Effect of Shock Loading on ω Phase Formation in Pre-Strained Pure Titanium
This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as...
Saved in:
Published in | MATERIALS TRANSACTIONS Vol. 66; no. 5; pp. 584 - 589 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Sendai
The Japan Institute of Metals and Materials
01.05.2025
公益社団法人 日本金属学会 Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1345-9678 1347-5320 |
DOI | 10.2320/matertrans.MT-MC2024020 |
Cover
Abstract | This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as well as hardness measurement is carried out to check the formation of ω phase. It is shown that intense shear strain before shock loading does not promote the ω phase formation but concurrent shear straining under high pressure is effective for the ω phase formation. |
---|---|
AbstractList | This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as well as hardness measurement is carried out to check the formation of ω phase. It is shown that intense shear strain before shock loading does not promote the ω phase formation but concurrent shear straining under high pressure is effective for the ω phase formation. This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as well as hardness measurement is carried out to check the formation of ω phase. It is shown that intense shear strain before shock loading does not promote the ω phase formation but concurrent shear straining under high pressure is effective for the ω phase formation.Fig. 2 XRD profiles after shock loading of annealed sample and HPT-processed samples under 2 GPa and 6 GPa through 1 turn. (Si peak is visible as standard.) (online color) |
ArticleNumber | MT-MC2024020 |
Author | Hokamoto, Kazuyuki Masuda, Takahiro Tanaka, Shigeru Shiraishi, Takahisa Kiguchi, Takanori Tokuda, Makoto Horita, Zenji |
Author_xml | – sequence: 1 fullname: Masuda, Takahiro organization: Graduate School of Engineering, Kyushu Institute of Technology – sequence: 1 fullname: Shiraishi, Takahisa organization: Magnesium Research Center, Kumamoto University – sequence: 1 fullname: Tokuda, Makoto organization: Institute of Industrial Nanomaterials (IINa), Kumamoto University – sequence: 1 fullname: Horita, Zenji organization: Synchrotron Light Application Center, Saga University – sequence: 1 fullname: Hokamoto, Kazuyuki organization: Institute of Industrial Nanomaterials (IINa), Kumamoto University – sequence: 1 fullname: Kiguchi, Takanori organization: Magnesium Research Center, Kumamoto University – sequence: 1 fullname: Tanaka, Shigeru organization: Institute of Industrial Nanomaterials (IINa), Kumamoto University |
BackLink | https://cir.nii.ac.jp/crid/1390021758113163264$$DView record in CiNii |
BookMark | eNpNkM1OQjEQhRuDiYo-g010e7H_vXdpiH8RIom4bmqdSlFabC8LH8Gn85W8iEE2M5PJN-dMzhHqxRQBoVNKBowzcrGwLeQ221gG42k1HjLCBGFkDx1SLnQlO6b3O8uqUbo-QEelzAnhWjJ2iO6vvAfX4uTx4yy5NzxK9iXEV5wi_v7Ck5ktgK9T7lxCtwoRTzJUj51fiPCCJ6sMeBpaG8NqcYz2vX0vcPLX--jp-mo6vK1GDzd3w8tR5YTQbdUQ32jKKLGq-4I9SwFNzb0iSjIhJHHCas2hdg6ssE5r4bWqCZAG4NlrwfvobKO7zOljBaU187TKsbM0nNFa80ZJ2lF6Q7mcSsngzTKHhc2fhhKzTs78J2fGU7NNrrs831zGEIwL60p5QwijWtaUcqo4U-s3xhtsXlr7Clt5m9vg3mFXXikj12XXZsu5mc0GIv8B6gWLqA |
Cites_doi | 10.2320/matertrans.MRP2008445 10.1016/0022-3115(78)90010-7 10.1016/j.scriptamat.2008.05.015 10.1007/s10853-017-0916-x 10.2320/matertrans.MT-MF2022055 10.2320/matertrans.MT-MF2022026 10.2320/matertrans.MT-MF2022004 10.2320/matertrans.MT-MC2024018 10.2320/matertrans.MT-MF2022053 10.2320/matertrans.MT-MF2022009 10.1063/1.4991430 10.2320/matertrans.MT-MF2022011 10.1016/j.physb.2004.10.030 10.2320/matertrans.MT-MF2022021 10.1007/s10853-024-09406-w 10.2320/matertrans.MPR2023905 10.2320/matertrans.MT-MF2022045 10.1016/j.actamat.2014.01.037 10.1063/5.0086694 10.2320/matertrans.MT-MF2022035 10.2320/matertrans.MT-MF2022019 10.2320/matertrans.MT-MF2022046 10.1063/1.4987146 10.2320/matertrans.MT-MF2022030 10.1038/s41598-023-50940-5 10.1007/s11661-010-0400-6 10.1016/j.jallcom.2024.174667 10.1134/S0031918X2108010X 10.2320/matertrans.MT-MF2022025 10.1016/0079-6425(82)90002-0 10.2320/matertrans.MT-MF2022059 10.2320/matertrans.MT-MC2024015 10.1007/s11661-009-9890-5 10.2320/matertrans.MT-M2020074 10.1016/0022-3697(77)90031-2 10.2320/matertrans.MT-MF2022018 10.2320/matertrans.MT-MF2022014 10.2320/matertrans.MT-MF2022056 10.1007/s11837-006-0213-7 10.2320/matertrans.MT-MF2022047 10.1063/1.3253148 10.1016/j.jallcom.2022.164312 10.1016/j.msea.2016.05.001 10.2320/matertrans.MT-MF2022031 10.3139/146.101606 10.1080/21663831.2022.2029779 10.1016/j.pmatsci.2008.03.002 10.2320/matertrans.MT-MF2022036 10.2320/matertrans.MT-MF2022005 10.1103/PhysRev.48.825 10.2320/matertrans.MT-MF2022039 10.1016/j.msea.2020.140687 10.1002/adem.202400282 10.1016/j.matdes.2021.110309 10.2320/matertrans.MT-MF2022044 10.2320/matertrans.MT-MF2022008 10.1063/1.2209540 10.1007/s10853-015-9574-z 10.2320/matertrans.MT-MC2024012 10.1016/j.msea.2022.144542 10.2320/matertrans.MT-MF2022013 10.1007/s40870-017-0129-z 10.2320/matertrans.MT-MF2022041 10.1016/j.msea.2021.142340 10.1063/1.323306 10.2320/matertrans.MT-MF2022034 10.1016/j.msea.2014.07.030 10.2320/matertrans.MT-MF2022048 10.2320/matertrans.MT-MF2022043 10.1016/j.scriptamat.2014.10.029 10.1038/nmat1292 10.2320/matertrans.MT-MF2022057 10.1016/j.vacuum.2022.111510 10.1016/j.msea.2015.11.074 10.1016/j.jmps.2019.03.019 10.1063/1.4950868 10.1016/j.actamat.2013.08.036 10.2320/matertrans.MT-MF2022050 10.2320/matertrans.MT-M2020314 10.1103/RevModPhys.49.523 10.1557/PROC-499-87 10.1016/j.measurement.2011.07.018 10.2320/matertrans.MT-MF2022037 |
ContentType | Journal Article |
Copyright | 2025 The Japan Institute of Metals and Materials Copyright Japan Science and Technology Agency 2025 |
Copyright_xml | – notice: 2025 The Japan Institute of Metals and Materials – notice: Copyright Japan Science and Technology Agency 2025 |
DBID | RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.2320/matertrans.MT-MC2024020 |
DatabaseName | CiNii Complete CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5320 |
EndPage | 589 |
ExternalDocumentID | 10_2320_matertrans_MT_MC2024020 article_matertrans_66_5_66_MT_MC2024020_article_char_en |
GroupedDBID | -~X .L7 .LE 5GY 93D ABJNI ACGFS ACIWK ADMLS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 JSI JSP RJT RZJ SJN RYH AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c447t-90f971210a60372b54e983f606524450c4a773e8ccea4ac774f7680e09eebf743 |
ISSN | 1345-9678 |
IngestDate | Mon Jun 30 07:24:57 EDT 2025 Sun Jul 06 05:05:14 EDT 2025 Fri Jun 27 00:32:07 EDT 2025 Wed Sep 03 06:30:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-90f971210a60372b54e983f606524450c4a773e8ccea4ac774f7680e09eebf743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.2320/matertrans.mt-mc2024020 |
PQID | 3218739651 |
PQPubID | 1976393 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3218739651 crossref_primary_10_2320_matertrans_MT_MC2024020 nii_cinii_1390021758113163264 jstage_primary_article_matertrans_66_5_66_MT_MC2024020_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Sendai |
PublicationPlace_xml | – name: Sendai |
PublicationTitle | MATERIALS TRANSACTIONS |
PublicationTitleAlternate | Mater. Trans. |
PublicationTitle_FL | MATERIALS TRANSACTIONS Mater. Trans |
PublicationYear | 2025 |
Publisher | The Japan Institute of Metals and Materials 公益社団法人 日本金属学会 Japan Science and Technology Agency |
Publisher_xml | – name: The Japan Institute of Metals and Materials – name: 公益社団法人 日本金属学会 – name: Japan Science and Technology Agency |
References | 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 72 73 30 74 31 75 32 76 33 77 34 78 35 79 36 37 38 39 80 81 82 83 40 84 41 85 42 86 43 |
References_xml | – ident: 25 doi: 10.2320/matertrans.MRP2008445 – ident: 31 doi: 10.1016/0022-3115(78)90010-7 – ident: 13 doi: 10.1016/j.scriptamat.2008.05.015 – ident: 22 doi: 10.1007/s10853-017-0916-x – ident: 42 doi: 10.2320/matertrans.MT-MF2022055 – ident: 64 doi: 10.2320/matertrans.MT-MF2022026 – ident: 62 doi: 10.2320/matertrans.MT-MF2022004 – ident: 78 – ident: 29 doi: 10.2320/matertrans.MT-MC2024018 – ident: 83 – ident: 57 doi: 10.2320/matertrans.MT-MF2022053 – ident: 47 doi: 10.2320/matertrans.MT-MF2022009 – ident: 68 doi: 10.1063/1.4991430 – ident: 63 doi: 10.2320/matertrans.MT-MF2022011 – ident: 4 doi: 10.1016/j.physb.2004.10.030 – ident: 46 doi: 10.2320/matertrans.MT-MF2022021 – ident: 77 doi: 10.1007/s10853-024-09406-w – ident: 80 doi: 10.2320/matertrans.MPR2023905 – ident: 72 doi: 10.2320/matertrans.MT-MF2022045 – ident: 17 doi: 10.1016/j.actamat.2014.01.037 – ident: 75 doi: 10.1063/5.0086694 – ident: 52 doi: 10.2320/matertrans.MT-MF2022035 – ident: 58 doi: 10.2320/matertrans.MT-MF2022019 – ident: 65 doi: 10.2320/matertrans.MT-MF2022046 – ident: 34 doi: 10.1063/1.4987146 – ident: 70 doi: 10.2320/matertrans.MT-MF2022030 – ident: 76 doi: 10.1038/s41598-023-50940-5 – ident: 15 doi: 10.1007/s11661-010-0400-6 – ident: 81 doi: 10.1016/j.jallcom.2024.174667 – ident: 37 doi: 10.1134/S0031918X2108010X – ident: 48 doi: 10.2320/matertrans.MT-MF2022025 – ident: 1 doi: 10.1016/0079-6425(82)90002-0 – ident: 60 doi: 10.2320/matertrans.MT-MF2022059 – ident: 6 doi: 10.2320/matertrans.MT-MC2024015 – ident: 14 doi: 10.1007/s11661-009-9890-5 – ident: 26 doi: 10.2320/matertrans.MT-M2020074 – ident: 43 doi: 10.1016/0022-3697(77)90031-2 – ident: 53 doi: 10.2320/matertrans.MT-MF2022018 – ident: 74 doi: 10.2320/matertrans.MT-MF2022014 – ident: 73 doi: 10.2320/matertrans.MT-MF2022056 – ident: 7 doi: 10.1007/s11837-006-0213-7 – ident: 56 doi: 10.2320/matertrans.MT-MF2022047 – ident: 3 doi: 10.1063/1.3253148 – ident: 5 doi: 10.1016/j.jallcom.2022.164312 – ident: 21 doi: 10.1016/j.msea.2016.05.001 – ident: 79 doi: 10.2320/matertrans.MT-MF2022031 – ident: 12 doi: 10.3139/146.101606 – ident: 8 doi: 10.1080/21663831.2022.2029779 – ident: 10 doi: 10.1016/j.pmatsci.2008.03.002 – ident: 61 doi: 10.2320/matertrans.MT-MF2022036 – ident: 44 doi: 10.2320/matertrans.MT-MF2022005 – ident: 9 doi: 10.1103/PhysRev.48.825 – ident: 59 doi: 10.2320/matertrans.MT-MF2022039 – ident: 23 doi: 10.1016/j.msea.2020.140687 – ident: 28 doi: 10.1002/adem.202400282 – ident: 38 doi: 10.1016/j.matdes.2021.110309 – ident: 24 doi: 10.2320/matertrans.MT-MF2022044 – ident: 51 doi: 10.2320/matertrans.MT-MF2022008 – ident: 33 doi: 10.1063/1.2209540 – ident: 20 doi: 10.1007/s10853-015-9574-z – ident: 85 – ident: 84 doi: 10.2320/matertrans.MT-MC2024012 – ident: 41 doi: 10.1016/j.msea.2022.144542 – ident: 45 doi: 10.2320/matertrans.MT-MF2022013 – ident: 35 doi: 10.1007/s40870-017-0129-z – ident: 49 doi: 10.2320/matertrans.MT-MF2022041 – ident: 40 doi: 10.1016/j.msea.2021.142340 – ident: 86 doi: 10.1063/1.323306 – ident: 69 doi: 10.2320/matertrans.MT-MF2022034 – ident: 18 doi: 10.1016/j.msea.2014.07.030 – ident: 66 doi: 10.2320/matertrans.MT-MF2022048 – ident: 71 doi: 10.2320/matertrans.MT-MF2022043 – ident: 19 doi: 10.1016/j.scriptamat.2014.10.029 – ident: 2 doi: 10.1038/nmat1292 – ident: 50 doi: 10.2320/matertrans.MT-MF2022057 – ident: 39 doi: 10.1016/j.vacuum.2022.111510 – ident: 11 doi: 10.1016/j.msea.2015.11.074 – ident: 36 doi: 10.1016/j.jmps.2019.03.019 – ident: 67 doi: 10.1063/1.4950868 – ident: 16 doi: 10.1016/j.actamat.2013.08.036 – ident: 54 doi: 10.2320/matertrans.MT-MF2022050 – ident: 27 doi: 10.2320/matertrans.MT-M2020314 – ident: 30 doi: 10.1103/RevModPhys.49.523 – ident: 32 doi: 10.1557/PROC-499-87 – ident: 82 doi: 10.1016/j.measurement.2011.07.018 – ident: 55 doi: 10.2320/matertrans.MT-MF2022037 |
SSID | ssj0037522 |
Score | 2.4359612 |
Snippet | This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2... |
SourceID | proquest crossref nii jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 584 |
SubjectTerms | Allotropic transformation Hardness measurement High pressure high-pressure torsion Impact velocity pure Ti severe plastic deformation Shear strain Shock loading Vickers microhardness XRD |
Title | Effect of Shock Loading on ω Phase Formation in Pre-Strained Pure Titanium |
URI | https://www.jstage.jst.go.jp/article/matertrans/66/5/66_MT-MC2024020/_article/-char/en https://cir.nii.ac.jp/crid/1390021758113163264 https://www.proquest.com/docview/3218739651 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | MATERIALS TRANSACTIONS, 2025/05/01, Vol.66(5), pp.584-589 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9owFLZou4ftYdpVpWsnP6xPyCwXOyaPiA2xjVRopFLfIidxRIqWVBBe9g_26_aXdhw7IewibdVeLDA4OP4Ox99xzgWhN5kjU9jmBHFomhBKU5vEXuKT2M4s38nSzK2rNwRX3uyafrxhN71eN0PwroqHydffxpXcB1XoA1xVlOw_INteFDrgNeALLSAM7V9hbFIPq7iTFei1wbysPeLVA4DLyfRy5A8WK9ilBtMmQlGdbiw2kizryhDANRfq-UGYA0PMTU6GprrTGHjuh_F8OQg_j6-W2tekc3693aU17QzFWqzyTdme1MAbVdE533-4bTV_WK7NsECsy6odNCvVEUX9nEQWt3n3JMJhe7-_YRvLBjt8cejnEMhKJYLWbiOVXvyOwnUpI76ny_gMZdPHiSpY0dXSujaLkUbWUblMl5gzuzfTBYl-3hiANypPyi9qAlVNAoKQBBNHZXgzv3OYddtgGu1HRJ4XMdUEYdSOjJrvqRg5EMkjdOJwrvwFTsbvgvmyIQUu14nr29vVroZqWm__MKkDovTgFmwFlQTiqMjzX2hDzYXCJ-ixMWLwWM_qKerJ4hl61Elt-Rx90rKJywzXsomNbOKywN-_4VoucSuXOC9wVy6xkkvcyOULdD19H05mxBTuIAmlvCK-lflcZaYTHty5EzMq_ZGbga3MgE0yK6GCc1eOkkQKKhKwQDKwei1p-VLGGXDal-i4KAt5irAdx5ylsCIpBaYs3JG04likwudOmqQO7yOrWaXoTudnicCuVQvbxa6LWR9N9Wq2A-4Jdh9dABpRkqsWLKnavmcj23bByAFDo4_OG5wiozW2kQucmru-x-yz_zWPV-jh_u94jo6rzU5eAFWu4tdGDH8A2H7CNg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Shock+Loading+on+%CF%89+Phase+Formation+in+Pre-Strained+Pure+Titanium&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Masuda%2C+Takahiro&rft.au=Shiraishi%2C+Takahisa&rft.au=Tokuda%2C+Makoto&rft.au=Horita%2C+Zenji&rft.date=2025-05-01&rft.pub=The+Japan+Institute+of+Metals+and+Materials&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=5&rft.spage=584&rft.epage=589&rft_id=info:doi/10.2320%2Fmatertrans.MT-MC2024020&rft.externalDocID=article_matertrans_66_5_66_MT_MC2024020_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon |