Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis

Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 296; p. 100100
Main Authors Rink, Jonathan S., Lin, Adam Yuh, McMahon, Kaylin M., Calvert, Andrea E., Yang, Shuo, Taxter, Tim, Moreira, Jonathan, Chadburn, Amy, Behdad, Amir, Karmali, Reem, Thaxton, C. Shad, Gordon, Leo I.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2021
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake–addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.
AbstractList Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake–addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.
Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.
Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.
ArticleNumber 100100
Author Chadburn, Amy
McMahon, Kaylin M.
Karmali, Reem
Lin, Adam Yuh
Moreira, Jonathan
Rink, Jonathan S.
Taxter, Tim
Behdad, Amir
Yang, Shuo
Calvert, Andrea E.
Gordon, Leo I.
Thaxton, C. Shad
Author_xml – sequence: 1
  givenname: Jonathan S.
  orcidid: 0000-0002-6130-2948
  surname: Rink
  fullname: Rink, Jonathan S.
  organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
– sequence: 2
  givenname: Adam Yuh
  orcidid: 0000-0001-9359-882X
  surname: Lin
  fullname: Lin, Adam Yuh
  organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
– sequence: 3
  givenname: Kaylin M.
  surname: McMahon
  fullname: McMahon, Kaylin M.
  organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
– sequence: 4
  givenname: Andrea E.
  surname: Calvert
  fullname: Calvert, Andrea E.
  organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
– sequence: 5
  givenname: Shuo
  surname: Yang
  fullname: Yang, Shuo
  organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
– sequence: 6
  givenname: Tim
  surname: Taxter
  fullname: Taxter, Tim
  organization: Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
– sequence: 7
  givenname: Jonathan
  surname: Moreira
  fullname: Moreira, Jonathan
  organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
– sequence: 8
  givenname: Amy
  surname: Chadburn
  fullname: Chadburn, Amy
  organization: Department of Pathology, Weill Cornell Medical Center, New York, New York, USA
– sequence: 9
  givenname: Amir
  surname: Behdad
  fullname: Behdad, Amir
  organization: Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
– sequence: 10
  givenname: Reem
  orcidid: 0000-0003-0984-4376
  surname: Karmali
  fullname: Karmali, Reem
  organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
– sequence: 11
  givenname: C. Shad
  orcidid: 0000-0002-4765-6213
  surname: Thaxton
  fullname: Thaxton, C. Shad
  email: cthaxton003@northwestern.edu
  organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
– sequence: 12
  givenname: Leo I.
  orcidid: 0000-0003-1666-7064
  surname: Gordon
  fullname: Gordon, Leo I.
  email: l-gordon@northwestern.edu
  organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33208460$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFOyfkI5csduJNbA5IVQUFqRISKhI3yxlPum6TONjOquUP8LfrsKUqSOCLJc_73njmHZGD0Y9IyEvO1pw14s1VC-svJ7xka8aFlPIJWXEmq6La8G8HZMVYyQtVbuQhOYrxiuUjFH9GDquqZFLUbEV-XphwiQktDWhnSM6P1HcUtr7HmDD4ns5TMtdI3fj4tTDWOli4_naYtn4wFLDvI217D9eRpjmMfodhMfM3zrofi9RNzuaap2DmiLTDEPyUfHTxOXnamT7ii_v7mHz98P7i9GNx_vns0-nJeQFCNKmQXW1lKVVVC8Cm46ZEJVCYtqnbRnR5boSq25QGUTYKOiGVlQDK1DUyBZvqmLzb-05zO6AFHFMwvZ6CG0y41d44_WdldFt96Xe6UUKximWD1_cGwX-f8zb04OIyuhnRz1GXoi4Fk42QWfrqca-HJr-3nwVsL4DgYwzYPUg400vAOgesfwWs9wFnpP4LAZfMElv-rev_B77dg5i3u3MYdASHI6B1ASFp692_4TuOHcOa
CitedBy_id crossref_primary_10_1039_D1TB01289D
crossref_primary_10_1016_j_biomaterials_2024_123022
crossref_primary_10_1021_acsami_4c15472
crossref_primary_10_1038_s41419_023_06295_w
crossref_primary_10_1038_s41598_024_72506_9
crossref_primary_10_1016_j_phymed_2024_156306
crossref_primary_10_1016_j_biopha_2024_116667
crossref_primary_10_1016_j_tranon_2021_101314
crossref_primary_10_3390_ijms24087661
crossref_primary_10_2147_IJN_S439828
crossref_primary_10_1016_j_cbi_2023_110348
crossref_primary_10_1016_j_bbcan_2024_189200
crossref_primary_10_1080_14728222_2021_2011206
crossref_primary_10_1038_s12276_023_01077_y
crossref_primary_10_1038_s41467_024_50073_x
crossref_primary_10_1016_j_mehy_2022_110944
crossref_primary_10_1016_j_yjmcc_2022_10_004
crossref_primary_10_1089_ars_2023_0340
crossref_primary_10_1038_s41419_023_06282_1
crossref_primary_10_1002_advs_202305212
crossref_primary_10_1080_17435390_2023_2203239
crossref_primary_10_1038_s41388_022_02284_z
crossref_primary_10_1002_cam4_4956
crossref_primary_10_1016_j_molmed_2024_08_007
crossref_primary_10_3390_ijms252111384
crossref_primary_10_1111_cas_16009
crossref_primary_10_1186_s12943_024_02130_8
crossref_primary_10_1182_blood_2021012327
crossref_primary_10_1038_s41420_022_01218_8
crossref_primary_10_1007_s10495_022_01795_0
crossref_primary_10_1158_0008_5472_CAN_21_0218
crossref_primary_10_1007_s11626_022_00737_z
crossref_primary_10_1016_j_aqrep_2024_102297
crossref_primary_10_1152_physrev_00031_2024
Cites_doi 10.1007/978-3-319-16555-4_6
10.1038/s41586-019-0945-5
10.1021/acs.molpharmaceut.7b00710
10.1016/j.bbagen.2009.05.012
10.1016/S0021-9258(17)34613-6
10.1158/1078-0432.CCR-17-0539
10.1038/s42255-019-0032-0
10.1038/s41467-019-09277-9
10.1073/pnas.1213657110
10.1074/jbc.M209064200
10.1038/onc.2015.511
10.1038/nchembio.2079
10.1007/s10620-019-05929-4
10.1073/pnas.1603244113
10.1016/j.cell.2017.09.021
10.1002/pmic.201800311
10.1186/s12885-017-3761-z
10.1016/j.biomaterials.2016.05.021
10.1161/ATVBAHA.109.196170
10.1038/srep15724
10.1194/jlr.M054635
10.1097/MOH.0000000000000437
10.3389/fphar.2013.00119
10.1177/1010428317699110
10.1007/s10552-012-0048-1
10.1038/s41598-017-18100-8
10.1111/jcpt.12124
10.1016/j.cell.2012.03.042
10.1634/theoncologist.12-1-20
10.1016/j.clml.2017.10.007
10.1080/14737167.2019.1680288
10.1016/j.bbrc.2005.09.076
10.1038/s41598-018-28777-0
10.18632/oncotarget.14494
10.3389/fphar.2016.00466
10.1016/j.ccr.2013.05.002
10.3389/fphar.2016.00338
10.1016/j.cell.2013.12.010
10.1111/1755-5922.12199
10.1126/science.271.5248.518
10.1042/BCJ20170703
10.1021/nl1041947
10.1002/adfm.201602600
10.1021/acsami.7b18525
10.1158/1535-7163.MCT-17-0981
10.1016/j.cmet.2011.01.015
10.1074/jbc.M114.573840
10.1016/S0303-7207(00)00416-0
10.1161/CIRCRESAHA.107.159079
10.3791/3573-v
10.1586/14737140.2015.990889
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
2020 The Authors 2020
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2020 The Authors 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1074/jbc.RA120.014888
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
ExternalDocumentID PMC7949030
33208460
10_1074_jbc_RA120_014888
S0021925820000903
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA167041
– fundername: NHLBI NIH HHS
  grantid: T32 HL094293
– fundername: NCI NIH HHS
  grantid: T32 CA186897
– fundername: NIAMS NIH HHS
  grantid: T32 AR060710
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
29J
2WC
34G
39C
3O-
4.4
41~
53G
5BI
5GY
5RE
5VS
6I.
6TJ
79B
85S
AAEDW
AAFTH
AAFWJ
AARDX
AAXUO
AAYJJ
AAYOK
ABDNZ
ABFSI
ABOCM
ABPPZ
ABRJW
ABTAH
ACGFO
ACNCT
ACSFO
ACYGS
ADBBV
ADIYS
ADNWM
AENEX
AEXQZ
AFDAS
AFFNX
AFMIJ
AFOSN
AFPKN
AHPSJ
AI.
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BTFSW
C1A
CJ0
CS3
DIK
DU5
E.L
E3Z
EBS
EJD
F20
F5P
FA8
FDB
FRP
GROUPED_DOAJ
GX1
HH5
HYE
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
QZG
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UKR
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZE2
ZGI
ZY4
~02
~KM
.7T
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
H13
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-8f6d8289364ce7f1a2e94e4ab76b74f351ec3f52aee879cf489d8cc9a66e09c53
ISSN 0021-9258
1083-351X
IngestDate Thu Aug 21 18:21:44 EDT 2025
Fri Jul 11 01:52:44 EDT 2025
Thu Apr 03 06:52:30 EDT 2025
Tue Jul 01 04:11:57 EDT 2025
Thu Apr 24 23:05:48 EDT 2025
Fri Feb 23 02:43:02 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ALK
SCARB1
ABC
DLBCL
ferroptosis
DiI
IHC
FL
INSIG1
scavenger receptor type B1 (SCARB1)
Hepes
NF-kB
AuNP
ALCL
BL
FACS
DFO
HSD17B7
STR
HDL
LDL
TFF
FBS
nanotechnology
cholesterol
L-OH
GC
LDLR
high-density lipoprotein (HDL)
DPPC
PDP PE
PBS
L-OOH
glutathione peroxidase 4 (GPX4)
GPX4
HMGCS1
PDX
lymphoma
HDL NPs
lipid peroxidation
SREBP-1a
BCR
SQLE
HCM
MPER
C11-BODIPY
PI
DHCR7
Language English
License This is an open access article under the CC BY license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-8f6d8289364ce7f1a2e94e4ab76b74f351ec3f52aee879cf489d8cc9a66e09c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0984-4376
0000-0002-4765-6213
0000-0002-6130-2948
0000-0001-9359-882X
0000-0003-1666-7064
OpenAccessLink http://dx.doi.org/10.1074/jbc.RA120.014888
PMID 33208460
PQID 2462408748
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7949030
proquest_miscellaneous_2462408748
pubmed_primary_33208460
crossref_primary_10_1074_jbc_RA120_014888
crossref_citationtrail_10_1074_jbc_RA120_014888
elsevier_sciencedirect_doi_10_1074_jbc_RA120_014888
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 2021
Publisher Elsevier Inc
American Society for Biochemistry and Molecular Biology
Publisher_xml – name: Elsevier Inc
– name: American Society for Biochemistry and Molecular Biology
References Klop, van der Pol, van Bruggen, Wang, de Vries, van Santen, O'Flynn, van de Geijn, Njo, Janssen, de Man, Jukema, Rabelink, Rensen, van Kooten (bib41) 2014; 289
Trigatti, Fuller (bib29) 2016; 30
Pianko, Moskowitz, Lesokhin (bib7) 2018; 24
Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib12) 2012; 149
Acton, Rigotti, Landschulz, Xu, Hobbs, Krieger (bib48) 1996; 271
Plebanek, Bhaumik, Bryce, Thaxton (bib52) 2018; 17
Cabanillas, Shah (bib1) 2017; 17
Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bib8) 2014; 156
King, Ganley, Flemington (bib22) 2016; 35
Xu, Lou, Xu, Shi, Ruan, Xiao, Liu, Xiao, Qiu, Bao, Yuan, Chen, Yang, Zhang (bib24) 2017; 39
Saddar, Mineo, Shaul (bib49) 2010; 30
Durham, Chathely, Trigatti (bib28) 2018; 475
Luthi, Lyssenko, Quach, McMahon, Millar, Vickers, Rader, Phillips, Mirkin, Thaxton (bib53) 2015; 56
Hattori, Imai, Furuhama, Sato, Nakagawa (bib45) 2005; 337
Foit, Thaxton (bib46) 2016; 100
Plebanek, Mutharasan, Volpert, Matov, Gatlin, Thaxton (bib36) 2015; 5
Harkins, Patel, Flowers (bib6) 2019; 19
Breitling, Krazeisen, Moller, Adamski (bib18) 2001; 171
Yang, Damiano, Zhang, Tripathy, Luthi, Rink, Ugolkov, Singh, Dave, Gordon, Thaxton (bib26) 2013; 10
Zhu, Saddar, Seetharam, Chambliss, Longoria, Silver, Yuhanna, Shaul, Mineo (bib31) 2008; 102
Limat, Daguindau, Cahn, Nerich, Brion, Perrin, Woronoff-Lemsi, Deconinck (bib4) 2014; 39
Morimoto, Conroy, Ollberding, Henning, Franke, Wilkens, Goodman, Hernandez, Le Marchand, Henderson, Kolonel, Maskarinec (bib5) 2012; 23
Chen, Monti, Juszczynski, Ouyang, Chapuy, Neuberg, Doench, Bogusz, Habermann, Dogan, Witzig, Kutok, Rodig, Golub, Shipp (bib37) 2013; 23
Bell, Rink, Eckerdt, Clymer, Goldman, Thaxton, Platanias (bib19) 2018; 8
Zou, Palte, Deik, Li, Eaton, Wang, Tseng, Deasy, Kost-Alimova, Dancik, Leshchiner, Viswanathan, Signoretti, Choueiri, Boehm (bib14) 2019; 10
Rink, Yang, Cen, Taxter, McMahon, Misener, Behdad, Longnecker, Gordon, Thaxton (bib23) 2017; 14
Intlekofer, Finley (bib13) 2019; 1
Gill, Stevenson, Kristiana, Brown (bib17) 2011; 13
McMahon, Mutharasan, Tripathy, Veliceasa, Bobeica, Shumaker, Luthi, Helfand, Ardehali, Mirkin, Volpert, Thaxton (bib51) 2011; 11
Eaton, Furst, Ruberto, Moosmayer, Hillig, Hilpmann, Zimmermann, Ryan, Niehues, Badock, Kramm, Chen, Clemons, Gradl, Montagnon (bib15) 2018
Jiang, Zhao, Shi, Song, Wang, Qin, Song, Wu, Fang, Liu (bib50) 2019; 65
Stockwell, Friedmann Angeli, Bayir, Bush, Conrad, Dixon, Fulda, Gascon, Hatzios, Kagan, Noel, Jiang, Linkermann, Murphy, Overholtzer (bib10) 2017; 171
Zhang, Liao, Li, Cheng, Fu, Liu, Chen, Liu, Fang, Zhang, Yu (bib30) 2016; 34
McMahon, Plebanek, Thaxton (bib34) 2016; 26
Rink, Sun, Misener, Wang, Zhang, Kibbe, Dravid, Venkatraman, Thaxton (bib38) 2018; 10
Grin, Dwivedi, Chathely, Trigatti, Prat, Seidah, Liaw, Fox-Robichaud (bib40) 2018; 8
McMahon, Foit, Angeloni, Giles, Gordon, Thaxton (bib33) 2015; 166
Gutierrez-Pajares, Ben Hassen, Chevalier, Frank (bib21) 2016; 7
Heward, Kumar, Korfi, Okosun, Fitzgibbon (bib3) 2018; 25
Forcina, Dixon (bib9) 2019; 19
Garcia-Bermudez, Baudrier, Bayraktar, Shen, La, Guarecuco, Yucel, Fiore, Tavora, Freinkman, Chan, Lewis, Min, Inghirami, Sabatini (bib16) 2019; 567
Hayat, Howlader, Reichman, Edwards (bib2) 2007; 12
Innerarity, Mahley, Weisgraber, Bersot (bib39) 1978; 253
McMahon, Scielzo, Angeloni, Deiss-Yehiely, Scarfo, Ranghetti, Ma, Kaplan, Barbaglio, Gordon (bib27) 2017; 8
Mooberry, Sabnis, Panchoo, Nagarajan, Lacko (bib35) 2016; 7
Borchert, Savaskan, Kuhn (bib44) 2003; 278
Conrad, Friedmann Angeli (bib42) 2015; 2
Upton, Unniraman (bib54) 2011
Cruz, Mo, McConathy, Sabnis, Lacko (bib20) 2013; 4
Yang, Kim, Gaschler, Patel, Shchepinov, Stockwell (bib11) 2016; 113
Shimada, Skouta, Kaplan, Yang, Hayano, Dixon, Brown, Valenzuela, Wolpaw, Stockwell (bib47) 2016; 12
Xu, Lou, Shi, Xu, Ruan, Xiao, Liu, Li, Xiao, Qiu, Bao, Yuan, Zhou, Hu, Chen (bib25) 2018; 18
Stoytcheva, Berry (bib43) 2009; 1790
Foit, Giles, Gordon, Thaxton (bib32) 2015; 15
Heward (10.1074/jbc.RA120.014888_bib3) 2018; 25
Dixon (10.1074/jbc.RA120.014888_bib12) 2012; 149
Rink (10.1074/jbc.RA120.014888_bib38) 2018; 10
McMahon (10.1074/jbc.RA120.014888_bib27) 2017; 8
Cabanillas (10.1074/jbc.RA120.014888_bib1) 2017; 17
King (10.1074/jbc.RA120.014888_bib22) 2016; 35
Grin (10.1074/jbc.RA120.014888_bib40) 2018; 8
Borchert (10.1074/jbc.RA120.014888_bib44) 2003; 278
Durham (10.1074/jbc.RA120.014888_bib28) 2018; 475
Breitling (10.1074/jbc.RA120.014888_bib18) 2001; 171
Stockwell (10.1074/jbc.RA120.014888_bib10) 2017; 171
Yang (10.1074/jbc.RA120.014888_bib8) 2014; 156
Hattori (10.1074/jbc.RA120.014888_bib45) 2005; 337
Upton (10.1074/jbc.RA120.014888_bib54) 2011
Hayat (10.1074/jbc.RA120.014888_bib2) 2007; 12
Cruz (10.1074/jbc.RA120.014888_bib20) 2013; 4
McMahon (10.1074/jbc.RA120.014888_bib33) 2015; 166
Gill (10.1074/jbc.RA120.014888_bib17) 2011; 13
McMahon (10.1074/jbc.RA120.014888_bib51) 2011; 11
Bell (10.1074/jbc.RA120.014888_bib19) 2018; 8
Yang (10.1074/jbc.RA120.014888_bib26) 2013; 10
Yang (10.1074/jbc.RA120.014888_bib11) 2016; 113
Foit (10.1074/jbc.RA120.014888_bib32) 2015; 15
Zhu (10.1074/jbc.RA120.014888_bib31) 2008; 102
Plebanek (10.1074/jbc.RA120.014888_bib36) 2015; 5
Harkins (10.1074/jbc.RA120.014888_bib6) 2019; 19
Plebanek (10.1074/jbc.RA120.014888_bib52) 2018; 17
Limat (10.1074/jbc.RA120.014888_bib4) 2014; 39
Klop (10.1074/jbc.RA120.014888_bib41) 2014; 289
Forcina (10.1074/jbc.RA120.014888_bib9) 2019; 19
Xu (10.1074/jbc.RA120.014888_bib24) 2017; 39
Foit (10.1074/jbc.RA120.014888_bib46) 2016; 100
Gutierrez-Pajares (10.1074/jbc.RA120.014888_bib21) 2016; 7
Trigatti (10.1074/jbc.RA120.014888_bib29) 2016; 30
McMahon (10.1074/jbc.RA120.014888_bib34) 2016; 26
Shimada (10.1074/jbc.RA120.014888_bib47) 2016; 12
Acton (10.1074/jbc.RA120.014888_bib48) 1996; 271
Pianko (10.1074/jbc.RA120.014888_bib7) 2018; 24
Conrad (10.1074/jbc.RA120.014888_bib42) 2015; 2
Innerarity (10.1074/jbc.RA120.014888_bib39) 1978; 253
Jiang (10.1074/jbc.RA120.014888_bib50) 2019; 65
Zou (10.1074/jbc.RA120.014888_bib14) 2019; 10
Rink (10.1074/jbc.RA120.014888_bib23) 2017; 14
Mooberry (10.1074/jbc.RA120.014888_bib35) 2016; 7
Luthi (10.1074/jbc.RA120.014888_bib53) 2015; 56
Intlekofer (10.1074/jbc.RA120.014888_bib13) 2019; 1
Garcia-Bermudez (10.1074/jbc.RA120.014888_bib16) 2019; 567
Xu (10.1074/jbc.RA120.014888_bib25) 2018; 18
Chen (10.1074/jbc.RA120.014888_bib37) 2013; 23
Saddar (10.1074/jbc.RA120.014888_bib49) 2010; 30
Eaton (10.1074/jbc.RA120.014888_bib15) 2018
Zhang (10.1074/jbc.RA120.014888_bib30) 2016; 34
Stoytcheva (10.1074/jbc.RA120.014888_bib43) 2009; 1790
Morimoto (10.1074/jbc.RA120.014888_bib5) 2012; 23
References_xml – volume: 337
  start-page: 464
  year: 2005
  end-page: 473
  ident: bib45
  article-title: Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-alpha
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 30
  start-page: 144
  year: 2010
  end-page: 150
  ident: bib49
  article-title: Signaling by the high-affinity HDL receptor scavenger receptor B type I
  publication-title: Arteriosclerosis Thromb. Vasc. Biol.
– volume: 12
  start-page: 20
  year: 2007
  end-page: 37
  ident: bib2
  article-title: Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program
  publication-title: Oncologist
– volume: 19
  start-page: 645
  year: 2019
  end-page: 661
  ident: bib6
  article-title: Cost burden of diffuse large B-cell lymphoma
  publication-title: Expert Rev. Pharmacoecon Outcomes Res.
– volume: 10
  start-page: 6904
  year: 2018
  end-page: 6916
  ident: bib38
  article-title: Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanotherapy for vascular disease
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 17
  start-page: 783
  year: 2017
  end-page: 796
  ident: bib1
  article-title: Advances in diagnosis and management of diffuse large B-cell lymphoma
  publication-title: Clin. Lymphoma Myeloma Leuk.
– volume: 8
  start-page: 1211
  year: 2018
  ident: bib19
  article-title: HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma
  publication-title: Scientific Rep.
– volume: 25
  start-page: 329
  year: 2018
  end-page: 334
  ident: bib3
  article-title: Precision medicine and lymphoma
  publication-title: Curr. Opin. Hematol.
– volume: 7
  start-page: 466
  year: 2016
  ident: bib35
  article-title: Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging
  publication-title: Front. Pharmacol.
– volume: 11
  start-page: 1208
  year: 2011
  end-page: 1214
  ident: bib51
  article-title: Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery
  publication-title: Nano Lett.
– volume: 156
  start-page: 317
  year: 2014
  end-page: 331
  ident: bib8
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
– volume: 102
  start-page: 480
  year: 2008
  end-page: 487
  ident: bib31
  article-title: The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity
  publication-title: Circ. Res.
– volume: 289
  start-page: 35421
  year: 2014
  end-page: 35430
  ident: bib41
  article-title: Differential complement activation pathways promote C3b deposition on native and acetylated LDL thereby inducing lipoprotein binding to the complement receptor 1
  publication-title: J. Biol. Chem.
– volume: 113
  start-page: E4966
  year: 2016
  end-page: E4975
  ident: bib11
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 166
  start-page: 129
  year: 2015
  end-page: 150
  ident: bib33
  article-title: Synthetic high-density lipoprotein-like nanoparticles as cancer therapy
  publication-title: Cancer Treat. Res.
– volume: 253
  start-page: 6289
  year: 1978
  end-page: 6295
  ident: bib39
  article-title: Apoprotein (E--A-II) complex of human plasma lipoproteins. II. Receptor binding activity of a high density lipoprotein subfraction modulated by the apo(E--A-II) complex
  publication-title: J. Biol. Chem.
– volume: 19
  year: 2019
  ident: bib9
  article-title: GPX4 at the crossroads of lipid homeostasis and ferroptosis
  publication-title: Proteomics
– volume: 23
  start-page: 826
  year: 2013
  end-page: 838
  ident: bib37
  article-title: SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas
  publication-title: Cancer Cell
– volume: 1
  start-page: 177
  year: 2019
  end-page: 188
  ident: bib13
  article-title: Metabolic signatures of cancer cells and stem cells
  publication-title: Nat. Metab.
– volume: 2
  year: 2015
  ident: bib42
  article-title: Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it?
  publication-title: Mol. Cell Oncol.
– volume: 39
  start-page: 168
  year: 2014
  end-page: 174
  ident: bib4
  article-title: Incidence and risk-factors of CHOP/R-CHOP-related cardiotoxicity in patients with aggressive non-Hodgkin's lymphoma
  publication-title: J. Clin. Pharm. Ther.
– volume: 14
  start-page: 4042
  year: 2017
  end-page: 4051
  ident: bib23
  article-title: Rational targeting of cellular cholesterol in diffuse large B-cell lymphoma (DLBCL) enabled by functional lipoprotein nanoparticles: a therapeutic strategy dependent on cell of origin
  publication-title: Mol. Pharm.
– volume: 34
  start-page: 308
  year: 2016
  end-page: 313
  ident: bib30
  article-title: Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway
  publication-title: Cardiovasc. Ther.
– volume: 30
  start-page: 94
  year: 2016
  end-page: 100
  ident: bib29
  article-title: HDL signaling and protection against coronary artery atherosclerosis in mice
  publication-title: J. Biomed. Res.
– volume: 1790
  start-page: 1429
  year: 2009
  end-page: 1440
  ident: bib43
  article-title: Transcriptional regulation of mammalian selenoprotein expression
  publication-title: Biochim. Biophys. Acta.
– volume: 271
  start-page: 518
  year: 1996
  end-page: 520
  ident: bib48
  article-title: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor
  publication-title: Science
– volume: 65
  start-page: 1999
  year: 2019
  end-page: 2008
  ident: bib50
  article-title: DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma
  publication-title: Dig. Dis. Sci.
– volume: 10
  start-page: 1617
  year: 2019
  ident: bib14
  article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis
  publication-title: Nat. Commun.
– volume: 278
  start-page: 2571
  year: 2003
  end-page: 2580
  ident: bib44
  article-title: Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Tissue-specific expression pattern and identification of functional cis- and trans-regulatory elements
  publication-title: J. Biol. Chem.
– volume: 171
  start-page: 199
  year: 2001
  end-page: 204
  ident: bib18
  article-title: 17beta-hydroxysteroid dehydrogenase type 7–an ancient 3-ketosteroid reductase of cholesterogenesis
  publication-title: Mol. Cell Endocrinol.
– volume: 8
  start-page: 10496
  year: 2018
  ident: bib40
  article-title: Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor
  publication-title: Scientific Rep.
– volume: 171
  start-page: 273
  year: 2017
  end-page: 285
  ident: bib10
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox Biology, and disease
  publication-title: Cell
– volume: 15
  start-page: 27
  year: 2015
  end-page: 34
  ident: bib32
  article-title: Synthetic high-density lipoprotein-like nanoparticles for cancer therapy
  publication-title: Expert Rev. Anticancer Ther.
– volume: 100
  start-page: 67
  year: 2016
  end-page: 75
  ident: bib46
  article-title: Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4
  publication-title: Biomaterials
– volume: 567
  start-page: 118
  year: 2019
  end-page: 122
  ident: bib16
  article-title: Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death
  publication-title: Nature
– year: 2018
  ident: bib15
  article-title: Targeting a therapy-resistant cancer cell state using masked electrophiles as GPX4 inhibitors
  publication-title: bioRxiv
– volume: 7
  start-page: 338
  year: 2016
  ident: bib21
  article-title: SR-BI: linking cholesterol and lipoprotein metabolism with breast and prostate cancer
  publication-title: Front. Pharmacol.
– volume: 35
  start-page: 4518
  year: 2016
  end-page: 4528
  ident: bib22
  article-title: Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells
  publication-title: Oncogene
– year: 2011
  ident: bib54
  article-title: Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes
  publication-title: J. Vis. Exp.
– volume: 23
  start-page: 1693
  year: 2012
  end-page: 1703
  ident: bib5
  article-title: Erythrocyte membrane fatty acid composition, serum lipids, and non-Hodgkin's lymphoma risk in a nested case-control study: the multiethnic cohort
  publication-title: Cancer Cause Control
– volume: 18
  start-page: 88
  year: 2018
  ident: bib25
  article-title: Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma
  publication-title: BMC Cancer
– volume: 12
  start-page: 497
  year: 2016
  end-page: 503
  ident: bib47
  article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis
  publication-title: Nat. Chem. Biol.
– volume: 56
  start-page: 972
  year: 2015
  end-page: 985
  ident: bib53
  article-title: Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high-density lipoprotein
  publication-title: J. Lipid Res.
– volume: 13
  start-page: 260
  year: 2011
  end-page: 273
  ident: bib17
  article-title: Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase
  publication-title: Cell Metab.
– volume: 26
  start-page: 7824
  year: 2016
  end-page: 7835
  ident: bib34
  article-title: Properties of native high-density lipoproteins inspire synthesis of actively targeted in vivo siRNA delivery vehicles
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 11219
  year: 2017
  ident: bib27
  article-title: Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia
  publication-title: Oncotarget
– volume: 39
  year: 2017
  ident: bib24
  article-title: Diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma
  publication-title: Tumour Biol.
– volume: 475
  start-page: 1253
  year: 2018
  end-page: 1265
  ident: bib28
  article-title: High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2
  publication-title: Biochem. J.
– volume: 17
  start-page: 686
  year: 2018
  end-page: 697
  ident: bib52
  article-title: Scavenger receptor type B1 and lipoprotein nanoparticle inhibit myeloid-derived suppressor cells
  publication-title: Mol. Cancer Ther.
– volume: 10
  start-page: 2511
  year: 2013
  end-page: 2516
  ident: bib26
  article-title: Biomimetic, synthetic HDL nanostructures for lymphoma
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 24
  start-page: 1002
  year: 2018
  end-page: 1010
  ident: bib7
  article-title: Immunotherapy of lymphoma and myeloma: facts and hopes
  publication-title: Clin. Cancer Res.
– volume: 5
  start-page: 15724
  year: 2015
  ident: bib36
  article-title: Nanoparticle targeting and cholesterol flux through scavenger receptor type B-1 inhibits cellular exosome uptake
  publication-title: Scientific Rep.
– volume: 149
  start-page: 1060
  year: 2012
  end-page: 1072
  ident: bib12
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
– volume: 4
  start-page: 119
  year: 2013
  ident: bib20
  article-title: The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics
  publication-title: Front. Pharmacol.
– volume: 2
  year: 2015
  ident: 10.1074/jbc.RA120.014888_bib42
  article-title: Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it?
  publication-title: Mol. Cell Oncol.
– year: 2018
  ident: 10.1074/jbc.RA120.014888_bib15
  article-title: Targeting a therapy-resistant cancer cell state using masked electrophiles as GPX4 inhibitors
  publication-title: bioRxiv
– volume: 166
  start-page: 129
  year: 2015
  ident: 10.1074/jbc.RA120.014888_bib33
  article-title: Synthetic high-density lipoprotein-like nanoparticles as cancer therapy
  publication-title: Cancer Treat. Res.
  doi: 10.1007/978-3-319-16555-4_6
– volume: 567
  start-page: 118
  year: 2019
  ident: 10.1074/jbc.RA120.014888_bib16
  article-title: Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death
  publication-title: Nature
  doi: 10.1038/s41586-019-0945-5
– volume: 14
  start-page: 4042
  year: 2017
  ident: 10.1074/jbc.RA120.014888_bib23
  article-title: Rational targeting of cellular cholesterol in diffuse large B-cell lymphoma (DLBCL) enabled by functional lipoprotein nanoparticles: a therapeutic strategy dependent on cell of origin
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.7b00710
– volume: 1790
  start-page: 1429
  year: 2009
  ident: 10.1074/jbc.RA120.014888_bib43
  article-title: Transcriptional regulation of mammalian selenoprotein expression
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbagen.2009.05.012
– volume: 253
  start-page: 6289
  year: 1978
  ident: 10.1074/jbc.RA120.014888_bib39
  article-title: Apoprotein (E--A-II) complex of human plasma lipoproteins. II. Receptor binding activity of a high density lipoprotein subfraction modulated by the apo(E--A-II) complex
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)34613-6
– volume: 24
  start-page: 1002
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib7
  article-title: Immunotherapy of lymphoma and myeloma: facts and hopes
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0539
– volume: 1
  start-page: 177
  year: 2019
  ident: 10.1074/jbc.RA120.014888_bib13
  article-title: Metabolic signatures of cancer cells and stem cells
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-019-0032-0
– volume: 10
  start-page: 1617
  year: 2019
  ident: 10.1074/jbc.RA120.014888_bib14
  article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09277-9
– volume: 10
  start-page: 2511
  year: 2013
  ident: 10.1074/jbc.RA120.014888_bib26
  article-title: Biomimetic, synthetic HDL nanostructures for lymphoma
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1213657110
– volume: 278
  start-page: 2571
  year: 2003
  ident: 10.1074/jbc.RA120.014888_bib44
  article-title: Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Tissue-specific expression pattern and identification of functional cis- and trans-regulatory elements
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M209064200
– volume: 35
  start-page: 4518
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib22
  article-title: Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells
  publication-title: Oncogene
  doi: 10.1038/onc.2015.511
– volume: 12
  start-page: 497
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib47
  article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2079
– volume: 65
  start-page: 1999
  year: 2019
  ident: 10.1074/jbc.RA120.014888_bib50
  article-title: DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-019-05929-4
– volume: 113
  start-page: E4966
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib11
  article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1603244113
– volume: 171
  start-page: 273
  year: 2017
  ident: 10.1074/jbc.RA120.014888_bib10
  article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox Biology, and disease
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.021
– volume: 19
  year: 2019
  ident: 10.1074/jbc.RA120.014888_bib9
  article-title: GPX4 at the crossroads of lipid homeostasis and ferroptosis
  publication-title: Proteomics
  doi: 10.1002/pmic.201800311
– volume: 18
  start-page: 88
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib25
  article-title: Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3761-z
– volume: 100
  start-page: 67
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib46
  article-title: Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.05.021
– volume: 30
  start-page: 144
  year: 2010
  ident: 10.1074/jbc.RA120.014888_bib49
  article-title: Signaling by the high-affinity HDL receptor scavenger receptor B type I
  publication-title: Arteriosclerosis Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.109.196170
– volume: 5
  start-page: 15724
  year: 2015
  ident: 10.1074/jbc.RA120.014888_bib36
  article-title: Nanoparticle targeting and cholesterol flux through scavenger receptor type B-1 inhibits cellular exosome uptake
  publication-title: Scientific Rep.
  doi: 10.1038/srep15724
– volume: 56
  start-page: 972
  year: 2015
  ident: 10.1074/jbc.RA120.014888_bib53
  article-title: Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high-density lipoprotein
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M054635
– volume: 25
  start-page: 329
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib3
  article-title: Precision medicine and lymphoma
  publication-title: Curr. Opin. Hematol.
  doi: 10.1097/MOH.0000000000000437
– volume: 4
  start-page: 119
  year: 2013
  ident: 10.1074/jbc.RA120.014888_bib20
  article-title: The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2013.00119
– volume: 39
  year: 2017
  ident: 10.1074/jbc.RA120.014888_bib24
  article-title: Diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma
  publication-title: Tumour Biol.
  doi: 10.1177/1010428317699110
– volume: 23
  start-page: 1693
  year: 2012
  ident: 10.1074/jbc.RA120.014888_bib5
  article-title: Erythrocyte membrane fatty acid composition, serum lipids, and non-Hodgkin's lymphoma risk in a nested case-control study: the multiethnic cohort
  publication-title: Cancer Cause Control
  doi: 10.1007/s10552-012-0048-1
– volume: 8
  start-page: 1211
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib19
  article-title: HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma
  publication-title: Scientific Rep.
  doi: 10.1038/s41598-017-18100-8
– volume: 39
  start-page: 168
  year: 2014
  ident: 10.1074/jbc.RA120.014888_bib4
  article-title: Incidence and risk-factors of CHOP/R-CHOP-related cardiotoxicity in patients with aggressive non-Hodgkin's lymphoma
  publication-title: J. Clin. Pharm. Ther.
  doi: 10.1111/jcpt.12124
– volume: 149
  start-page: 1060
  year: 2012
  ident: 10.1074/jbc.RA120.014888_bib12
  article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– volume: 12
  start-page: 20
  year: 2007
  ident: 10.1074/jbc.RA120.014888_bib2
  article-title: Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program
  publication-title: Oncologist
  doi: 10.1634/theoncologist.12-1-20
– volume: 17
  start-page: 783
  year: 2017
  ident: 10.1074/jbc.RA120.014888_bib1
  article-title: Advances in diagnosis and management of diffuse large B-cell lymphoma
  publication-title: Clin. Lymphoma Myeloma Leuk.
  doi: 10.1016/j.clml.2017.10.007
– volume: 19
  start-page: 645
  year: 2019
  ident: 10.1074/jbc.RA120.014888_bib6
  article-title: Cost burden of diffuse large B-cell lymphoma
  publication-title: Expert Rev. Pharmacoecon Outcomes Res.
  doi: 10.1080/14737167.2019.1680288
– volume: 337
  start-page: 464
  year: 2005
  ident: 10.1074/jbc.RA120.014888_bib45
  article-title: Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-alpha
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2005.09.076
– volume: 8
  start-page: 10496
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib40
  article-title: Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor
  publication-title: Scientific Rep.
  doi: 10.1038/s41598-018-28777-0
– volume: 30
  start-page: 94
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib29
  article-title: HDL signaling and protection against coronary artery atherosclerosis in mice
  publication-title: J. Biomed. Res.
– volume: 8
  start-page: 11219
  year: 2017
  ident: 10.1074/jbc.RA120.014888_bib27
  article-title: Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14494
– volume: 7
  start-page: 466
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib35
  article-title: Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00466
– volume: 23
  start-page: 826
  year: 2013
  ident: 10.1074/jbc.RA120.014888_bib37
  article-title: SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.05.002
– volume: 7
  start-page: 338
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib21
  article-title: SR-BI: linking cholesterol and lipoprotein metabolism with breast and prostate cancer
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2016.00338
– volume: 156
  start-page: 317
  year: 2014
  ident: 10.1074/jbc.RA120.014888_bib8
  article-title: Regulation of ferroptotic cancer cell death by GPX4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.12.010
– volume: 34
  start-page: 308
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib30
  article-title: Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway
  publication-title: Cardiovasc. Ther.
  doi: 10.1111/1755-5922.12199
– volume: 271
  start-page: 518
  year: 1996
  ident: 10.1074/jbc.RA120.014888_bib48
  article-title: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor
  publication-title: Science
  doi: 10.1126/science.271.5248.518
– volume: 475
  start-page: 1253
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib28
  article-title: High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20170703
– volume: 11
  start-page: 1208
  year: 2011
  ident: 10.1074/jbc.RA120.014888_bib51
  article-title: Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery
  publication-title: Nano Lett.
  doi: 10.1021/nl1041947
– volume: 26
  start-page: 7824
  year: 2016
  ident: 10.1074/jbc.RA120.014888_bib34
  article-title: Properties of native high-density lipoproteins inspire synthesis of actively targeted in vivo siRNA delivery vehicles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602600
– volume: 10
  start-page: 6904
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib38
  article-title: Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanotherapy for vascular disease
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b18525
– volume: 17
  start-page: 686
  year: 2018
  ident: 10.1074/jbc.RA120.014888_bib52
  article-title: Scavenger receptor type B1 and lipoprotein nanoparticle inhibit myeloid-derived suppressor cells
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-17-0981
– volume: 13
  start-page: 260
  year: 2011
  ident: 10.1074/jbc.RA120.014888_bib17
  article-title: Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.01.015
– volume: 289
  start-page: 35421
  year: 2014
  ident: 10.1074/jbc.RA120.014888_bib41
  article-title: Differential complement activation pathways promote C3b deposition on native and acetylated LDL thereby inducing lipoprotein binding to the complement receptor 1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.573840
– volume: 171
  start-page: 199
  year: 2001
  ident: 10.1074/jbc.RA120.014888_bib18
  article-title: 17beta-hydroxysteroid dehydrogenase type 7–an ancient 3-ketosteroid reductase of cholesterogenesis
  publication-title: Mol. Cell Endocrinol.
  doi: 10.1016/S0303-7207(00)00416-0
– volume: 102
  start-page: 480
  year: 2008
  ident: 10.1074/jbc.RA120.014888_bib31
  article-title: The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.107.159079
– year: 2011
  ident: 10.1074/jbc.RA120.014888_bib54
  article-title: Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes
  publication-title: J. Vis. Exp.
  doi: 10.3791/3573-v
– volume: 15
  start-page: 27
  year: 2015
  ident: 10.1074/jbc.RA120.014888_bib32
  article-title: Synthetic high-density lipoprotein-like nanoparticles for cancer therapy
  publication-title: Expert Rev. Anticancer Ther.
  doi: 10.1586/14737140.2015.990889
SSID ssj0000491
Score 2.5083573
Snippet Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100100
SubjectTerms Animals
cholesterol
Cholesterol - genetics
Cholesterol - metabolism
Ferroptosis
glutathione peroxidase 4 (GPX4)
high-density lipoprotein (HDL)
Humans
Jurkat Cells
lipid peroxidation
lymphoma
Lymphoma - genetics
Lymphoma - metabolism
Lymphoma - pathology
Mice
Mice, SCID
nanotechnology
Neoplasm Proteins - metabolism
Oxidation-Reduction
Phospholipid Hydroperoxide Glutathione Peroxidase - genetics
Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism
scavenger receptor type B1 (SCARB1)
Scavenger Receptors, Class B - genetics
Scavenger Receptors, Class B - metabolism
U937 Cells
Title Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis
URI https://dx.doi.org/10.1074/jbc.RA120.014888
https://www.ncbi.nlm.nih.gov/pubmed/33208460
https://www.proquest.com/docview/2462408748
https://pubmed.ncbi.nlm.nih.gov/PMC7949030
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97C9jK3d1uxSNBiDEZz6ovjyGEpLWZOOjQSyJyPLMjVN7JA4sPQP7HU_eedItuO0Wen2YoIiy8bfZ5-Ljj4R8jH2wUgInhg-2AaDebFlRAHEPGbME0dyx3GUTvfw0j0fsy-T3qTV-t2oWloVUVfc7FxX8j-oQhvgiqtk_wHZelBogN-ALxwBYTg-DGNVxi1xAUqsVWBVlThueYv6B_m0s5oX_FrpgjRaDSwiEnjedA1g5jPewfz9EqvYxfWyA1Yow8pOHCz_mcbpDXZN52ms5CAEXy1lJ5GLRT4v8mW6bDq4m6VmysnVGk9ahaTaWq6e44EwuJnA32RhB6WwQcxnnR-rOmE9FEN-pasELvgaK-gbUyhY4V3UJZq8XGFR5jNsq5HP0J9gcApxfcFEW6gdbeV32w6aX17UklKap3eNAnhJaBQi0f3et2yzi0lUvZfgtv725dfwbDwYhKPTyegReWxD4IF7Ylx82-jPQzxl6SUb-n7KiW-4wvHt8f_m6NwNZG7X4zYcnNFz8qwEjfY1zV6Qlsz2yUEfsMlna_qJqlphNQmzT56cVGAekF8VC2nNQpontME3qllI04zuYiGtWEgVC6lmIa1YiINVLKSahbTIqWIhbbDwJRmfnY5Ozo1yew9DMOYVhp-4Mcb7jsuE9BKL2zJgkvHIcyOPJfB4pXCSns2l9L1AJMwPYl-IgLuuNAPRc16RvSzP5CGh3LEt7GUnZsQkl9yzIM7o-V7MHDOIkzY5rrAIRal9j1uwTENVg-GxENALFXqhRq9NPtdnzLXuyz19nQresPRbtT8aAgPvOetDxYQQEMMnzDOZr5ahzVwUHvQY9HmtmVHfg-PYJoQMZpt4W5ypO6Bc_PY_WXqlZOPB8gZg0t884LpvydPNq_mO7BWLlXwPzncRHamk1ZF6K_4AOZTkKA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+reduction+of+cholesterol+uptake+in+cholesterol-addicted+lymphoma+cells+blocks+turnover+of+oxidized+lipids+to+cause+ferroptosis&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Rink%2C+Jonathan+S&rft.au=Lin%2C+Adam+Yuh&rft.au=McMahon%2C+Kaylin+M&rft.au=Calvert%2C+Andrea+E&rft.date=2021-01-01&rft.issn=1083-351X&rft.eissn=1083-351X&rft.volume=296&rft.spage=100100&rft_id=info:doi/10.1074%2Fjbc.RA120.014888&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon