzO4ry0L6RPjg_Yzk7U7S5Yge8RyuVELzf45CndY |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_TMM_2023_3263553 crossref_primary_10_1049_ipr2_12494 crossref_primary_10_1016_j_knosys_2024_112536 crossref_primary_10_1109_TIP_2020_3044440 crossref_primary_10_1109_TIP_2024_3356174 crossref_primary_10_1007_s11432_024_4133_3 crossref_primary_10_1016_j_displa_2022_102175 crossref_primary_10_1142_S0219649222500666 crossref_primary_10_1016_j_neucom_2022_03_006 crossref_primary_10_1587_transinf_2022EDP7220 crossref_primary_10_3390_s20133739 crossref_primary_10_1007_s11263_023_01879_7 crossref_primary_10_1134_S1064562424602117 crossref_primary_10_1007_s00603_023_03623_6 crossref_primary_10_1007_s11432_019_2757_1 crossref_primary_10_1016_j_imavis_2021_104267 crossref_primary_10_1016_j_neucom_2021_11_100 crossref_primary_10_1109_TNNLS_2020_3039295 crossref_primary_10_1109_TIP_2020_3016464 crossref_primary_10_1109_TITS_2024_3361903 crossref_primary_10_3389_frvir_2022_802318 crossref_primary_10_1145_3511603 crossref_primary_10_1016_j_image_2023_116968 crossref_primary_10_1016_j_imavis_2021_104149 crossref_primary_10_1016_j_neucom_2020_06_125 crossref_primary_10_1049_ipr2_13033 crossref_primary_10_1109_TMM_2021_3139743 crossref_primary_10_3390_app13105948 crossref_primary_10_1109_TPAMI_2021_3107872 crossref_primary_10_1007_s11042_022_13487_7 crossref_primary_10_1016_j_dsp_2023_104217 crossref_primary_10_1016_j_jvcir_2023_103831 crossref_primary_10_1016_j_neucom_2022_04_080 crossref_primary_10_1109_TIP_2021_3050303 crossref_primary_10_1016_j_image_2021_116195 crossref_primary_10_1016_j_neucom_2020_10_083 crossref_primary_10_1109_LSP_2021_3104757 crossref_primary_10_1109_TCSVT_2023_3234578 crossref_primary_10_1109_TPAMI_2022_3169234 crossref_primary_10_1016_j_displa_2023_102621 crossref_primary_10_1016_j_neucom_2023_126775 crossref_primary_10_1109_TIP_2024_3461956 crossref_primary_10_1109_ACCESS_2023_3236807 crossref_primary_10_1016_j_neucom_2024_128155 crossref_primary_10_1109_TMM_2023_3249481 crossref_primary_10_1109_TIP_2021_3073283 crossref_primary_10_1016_j_imavis_2022_104395 |
Cites_doi | 10.1109/CVPR.2017.683 10.1109/ICIP.2003.1246946 10.1109/ICCV.2009.5459462 10.1167/13.4.11 10.1109/TPAMI.2011.146 10.1109/ICPR.2016.7900174 10.1109/CVPR.2012.6247711 10.1109/TPAMI.2011.272 10.1037/0033-295X.113.4.766 10.1109/TPAMI.2012.89 10.1109/CVPR.2011.5995506 10.1109/ICCV.2013.118 10.1167/7.9.950 10.1167/11.4.14 10.1167/13.4.5 10.1109/34.730558 10.1016/j.visres.2005.03.019 10.1109/CVPR.2017.632 10.1109/TIP.2018.2851672 10.1109/CVPR.2016.71 10.1109/CVPR.2015.7298710 10.1109/CVPR.2009.5206848 10.1109/ICCV.2009.5459254 10.1109/ICCV.2013.26 10.1109/TIP.2017.2787612 10.1109/TPAMI.2014.2345401 10.1109/TIP.2017.2681424 10.1109/TIP.2012.2210727 10.3758/s13428-012-0226-9 10.1167/12.6.17 10.1037/0033-2909.83.2.314 10.1109/CVPR.2017.19 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC |
DOI | 10.1109/TIP.2019.2945857 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1941-0042 |
EndPage | 2300 |
ExternalDocumentID | oai_HAL_hal_02417513v1 31613763 10_1109_TIP_2019_2945857 8866748 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61831015; 61771305; 61927809; 61901260 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: BX20180197; 2019M651496 funderid: 10.13039/501100002858 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG NPM Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 1XC |
ID | FETCH-LOGICAL-c447t-93178868da24609e174190b8207bf6fddfec9aa083b7e6af3eeee622fbf3faa83 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri May 09 12:13:41 EDT 2025 Fri Jul 11 03:58:14 EDT 2025 Sun Jun 29 16:14:16 EDT 2025 Wed Feb 19 02:09:34 EST 2025 Tue Jul 01 02:03:21 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Wed Aug 27 02:40:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-93178868da24609e174190b8207bf6fddfec9aa083b7e6af3eeee622fbf3faa83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9583-0055 0000-0002-7323-4348 0000-0001-8198-0335 0000-0001-8165-9322 0000-0001-5693-0416 0000-0002-2143-7063 |
PMID | 31613763 |
PQID | 2338628242 |
PQPubID | 85429 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TIP_2019_2945857 ieee_primary_8866748 pubmed_primary_31613763 proquest_miscellaneous_2306219967 hal_primary_oai_HAL_hal_02417513v1 crossref_citationtrail_10_1109_TIP_2019_2945857 proquest_journals_2338628242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref12 ref15 ref11 ref17 ref16 ref19 ref18 frintrop (ref23) 2005 hou (ref14) 2012; 34 goodfellow (ref48) 2014 alex (ref29) 2012 ref46 borji (ref28) 2015 ref45 ref41 ref43 bylinskii (ref34) 2019 ref49 ref8 ref7 bylinskii (ref30) 2017 ref9 ref6 ref5 bastani (ref50) 2016 pan (ref3) 2017 ref36 ref33 ref32 bylinskii (ref31) 2014 ren (ref35) 2015 ref2 ref1 ref39 ref38 borji (ref21) 0 jiang (ref44) 2017 hendrycks (ref52) 2019 kingma (ref47) 2014 thomas (ref4) 2016 ref24 ref25 ref20 ref22 kupyn (ref40) 2017 olaf (ref37) 2015 ustinova (ref42) 2016 ref27 goodfollow (ref51) 2015 tilke (ref26) 2011; 11 jonathan (ref10) 2007 |
References_xml | – ident: ref36 doi: 10.1109/CVPR.2017.683 – start-page: 1097 year: 2012 ident: ref29 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – year: 2019 ident: ref34 publication-title: MIT Saliency Benchmark – ident: ref22 doi: 10.1109/ICIP.2003.1246946 – ident: ref45 doi: 10.1109/ICCV.2009.5459462 – year: 2014 ident: ref47 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref12 doi: 10.1167/13.4.11 – volume: 34 start-page: 194 year: 2012 ident: ref14 article-title: Image signature: Highlighting sparse salient regions publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.146 – ident: ref2 doi: 10.1109/ICPR.2016.7900174 – ident: ref15 doi: 10.1109/CVPR.2012.6247711 – ident: ref20 doi: 10.1109/TPAMI.2011.272 – ident: ref11 doi: 10.1037/0033-295X.113.4.766 – start-page: 234 year: 2015 ident: ref37 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc IEEE Int Conf Med Image Comput Comput -Assist Intervent – ident: ref1 doi: 10.1109/TPAMI.2012.89 – year: 2005 ident: ref23 article-title: A visual attention system for object detection and goal directed search – start-page: 91 year: 2015 ident: ref35 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref18 doi: 10.1109/CVPR.2011.5995506 – ident: ref8 doi: 10.1109/ICCV.2013.118 – ident: ref13 doi: 10.1167/7.9.950 – year: 2017 ident: ref3 article-title: SalGAN: Visual saliency prediction with generative adversarial networks publication-title: arXiv 1701 01081 – volume: 11 start-page: 14 year: 2011 ident: ref26 article-title: Fixations on low-resolution images publication-title: J Vis doi: 10.1167/11.4.14 – ident: ref25 doi: 10.1167/13.4.5 – ident: ref9 doi: 10.1109/34.730558 – ident: ref41 doi: 10.1016/j.visres.2005.03.019 – ident: ref38 doi: 10.1109/CVPR.2017.632 – ident: ref6 doi: 10.1109/TIP.2018.2851672 – ident: ref5 doi: 10.1109/CVPR.2016.71 – ident: ref43 doi: 10.1109/CVPR.2015.7298710 – ident: ref46 doi: 10.1109/CVPR.2009.5206848 – ident: ref24 doi: 10.1109/ICCV.2009.5459254 – ident: ref16 doi: 10.1109/ICCV.2013.26 – start-page: 1 year: 2015 ident: ref51 article-title: Explaining and harnessing adversarial examples publication-title: Proc Int Conf Learn Represent – start-page: 1 year: 2019 ident: ref52 article-title: Benchmarking neural network robustness to common corruptions and perturbations publication-title: Proc IEEE Int Conf Learn Represent – start-page: 2613 year: 2016 ident: ref50 article-title: Measuring neural net robustness with constraints publication-title: Proc Adv Neural Inf Process Syst – year: 2014 ident: ref31 publication-title: Code for Computing Visual Angle – start-page: 545 year: 2007 ident: ref10 article-title: Graph-based visual saliency publication-title: Proc Adv Neural Inf Process Syst – ident: ref49 doi: 10.1109/TIP.2017.2787612 – year: 2017 ident: ref40 article-title: Deblurgan: Blind motion deblurring using conditional adversarial networks publication-title: arXiv 1711 07064 – start-page: 4170 year: 2016 ident: ref42 article-title: Learning deep embeddings with histogram loss publication-title: Proc Adv Neural Inf Process Syst – year: 2015 ident: ref28 article-title: Cat2000: A large scale fixation dataset for boosting saliency research publication-title: arXiv 1505 03581 – ident: ref17 doi: 10.1109/TPAMI.2014.2345401 – year: 2016 ident: ref4 article-title: OpenSalicon: An open source implementation of the salicon saliency model publication-title: arXiv 1606 00110 – start-page: 2672 year: 2014 ident: ref48 article-title: Generative adversarial nets publication-title: Proc Adv Neural Inf Process Syst – year: 2017 ident: ref30 article-title: What do different evaluation metrics tell us about saliency models? publication-title: arXiv 1604 03605 – ident: ref27 doi: 10.1109/TIP.2017.2681424 – ident: ref7 doi: 10.1109/TIP.2012.2210727 – year: 2017 ident: ref44 publication-title: SALICON Saliency Prediction Challenge (LSUN 2017) – ident: ref32 doi: 10.3758/s13428-012-0226-9 – ident: ref19 doi: 10.1167/12.6.17 – ident: ref33 doi: 10.1037/0033-2909.83.2.314 – year: 0 ident: ref21 article-title: Saliency prediction in the deep learning era: Successes and limitations publication-title: IEEE Trans Pattern Anal Mach Intell – ident: ref39 doi: 10.1109/CVPR.2017.19 |
SSID | ssj0014516 |
Score | 2.5557652 |
Snippet | Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current... |
SourceID | hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2287 |
SubjectTerms | Artificial Intelligence Computer Science Data augmentation Data models Datasets Eye movements generative adversarial networks Human gaze Human performance Image Processing Image resolution Mathematical model model robustness Modules Observers Performance degradation Robustness Salience saliency prediction Semantics Transformations Visualization |
Title | How is Gaze Influenced by Image Transformations? Dataset and Model |
URI | https://ieeexplore.ieee.org/document/8866748 https://www.ncbi.nlm.nih.gov/pubmed/31613763 https://www.proquest.com/docview/2338628242 https://www.proquest.com/docview/2306219967 https://hal.science/hal-02417513 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5RnsYDbMAgrENm2gvS0jaO48RPU8eGWrShPRSJt8h2HIEoKaIp0_bX7y6_BBOb9hYll8TWne3vfOf7AN6rwIaRjZ0fSCN9Eebc10JGvhLGJMImxDxN2RbncnIhzi6jyzX40J2Fcc5VyWduQJdVLD9b2BVtlQ2TRBI3Rg966LjVZ7W6iAERzlaRzSj2Y4T9bUhypIaz6XfK4VIDrgSi4_jJEtS7ogTIilnl7yCzWmxOt-Bb28w6x-RmsCrNwP76o4Lj__bjJWw2qJONazN5BWuu2IatBoGyZnwvt2HjUXnCHfg0Wfxg10tGCUFs2rKZZMz8ZNNbnIfY7BHqRev9yD7rElfFkukiY8SyNt-Fi9Mvs5OJ33Au-FaIuPQV4glsXpJpLuRIOXRYEDIYxAmxyWWeZbmzSmsEbiZ2Uuchds5JznOTh7nWSfga1otF4faBKWd1JBMrM4SFgUM_MjEIlyIbodmIQHswbNWQ2qYgOfFizNPKMRmpFBWXkuLSRnEeHHdv3NXFOP4h-w4124lRFe3J-GtK9xCWIGgKwofAgx3STifVKMaDfmsIaTOklylHZ16igyq4B0fdYxyMFGHRhVusSGYkOeV14-_3agPqvh0itqbZ_OD5f76BF5xc-Wp3pw_r5f3KvUW8U5rDytB_A3Ob-FU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAcKG15BAo1iAsS2d04jhOfqvKosu224rCVerNsxxGIkkVsFtT-embyUosAcYuSSWJrxvY3nvF8AK9U5OLEpT6MpJWhiEseGiGTUAlrM-EyYp6mbItTmZ-Jo_PkfA3eDGdhvPdN8pkf0WUTyy8WbkVbZeMsk8SNsQ63cN1PeHtaa4gZEOVsE9tM0jBF4N8HJSdqPJ9-pCwuNeJKID5ObyxC658oBbLhVvk7zGyWm8NNOOkb2maZfBmtajtyV7_VcPzfntyHex3uZAetoWzBmq-2YbPDoKwb4cttuHutQOEOvM0XP9nnJaOUIDbt-UwKZi_Z9CvORGx-Dfei_e6z96bGdbFmpioY8axdPICzww_zd3nYsS6EToi0DhUiCmxeVhgu5ER5dFkQNFhECqktZVkUpXfKGIRuNvXSlDF2zkvOS1vGpTFZ_BA2qkXlHwNT3plEZk4WCAwjj55kZhEwJS5BwxGRCWDcq0G7riQ5MWNc6MY1mSiNitOkON0pLoDXwxvf2nIc_5B9iZodxKiOdn4w03QPgQnCpij-EQWwQ9oZpDrFBLDbG4LuBvVSc3TnJbqoggfwYniMw5FiLKbyixXJTCSnzG78_aPWgIZvx4iuaT5_8ud_7sHtfH4y07Pp6fFTuMPJsW_2enZho_6-8s8Q_dT2eWP0vwCQk_uf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+is+Gaze+Influenced+by+Image+Transformations%3F+Dataset+and+Model&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Che%2C+Zhaohui&rft.au=Borji%2C+Ali&rft.au=Zhai%2C+Guangtao&rft.au=Min%2C+Xiongkuo&rft.date=2020-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2019.2945857&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |