Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates

Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands Submitted 18 January 2007 ; accepted in final form 21 March 2007 31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle ex...

Full description

Saved in:
Bibliographic Details
Published inAmerican Journal of Physiology: Cell Physiology Vol. 293; no. 1; pp. C228 - C237
Main Authors van den Broek, Nicole M. A, De Feyter, Henk M. M. L, Graaf, Larry de, Nicolay, Klaas, Prompers, Jeanine J
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.07.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands Submitted 18 January 2007 ; accepted in final form 21 March 2007 31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery ( PCr ) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that PCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of PCr . We investigated the pH dependence of PCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of PCr differed among subjects, ranging from –33.0 to –75.3 s/pH unit. The slope of the relation between PCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of PCr have a higher proton efflux rate. Our study implies that simply correcting PCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. 31 P magnetic resonance spectroscopy; skeletal muscle; oxidative capacity; mitochondrial function; intracellular pH Address for reprint requests and other correspondence: J. J. Prompers, Biomedical NMR, Dept. of Biomedical Engineering, Eindhoven Univ. of Technology, N-laag b1.08, PO Box 513, 5600 MB Eindhoven, The Netherlands (e-mail: j.j.prompers{at}tue.nl )
AbstractList (31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.
...P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (...) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that ... should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of ... We investigated the pH dependence of ... on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of ... differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between ... and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of ... have a higher proton efflux rate. Our study implies that simply correcting ... for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.)
(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.
super(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery ( tau sub(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau sub(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau sub(PCr). We investigated the pH dependence of tau sub(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau sub(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau sub(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau sub(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau sub(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.
Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands Submitted 18 January 2007 ; accepted in final form 21 March 2007 31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery ( PCr ) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that PCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of PCr . We investigated the pH dependence of PCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of PCr differed among subjects, ranging from –33.0 to –75.3 s/pH unit. The slope of the relation between PCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of PCr have a higher proton efflux rate. Our study implies that simply correcting PCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. 31 P magnetic resonance spectroscopy; skeletal muscle; oxidative capacity; mitochondrial function; intracellular pH Address for reprint requests and other correspondence: J. J. Prompers, Biomedical NMR, Dept. of Biomedical Engineering, Eindhoven Univ. of Technology, N-laag b1.08, PO Box 513, 5600 MB Eindhoven, The Netherlands (e-mail: j.j.prompers{at}tue.nl )
31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (τ PCr ) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that τ PCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of τ PCr . We investigated the pH dependence of τ PCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of τ PCr differed among subjects, ranging from −33.0 to −75.3 s/pH unit. The slope of the relation between τ PCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of τ PCr have a higher proton efflux rate. Our study implies that simply correcting τ PCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.
Author Graaf, Larry de
De Feyter, Henk M. M. L
van den Broek, Nicole M. A
Prompers, Jeanine J
Nicolay, Klaas
Author_xml – sequence: 1
  fullname: van den Broek, Nicole M. A
– sequence: 2
  fullname: De Feyter, Henk M. M. L
– sequence: 3
  fullname: Graaf, Larry de
– sequence: 4
  fullname: Nicolay, Klaas
– sequence: 5
  fullname: Prompers, Jeanine J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17392383$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxleoiKaFF-CALA7cNtjj_ecjiihUqsSlnC2vd9x12KwX20uTl-FZcZoEpEiALMsa-_vNZ4_nKrsY3YhZ9prRJWMlvFfrSeMwLCmlwJdAaf0sW6QDyFlZ8YtsQXnF84oV_DK7CmGddAVU4kV2yWougDd8kf28HSP6MLdr1JF01hj0OGoMxI4k9kgw7aQTZ4jStnPBBuJGMvUupKk9qmhHJB61-4F-R76lKFr9hG_moAckyiQHglv02oYUeiTdjCS6c7vJu5hyJ8dh3hKvIoaX2XOjhoCvjut19vXm4_3qc3735dPt6sNdrouijrmArtXQ6kYr1kFVl0I1RoHomopTqDqh2woaUHVjDBO8ZJUWxkBTqZbrUgh-nb075E13-D5jiHJjw764akQ3B1nTNOqG_VcItOCpxpCEb8-Eazf7MT1CAqe8KCiUSfTmKJrbDXZy8naj_E6e_icJmoNAexeCRyO1jankboxe2UEyKvetII-tIJ9aQe5bIaFwhv7O_i9IHKDePvSP1qOc-l2wbnAPO3kzD8M9buMJBMElkyuARk6dSWz-d_bk9YfhvwBUP-C5
CODEN AJPCDD
CitedBy_id crossref_primary_10_1111_j_1748_1716_2011_02342_x
crossref_primary_10_1038_s41598_019_46638_2
crossref_primary_10_1038_s41598_018_26944_x
crossref_primary_10_1113_expphysiol_2009_049841
crossref_primary_10_1152_japplphysiol_00225_2007
crossref_primary_10_1002_mrm_22085
crossref_primary_10_1152_ajpregu_00264_2016
crossref_primary_10_1002_nbm_3008
crossref_primary_10_1002_nbm_3723
crossref_primary_10_1016_j_ab_2017_01_018
crossref_primary_10_1111_sms_12234
crossref_primary_10_1139_apnm_2023_0315
crossref_primary_10_1109_TBME_2016_2533659
crossref_primary_10_1016_j_bbabio_2010_02_019
crossref_primary_10_1152_ajpendo_00028_2016
crossref_primary_10_1152_ajpcell_00200_2010
crossref_primary_10_1152_ajpregu_00204_2010
crossref_primary_10_1002_nbm_4246
crossref_primary_10_1139_apnm_2013_0347
crossref_primary_10_1002_jmri_22733
crossref_primary_10_1016_j_biocel_2014_02_014
crossref_primary_10_1016_j_acra_2015_06_013
crossref_primary_10_2337_db12_0558
crossref_primary_10_1097_MCO_0b013e32833cc93d
crossref_primary_10_1002_nbm_2866
crossref_primary_10_1152_ajpregu_90896_2008
crossref_primary_10_1007_s00421_009_1012_y
crossref_primary_10_1152_ajpregu_00127_2019
crossref_primary_10_1371_journal_pone_0037237
crossref_primary_10_1111_apha_12307
crossref_primary_10_1113_JP271400
crossref_primary_10_1113_JP275009
crossref_primary_10_1002_jmri_26841
crossref_primary_10_1016_j_jshs_2014_07_003
crossref_primary_10_1152_japplphysiol_00819_2007
crossref_primary_10_1152_ajpendo_00370_2009
crossref_primary_10_1002_mrm_28088
crossref_primary_10_1152_ajpregu_00406_2013
crossref_primary_10_1007_s00424_013_1220_5
crossref_primary_10_3389_fcvm_2019_00121
crossref_primary_10_3390_ijms20215271
crossref_primary_10_1002_mrm_24484
crossref_primary_10_1002_jgm_2671
crossref_primary_10_1038_gt_2009_141
crossref_primary_10_1152_japplphysiol_01021_2010
crossref_primary_10_1139_apnm_2013_0192
crossref_primary_10_1249_MSS_0b013e3181cabaeb
crossref_primary_10_1007_s10334_016_0605_9
crossref_primary_10_1123_ijspp_2020_0295
crossref_primary_10_1113_JP279339
crossref_primary_10_1007_s00421_021_04874_3
crossref_primary_10_1016_j_ejphar_2017_09_031
crossref_primary_10_3389_fphys_2018_00300
crossref_primary_10_1002_nbm_4381
crossref_primary_10_1113_JP280771
crossref_primary_10_1038_srep19057
crossref_primary_10_3390_ijms241311223
crossref_primary_10_1371_journal_pone_0100525
crossref_primary_10_14814_phy2_12890
crossref_primary_10_1007_s11332_023_01050_2
crossref_primary_10_1002_nbm_2966
crossref_primary_10_1080_17461391_2023_2238679
crossref_primary_10_1152_ajpendo_00144_2015
crossref_primary_10_1016_j_mehy_2017_02_011
crossref_primary_10_1371_journal_pone_0076628
crossref_primary_10_1016_j_npep_2019_101961
crossref_primary_10_1038_s41398_020_01096_7
crossref_primary_10_1042_CS20090220
crossref_primary_10_1152_ajpregu_90704_2008
Cites_doi 10.1002/mrm.1910320102
10.1002/(SICI)1522-2594(199905)41:5<926::AID-MRM11>3.0.CO;2-1
10.1002/(SICI)1099-1492(199606)9:4<165::AID-NBM408>3.0.CO;2-X
10.1152/ajpcell.1990.258.6.C995
10.1002/mrm.1271.abs
10.1016/0925-4439(95)00004-N
10.1111/j.1469-7793.1999.0901n.x
10.1016/0014-5793(90)80472-U
10.1016/S0005-2728(99)00111-5
10.1007/BF00635872
10.4081/reumatismo.2004.9
10.1016/S0005-2728(88)80003-3
10.1002/(SICI)1099-1492(200002)13:1<14::AID-NBM605>3.0.CO;2-0
10.1093/brain/awf163
10.1152/ajplegacy.1972.223.1.83
10.1016/S0021-9258(18)70051-3
10.1016/S0021-9258(18)50400-2
10.1152/ajpcell.1988.254.4.C548
10.1152/ajplegacy.1973.225.6.1393
10.1002/mrm.1910030107
10.1152/japplphysiol.01132.2001
10.1002/nbm.1940060404
10.1002/nbm.1037
10.1042/bj2910681
10.1152/ajpcell.1997.272.2.C491
10.1113/jphysiol.2003.045872
10.1002/mrm.1910310303
10.1007/s004210050276
10.1016/0014-5793(90)81203-Z
10.1152/jappl.1994.77.1.5
10.1006/jmre.1997.1244
10.1007/s00125-006-0475-1
10.1152/ajpcell.1997.272.2.C525
10.1152/ajpcell.1994.266.3.C825
10.1002/(SICI)1522-2594(199906)41:6<1145::AID-MRM10>3.0.CO;2-W
10.1016/0006-291X(91)90413-2
10.1152/jappl.1992.72.2.521
10.1002/nbm.1940060504
10.1249/00005768-199411000-00009
10.1073/pnas.82.24.8384
10.1002/(SICI)1099-1492(199912)12:8<545::AID-NBM595>3.0.CO;2-J
10.1002/nbm.1109
10.1016/j.bbabio.2005.01.008
10.1002/nbm.1940060112
10.1016/S0033-8389(22)00372-4
10.1007/BF02592248
10.1152/physrev.1981.61.2.296
10.1002/ana.410180205
10.1016/S0730-725X(00)00132-6
10.1002/mrm.1910010303
10.1055/s-2007-971901
10.1139/y85-072
10.1152/ajpregu.1988.254.6.R949
10.1152/japplphysiol.00446.2002
ContentType Journal Article
Copyright Copyright American Physiological Society Jul 2007
Copyright_xml – notice: Copyright American Physiological Society Jul 2007
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7X8
DOI 10.1152/ajpcell.00023.2007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList MEDLINE
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
Physical Education Index

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1522-1563
EndPage C237
ExternalDocumentID 1303846501
17392383
10_1152_ajpcell_00023_2007
ajpcell_293_1_C228
Genre Journal Article
Comparative Study
GroupedDBID -
02
23M
2WC
39C
4.4
53G
5GY
5VS
85S
ABFLS
ABPTK
ACGFS
ACPRK
ADACO
ADBBV
AENEX
AFFNX
AIZTS
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
C1A
DIK
DL
E3Z
EBS
EJD
F5P
GX1
H13
KQ8
O0-
OK1
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
WH7
WOQ
---
6J9
8M5
AAFWJ
AAYXX
ABJNI
BKKCC
BTFSW
CITATION
EMOBN
ITBOX
RPRKH
TR2
W8F
XSW
YSK
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7X8
ID FETCH-LOGICAL-c447t-92dbc2bc8ca1d26759a8fa29d863026d9cb6282a78ff193516c9ff286ab3c5993
ISSN 0363-6143
IngestDate Fri Jul 11 01:14:17 EDT 2025
Thu Jul 10 18:46:53 EDT 2025
Mon Jun 30 10:33:02 EDT 2025
Sat Sep 28 07:44:59 EDT 2024
Thu Apr 24 22:55:10 EDT 2025
Tue Jul 01 01:22:10 EDT 2025
Mon May 06 11:37:46 EDT 2019
Tue Jan 05 18:12:39 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-92dbc2bc8ca1d26759a8fa29d863026d9cb6282a78ff193516c9ff286ab3c5993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 17392383
PQID 230344025
PQPubID 48267
ParticipantIDs crossref_citationtrail_10_1152_ajpcell_00023_2007
proquest_journals_230344025
pubmed_primary_17392383
proquest_miscellaneous_20432692
highwire_physiology_ajpcell_293_1_C228
proquest_miscellaneous_70707781
crossref_primary_10_1152_ajpcell_00023_2007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20070701
2007-07-00
2007-Jul
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 20070701
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American Journal of Physiology: Cell Physiology
PublicationTitleAlternate Am J Physiol Cell Physiol
PublicationYear 2007
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R18
R17
R19
References_xml – ident: R7
  doi: 10.1002/mrm.1910320102
– ident: R13
  doi: 10.1002/(SICI)1522-2594(199905)41:5<926::AID-MRM11>3.0.CO;2-1
– ident: R1
  doi: 10.1002/(SICI)1099-1492(199606)9:4<165::AID-NBM408>3.0.CO;2-X
– ident: R23
– ident: R16
  doi: 10.1152/ajpcell.1990.258.6.C995
– ident: R14
  doi: 10.1002/mrm.1271.abs
– ident: R40
  doi: 10.1016/0925-4439(95)00004-N
– ident: R55
  doi: 10.1111/j.1469-7793.1999.0901n.x
– ident: R5
  doi: 10.1016/0014-5793(90)80472-U
– ident: R44
  doi: 10.1016/S0005-2728(99)00111-5
– ident: R49
  doi: 10.1007/BF00635872
– ident: R33
  doi: 10.4081/reumatismo.2004.9
– ident: R58
  doi: 10.1016/S0005-2728(88)80003-3
– ident: R29
  doi: 10.1002/(SICI)1099-1492(200002)13:1<14::AID-NBM605>3.0.CO;2-0
– ident: R9
  doi: 10.1093/brain/awf163
– ident: R52
  doi: 10.1152/ajplegacy.1972.223.1.83
– ident: R10
  doi: 10.1016/S0021-9258(18)70051-3
– ident: R30
  doi: 10.1016/S0021-9258(18)50400-2
– ident: R35
  doi: 10.1152/ajpcell.1988.254.4.C548
– ident: R36
  doi: 10.1152/ajplegacy.1973.225.6.1393
– ident: R51
  doi: 10.1002/mrm.1910030107
– ident: R54
  doi: 10.1152/japplphysiol.01132.2001
– ident: R21
  doi: 10.1002/nbm.1940060404
– ident: R47
  doi: 10.1002/nbm.1037
– ident: R39
  doi: 10.1042/bj2910681
– ident: R17
  doi: 10.1152/ajpcell.1997.272.2.C491
– ident: R22
  doi: 10.1113/jphysiol.2003.045872
– ident: R26
  doi: 10.1002/mrm.1910310303
– ident: R27
  doi: 10.1007/s004210050276
– ident: R6
  doi: 10.1016/0014-5793(90)81203-Z
– ident: R34
  doi: 10.1152/jappl.1994.77.1.5
– ident: R53
  doi: 10.1006/jmre.1997.1244
– ident: R46
  doi: 10.1007/s00125-006-0475-1
– ident: R56
  doi: 10.1152/ajpcell.1997.272.2.C525
– ident: R4
  doi: 10.1152/ajpcell.1994.266.3.C825
– ident: R8
  doi: 10.1002/(SICI)1522-2594(199906)41:6<1145::AID-MRM10>3.0.CO;2-W
– ident: R20
  doi: 10.1016/0006-291X(91)90413-2
– ident: R38
  doi: 10.1152/jappl.1992.72.2.521
– ident: R25
  doi: 10.1002/nbm.1940060504
– ident: R57
  doi: 10.1249/00005768-199411000-00009
– ident: R12
  doi: 10.1073/pnas.82.24.8384
– ident: R37
  doi: 10.1002/(SICI)1099-1492(199912)12:8<545::AID-NBM595>3.0.CO;2-J
– ident: R11
  doi: 10.1002/nbm.1109
– ident: R50
– ident: R19
  doi: 10.1016/j.bbabio.2005.01.008
– ident: R24
  doi: 10.1002/nbm.1940060112
– ident: R28
  doi: 10.1016/S0033-8389(22)00372-4
– ident: R31
  doi: 10.1007/BF02592248
– ident: R45
– ident: R42
  doi: 10.1152/physrev.1981.61.2.296
– ident: R3
  doi: 10.1002/ana.410180205
– ident: R18
  doi: 10.1016/S0730-725X(00)00132-6
– ident: R48
– ident: R2
  doi: 10.1002/mrm.1910010303
– ident: R41
  doi: 10.1055/s-2007-971901
– ident: R32
  doi: 10.1139/y85-072
– ident: R15
  doi: 10.1152/ajpregu.1988.254.6.R949
– ident: R43
  doi: 10.1152/japplphysiol.00446.2002
SSID ssj0004269
Score 2.1680517
Snippet Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands Submitted 18 January 2007 ; accepted in...
31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of...
(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant...
...P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of...
super(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time...
SourceID proquest
pubmed
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage C228
SubjectTerms Acidosis - metabolism
Acidosis - physiopathology
Adenosine Diphosphate - metabolism
Adult
Cellular biology
Correlation analysis
Cytoplasm - metabolism
Exercise
Female
Humans
Hydrogen-Ion Concentration
Kinetics
Magnetic Resonance Spectroscopy - methods
Male
Mitochondria, Muscle - metabolism
Models, Biological
Muscle Contraction
Musculoskeletal system
NMR
Nuclear magnetic resonance
Phosphocreatine - metabolism
Phosphorus Isotopes
Protons
Quadriceps Muscle - metabolism
Recovery of Function
Reproducibility of Results
Title Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates
URI http://ajpcell.physiology.org/cgi/content/abstract/293/1/C228
https://www.ncbi.nlm.nih.gov/pubmed/17392383
https://www.proquest.com/docview/230344025
https://www.proquest.com/docview/20432692
https://www.proquest.com/docview/70707781
Volume 293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdR2EvY2t38bqLHkZfjLNYvj-GsC7sBoMU-mZkSWZdUjskNiz7MfutO5IsxUmbsQ4SE9uSHOd8OTpHPuc7CL0NY8ZDXvqeEMPICxMSeAVPIi9KE0oKsIEzJhOcv3yNJxfhx8vo8uDeUS9qqW2KAft1a17J_0gVjoFcZZbsHSRrB4UD8BnkC1uQMGz_ScZqOW_VFnItxZY60SFWvWAN9aifXfFacY9U7uJ7vYK3NhcrWTaFyTjOtTuDPcXaDN2v2xVcrCshbuoyuTJMjLeq2sbO5STfA4wNV5y3P13JP7Hq2732wVDPAFbBpzpZJhi5Y7WIaA8ZIMj0KlCNgMFazCx0QRcN3NHAWuHCPRfrrsTIRFQzeRpen22LD0tKS50HvoQ75RbOajiqYxfmlG6vgiQ2YnaT_RWAG6wpnwaiU-bgaIN_GvS1PdEFGbdgrXX3mHRp6qLb1Ww0N-eYSHLW0h8L-WhloBiDFKPBZkY1UQQ7E60Nf1SOV0TyboxcjZFrVoT7BPwdqbA_fevR3hNVm9HepMn-isi7m99j28IyrNf7PShlSU0foYcdAvBI4_kxOhDVMToZVbSpr9f4DG9AcIyOdK3U9Qn63Qc77qEPX1UYwI412HFdYgN2XFd4B-zYgB0bsMvuGuxYgR0bsGMAOwaw46bevZwGO9ZgxwrsT9DF-fvpeOJ1xUU8FoZJ42WEF4wULGXU5wTc5oymJSUZT-NgSGKesSImKaFJWpbg5ER-zLKyJGlMi4BFYNU_RYdVXYnnCEcwjxVhWcYJLcG8C1MWE58PuRiCFVJEkYN8I5Ccdcz7sgDMPN8PBAe5ts9C8878tTUxcs4XVki5XMWaAvRMD8B-7ucS5_mClw46u62TGX3T2EGnBjp5p_1WOQkkWSh4TA56Y8_C1CT70krULTSRdJ9xRva3SCTZWJL6DnqmEbm51wQctyANXtzpdzhFDzbK4SU6bJateAVOQ1O8Vn-oP5XQHu4
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intersubject+differences+in+the+effect+of+acidosis+on+phosphocreatine+recovery+kinetics+in+muscle+after+exercise+are+due+to+differences+in+proton+efflux+rates&rft.jtitle=American+Journal+of+Physiology%3A+Cell+Physiology&rft.au=van+den+Broek%2C+Nicole+M.+A.&rft.au=De+Feyter%2C+Henk+M.+M.+L.&rft.au=Graaf%2C+Larry+de&rft.au=Nicolay%2C+Klaas&rft.date=2007-07-01&rft.issn=0363-6143&rft.eissn=1522-1563&rft.volume=293&rft.issue=1&rft.spage=C228&rft.epage=C237&rft_id=info:doi/10.1152%2Fajpcell.00023.2007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpcell_00023_2007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6143&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6143&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6143&client=summon