How is Gaze Influenced by Image Transformations? Dataset and Model

Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo vari...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 29; pp. 2287 - 2300
Main Authors Che, Zhaohui, Borji, Ali, Zhai, Guangtao, Min, Xiongkuo, Guo, Guodong, Le Callet, Patrick
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at: https://github.com/CZHQuality/Sal-CFS-GAN.
AbstractList Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at: https://github.com/CZHQuality/Sal-CFS-GAN.
Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at.Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at.
Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current studies on human attention and saliency modeling have used high-quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label-preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label-preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial networks (dubbed GazeGAN). A modified U-Net is utilized as the generator of the GazeGAN, which combines classic "skip connection" with a novel "center-surround connection" (CSC) module. Our proposed CSC module mitigates trivial artifacts while emphasizing semantic salient regions, and increases model nonlinearity, thus demonstrating better robustness against transformations. Extensive experiments and comparisons indicate that GazeGAN achieves state-of-the-art performance over multiple datasets. We also provide a comprehensive comparison of 22 saliency models on various transformed scenes, which contributes a new robustness benchmark to saliency community. Our code and dataset are available at.
Author Che, Zhaohui
Borji, Ali
Guo, Guodong
Min, Xiongkuo
Le Callet, Patrick
Zhai, Guangtao
Author_xml – sequence: 1
  givenname: Zhaohui
  orcidid: 0000-0002-7323-4348
  surname: Che
  fullname: Che, Zhaohui
  email: chezhaohui@sjtu.edu.cn
  organization: Shanghai Key Laboratory of Digital Media Processing and Transmissions, Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Ali
  orcidid: 0000-0001-8198-0335
  surname: Borji
  fullname: Borji, Ali
  email: aliborji@gmail.com
  organization: MarkableAI Inc., Brooklyn, NY, USA
– sequence: 3
  givenname: Guangtao
  orcidid: 0000-0001-8165-9322
  surname: Zhai
  fullname: Zhai, Guangtao
  email: zhaiguangtao@sjtu.edu.cn
  organization: Shanghai Key Laboratory of Digital Media Processing and Transmissions, Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Xiongkuo
  surname: Min
  fullname: Min, Xiongkuo
  email: minxiongkuo@sjtu.edu.cn
  organization: Shanghai Key Laboratory of Digital Media Processing and Transmissions, Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Guodong
  orcidid: 0000-0001-9583-0055
  surname: Guo
  fullname: Guo, Guodong
  email: guoguodong01@baidu.com
  organization: Baidu Research, Institute of Deep Learning, Beijing, China
– sequence: 6
  givenname: Patrick
  surname: Le Callet
  fullname: Le Callet, Patrick
  email: patrick.lecallet@univ-nantes.fr
  organization: Équipe Image, Perception et Interaction, Laboratoire des Sciences du Numérique de Nantes, Université de Nantes, Nantes, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31613763$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02417513$$DView record in HAL
BookMark eNp9kUtv1DAUhS3Uij5gj4SEIrGhiwy-tuPHCrWldEYaBIthbd0kNqRK4mInVOXX42GmXXRRb2xZ3zlX95wTcjCG0RHyBugCgJqPm9X3BaNgFsyISlfqBTkGI6CkVLCD_KaVKhUIc0ROUrqhFEQF8iU54iCBK8mPycUy3BVdKq7xrytWo-9nNzauLer7YjXgT1dsIo7Jhzjg1IUxfSo-44TJTQWObfE1tK5_RQ499sm93t-n5MeXq83lslx_u15dnq_LRgg1lYaD0lrqFpmQ1DhQAgytNaOq9tK3rXeNQaSa18pJ9NzlIxnzteceUfNTcrbz_YW9vY3dgPHeBuzs8nxtt3-UCVAV8D-Q2Q879jaG37NLkx261Li-x9GFOVnGqWRgjFQZff8EvQlzHPMmmeJaMs0Ey9S7PTXXg2sf5z8kmQG5A5oYUorO26ab_mc2Rex6C9RuK7O5MrutzO4ry0L6RPjg_Yzk7U7S5Yge8RyuVELzf45CndY
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_TMM_2023_3263553
crossref_primary_10_1049_ipr2_12494
crossref_primary_10_1016_j_knosys_2024_112536
crossref_primary_10_1109_TIP_2020_3044440
crossref_primary_10_1109_TIP_2024_3356174
crossref_primary_10_1007_s11432_024_4133_3
crossref_primary_10_1016_j_displa_2022_102175
crossref_primary_10_1142_S0219649222500666
crossref_primary_10_1016_j_neucom_2022_03_006
crossref_primary_10_1587_transinf_2022EDP7220
crossref_primary_10_3390_s20133739
crossref_primary_10_1007_s11263_023_01879_7
crossref_primary_10_1134_S1064562424602117
crossref_primary_10_1007_s00603_023_03623_6
crossref_primary_10_1007_s11432_019_2757_1
crossref_primary_10_1016_j_imavis_2021_104267
crossref_primary_10_1016_j_neucom_2021_11_100
crossref_primary_10_1109_TNNLS_2020_3039295
crossref_primary_10_1109_TIP_2020_3016464
crossref_primary_10_1109_TITS_2024_3361903
crossref_primary_10_3389_frvir_2022_802318
crossref_primary_10_1145_3511603
crossref_primary_10_1016_j_image_2023_116968
crossref_primary_10_1016_j_imavis_2021_104149
crossref_primary_10_1016_j_neucom_2020_06_125
crossref_primary_10_1049_ipr2_13033
crossref_primary_10_1109_TMM_2021_3139743
crossref_primary_10_3390_app13105948
crossref_primary_10_1109_TPAMI_2021_3107872
crossref_primary_10_1007_s11042_022_13487_7
crossref_primary_10_1016_j_dsp_2023_104217
crossref_primary_10_1016_j_jvcir_2023_103831
crossref_primary_10_1016_j_neucom_2022_04_080
crossref_primary_10_1109_TIP_2021_3050303
crossref_primary_10_1016_j_image_2021_116195
crossref_primary_10_1016_j_neucom_2020_10_083
crossref_primary_10_1109_LSP_2021_3104757
crossref_primary_10_1109_TCSVT_2023_3234578
crossref_primary_10_1109_TPAMI_2022_3169234
crossref_primary_10_1016_j_displa_2023_102621
crossref_primary_10_1016_j_neucom_2023_126775
crossref_primary_10_1109_TIP_2024_3461956
crossref_primary_10_1109_ACCESS_2023_3236807
crossref_primary_10_1016_j_neucom_2024_128155
crossref_primary_10_1109_TMM_2023_3249481
crossref_primary_10_1109_TIP_2021_3073283
crossref_primary_10_1016_j_imavis_2022_104395
Cites_doi 10.1109/CVPR.2017.683
10.1109/ICIP.2003.1246946
10.1109/ICCV.2009.5459462
10.1167/13.4.11
10.1109/TPAMI.2011.146
10.1109/ICPR.2016.7900174
10.1109/CVPR.2012.6247711
10.1109/TPAMI.2011.272
10.1037/0033-295X.113.4.766
10.1109/TPAMI.2012.89
10.1109/CVPR.2011.5995506
10.1109/ICCV.2013.118
10.1167/7.9.950
10.1167/11.4.14
10.1167/13.4.5
10.1109/34.730558
10.1016/j.visres.2005.03.019
10.1109/CVPR.2017.632
10.1109/TIP.2018.2851672
10.1109/CVPR.2016.71
10.1109/CVPR.2015.7298710
10.1109/CVPR.2009.5206848
10.1109/ICCV.2009.5459254
10.1109/ICCV.2013.26
10.1109/TIP.2017.2787612
10.1109/TPAMI.2014.2345401
10.1109/TIP.2017.2681424
10.1109/TIP.2012.2210727
10.3758/s13428-012-0226-9
10.1167/12.6.17
10.1037/0033-2909.83.2.314
10.1109/CVPR.2017.19
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
DOI 10.1109/TIP.2019.2945857
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1941-0042
EndPage 2300
ExternalDocumentID oai_HAL_hal_02417513v1
31613763
10_1109_TIP_2019_2945857
8866748
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61831015; 61771305; 61927809; 61901260
  funderid: 10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: BX20180197; 2019M651496
  funderid: 10.13039/501100002858
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
NPM
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
1XC
ID FETCH-LOGICAL-c447t-93178868da24609e174190b8207bf6fddfec9aa083b7e6af3eeee622fbf3faa83
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri May 09 12:13:41 EDT 2025
Fri Jul 11 03:58:14 EDT 2025
Sun Jun 29 16:14:16 EDT 2025
Wed Feb 19 02:09:34 EST 2025
Tue Jul 01 02:03:21 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Wed Aug 27 02:40:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-93178868da24609e174190b8207bf6fddfec9aa083b7e6af3eeee622fbf3faa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9583-0055
0000-0002-7323-4348
0000-0001-8198-0335
0000-0001-8165-9322
0000-0001-5693-0416
0000-0002-2143-7063
PMID 31613763
PQID 2338628242
PQPubID 85429
PageCount 14
ParticipantIDs crossref_primary_10_1109_TIP_2019_2945857
ieee_primary_8866748
pubmed_primary_31613763
proquest_miscellaneous_2306219967
hal_primary_oai_HAL_hal_02417513v1
crossref_citationtrail_10_1109_TIP_2019_2945857
proquest_journals_2338628242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref11
ref17
ref16
ref19
ref18
frintrop (ref23) 2005
hou (ref14) 2012; 34
goodfellow (ref48) 2014
alex (ref29) 2012
ref46
borji (ref28) 2015
ref45
ref41
ref43
bylinskii (ref34) 2019
ref49
ref8
ref7
bylinskii (ref30) 2017
ref9
ref6
ref5
bastani (ref50) 2016
pan (ref3) 2017
ref36
ref33
ref32
bylinskii (ref31) 2014
ren (ref35) 2015
ref2
ref1
ref39
ref38
borji (ref21) 0
jiang (ref44) 2017
hendrycks (ref52) 2019
kingma (ref47) 2014
thomas (ref4) 2016
ref24
ref25
ref20
ref22
kupyn (ref40) 2017
olaf (ref37) 2015
ustinova (ref42) 2016
ref27
goodfollow (ref51) 2015
tilke (ref26) 2011; 11
jonathan (ref10) 2007
References_xml – ident: ref36
  doi: 10.1109/CVPR.2017.683
– start-page: 1097
  year: 2012
  ident: ref29
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2019
  ident: ref34
  publication-title: MIT Saliency Benchmark
– ident: ref22
  doi: 10.1109/ICIP.2003.1246946
– ident: ref45
  doi: 10.1109/ICCV.2009.5459462
– year: 2014
  ident: ref47
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref12
  doi: 10.1167/13.4.11
– volume: 34
  start-page: 194
  year: 2012
  ident: ref14
  article-title: Image signature: Highlighting sparse salient regions
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.146
– ident: ref2
  doi: 10.1109/ICPR.2016.7900174
– ident: ref15
  doi: 10.1109/CVPR.2012.6247711
– ident: ref20
  doi: 10.1109/TPAMI.2011.272
– ident: ref11
  doi: 10.1037/0033-295X.113.4.766
– start-page: 234
  year: 2015
  ident: ref37
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc IEEE Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref1
  doi: 10.1109/TPAMI.2012.89
– year: 2005
  ident: ref23
  article-title: A visual attention system for object detection and goal directed search
– start-page: 91
  year: 2015
  ident: ref35
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/CVPR.2011.5995506
– ident: ref8
  doi: 10.1109/ICCV.2013.118
– ident: ref13
  doi: 10.1167/7.9.950
– year: 2017
  ident: ref3
  article-title: SalGAN: Visual saliency prediction with generative adversarial networks
  publication-title: arXiv 1701 01081
– volume: 11
  start-page: 14
  year: 2011
  ident: ref26
  article-title: Fixations on low-resolution images
  publication-title: J Vis
  doi: 10.1167/11.4.14
– ident: ref25
  doi: 10.1167/13.4.5
– ident: ref9
  doi: 10.1109/34.730558
– ident: ref41
  doi: 10.1016/j.visres.2005.03.019
– ident: ref38
  doi: 10.1109/CVPR.2017.632
– ident: ref6
  doi: 10.1109/TIP.2018.2851672
– ident: ref5
  doi: 10.1109/CVPR.2016.71
– ident: ref43
  doi: 10.1109/CVPR.2015.7298710
– ident: ref46
  doi: 10.1109/CVPR.2009.5206848
– ident: ref24
  doi: 10.1109/ICCV.2009.5459254
– ident: ref16
  doi: 10.1109/ICCV.2013.26
– start-page: 1
  year: 2015
  ident: ref51
  article-title: Explaining and harnessing adversarial examples
  publication-title: Proc Int Conf Learn Represent
– start-page: 1
  year: 2019
  ident: ref52
  article-title: Benchmarking neural network robustness to common corruptions and perturbations
  publication-title: Proc IEEE Int Conf Learn Represent
– start-page: 2613
  year: 2016
  ident: ref50
  article-title: Measuring neural net robustness with constraints
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2014
  ident: ref31
  publication-title: Code for Computing Visual Angle
– start-page: 545
  year: 2007
  ident: ref10
  article-title: Graph-based visual saliency
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref49
  doi: 10.1109/TIP.2017.2787612
– year: 2017
  ident: ref40
  article-title: Deblurgan: Blind motion deblurring using conditional adversarial networks
  publication-title: arXiv 1711 07064
– start-page: 4170
  year: 2016
  ident: ref42
  article-title: Learning deep embeddings with histogram loss
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2015
  ident: ref28
  article-title: Cat2000: A large scale fixation dataset for boosting saliency research
  publication-title: arXiv 1505 03581
– ident: ref17
  doi: 10.1109/TPAMI.2014.2345401
– year: 2016
  ident: ref4
  article-title: OpenSalicon: An open source implementation of the salicon saliency model
  publication-title: arXiv 1606 00110
– start-page: 2672
  year: 2014
  ident: ref48
  article-title: Generative adversarial nets
  publication-title: Proc Adv Neural Inf Process Syst
– year: 2017
  ident: ref30
  article-title: What do different evaluation metrics tell us about saliency models?
  publication-title: arXiv 1604 03605
– ident: ref27
  doi: 10.1109/TIP.2017.2681424
– ident: ref7
  doi: 10.1109/TIP.2012.2210727
– year: 2017
  ident: ref44
  publication-title: SALICON Saliency Prediction Challenge (LSUN 2017)
– ident: ref32
  doi: 10.3758/s13428-012-0226-9
– ident: ref19
  doi: 10.1167/12.6.17
– ident: ref33
  doi: 10.1037/0033-2909.83.2.314
– year: 0
  ident: ref21
  article-title: Saliency prediction in the deep learning era: Successes and limitations
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref39
  doi: 10.1109/CVPR.2017.19
SSID ssj0014516
Score 2.5557652
Snippet Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time-consuming and expensive. Most of current...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2287
SubjectTerms Artificial Intelligence
Computer Science
Data augmentation
Data models
Datasets
Eye movements
generative adversarial networks
Human gaze
Human performance
Image Processing
Image resolution
Mathematical model
model robustness
Modules
Observers
Performance degradation
Robustness
Salience
saliency prediction
Semantics
Transformations
Visualization
Title How is Gaze Influenced by Image Transformations? Dataset and Model
URI https://ieeexplore.ieee.org/document/8866748
https://www.ncbi.nlm.nih.gov/pubmed/31613763
https://www.proquest.com/docview/2338628242
https://www.proquest.com/docview/2306219967
https://hal.science/hal-02417513
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5RnsYDbMAgrENm2gvS0jaO48RPU8eGWrShPRSJt8h2HIEoKaIp0_bX7y6_BBOb9hYll8TWne3vfOf7AN6rwIaRjZ0fSCN9Eebc10JGvhLGJMImxDxN2RbncnIhzi6jyzX40J2Fcc5VyWduQJdVLD9b2BVtlQ2TRBI3Rg966LjVZ7W6iAERzlaRzSj2Y4T9bUhypIaz6XfK4VIDrgSi4_jJEtS7ogTIilnl7yCzWmxOt-Bb28w6x-RmsCrNwP76o4Lj__bjJWw2qJONazN5BWuu2IatBoGyZnwvt2HjUXnCHfg0Wfxg10tGCUFs2rKZZMz8ZNNbnIfY7BHqRev9yD7rElfFkukiY8SyNt-Fi9Mvs5OJ33Au-FaIuPQV4glsXpJpLuRIOXRYEDIYxAmxyWWeZbmzSmsEbiZ2Uuchds5JznOTh7nWSfga1otF4faBKWd1JBMrM4SFgUM_MjEIlyIbodmIQHswbNWQ2qYgOfFizNPKMRmpFBWXkuLSRnEeHHdv3NXFOP4h-w4124lRFe3J-GtK9xCWIGgKwofAgx3STifVKMaDfmsIaTOklylHZ16igyq4B0fdYxyMFGHRhVusSGYkOeV14-_3agPqvh0itqbZ_OD5f76BF5xc-Wp3pw_r5f3KvUW8U5rDytB_A3Ob-FU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAcKG15BAo1iAsS2d04jhOfqvKosu224rCVerNsxxGIkkVsFtT-embyUosAcYuSSWJrxvY3nvF8AK9U5OLEpT6MpJWhiEseGiGTUAlrM-EyYp6mbItTmZ-Jo_PkfA3eDGdhvPdN8pkf0WUTyy8WbkVbZeMsk8SNsQ63cN1PeHtaa4gZEOVsE9tM0jBF4N8HJSdqPJ9-pCwuNeJKID5ObyxC658oBbLhVvk7zGyWm8NNOOkb2maZfBmtajtyV7_VcPzfntyHex3uZAetoWzBmq-2YbPDoKwb4cttuHutQOEOvM0XP9nnJaOUIDbt-UwKZi_Z9CvORGx-Dfei_e6z96bGdbFmpioY8axdPICzww_zd3nYsS6EToi0DhUiCmxeVhgu5ER5dFkQNFhECqktZVkUpXfKGIRuNvXSlDF2zkvOS1vGpTFZ_BA2qkXlHwNT3plEZk4WCAwjj55kZhEwJS5BwxGRCWDcq0G7riQ5MWNc6MY1mSiNitOkON0pLoDXwxvf2nIc_5B9iZodxKiOdn4w03QPgQnCpij-EQWwQ9oZpDrFBLDbG4LuBvVSc3TnJbqoggfwYniMw5FiLKbyixXJTCSnzG78_aPWgIZvx4iuaT5_8ud_7sHtfH4y07Pp6fFTuMPJsW_2enZho_6-8s8Q_dT2eWP0vwCQk_uf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+is+Gaze+Influenced+by+Image+Transformations%3F+Dataset+and+Model&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Che%2C+Zhaohui&rft.au=Borji%2C+Ali&rft.au=Zhai%2C+Guangtao&rft.au=Min%2C+Xiongkuo&rft.date=2020-01-01&rft.issn=1941-0042&rft.eissn=1941-0042&rft_id=info:doi/10.1109%2FTIP.2019.2945857&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon