Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates
Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands Submitted 18 January 2007 ; accepted in final form 21 March 2007 31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle ex...
Saved in:
Published in | American Journal of Physiology: Cell Physiology Vol. 293; no. 1; pp. C228 - C237 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.07.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
Submitted 18 January 2007
; accepted in final form 21 March 2007
31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery ( PCr ) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that PCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of PCr . We investigated the pH dependence of PCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of PCr differed among subjects, ranging from 33.0 to 75.3 s/pH unit. The slope of the relation between PCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of PCr have a higher proton efflux rate. Our study implies that simply correcting PCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.
31 P magnetic resonance spectroscopy; skeletal muscle; oxidative capacity; mitochondrial function; intracellular pH
Address for reprint requests and other correspondence: J. J. Prompers, Biomedical NMR, Dept. of Biomedical Engineering, Eindhoven Univ. of Technology, N-laag b1.08, PO Box 513, 5600 MB Eindhoven, The Netherlands (e-mail: j.j.prompers{at}tue.nl ) |
---|---|
AbstractList | (31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. ...P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (...) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that ... should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of ... We investigated the pH dependence of ... on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of ... differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between ... and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of ... have a higher proton efflux rate. Our study implies that simply correcting ... for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. (ProQuest-CSA LLC: ... denotes formulae/symbols omitted.) (31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers.(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (tau(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau(PCr). We investigated the pH dependence of tau(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. super(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery ( tau sub(PCr)) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that tau sub(PCr) should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of tau sub(PCr). We investigated the pH dependence of tau sub(PCr) on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of tau sub(PCr) differed among subjects, ranging from -33.0 to -75.3 s/pH unit. The slope of the relation between tau sub(PCr) and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of tau sub(PCr) have a higher proton efflux rate. Our study implies that simply correcting tau sub(PCr) for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands Submitted 18 January 2007 ; accepted in final form 21 March 2007 31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery ( PCr ) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that PCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of PCr . We investigated the pH dependence of PCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of PCr differed among subjects, ranging from 33.0 to 75.3 s/pH unit. The slope of the relation between PCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of PCr have a higher proton efflux rate. Our study implies that simply correcting PCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. 31 P magnetic resonance spectroscopy; skeletal muscle; oxidative capacity; mitochondrial function; intracellular pH Address for reprint requests and other correspondence: J. J. Prompers, Biomedical NMR, Dept. of Biomedical Engineering, Eindhoven Univ. of Technology, N-laag b1.08, PO Box 513, 5600 MB Eindhoven, The Netherlands (e-mail: j.j.prompers{at}tue.nl ) 31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of phosphocreatine (PCr) recovery (τ PCr ) has been used as a measure of mitochondrial function. However, cytosolic pH has a strong influence on the kinetics of PCr recovery, and it has been suggested that τ PCr should be normalized for end-exercise pH. A general correction can only be applied if there are no intersubject differences in the pH dependence of τ PCr . We investigated the pH dependence of τ PCr on a subject-by-subject basis. Furthermore, we determined the kinetics of proton efflux at the start of recovery. Intracellular acidosis slowed PCr recovery, and the pH dependence of τ PCr differed among subjects, ranging from −33.0 to −75.3 s/pH unit. The slope of the relation between τ PCr and end-exercise pH was positively correlated with both the proton efflux rate and the apparent proton efflux rate constant, indicating that subjects with a smaller pH dependence of τ PCr have a higher proton efflux rate. Our study implies that simply correcting τ PCr for end-exercise pH is not adequate, in particular when comparing patients and control subjects, because certain disorders are characterized by altered proton efflux from muscle fibers. |
Author | Graaf, Larry de De Feyter, Henk M. M. L van den Broek, Nicole M. A Prompers, Jeanine J Nicolay, Klaas |
Author_xml | – sequence: 1 fullname: van den Broek, Nicole M. A – sequence: 2 fullname: De Feyter, Henk M. M. L – sequence: 3 fullname: Graaf, Larry de – sequence: 4 fullname: Nicolay, Klaas – sequence: 5 fullname: Prompers, Jeanine J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17392383$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxleoiKaFF-CALA7cNtjj_ecjiihUqsSlnC2vd9x12KwX20uTl-FZcZoEpEiALMsa-_vNZ4_nKrsY3YhZ9prRJWMlvFfrSeMwLCmlwJdAaf0sW6QDyFlZ8YtsQXnF84oV_DK7CmGddAVU4kV2yWougDd8kf28HSP6MLdr1JF01hj0OGoMxI4k9kgw7aQTZ4jStnPBBuJGMvUupKk9qmhHJB61-4F-R76lKFr9hG_moAckyiQHglv02oYUeiTdjCS6c7vJu5hyJ8dh3hKvIoaX2XOjhoCvjut19vXm4_3qc3735dPt6sNdrouijrmArtXQ6kYr1kFVl0I1RoHomopTqDqh2woaUHVjDBO8ZJUWxkBTqZbrUgh-nb075E13-D5jiHJjw764akQ3B1nTNOqG_VcItOCpxpCEb8-Eazf7MT1CAqe8KCiUSfTmKJrbDXZy8naj_E6e_icJmoNAexeCRyO1jankboxe2UEyKvetII-tIJ9aQe5bIaFwhv7O_i9IHKDePvSP1qOc-l2wbnAPO3kzD8M9buMJBMElkyuARk6dSWz-d_bk9YfhvwBUP-C5 |
CODEN | AJPCDD |
CitedBy_id | crossref_primary_10_1111_j_1748_1716_2011_02342_x crossref_primary_10_1038_s41598_019_46638_2 crossref_primary_10_1038_s41598_018_26944_x crossref_primary_10_1113_expphysiol_2009_049841 crossref_primary_10_1152_japplphysiol_00225_2007 crossref_primary_10_1002_mrm_22085 crossref_primary_10_1152_ajpregu_00264_2016 crossref_primary_10_1002_nbm_3008 crossref_primary_10_1002_nbm_3723 crossref_primary_10_1016_j_ab_2017_01_018 crossref_primary_10_1111_sms_12234 crossref_primary_10_1139_apnm_2023_0315 crossref_primary_10_1109_TBME_2016_2533659 crossref_primary_10_1016_j_bbabio_2010_02_019 crossref_primary_10_1152_ajpendo_00028_2016 crossref_primary_10_1152_ajpcell_00200_2010 crossref_primary_10_1152_ajpregu_00204_2010 crossref_primary_10_1002_nbm_4246 crossref_primary_10_1139_apnm_2013_0347 crossref_primary_10_1002_jmri_22733 crossref_primary_10_1016_j_biocel_2014_02_014 crossref_primary_10_1016_j_acra_2015_06_013 crossref_primary_10_2337_db12_0558 crossref_primary_10_1097_MCO_0b013e32833cc93d crossref_primary_10_1002_nbm_2866 crossref_primary_10_1152_ajpregu_90896_2008 crossref_primary_10_1007_s00421_009_1012_y crossref_primary_10_1152_ajpregu_00127_2019 crossref_primary_10_1371_journal_pone_0037237 crossref_primary_10_1111_apha_12307 crossref_primary_10_1113_JP271400 crossref_primary_10_1113_JP275009 crossref_primary_10_1002_jmri_26841 crossref_primary_10_1016_j_jshs_2014_07_003 crossref_primary_10_1152_japplphysiol_00819_2007 crossref_primary_10_1152_ajpendo_00370_2009 crossref_primary_10_1002_mrm_28088 crossref_primary_10_1152_ajpregu_00406_2013 crossref_primary_10_1007_s00424_013_1220_5 crossref_primary_10_3389_fcvm_2019_00121 crossref_primary_10_3390_ijms20215271 crossref_primary_10_1002_mrm_24484 crossref_primary_10_1002_jgm_2671 crossref_primary_10_1038_gt_2009_141 crossref_primary_10_1152_japplphysiol_01021_2010 crossref_primary_10_1139_apnm_2013_0192 crossref_primary_10_1249_MSS_0b013e3181cabaeb crossref_primary_10_1007_s10334_016_0605_9 crossref_primary_10_1123_ijspp_2020_0295 crossref_primary_10_1113_JP279339 crossref_primary_10_1007_s00421_021_04874_3 crossref_primary_10_1016_j_ejphar_2017_09_031 crossref_primary_10_3389_fphys_2018_00300 crossref_primary_10_1002_nbm_4381 crossref_primary_10_1113_JP280771 crossref_primary_10_1038_srep19057 crossref_primary_10_3390_ijms241311223 crossref_primary_10_1371_journal_pone_0100525 crossref_primary_10_14814_phy2_12890 crossref_primary_10_1007_s11332_023_01050_2 crossref_primary_10_1002_nbm_2966 crossref_primary_10_1080_17461391_2023_2238679 crossref_primary_10_1152_ajpendo_00144_2015 crossref_primary_10_1016_j_mehy_2017_02_011 crossref_primary_10_1371_journal_pone_0076628 crossref_primary_10_1016_j_npep_2019_101961 crossref_primary_10_1038_s41398_020_01096_7 crossref_primary_10_1042_CS20090220 crossref_primary_10_1152_ajpregu_90704_2008 |
Cites_doi | 10.1002/mrm.1910320102 10.1002/(SICI)1522-2594(199905)41:5<926::AID-MRM11>3.0.CO;2-1 10.1002/(SICI)1099-1492(199606)9:4<165::AID-NBM408>3.0.CO;2-X 10.1152/ajpcell.1990.258.6.C995 10.1002/mrm.1271.abs 10.1016/0925-4439(95)00004-N 10.1111/j.1469-7793.1999.0901n.x 10.1016/0014-5793(90)80472-U 10.1016/S0005-2728(99)00111-5 10.1007/BF00635872 10.4081/reumatismo.2004.9 10.1016/S0005-2728(88)80003-3 10.1002/(SICI)1099-1492(200002)13:1<14::AID-NBM605>3.0.CO;2-0 10.1093/brain/awf163 10.1152/ajplegacy.1972.223.1.83 10.1016/S0021-9258(18)70051-3 10.1016/S0021-9258(18)50400-2 10.1152/ajpcell.1988.254.4.C548 10.1152/ajplegacy.1973.225.6.1393 10.1002/mrm.1910030107 10.1152/japplphysiol.01132.2001 10.1002/nbm.1940060404 10.1002/nbm.1037 10.1042/bj2910681 10.1152/ajpcell.1997.272.2.C491 10.1113/jphysiol.2003.045872 10.1002/mrm.1910310303 10.1007/s004210050276 10.1016/0014-5793(90)81203-Z 10.1152/jappl.1994.77.1.5 10.1006/jmre.1997.1244 10.1007/s00125-006-0475-1 10.1152/ajpcell.1997.272.2.C525 10.1152/ajpcell.1994.266.3.C825 10.1002/(SICI)1522-2594(199906)41:6<1145::AID-MRM10>3.0.CO;2-W 10.1016/0006-291X(91)90413-2 10.1152/jappl.1992.72.2.521 10.1002/nbm.1940060504 10.1249/00005768-199411000-00009 10.1073/pnas.82.24.8384 10.1002/(SICI)1099-1492(199912)12:8<545::AID-NBM595>3.0.CO;2-J 10.1002/nbm.1109 10.1016/j.bbabio.2005.01.008 10.1002/nbm.1940060112 10.1016/S0033-8389(22)00372-4 10.1007/BF02592248 10.1152/physrev.1981.61.2.296 10.1002/ana.410180205 10.1016/S0730-725X(00)00132-6 10.1002/mrm.1910010303 10.1055/s-2007-971901 10.1139/y85-072 10.1152/ajpregu.1988.254.6.R949 10.1152/japplphysiol.00446.2002 |
ContentType | Journal Article |
Copyright | Copyright American Physiological Society Jul 2007 |
Copyright_xml | – notice: Copyright American Physiological Society Jul 2007 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7X8 |
DOI | 10.1152/ajpcell.00023.2007 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE Calcium & Calcified Tissue Abstracts MEDLINE - Academic Physical Education Index CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1522-1563 |
EndPage | C237 |
ExternalDocumentID | 1303846501 17392383 10_1152_ajpcell_00023_2007 ajpcell_293_1_C228 |
Genre | Journal Article Comparative Study |
GroupedDBID | - 02 23M 2WC 39C 4.4 53G 5GY 5VS 85S ABFLS ABPTK ACGFS ACPRK ADACO ADBBV AENEX AFFNX AIZTS ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP C1A DIK DL E3Z EBS EJD F5P GX1 H13 KQ8 O0- OK1 P2P PQEST PQQKQ RAP RHF RHI RPL WH7 WOQ --- 6J9 8M5 AAFWJ AAYXX ABJNI BKKCC BTFSW CITATION EMOBN ITBOX RPRKH TR2 W8F XSW YSK ~02 CGR CUY CVF ECM EIF NPM 7QP 7TS 7X8 |
ID | FETCH-LOGICAL-c447t-92dbc2bc8ca1d26759a8fa29d863026d9cb6282a78ff193516c9ff286ab3c5993 |
ISSN | 0363-6143 |
IngestDate | Fri Jul 11 01:14:17 EDT 2025 Thu Jul 10 18:46:53 EDT 2025 Mon Jun 30 10:33:02 EDT 2025 Sat Sep 28 07:44:59 EDT 2024 Thu Apr 24 22:55:10 EDT 2025 Tue Jul 01 01:22:10 EDT 2025 Mon May 06 11:37:46 EDT 2019 Tue Jan 05 18:12:39 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-92dbc2bc8ca1d26759a8fa29d863026d9cb6282a78ff193516c9ff286ab3c5993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 17392383 |
PQID | 230344025 |
PQPubID | 48267 |
ParticipantIDs | crossref_citationtrail_10_1152_ajpcell_00023_2007 proquest_journals_230344025 pubmed_primary_17392383 proquest_miscellaneous_20432692 highwire_physiology_ajpcell_293_1_C228 proquest_miscellaneous_70707781 crossref_primary_10_1152_ajpcell_00023_2007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20070701 2007-07-00 2007-Jul |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: 20070701 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | American Journal of Physiology: Cell Physiology |
PublicationTitleAlternate | Am J Physiol Cell Physiol |
PublicationYear | 2007 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | R21 R20 R23 R22 R25 R24 R27 R26 R29 R28 R1 R2 R3 R4 R5 R6 R7 R8 R9 R30 R32 R31 R34 R33 R36 R35 R38 R37 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R18 R17 R19 |
References_xml | – ident: R7 doi: 10.1002/mrm.1910320102 – ident: R13 doi: 10.1002/(SICI)1522-2594(199905)41:5<926::AID-MRM11>3.0.CO;2-1 – ident: R1 doi: 10.1002/(SICI)1099-1492(199606)9:4<165::AID-NBM408>3.0.CO;2-X – ident: R23 – ident: R16 doi: 10.1152/ajpcell.1990.258.6.C995 – ident: R14 doi: 10.1002/mrm.1271.abs – ident: R40 doi: 10.1016/0925-4439(95)00004-N – ident: R55 doi: 10.1111/j.1469-7793.1999.0901n.x – ident: R5 doi: 10.1016/0014-5793(90)80472-U – ident: R44 doi: 10.1016/S0005-2728(99)00111-5 – ident: R49 doi: 10.1007/BF00635872 – ident: R33 doi: 10.4081/reumatismo.2004.9 – ident: R58 doi: 10.1016/S0005-2728(88)80003-3 – ident: R29 doi: 10.1002/(SICI)1099-1492(200002)13:1<14::AID-NBM605>3.0.CO;2-0 – ident: R9 doi: 10.1093/brain/awf163 – ident: R52 doi: 10.1152/ajplegacy.1972.223.1.83 – ident: R10 doi: 10.1016/S0021-9258(18)70051-3 – ident: R30 doi: 10.1016/S0021-9258(18)50400-2 – ident: R35 doi: 10.1152/ajpcell.1988.254.4.C548 – ident: R36 doi: 10.1152/ajplegacy.1973.225.6.1393 – ident: R51 doi: 10.1002/mrm.1910030107 – ident: R54 doi: 10.1152/japplphysiol.01132.2001 – ident: R21 doi: 10.1002/nbm.1940060404 – ident: R47 doi: 10.1002/nbm.1037 – ident: R39 doi: 10.1042/bj2910681 – ident: R17 doi: 10.1152/ajpcell.1997.272.2.C491 – ident: R22 doi: 10.1113/jphysiol.2003.045872 – ident: R26 doi: 10.1002/mrm.1910310303 – ident: R27 doi: 10.1007/s004210050276 – ident: R6 doi: 10.1016/0014-5793(90)81203-Z – ident: R34 doi: 10.1152/jappl.1994.77.1.5 – ident: R53 doi: 10.1006/jmre.1997.1244 – ident: R46 doi: 10.1007/s00125-006-0475-1 – ident: R56 doi: 10.1152/ajpcell.1997.272.2.C525 – ident: R4 doi: 10.1152/ajpcell.1994.266.3.C825 – ident: R8 doi: 10.1002/(SICI)1522-2594(199906)41:6<1145::AID-MRM10>3.0.CO;2-W – ident: R20 doi: 10.1016/0006-291X(91)90413-2 – ident: R38 doi: 10.1152/jappl.1992.72.2.521 – ident: R25 doi: 10.1002/nbm.1940060504 – ident: R57 doi: 10.1249/00005768-199411000-00009 – ident: R12 doi: 10.1073/pnas.82.24.8384 – ident: R37 doi: 10.1002/(SICI)1099-1492(199912)12:8<545::AID-NBM595>3.0.CO;2-J – ident: R11 doi: 10.1002/nbm.1109 – ident: R50 – ident: R19 doi: 10.1016/j.bbabio.2005.01.008 – ident: R24 doi: 10.1002/nbm.1940060112 – ident: R28 doi: 10.1016/S0033-8389(22)00372-4 – ident: R31 doi: 10.1007/BF02592248 – ident: R45 – ident: R42 doi: 10.1152/physrev.1981.61.2.296 – ident: R3 doi: 10.1002/ana.410180205 – ident: R18 doi: 10.1016/S0730-725X(00)00132-6 – ident: R48 – ident: R2 doi: 10.1002/mrm.1910010303 – ident: R41 doi: 10.1055/s-2007-971901 – ident: R32 doi: 10.1139/y85-072 – ident: R15 doi: 10.1152/ajpregu.1988.254.6.R949 – ident: R43 doi: 10.1152/japplphysiol.00446.2002 |
SSID | ssj0004269 |
Score | 2.1680517 |
Snippet | Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
Submitted 18 January 2007
; accepted in... 31 P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of... (31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant... ...P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time constant of... super(31)P magnetic resonance spectroscopy provides the possibility of obtaining bioenergetic data during skeletal muscle exercise and recovery. The time... |
SourceID | proquest pubmed crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | C228 |
SubjectTerms | Acidosis - metabolism Acidosis - physiopathology Adenosine Diphosphate - metabolism Adult Cellular biology Correlation analysis Cytoplasm - metabolism Exercise Female Humans Hydrogen-Ion Concentration Kinetics Magnetic Resonance Spectroscopy - methods Male Mitochondria, Muscle - metabolism Models, Biological Muscle Contraction Musculoskeletal system NMR Nuclear magnetic resonance Phosphocreatine - metabolism Phosphorus Isotopes Protons Quadriceps Muscle - metabolism Recovery of Function Reproducibility of Results |
Title | Intersubject differences in the effect of acidosis on phosphocreatine recovery kinetics in muscle after exercise are due to differences in proton efflux rates |
URI | http://ajpcell.physiology.org/cgi/content/abstract/293/1/C228 https://www.ncbi.nlm.nih.gov/pubmed/17392383 https://www.proquest.com/docview/230344025 https://www.proquest.com/docview/20432692 https://www.proquest.com/docview/70707781 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZdR2EvY2t38bqLHkZfjLNYvj-GsC7sBoMU-mZkSWZdUjskNiz7MfutO5IsxUmbsQ4SE9uSHOd8OTpHPuc7CL0NY8ZDXvqeEMPICxMSeAVPIi9KE0oKsIEzJhOcv3yNJxfhx8vo8uDeUS9qqW2KAft1a17J_0gVjoFcZZbsHSRrB4UD8BnkC1uQMGz_ScZqOW_VFnItxZY60SFWvWAN9aifXfFacY9U7uJ7vYK3NhcrWTaFyTjOtTuDPcXaDN2v2xVcrCshbuoyuTJMjLeq2sbO5STfA4wNV5y3P13JP7Hq2732wVDPAFbBpzpZJhi5Y7WIaA8ZIMj0KlCNgMFazCx0QRcN3NHAWuHCPRfrrsTIRFQzeRpen22LD0tKS50HvoQ75RbOajiqYxfmlG6vgiQ2YnaT_RWAG6wpnwaiU-bgaIN_GvS1PdEFGbdgrXX3mHRp6qLb1Ww0N-eYSHLW0h8L-WhloBiDFKPBZkY1UQQ7E60Nf1SOV0TyboxcjZFrVoT7BPwdqbA_fevR3hNVm9HepMn-isi7m99j28IyrNf7PShlSU0foYcdAvBI4_kxOhDVMToZVbSpr9f4DG9AcIyOdK3U9Qn63Qc77qEPX1UYwI412HFdYgN2XFd4B-zYgB0bsMvuGuxYgR0bsGMAOwaw46bevZwGO9ZgxwrsT9DF-fvpeOJ1xUU8FoZJ42WEF4wULGXU5wTc5oymJSUZT-NgSGKesSImKaFJWpbg5ER-zLKyJGlMi4BFYNU_RYdVXYnnCEcwjxVhWcYJLcG8C1MWE58PuRiCFVJEkYN8I5Ccdcz7sgDMPN8PBAe5ts9C8878tTUxcs4XVki5XMWaAvRMD8B-7ucS5_mClw46u62TGX3T2EGnBjp5p_1WOQkkWSh4TA56Y8_C1CT70krULTSRdJ9xRva3SCTZWJL6DnqmEbm51wQctyANXtzpdzhFDzbK4SU6bJateAVOQ1O8Vn-oP5XQHu4 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intersubject+differences+in+the+effect+of+acidosis+on+phosphocreatine+recovery+kinetics+in+muscle+after+exercise+are+due+to+differences+in+proton+efflux+rates&rft.jtitle=American+Journal+of+Physiology%3A+Cell+Physiology&rft.au=van+den+Broek%2C+Nicole+M.+A.&rft.au=De+Feyter%2C+Henk+M.+M.+L.&rft.au=Graaf%2C+Larry+de&rft.au=Nicolay%2C+Klaas&rft.date=2007-07-01&rft.issn=0363-6143&rft.eissn=1522-1563&rft.volume=293&rft.issue=1&rft.spage=C228&rft.epage=C237&rft_id=info:doi/10.1152%2Fajpcell.00023.2007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpcell_00023_2007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6143&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6143&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6143&client=summon |