Effect of Shock Loading on ω Phase Formation in Pre-Strained Pure Titanium

This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as...

Full description

Saved in:
Bibliographic Details
Published inMATERIALS TRANSACTIONS Vol. 66; no. 5; pp. 584 - 589
Main Authors Masuda, Takahiro, Shiraishi, Takahisa, Tokuda, Makoto, Horita, Zenji, Hokamoto, Kazuyuki, Kiguchi, Takanori, Tanaka, Shigeru
Format Journal Article
LanguageEnglish
Published Sendai The Japan Institute of Metals and Materials 01.05.2025
公益社団法人 日本金属学会
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1345-9678
1347-5320
DOI10.2320/matertrans.MT-MC2024020

Cover

Abstract This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as well as hardness measurement is carried out to check the formation of ω phase. It is shown that intense shear strain before shock loading does not promote the ω phase formation but concurrent shear straining under high pressure is effective for the ω phase formation.
AbstractList This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as well as hardness measurement is carried out to check the formation of ω phase. It is shown that intense shear strain before shock loading does not promote the ω phase formation but concurrent shear straining under high pressure is effective for the ω phase formation.
This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2 and 6 GPa to impart intense shear strain and they are subjected to shock loading at an impact speed of 702 m/s. X-ray diffraction analysis as well as hardness measurement is carried out to check the formation of ω phase. It is shown that intense shear strain before shock loading does not promote the ω phase formation but concurrent shear straining under high pressure is effective for the ω phase formation.Fig. 2 XRD profiles after shock loading of annealed sample and HPT-processed samples under 2 GPa and 6 GPa through 1 turn. (Si peak is visible as standard.) (online color)
ArticleNumber MT-MC2024020
Author Hokamoto, Kazuyuki
Masuda, Takahiro
Tanaka, Shigeru
Shiraishi, Takahisa
Kiguchi, Takanori
Tokuda, Makoto
Horita, Zenji
Author_xml – sequence: 1
  fullname: Masuda, Takahiro
  organization: Graduate School of Engineering, Kyushu Institute of Technology
– sequence: 1
  fullname: Shiraishi, Takahisa
  organization: Magnesium Research Center, Kumamoto University
– sequence: 1
  fullname: Tokuda, Makoto
  organization: Institute of Industrial Nanomaterials (IINa), Kumamoto University
– sequence: 1
  fullname: Horita, Zenji
  organization: Synchrotron Light Application Center, Saga University
– sequence: 1
  fullname: Hokamoto, Kazuyuki
  organization: Institute of Industrial Nanomaterials (IINa), Kumamoto University
– sequence: 1
  fullname: Kiguchi, Takanori
  organization: Magnesium Research Center, Kumamoto University
– sequence: 1
  fullname: Tanaka, Shigeru
  organization: Institute of Industrial Nanomaterials (IINa), Kumamoto University
BackLink https://cir.nii.ac.jp/crid/1390021758113163264$$DView record in CiNii
BookMark eNpNkM1OQjEQhRuDiYo-g010e7H_vXdpiH8RIom4bmqdSlFabC8LH8Gn85W8iEE2M5PJN-dMzhHqxRQBoVNKBowzcrGwLeQ221gG42k1HjLCBGFkDx1SLnQlO6b3O8uqUbo-QEelzAnhWjJ2iO6vvAfX4uTx4yy5NzxK9iXEV5wi_v7Ck5ktgK9T7lxCtwoRTzJUj51fiPCCJ6sMeBpaG8NqcYz2vX0vcPLX--jp-mo6vK1GDzd3w8tR5YTQbdUQ32jKKLGq-4I9SwFNzb0iSjIhJHHCas2hdg6ssE5r4bWqCZAG4NlrwfvobKO7zOljBaU187TKsbM0nNFa80ZJ2lF6Q7mcSsngzTKHhc2fhhKzTs78J2fGU7NNrrs831zGEIwL60p5QwijWtaUcqo4U-s3xhtsXlr7Clt5m9vg3mFXXikj12XXZsu5mc0GIv8B6gWLqA
Cites_doi 10.2320/matertrans.MRP2008445
10.1016/0022-3115(78)90010-7
10.1016/j.scriptamat.2008.05.015
10.1007/s10853-017-0916-x
10.2320/matertrans.MT-MF2022055
10.2320/matertrans.MT-MF2022026
10.2320/matertrans.MT-MF2022004
10.2320/matertrans.MT-MC2024018
10.2320/matertrans.MT-MF2022053
10.2320/matertrans.MT-MF2022009
10.1063/1.4991430
10.2320/matertrans.MT-MF2022011
10.1016/j.physb.2004.10.030
10.2320/matertrans.MT-MF2022021
10.1007/s10853-024-09406-w
10.2320/matertrans.MPR2023905
10.2320/matertrans.MT-MF2022045
10.1016/j.actamat.2014.01.037
10.1063/5.0086694
10.2320/matertrans.MT-MF2022035
10.2320/matertrans.MT-MF2022019
10.2320/matertrans.MT-MF2022046
10.1063/1.4987146
10.2320/matertrans.MT-MF2022030
10.1038/s41598-023-50940-5
10.1007/s11661-010-0400-6
10.1016/j.jallcom.2024.174667
10.1134/S0031918X2108010X
10.2320/matertrans.MT-MF2022025
10.1016/0079-6425(82)90002-0
10.2320/matertrans.MT-MF2022059
10.2320/matertrans.MT-MC2024015
10.1007/s11661-009-9890-5
10.2320/matertrans.MT-M2020074
10.1016/0022-3697(77)90031-2
10.2320/matertrans.MT-MF2022018
10.2320/matertrans.MT-MF2022014
10.2320/matertrans.MT-MF2022056
10.1007/s11837-006-0213-7
10.2320/matertrans.MT-MF2022047
10.1063/1.3253148
10.1016/j.jallcom.2022.164312
10.1016/j.msea.2016.05.001
10.2320/matertrans.MT-MF2022031
10.3139/146.101606
10.1080/21663831.2022.2029779
10.1016/j.pmatsci.2008.03.002
10.2320/matertrans.MT-MF2022036
10.2320/matertrans.MT-MF2022005
10.1103/PhysRev.48.825
10.2320/matertrans.MT-MF2022039
10.1016/j.msea.2020.140687
10.1002/adem.202400282
10.1016/j.matdes.2021.110309
10.2320/matertrans.MT-MF2022044
10.2320/matertrans.MT-MF2022008
10.1063/1.2209540
10.1007/s10853-015-9574-z
10.2320/matertrans.MT-MC2024012
10.1016/j.msea.2022.144542
10.2320/matertrans.MT-MF2022013
10.1007/s40870-017-0129-z
10.2320/matertrans.MT-MF2022041
10.1016/j.msea.2021.142340
10.1063/1.323306
10.2320/matertrans.MT-MF2022034
10.1016/j.msea.2014.07.030
10.2320/matertrans.MT-MF2022048
10.2320/matertrans.MT-MF2022043
10.1016/j.scriptamat.2014.10.029
10.1038/nmat1292
10.2320/matertrans.MT-MF2022057
10.1016/j.vacuum.2022.111510
10.1016/j.msea.2015.11.074
10.1016/j.jmps.2019.03.019
10.1063/1.4950868
10.1016/j.actamat.2013.08.036
10.2320/matertrans.MT-MF2022050
10.2320/matertrans.MT-M2020314
10.1103/RevModPhys.49.523
10.1557/PROC-499-87
10.1016/j.measurement.2011.07.018
10.2320/matertrans.MT-MF2022037
ContentType Journal Article
Copyright 2025 The Japan Institute of Metals and Materials
Copyright Japan Science and Technology Agency 2025
Copyright_xml – notice: 2025 The Japan Institute of Metals and Materials
– notice: Copyright Japan Science and Technology Agency 2025
DBID RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.2320/matertrans.MT-MC2024020
DatabaseName CiNii Complete
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5320
EndPage 589
ExternalDocumentID 10_2320_matertrans_MT_MC2024020
article_matertrans_66_5_66_MT_MC2024020_article_char_en
GroupedDBID -~X
.L7
.LE
5GY
93D
ABJNI
ACGFS
ACIWK
ADMLS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSI
JSP
RJT
RZJ
SJN
RYH
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c447t-90f971210a60372b54e983f606524450c4a773e8ccea4ac774f7680e09eebf743
ISSN 1345-9678
IngestDate Mon Jun 30 07:24:57 EDT 2025
Sun Jul 06 05:05:14 EDT 2025
Fri Jun 27 00:32:07 EDT 2025
Wed Sep 03 06:30:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-90f971210a60372b54e983f606524450c4a773e8ccea4ac774f7680e09eebf743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.2320/matertrans.mt-mc2024020
PQID 3218739651
PQPubID 1976393
PageCount 6
ParticipantIDs proquest_journals_3218739651
crossref_primary_10_2320_matertrans_MT_MC2024020
nii_cinii_1390021758113163264
jstage_primary_article_matertrans_66_5_66_MT_MC2024020_article_char_en
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle MATERIALS TRANSACTIONS
PublicationTitleAlternate Mater. Trans.
PublicationTitle_FL MATERIALS TRANSACTIONS
Mater. Trans
PublicationYear 2025
Publisher The Japan Institute of Metals and Materials
公益社団法人 日本金属学会
Japan Science and Technology Agency
Publisher_xml – name: The Japan Institute of Metals and Materials
– name: 公益社団法人 日本金属学会
– name: Japan Science and Technology Agency
References 44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
72
73
30
74
31
75
32
76
33
77
34
78
35
79
36
37
38
39
80
81
82
83
40
84
41
85
42
86
43
References_xml – ident: 25
  doi: 10.2320/matertrans.MRP2008445
– ident: 31
  doi: 10.1016/0022-3115(78)90010-7
– ident: 13
  doi: 10.1016/j.scriptamat.2008.05.015
– ident: 22
  doi: 10.1007/s10853-017-0916-x
– ident: 42
  doi: 10.2320/matertrans.MT-MF2022055
– ident: 64
  doi: 10.2320/matertrans.MT-MF2022026
– ident: 62
  doi: 10.2320/matertrans.MT-MF2022004
– ident: 78
– ident: 29
  doi: 10.2320/matertrans.MT-MC2024018
– ident: 83
– ident: 57
  doi: 10.2320/matertrans.MT-MF2022053
– ident: 47
  doi: 10.2320/matertrans.MT-MF2022009
– ident: 68
  doi: 10.1063/1.4991430
– ident: 63
  doi: 10.2320/matertrans.MT-MF2022011
– ident: 4
  doi: 10.1016/j.physb.2004.10.030
– ident: 46
  doi: 10.2320/matertrans.MT-MF2022021
– ident: 77
  doi: 10.1007/s10853-024-09406-w
– ident: 80
  doi: 10.2320/matertrans.MPR2023905
– ident: 72
  doi: 10.2320/matertrans.MT-MF2022045
– ident: 17
  doi: 10.1016/j.actamat.2014.01.037
– ident: 75
  doi: 10.1063/5.0086694
– ident: 52
  doi: 10.2320/matertrans.MT-MF2022035
– ident: 58
  doi: 10.2320/matertrans.MT-MF2022019
– ident: 65
  doi: 10.2320/matertrans.MT-MF2022046
– ident: 34
  doi: 10.1063/1.4987146
– ident: 70
  doi: 10.2320/matertrans.MT-MF2022030
– ident: 76
  doi: 10.1038/s41598-023-50940-5
– ident: 15
  doi: 10.1007/s11661-010-0400-6
– ident: 81
  doi: 10.1016/j.jallcom.2024.174667
– ident: 37
  doi: 10.1134/S0031918X2108010X
– ident: 48
  doi: 10.2320/matertrans.MT-MF2022025
– ident: 1
  doi: 10.1016/0079-6425(82)90002-0
– ident: 60
  doi: 10.2320/matertrans.MT-MF2022059
– ident: 6
  doi: 10.2320/matertrans.MT-MC2024015
– ident: 14
  doi: 10.1007/s11661-009-9890-5
– ident: 26
  doi: 10.2320/matertrans.MT-M2020074
– ident: 43
  doi: 10.1016/0022-3697(77)90031-2
– ident: 53
  doi: 10.2320/matertrans.MT-MF2022018
– ident: 74
  doi: 10.2320/matertrans.MT-MF2022014
– ident: 73
  doi: 10.2320/matertrans.MT-MF2022056
– ident: 7
  doi: 10.1007/s11837-006-0213-7
– ident: 56
  doi: 10.2320/matertrans.MT-MF2022047
– ident: 3
  doi: 10.1063/1.3253148
– ident: 5
  doi: 10.1016/j.jallcom.2022.164312
– ident: 21
  doi: 10.1016/j.msea.2016.05.001
– ident: 79
  doi: 10.2320/matertrans.MT-MF2022031
– ident: 12
  doi: 10.3139/146.101606
– ident: 8
  doi: 10.1080/21663831.2022.2029779
– ident: 10
  doi: 10.1016/j.pmatsci.2008.03.002
– ident: 61
  doi: 10.2320/matertrans.MT-MF2022036
– ident: 44
  doi: 10.2320/matertrans.MT-MF2022005
– ident: 9
  doi: 10.1103/PhysRev.48.825
– ident: 59
  doi: 10.2320/matertrans.MT-MF2022039
– ident: 23
  doi: 10.1016/j.msea.2020.140687
– ident: 28
  doi: 10.1002/adem.202400282
– ident: 38
  doi: 10.1016/j.matdes.2021.110309
– ident: 24
  doi: 10.2320/matertrans.MT-MF2022044
– ident: 51
  doi: 10.2320/matertrans.MT-MF2022008
– ident: 33
  doi: 10.1063/1.2209540
– ident: 20
  doi: 10.1007/s10853-015-9574-z
– ident: 85
– ident: 84
  doi: 10.2320/matertrans.MT-MC2024012
– ident: 41
  doi: 10.1016/j.msea.2022.144542
– ident: 45
  doi: 10.2320/matertrans.MT-MF2022013
– ident: 35
  doi: 10.1007/s40870-017-0129-z
– ident: 49
  doi: 10.2320/matertrans.MT-MF2022041
– ident: 40
  doi: 10.1016/j.msea.2021.142340
– ident: 86
  doi: 10.1063/1.323306
– ident: 69
  doi: 10.2320/matertrans.MT-MF2022034
– ident: 18
  doi: 10.1016/j.msea.2014.07.030
– ident: 66
  doi: 10.2320/matertrans.MT-MF2022048
– ident: 71
  doi: 10.2320/matertrans.MT-MF2022043
– ident: 19
  doi: 10.1016/j.scriptamat.2014.10.029
– ident: 2
  doi: 10.1038/nmat1292
– ident: 50
  doi: 10.2320/matertrans.MT-MF2022057
– ident: 39
  doi: 10.1016/j.vacuum.2022.111510
– ident: 11
  doi: 10.1016/j.msea.2015.11.074
– ident: 36
  doi: 10.1016/j.jmps.2019.03.019
– ident: 67
  doi: 10.1063/1.4950868
– ident: 16
  doi: 10.1016/j.actamat.2013.08.036
– ident: 54
  doi: 10.2320/matertrans.MT-MF2022050
– ident: 27
  doi: 10.2320/matertrans.MT-M2020314
– ident: 30
  doi: 10.1103/RevModPhys.49.523
– ident: 32
  doi: 10.1557/PROC-499-87
– ident: 82
  doi: 10.1016/j.measurement.2011.07.018
– ident: 55
  doi: 10.2320/matertrans.MT-MF2022037
SSID ssj0037522
Score 2.4359612
Snippet This study examines the effect of shock loading on allotropic transformation of pure Ti. The samples are initially processed by high-pressure torsion under 2...
SourceID proquest
crossref
nii
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 584
SubjectTerms Allotropic transformation
Hardness measurement
High pressure
high-pressure torsion
Impact velocity
pure Ti
severe plastic deformation
Shear strain
Shock loading
Vickers microhardness
XRD
Title Effect of Shock Loading on ω Phase Formation in Pre-Strained Pure Titanium
URI https://www.jstage.jst.go.jp/article/matertrans/66/5/66_MT-MC2024020/_article/-char/en
https://cir.nii.ac.jp/crid/1390021758113163264
https://www.proquest.com/docview/3218739651
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX MATERIALS TRANSACTIONS, 2025/05/01, Vol.66(5), pp.584-589
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9owFLZou4ftYdpVpWsnP6xPyCwXOyaPiA2xjVRopFLfIidxRIqWVBBe9g_26_aXdhw7IewibdVeLDA4OP4Ox99xzgWhN5kjU9jmBHFomhBKU5vEXuKT2M4s38nSzK2rNwRX3uyafrxhN71eN0PwroqHydffxpXcB1XoA1xVlOw_INteFDrgNeALLSAM7V9hbFIPq7iTFei1wbysPeLVA4DLyfRy5A8WK9ilBtMmQlGdbiw2kizryhDANRfq-UGYA0PMTU6GprrTGHjuh_F8OQg_j6-W2tekc3693aU17QzFWqzyTdme1MAbVdE533-4bTV_WK7NsECsy6odNCvVEUX9nEQWt3n3JMJhe7-_YRvLBjt8cejnEMhKJYLWbiOVXvyOwnUpI76ny_gMZdPHiSpY0dXSujaLkUbWUblMl5gzuzfTBYl-3hiANypPyi9qAlVNAoKQBBNHZXgzv3OYddtgGu1HRJ4XMdUEYdSOjJrvqRg5EMkjdOJwrvwFTsbvgvmyIQUu14nr29vVroZqWm__MKkDovTgFmwFlQTiqMjzX2hDzYXCJ-ixMWLwWM_qKerJ4hl61Elt-Rx90rKJywzXsomNbOKywN-_4VoucSuXOC9wVy6xkkvcyOULdD19H05mxBTuIAmlvCK-lflcZaYTHty5EzMq_ZGbga3MgE0yK6GCc1eOkkQKKhKwQDKwei1p-VLGGXDal-i4KAt5irAdx5ylsCIpBaYs3JG04likwudOmqQO7yOrWaXoTudnicCuVQvbxa6LWR9N9Wq2A-4Jdh9dABpRkqsWLKnavmcj23bByAFDo4_OG5wiozW2kQucmru-x-yz_zWPV-jh_u94jo6rzU5eAFWu4tdGDH8A2H7CNg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Shock+Loading+on+%CF%89+Phase+Formation+in+Pre-Strained+Pure+Titanium&rft.jtitle=MATERIALS+TRANSACTIONS&rft.au=Masuda%2C+Takahiro&rft.au=Shiraishi%2C+Takahisa&rft.au=Tokuda%2C+Makoto&rft.au=Horita%2C+Zenji&rft.date=2025-05-01&rft.pub=The+Japan+Institute+of+Metals+and+Materials&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=66&rft.issue=5&rft.spage=584&rft.epage=589&rft_id=info:doi/10.2320%2Fmatertrans.MT-MC2024020&rft.externalDocID=article_matertrans_66_5_66_MT_MC2024020_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon