Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis
Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival....
Saved in:
Published in | The Journal of biological chemistry Vol. 296; p. 100100 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.01.2021
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake–addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis. |
---|---|
AbstractList | Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results
in vivo
after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake–addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis. Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis. Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis.Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo cholesterol synthesis genes are transcriptionally silent or mutated, meaning that cholesterol uptake from lipoproteins is required for survival. Recent data suggest that lymphoma cells dependent upon lipoprotein-mediated cholesterol uptake are also subject to ferroptosis, an oxygen- and iron-dependent cell death mechanism triggered by accumulation of oxidized lipids in cell membranes unless the lipid hydroperoxidase, glutathione peroxidase 4 (GPX4), reduces these toxic lipid species. To study mechanisms linking cholesterol uptake with ferroptosis and determine the potential role of the high-density lipoprotein (HDL) receptor as a target for cholesterol depleting therapy, we treated lymphoma cell lines known to be sensitive to the reduction of cholesterol uptake with HDL-like nanoparticles (HDL NPs). HDL NPs are a cholesterol-poor ligand that binds to the receptor for cholesterol-rich HDLs, scavenger receptor type B1 (SCARB1). Our data reveal that HDL NP treatment activates a compensatory metabolic response in treated cells toward increased de novo cholesterol synthesis, which is accompanied by nearly complete reduction in expression of GPX4. As a result, oxidized membrane lipids accumulate, leading to cell death through a mechanism consistent with ferroptosis. We obtained similar results in vivo after systemic administration of HDL NPs in mouse lymphoma xenografts and in primary samples obtained from patients with lymphoma. In summary, targeting SCARB1 with HDL NPs in cholesterol uptake-addicted lymphoma cells abolishes GPX4, resulting in cancer cell death by a mechanism consistent with ferroptosis. |
ArticleNumber | 100100 |
Author | Chadburn, Amy McMahon, Kaylin M. Karmali, Reem Lin, Adam Yuh Moreira, Jonathan Rink, Jonathan S. Taxter, Tim Behdad, Amir Yang, Shuo Calvert, Andrea E. Gordon, Leo I. Thaxton, C. Shad |
Author_xml | – sequence: 1 givenname: Jonathan S. orcidid: 0000-0002-6130-2948 surname: Rink fullname: Rink, Jonathan S. organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA – sequence: 2 givenname: Adam Yuh orcidid: 0000-0001-9359-882X surname: Lin fullname: Lin, Adam Yuh organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA – sequence: 3 givenname: Kaylin M. surname: McMahon fullname: McMahon, Kaylin M. organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA – sequence: 4 givenname: Andrea E. surname: Calvert fullname: Calvert, Andrea E. organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA – sequence: 5 givenname: Shuo surname: Yang fullname: Yang, Shuo organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA – sequence: 6 givenname: Tim surname: Taxter fullname: Taxter, Tim organization: Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA – sequence: 7 givenname: Jonathan surname: Moreira fullname: Moreira, Jonathan organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA – sequence: 8 givenname: Amy surname: Chadburn fullname: Chadburn, Amy organization: Department of Pathology, Weill Cornell Medical Center, New York, New York, USA – sequence: 9 givenname: Amir surname: Behdad fullname: Behdad, Amir organization: Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA – sequence: 10 givenname: Reem orcidid: 0000-0003-0984-4376 surname: Karmali fullname: Karmali, Reem organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA – sequence: 11 givenname: C. Shad orcidid: 0000-0002-4765-6213 surname: Thaxton fullname: Thaxton, C. Shad email: cthaxton003@northwestern.edu organization: Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA – sequence: 12 givenname: Leo I. orcidid: 0000-0003-1666-7064 surname: Gordon fullname: Gordon, Leo I. email: l-gordon@northwestern.edu organization: Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33208460$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1URLeFOyfkI5csduJNbA5IVQUFqRISKhI3yxlPum6TONjOquUP8LfrsKUqSOCLJc_73njmHZGD0Y9IyEvO1pw14s1VC-svJ7xka8aFlPIJWXEmq6La8G8HZMVYyQtVbuQhOYrxiuUjFH9GDquqZFLUbEV-XphwiQktDWhnSM6P1HcUtr7HmDD4ns5TMtdI3fj4tTDWOli4_naYtn4wFLDvI217D9eRpjmMfodhMfM3zrofi9RNzuaap2DmiLTDEPyUfHTxOXnamT7ii_v7mHz98P7i9GNx_vns0-nJeQFCNKmQXW1lKVVVC8Cm46ZEJVCYtqnbRnR5boSq25QGUTYKOiGVlQDK1DUyBZvqmLzb-05zO6AFHFMwvZ6CG0y41d44_WdldFt96Xe6UUKximWD1_cGwX-f8zb04OIyuhnRz1GXoi4Fk42QWfrqca-HJr-3nwVsL4DgYwzYPUg400vAOgesfwWs9wFnpP4LAZfMElv-rev_B77dg5i3u3MYdASHI6B1ASFp692_4TuOHcOa |
CitedBy_id | crossref_primary_10_1039_D1TB01289D crossref_primary_10_1016_j_biomaterials_2024_123022 crossref_primary_10_1021_acsami_4c15472 crossref_primary_10_1038_s41419_023_06295_w crossref_primary_10_1038_s41598_024_72506_9 crossref_primary_10_1016_j_phymed_2024_156306 crossref_primary_10_1016_j_biopha_2024_116667 crossref_primary_10_1016_j_tranon_2021_101314 crossref_primary_10_3390_ijms24087661 crossref_primary_10_2147_IJN_S439828 crossref_primary_10_1016_j_cbi_2023_110348 crossref_primary_10_1016_j_bbcan_2024_189200 crossref_primary_10_1080_14728222_2021_2011206 crossref_primary_10_1038_s12276_023_01077_y crossref_primary_10_1038_s41467_024_50073_x crossref_primary_10_1016_j_mehy_2022_110944 crossref_primary_10_1016_j_yjmcc_2022_10_004 crossref_primary_10_1089_ars_2023_0340 crossref_primary_10_1038_s41419_023_06282_1 crossref_primary_10_1002_advs_202305212 crossref_primary_10_1080_17435390_2023_2203239 crossref_primary_10_1038_s41388_022_02284_z crossref_primary_10_1002_cam4_4956 crossref_primary_10_1016_j_molmed_2024_08_007 crossref_primary_10_3390_ijms252111384 crossref_primary_10_1111_cas_16009 crossref_primary_10_1186_s12943_024_02130_8 crossref_primary_10_1182_blood_2021012327 crossref_primary_10_1038_s41420_022_01218_8 crossref_primary_10_1007_s10495_022_01795_0 crossref_primary_10_1158_0008_5472_CAN_21_0218 crossref_primary_10_1007_s11626_022_00737_z crossref_primary_10_1016_j_aqrep_2024_102297 crossref_primary_10_1152_physrev_00031_2024 |
Cites_doi | 10.1007/978-3-319-16555-4_6 10.1038/s41586-019-0945-5 10.1021/acs.molpharmaceut.7b00710 10.1016/j.bbagen.2009.05.012 10.1016/S0021-9258(17)34613-6 10.1158/1078-0432.CCR-17-0539 10.1038/s42255-019-0032-0 10.1038/s41467-019-09277-9 10.1073/pnas.1213657110 10.1074/jbc.M209064200 10.1038/onc.2015.511 10.1038/nchembio.2079 10.1007/s10620-019-05929-4 10.1073/pnas.1603244113 10.1016/j.cell.2017.09.021 10.1002/pmic.201800311 10.1186/s12885-017-3761-z 10.1016/j.biomaterials.2016.05.021 10.1161/ATVBAHA.109.196170 10.1038/srep15724 10.1194/jlr.M054635 10.1097/MOH.0000000000000437 10.3389/fphar.2013.00119 10.1177/1010428317699110 10.1007/s10552-012-0048-1 10.1038/s41598-017-18100-8 10.1111/jcpt.12124 10.1016/j.cell.2012.03.042 10.1634/theoncologist.12-1-20 10.1016/j.clml.2017.10.007 10.1080/14737167.2019.1680288 10.1016/j.bbrc.2005.09.076 10.1038/s41598-018-28777-0 10.18632/oncotarget.14494 10.3389/fphar.2016.00466 10.1016/j.ccr.2013.05.002 10.3389/fphar.2016.00338 10.1016/j.cell.2013.12.010 10.1111/1755-5922.12199 10.1126/science.271.5248.518 10.1042/BCJ20170703 10.1021/nl1041947 10.1002/adfm.201602600 10.1021/acsami.7b18525 10.1158/1535-7163.MCT-17-0981 10.1016/j.cmet.2011.01.015 10.1074/jbc.M114.573840 10.1016/S0303-7207(00)00416-0 10.1161/CIRCRESAHA.107.159079 10.3791/3573-v 10.1586/14737140.2015.990889 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. 2020 The Authors 2020 |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2020 The Authors 2020 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1074/jbc.RA120.014888 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
ExternalDocumentID | PMC7949030 33208460 10_1074_jbc_RA120_014888 S0021925820000903 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA167041 – fundername: NHLBI NIH HHS grantid: T32 HL094293 – fundername: NCI NIH HHS grantid: T32 CA186897 – fundername: NIAMS NIH HHS grantid: T32 AR060710 |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 29J 2WC 34G 39C 3O- 4.4 41~ 53G 5BI 5GY 5RE 5VS 6I. 6TJ 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO AAYJJ AAYOK ABDNZ ABFSI ABOCM ABPPZ ABRJW ABTAH ACGFO ACNCT ACSFO ACYGS ADBBV ADIYS ADNWM AENEX AEXQZ AFDAS AFFNX AFMIJ AFOSN AFPKN AHPSJ AI. ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E.L E3Z EBS EJD F20 F5P FA8 FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P QZG R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZE2 ZGI ZY4 ~02 ~KM .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-8f6d8289364ce7f1a2e94e4ab76b74f351ec3f52aee879cf489d8cc9a66e09c53 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:21:44 EDT 2025 Fri Jul 11 01:52:44 EDT 2025 Thu Apr 03 06:52:30 EDT 2025 Tue Jul 01 04:11:57 EDT 2025 Thu Apr 24 23:05:48 EDT 2025 Fri Feb 23 02:43:02 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ALK SCARB1 ABC DLBCL ferroptosis DiI IHC FL INSIG1 scavenger receptor type B1 (SCARB1) Hepes NF-kB AuNP ALCL BL FACS DFO HSD17B7 STR HDL LDL TFF FBS nanotechnology cholesterol L-OH GC LDLR high-density lipoprotein (HDL) DPPC PDP PE PBS L-OOH glutathione peroxidase 4 (GPX4) GPX4 HMGCS1 PDX lymphoma HDL NPs lipid peroxidation SREBP-1a BCR SQLE HCM MPER C11-BODIPY PI DHCR7 |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-8f6d8289364ce7f1a2e94e4ab76b74f351ec3f52aee879cf489d8cc9a66e09c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0984-4376 0000-0002-4765-6213 0000-0002-6130-2948 0000-0001-9359-882X 0000-0003-1666-7064 |
OpenAccessLink | http://dx.doi.org/10.1074/jbc.RA120.014888 |
PMID | 33208460 |
PQID | 2462408748 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7949030 proquest_miscellaneous_2462408748 pubmed_primary_33208460 crossref_primary_10_1074_jbc_RA120_014888 crossref_citationtrail_10_1074_jbc_RA120_014888 elsevier_sciencedirect_doi_10_1074_jbc_RA120_014888 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Klop, van der Pol, van Bruggen, Wang, de Vries, van Santen, O'Flynn, van de Geijn, Njo, Janssen, de Man, Jukema, Rabelink, Rensen, van Kooten (bib41) 2014; 289 Trigatti, Fuller (bib29) 2016; 30 Pianko, Moskowitz, Lesokhin (bib7) 2018; 24 Dixon, Lemberg, Lamprecht, Skouta, Zaitsev, Gleason, Patel, Bauer, Cantley, Yang, Morrison, Stockwell (bib12) 2012; 149 Acton, Rigotti, Landschulz, Xu, Hobbs, Krieger (bib48) 1996; 271 Plebanek, Bhaumik, Bryce, Thaxton (bib52) 2018; 17 Cabanillas, Shah (bib1) 2017; 17 Yang, SriRamaratnam, Welsch, Shimada, Skouta, Viswanathan, Cheah, Clemons, Shamji, Clish, Brown, Girotti, Cornish, Schreiber, Stockwell (bib8) 2014; 156 King, Ganley, Flemington (bib22) 2016; 35 Xu, Lou, Xu, Shi, Ruan, Xiao, Liu, Xiao, Qiu, Bao, Yuan, Chen, Yang, Zhang (bib24) 2017; 39 Saddar, Mineo, Shaul (bib49) 2010; 30 Durham, Chathely, Trigatti (bib28) 2018; 475 Luthi, Lyssenko, Quach, McMahon, Millar, Vickers, Rader, Phillips, Mirkin, Thaxton (bib53) 2015; 56 Hattori, Imai, Furuhama, Sato, Nakagawa (bib45) 2005; 337 Foit, Thaxton (bib46) 2016; 100 Plebanek, Mutharasan, Volpert, Matov, Gatlin, Thaxton (bib36) 2015; 5 Harkins, Patel, Flowers (bib6) 2019; 19 Breitling, Krazeisen, Moller, Adamski (bib18) 2001; 171 Yang, Damiano, Zhang, Tripathy, Luthi, Rink, Ugolkov, Singh, Dave, Gordon, Thaxton (bib26) 2013; 10 Zhu, Saddar, Seetharam, Chambliss, Longoria, Silver, Yuhanna, Shaul, Mineo (bib31) 2008; 102 Limat, Daguindau, Cahn, Nerich, Brion, Perrin, Woronoff-Lemsi, Deconinck (bib4) 2014; 39 Morimoto, Conroy, Ollberding, Henning, Franke, Wilkens, Goodman, Hernandez, Le Marchand, Henderson, Kolonel, Maskarinec (bib5) 2012; 23 Chen, Monti, Juszczynski, Ouyang, Chapuy, Neuberg, Doench, Bogusz, Habermann, Dogan, Witzig, Kutok, Rodig, Golub, Shipp (bib37) 2013; 23 Bell, Rink, Eckerdt, Clymer, Goldman, Thaxton, Platanias (bib19) 2018; 8 Zou, Palte, Deik, Li, Eaton, Wang, Tseng, Deasy, Kost-Alimova, Dancik, Leshchiner, Viswanathan, Signoretti, Choueiri, Boehm (bib14) 2019; 10 Rink, Yang, Cen, Taxter, McMahon, Misener, Behdad, Longnecker, Gordon, Thaxton (bib23) 2017; 14 Intlekofer, Finley (bib13) 2019; 1 Gill, Stevenson, Kristiana, Brown (bib17) 2011; 13 McMahon, Mutharasan, Tripathy, Veliceasa, Bobeica, Shumaker, Luthi, Helfand, Ardehali, Mirkin, Volpert, Thaxton (bib51) 2011; 11 Eaton, Furst, Ruberto, Moosmayer, Hillig, Hilpmann, Zimmermann, Ryan, Niehues, Badock, Kramm, Chen, Clemons, Gradl, Montagnon (bib15) 2018 Jiang, Zhao, Shi, Song, Wang, Qin, Song, Wu, Fang, Liu (bib50) 2019; 65 Stockwell, Friedmann Angeli, Bayir, Bush, Conrad, Dixon, Fulda, Gascon, Hatzios, Kagan, Noel, Jiang, Linkermann, Murphy, Overholtzer (bib10) 2017; 171 Zhang, Liao, Li, Cheng, Fu, Liu, Chen, Liu, Fang, Zhang, Yu (bib30) 2016; 34 McMahon, Plebanek, Thaxton (bib34) 2016; 26 Rink, Sun, Misener, Wang, Zhang, Kibbe, Dravid, Venkatraman, Thaxton (bib38) 2018; 10 Grin, Dwivedi, Chathely, Trigatti, Prat, Seidah, Liaw, Fox-Robichaud (bib40) 2018; 8 McMahon, Foit, Angeloni, Giles, Gordon, Thaxton (bib33) 2015; 166 Gutierrez-Pajares, Ben Hassen, Chevalier, Frank (bib21) 2016; 7 Heward, Kumar, Korfi, Okosun, Fitzgibbon (bib3) 2018; 25 Forcina, Dixon (bib9) 2019; 19 Garcia-Bermudez, Baudrier, Bayraktar, Shen, La, Guarecuco, Yucel, Fiore, Tavora, Freinkman, Chan, Lewis, Min, Inghirami, Sabatini (bib16) 2019; 567 Hayat, Howlader, Reichman, Edwards (bib2) 2007; 12 Innerarity, Mahley, Weisgraber, Bersot (bib39) 1978; 253 McMahon, Scielzo, Angeloni, Deiss-Yehiely, Scarfo, Ranghetti, Ma, Kaplan, Barbaglio, Gordon (bib27) 2017; 8 Mooberry, Sabnis, Panchoo, Nagarajan, Lacko (bib35) 2016; 7 Borchert, Savaskan, Kuhn (bib44) 2003; 278 Conrad, Friedmann Angeli (bib42) 2015; 2 Upton, Unniraman (bib54) 2011 Cruz, Mo, McConathy, Sabnis, Lacko (bib20) 2013; 4 Yang, Kim, Gaschler, Patel, Shchepinov, Stockwell (bib11) 2016; 113 Shimada, Skouta, Kaplan, Yang, Hayano, Dixon, Brown, Valenzuela, Wolpaw, Stockwell (bib47) 2016; 12 Xu, Lou, Shi, Xu, Ruan, Xiao, Liu, Li, Xiao, Qiu, Bao, Yuan, Zhou, Hu, Chen (bib25) 2018; 18 Stoytcheva, Berry (bib43) 2009; 1790 Foit, Giles, Gordon, Thaxton (bib32) 2015; 15 Heward (10.1074/jbc.RA120.014888_bib3) 2018; 25 Dixon (10.1074/jbc.RA120.014888_bib12) 2012; 149 Rink (10.1074/jbc.RA120.014888_bib38) 2018; 10 McMahon (10.1074/jbc.RA120.014888_bib27) 2017; 8 Cabanillas (10.1074/jbc.RA120.014888_bib1) 2017; 17 King (10.1074/jbc.RA120.014888_bib22) 2016; 35 Grin (10.1074/jbc.RA120.014888_bib40) 2018; 8 Borchert (10.1074/jbc.RA120.014888_bib44) 2003; 278 Durham (10.1074/jbc.RA120.014888_bib28) 2018; 475 Breitling (10.1074/jbc.RA120.014888_bib18) 2001; 171 Stockwell (10.1074/jbc.RA120.014888_bib10) 2017; 171 Yang (10.1074/jbc.RA120.014888_bib8) 2014; 156 Hattori (10.1074/jbc.RA120.014888_bib45) 2005; 337 Upton (10.1074/jbc.RA120.014888_bib54) 2011 Hayat (10.1074/jbc.RA120.014888_bib2) 2007; 12 Cruz (10.1074/jbc.RA120.014888_bib20) 2013; 4 McMahon (10.1074/jbc.RA120.014888_bib33) 2015; 166 Gill (10.1074/jbc.RA120.014888_bib17) 2011; 13 McMahon (10.1074/jbc.RA120.014888_bib51) 2011; 11 Bell (10.1074/jbc.RA120.014888_bib19) 2018; 8 Yang (10.1074/jbc.RA120.014888_bib26) 2013; 10 Yang (10.1074/jbc.RA120.014888_bib11) 2016; 113 Foit (10.1074/jbc.RA120.014888_bib32) 2015; 15 Zhu (10.1074/jbc.RA120.014888_bib31) 2008; 102 Plebanek (10.1074/jbc.RA120.014888_bib36) 2015; 5 Harkins (10.1074/jbc.RA120.014888_bib6) 2019; 19 Plebanek (10.1074/jbc.RA120.014888_bib52) 2018; 17 Limat (10.1074/jbc.RA120.014888_bib4) 2014; 39 Klop (10.1074/jbc.RA120.014888_bib41) 2014; 289 Forcina (10.1074/jbc.RA120.014888_bib9) 2019; 19 Xu (10.1074/jbc.RA120.014888_bib24) 2017; 39 Foit (10.1074/jbc.RA120.014888_bib46) 2016; 100 Gutierrez-Pajares (10.1074/jbc.RA120.014888_bib21) 2016; 7 Trigatti (10.1074/jbc.RA120.014888_bib29) 2016; 30 McMahon (10.1074/jbc.RA120.014888_bib34) 2016; 26 Shimada (10.1074/jbc.RA120.014888_bib47) 2016; 12 Acton (10.1074/jbc.RA120.014888_bib48) 1996; 271 Pianko (10.1074/jbc.RA120.014888_bib7) 2018; 24 Conrad (10.1074/jbc.RA120.014888_bib42) 2015; 2 Innerarity (10.1074/jbc.RA120.014888_bib39) 1978; 253 Jiang (10.1074/jbc.RA120.014888_bib50) 2019; 65 Zou (10.1074/jbc.RA120.014888_bib14) 2019; 10 Rink (10.1074/jbc.RA120.014888_bib23) 2017; 14 Mooberry (10.1074/jbc.RA120.014888_bib35) 2016; 7 Luthi (10.1074/jbc.RA120.014888_bib53) 2015; 56 Intlekofer (10.1074/jbc.RA120.014888_bib13) 2019; 1 Garcia-Bermudez (10.1074/jbc.RA120.014888_bib16) 2019; 567 Xu (10.1074/jbc.RA120.014888_bib25) 2018; 18 Chen (10.1074/jbc.RA120.014888_bib37) 2013; 23 Saddar (10.1074/jbc.RA120.014888_bib49) 2010; 30 Eaton (10.1074/jbc.RA120.014888_bib15) 2018 Zhang (10.1074/jbc.RA120.014888_bib30) 2016; 34 Stoytcheva (10.1074/jbc.RA120.014888_bib43) 2009; 1790 Morimoto (10.1074/jbc.RA120.014888_bib5) 2012; 23 |
References_xml | – volume: 337 start-page: 464 year: 2005 end-page: 473 ident: bib45 article-title: Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-alpha publication-title: Biochem. Biophys. Res. Commun. – volume: 30 start-page: 144 year: 2010 end-page: 150 ident: bib49 article-title: Signaling by the high-affinity HDL receptor scavenger receptor B type I publication-title: Arteriosclerosis Thromb. Vasc. Biol. – volume: 12 start-page: 20 year: 2007 end-page: 37 ident: bib2 article-title: Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program publication-title: Oncologist – volume: 19 start-page: 645 year: 2019 end-page: 661 ident: bib6 article-title: Cost burden of diffuse large B-cell lymphoma publication-title: Expert Rev. Pharmacoecon Outcomes Res. – volume: 10 start-page: 6904 year: 2018 end-page: 6916 ident: bib38 article-title: Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanotherapy for vascular disease publication-title: ACS Appl. Mater. Interfaces. – volume: 17 start-page: 783 year: 2017 end-page: 796 ident: bib1 article-title: Advances in diagnosis and management of diffuse large B-cell lymphoma publication-title: Clin. Lymphoma Myeloma Leuk. – volume: 8 start-page: 1211 year: 2018 ident: bib19 article-title: HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma publication-title: Scientific Rep. – volume: 25 start-page: 329 year: 2018 end-page: 334 ident: bib3 article-title: Precision medicine and lymphoma publication-title: Curr. Opin. Hematol. – volume: 7 start-page: 466 year: 2016 ident: bib35 article-title: Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging publication-title: Front. Pharmacol. – volume: 11 start-page: 1208 year: 2011 end-page: 1214 ident: bib51 article-title: Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery publication-title: Nano Lett. – volume: 156 start-page: 317 year: 2014 end-page: 331 ident: bib8 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell – volume: 102 start-page: 480 year: 2008 end-page: 487 ident: bib31 article-title: The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity publication-title: Circ. Res. – volume: 289 start-page: 35421 year: 2014 end-page: 35430 ident: bib41 article-title: Differential complement activation pathways promote C3b deposition on native and acetylated LDL thereby inducing lipoprotein binding to the complement receptor 1 publication-title: J. Biol. Chem. – volume: 113 start-page: E4966 year: 2016 end-page: E4975 ident: bib11 article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 166 start-page: 129 year: 2015 end-page: 150 ident: bib33 article-title: Synthetic high-density lipoprotein-like nanoparticles as cancer therapy publication-title: Cancer Treat. Res. – volume: 253 start-page: 6289 year: 1978 end-page: 6295 ident: bib39 article-title: Apoprotein (E--A-II) complex of human plasma lipoproteins. II. Receptor binding activity of a high density lipoprotein subfraction modulated by the apo(E--A-II) complex publication-title: J. Biol. Chem. – volume: 19 year: 2019 ident: bib9 article-title: GPX4 at the crossroads of lipid homeostasis and ferroptosis publication-title: Proteomics – volume: 23 start-page: 826 year: 2013 end-page: 838 ident: bib37 article-title: SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas publication-title: Cancer Cell – volume: 1 start-page: 177 year: 2019 end-page: 188 ident: bib13 article-title: Metabolic signatures of cancer cells and stem cells publication-title: Nat. Metab. – volume: 2 year: 2015 ident: bib42 article-title: Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it? publication-title: Mol. Cell Oncol. – volume: 39 start-page: 168 year: 2014 end-page: 174 ident: bib4 article-title: Incidence and risk-factors of CHOP/R-CHOP-related cardiotoxicity in patients with aggressive non-Hodgkin's lymphoma publication-title: J. Clin. Pharm. Ther. – volume: 14 start-page: 4042 year: 2017 end-page: 4051 ident: bib23 article-title: Rational targeting of cellular cholesterol in diffuse large B-cell lymphoma (DLBCL) enabled by functional lipoprotein nanoparticles: a therapeutic strategy dependent on cell of origin publication-title: Mol. Pharm. – volume: 34 start-page: 308 year: 2016 end-page: 313 ident: bib30 article-title: Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway publication-title: Cardiovasc. Ther. – volume: 30 start-page: 94 year: 2016 end-page: 100 ident: bib29 article-title: HDL signaling and protection against coronary artery atherosclerosis in mice publication-title: J. Biomed. Res. – volume: 1790 start-page: 1429 year: 2009 end-page: 1440 ident: bib43 article-title: Transcriptional regulation of mammalian selenoprotein expression publication-title: Biochim. Biophys. Acta. – volume: 271 start-page: 518 year: 1996 end-page: 520 ident: bib48 article-title: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor publication-title: Science – volume: 65 start-page: 1999 year: 2019 end-page: 2008 ident: bib50 article-title: DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma publication-title: Dig. Dis. Sci. – volume: 10 start-page: 1617 year: 2019 ident: bib14 article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis publication-title: Nat. Commun. – volume: 278 start-page: 2571 year: 2003 end-page: 2580 ident: bib44 article-title: Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Tissue-specific expression pattern and identification of functional cis- and trans-regulatory elements publication-title: J. Biol. Chem. – volume: 171 start-page: 199 year: 2001 end-page: 204 ident: bib18 article-title: 17beta-hydroxysteroid dehydrogenase type 7–an ancient 3-ketosteroid reductase of cholesterogenesis publication-title: Mol. Cell Endocrinol. – volume: 8 start-page: 10496 year: 2018 ident: bib40 article-title: Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor publication-title: Scientific Rep. – volume: 171 start-page: 273 year: 2017 end-page: 285 ident: bib10 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox Biology, and disease publication-title: Cell – volume: 15 start-page: 27 year: 2015 end-page: 34 ident: bib32 article-title: Synthetic high-density lipoprotein-like nanoparticles for cancer therapy publication-title: Expert Rev. Anticancer Ther. – volume: 100 start-page: 67 year: 2016 end-page: 75 ident: bib46 article-title: Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4 publication-title: Biomaterials – volume: 567 start-page: 118 year: 2019 end-page: 122 ident: bib16 article-title: Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death publication-title: Nature – year: 2018 ident: bib15 article-title: Targeting a therapy-resistant cancer cell state using masked electrophiles as GPX4 inhibitors publication-title: bioRxiv – volume: 7 start-page: 338 year: 2016 ident: bib21 article-title: SR-BI: linking cholesterol and lipoprotein metabolism with breast and prostate cancer publication-title: Front. Pharmacol. – volume: 35 start-page: 4518 year: 2016 end-page: 4528 ident: bib22 article-title: Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells publication-title: Oncogene – year: 2011 ident: bib54 article-title: Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes publication-title: J. Vis. Exp. – volume: 23 start-page: 1693 year: 2012 end-page: 1703 ident: bib5 article-title: Erythrocyte membrane fatty acid composition, serum lipids, and non-Hodgkin's lymphoma risk in a nested case-control study: the multiethnic cohort publication-title: Cancer Cause Control – volume: 18 start-page: 88 year: 2018 ident: bib25 article-title: Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma publication-title: BMC Cancer – volume: 12 start-page: 497 year: 2016 end-page: 503 ident: bib47 article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis publication-title: Nat. Chem. Biol. – volume: 56 start-page: 972 year: 2015 end-page: 985 ident: bib53 article-title: Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high-density lipoprotein publication-title: J. Lipid Res. – volume: 13 start-page: 260 year: 2011 end-page: 273 ident: bib17 article-title: Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase publication-title: Cell Metab. – volume: 26 start-page: 7824 year: 2016 end-page: 7835 ident: bib34 article-title: Properties of native high-density lipoproteins inspire synthesis of actively targeted in vivo siRNA delivery vehicles publication-title: Adv. Funct. Mater. – volume: 8 start-page: 11219 year: 2017 ident: bib27 article-title: Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia publication-title: Oncotarget – volume: 39 year: 2017 ident: bib24 article-title: Diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma publication-title: Tumour Biol. – volume: 475 start-page: 1253 year: 2018 end-page: 1265 ident: bib28 article-title: High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2 publication-title: Biochem. J. – volume: 17 start-page: 686 year: 2018 end-page: 697 ident: bib52 article-title: Scavenger receptor type B1 and lipoprotein nanoparticle inhibit myeloid-derived suppressor cells publication-title: Mol. Cancer Ther. – volume: 10 start-page: 2511 year: 2013 end-page: 2516 ident: bib26 article-title: Biomimetic, synthetic HDL nanostructures for lymphoma publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 24 start-page: 1002 year: 2018 end-page: 1010 ident: bib7 article-title: Immunotherapy of lymphoma and myeloma: facts and hopes publication-title: Clin. Cancer Res. – volume: 5 start-page: 15724 year: 2015 ident: bib36 article-title: Nanoparticle targeting and cholesterol flux through scavenger receptor type B-1 inhibits cellular exosome uptake publication-title: Scientific Rep. – volume: 149 start-page: 1060 year: 2012 end-page: 1072 ident: bib12 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell – volume: 4 start-page: 119 year: 2013 ident: bib20 article-title: The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics publication-title: Front. Pharmacol. – volume: 2 year: 2015 ident: 10.1074/jbc.RA120.014888_bib42 article-title: Glutathione peroxidase 4 (Gpx4) and ferroptosis: what's so special about it? publication-title: Mol. Cell Oncol. – year: 2018 ident: 10.1074/jbc.RA120.014888_bib15 article-title: Targeting a therapy-resistant cancer cell state using masked electrophiles as GPX4 inhibitors publication-title: bioRxiv – volume: 166 start-page: 129 year: 2015 ident: 10.1074/jbc.RA120.014888_bib33 article-title: Synthetic high-density lipoprotein-like nanoparticles as cancer therapy publication-title: Cancer Treat. Res. doi: 10.1007/978-3-319-16555-4_6 – volume: 567 start-page: 118 year: 2019 ident: 10.1074/jbc.RA120.014888_bib16 article-title: Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death publication-title: Nature doi: 10.1038/s41586-019-0945-5 – volume: 14 start-page: 4042 year: 2017 ident: 10.1074/jbc.RA120.014888_bib23 article-title: Rational targeting of cellular cholesterol in diffuse large B-cell lymphoma (DLBCL) enabled by functional lipoprotein nanoparticles: a therapeutic strategy dependent on cell of origin publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.7b00710 – volume: 1790 start-page: 1429 year: 2009 ident: 10.1074/jbc.RA120.014888_bib43 article-title: Transcriptional regulation of mammalian selenoprotein expression publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbagen.2009.05.012 – volume: 253 start-page: 6289 year: 1978 ident: 10.1074/jbc.RA120.014888_bib39 article-title: Apoprotein (E--A-II) complex of human plasma lipoproteins. II. Receptor binding activity of a high density lipoprotein subfraction modulated by the apo(E--A-II) complex publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34613-6 – volume: 24 start-page: 1002 year: 2018 ident: 10.1074/jbc.RA120.014888_bib7 article-title: Immunotherapy of lymphoma and myeloma: facts and hopes publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0539 – volume: 1 start-page: 177 year: 2019 ident: 10.1074/jbc.RA120.014888_bib13 article-title: Metabolic signatures of cancer cells and stem cells publication-title: Nat. Metab. doi: 10.1038/s42255-019-0032-0 – volume: 10 start-page: 1617 year: 2019 ident: 10.1074/jbc.RA120.014888_bib14 article-title: A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis publication-title: Nat. Commun. doi: 10.1038/s41467-019-09277-9 – volume: 10 start-page: 2511 year: 2013 ident: 10.1074/jbc.RA120.014888_bib26 article-title: Biomimetic, synthetic HDL nanostructures for lymphoma publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1213657110 – volume: 278 start-page: 2571 year: 2003 ident: 10.1074/jbc.RA120.014888_bib44 article-title: Regulation of expression of the phospholipid hydroperoxide/sperm nucleus glutathione peroxidase gene. Tissue-specific expression pattern and identification of functional cis- and trans-regulatory elements publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209064200 – volume: 35 start-page: 4518 year: 2016 ident: 10.1074/jbc.RA120.014888_bib22 article-title: Inhibition of cholesterol metabolism underlies synergy between mTOR pathway inhibition and chloroquine in bladder cancer cells publication-title: Oncogene doi: 10.1038/onc.2015.511 – volume: 12 start-page: 497 year: 2016 ident: 10.1074/jbc.RA120.014888_bib47 article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2079 – volume: 65 start-page: 1999 year: 2019 ident: 10.1074/jbc.RA120.014888_bib50 article-title: DNAJB6 promotes ferroptosis in esophageal squamous cell carcinoma publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-019-05929-4 – volume: 113 start-page: E4966 year: 2016 ident: 10.1074/jbc.RA120.014888_bib11 article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1603244113 – volume: 171 start-page: 273 year: 2017 ident: 10.1074/jbc.RA120.014888_bib10 article-title: Ferroptosis: a regulated cell death nexus linking metabolism, redox Biology, and disease publication-title: Cell doi: 10.1016/j.cell.2017.09.021 – volume: 19 year: 2019 ident: 10.1074/jbc.RA120.014888_bib9 article-title: GPX4 at the crossroads of lipid homeostasis and ferroptosis publication-title: Proteomics doi: 10.1002/pmic.201800311 – volume: 18 start-page: 88 year: 2018 ident: 10.1074/jbc.RA120.014888_bib25 article-title: Up-regulation of SR-BI promotes progression and serves as a prognostic biomarker in clear cell renal cell carcinoma publication-title: BMC Cancer doi: 10.1186/s12885-017-3761-z – volume: 100 start-page: 67 year: 2016 ident: 10.1074/jbc.RA120.014888_bib46 article-title: Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.05.021 – volume: 30 start-page: 144 year: 2010 ident: 10.1074/jbc.RA120.014888_bib49 article-title: Signaling by the high-affinity HDL receptor scavenger receptor B type I publication-title: Arteriosclerosis Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.109.196170 – volume: 5 start-page: 15724 year: 2015 ident: 10.1074/jbc.RA120.014888_bib36 article-title: Nanoparticle targeting and cholesterol flux through scavenger receptor type B-1 inhibits cellular exosome uptake publication-title: Scientific Rep. doi: 10.1038/srep15724 – volume: 56 start-page: 972 year: 2015 ident: 10.1074/jbc.RA120.014888_bib53 article-title: Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high-density lipoprotein publication-title: J. Lipid Res. doi: 10.1194/jlr.M054635 – volume: 25 start-page: 329 year: 2018 ident: 10.1074/jbc.RA120.014888_bib3 article-title: Precision medicine and lymphoma publication-title: Curr. Opin. Hematol. doi: 10.1097/MOH.0000000000000437 – volume: 4 start-page: 119 year: 2013 ident: 10.1074/jbc.RA120.014888_bib20 article-title: The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics publication-title: Front. Pharmacol. doi: 10.3389/fphar.2013.00119 – volume: 39 year: 2017 ident: 10.1074/jbc.RA120.014888_bib24 article-title: Diagnostic and prognostic value of scavenger receptor class B type 1 in clear cell renal cell carcinoma publication-title: Tumour Biol. doi: 10.1177/1010428317699110 – volume: 23 start-page: 1693 year: 2012 ident: 10.1074/jbc.RA120.014888_bib5 article-title: Erythrocyte membrane fatty acid composition, serum lipids, and non-Hodgkin's lymphoma risk in a nested case-control study: the multiethnic cohort publication-title: Cancer Cause Control doi: 10.1007/s10552-012-0048-1 – volume: 8 start-page: 1211 year: 2018 ident: 10.1074/jbc.RA120.014888_bib19 article-title: HDL nanoparticles targeting sonic hedgehog subtype medulloblastoma publication-title: Scientific Rep. doi: 10.1038/s41598-017-18100-8 – volume: 39 start-page: 168 year: 2014 ident: 10.1074/jbc.RA120.014888_bib4 article-title: Incidence and risk-factors of CHOP/R-CHOP-related cardiotoxicity in patients with aggressive non-Hodgkin's lymphoma publication-title: J. Clin. Pharm. Ther. doi: 10.1111/jcpt.12124 – volume: 149 start-page: 1060 year: 2012 ident: 10.1074/jbc.RA120.014888_bib12 article-title: Ferroptosis: an iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – volume: 12 start-page: 20 year: 2007 ident: 10.1074/jbc.RA120.014888_bib2 article-title: Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program publication-title: Oncologist doi: 10.1634/theoncologist.12-1-20 – volume: 17 start-page: 783 year: 2017 ident: 10.1074/jbc.RA120.014888_bib1 article-title: Advances in diagnosis and management of diffuse large B-cell lymphoma publication-title: Clin. Lymphoma Myeloma Leuk. doi: 10.1016/j.clml.2017.10.007 – volume: 19 start-page: 645 year: 2019 ident: 10.1074/jbc.RA120.014888_bib6 article-title: Cost burden of diffuse large B-cell lymphoma publication-title: Expert Rev. Pharmacoecon Outcomes Res. doi: 10.1080/14737167.2019.1680288 – volume: 337 start-page: 464 year: 2005 ident: 10.1074/jbc.RA120.014888_bib45 article-title: Induction of phospholipid hydroperoxide glutathione peroxidase in human polymorphonuclear neutrophils and HL60 cells stimulated with TNF-alpha publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.09.076 – volume: 8 start-page: 10496 year: 2018 ident: 10.1074/jbc.RA120.014888_bib40 article-title: Low-density lipoprotein (LDL)-dependent uptake of Gram-positive lipoteichoic acid and Gram-negative lipopolysaccharide occurs through LDL receptor publication-title: Scientific Rep. doi: 10.1038/s41598-018-28777-0 – volume: 30 start-page: 94 year: 2016 ident: 10.1074/jbc.RA120.014888_bib29 article-title: HDL signaling and protection against coronary artery atherosclerosis in mice publication-title: J. Biomed. Res. – volume: 8 start-page: 11219 year: 2017 ident: 10.1074/jbc.RA120.014888_bib27 article-title: Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia publication-title: Oncotarget doi: 10.18632/oncotarget.14494 – volume: 7 start-page: 466 year: 2016 ident: 10.1074/jbc.RA120.014888_bib35 article-title: Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00466 – volume: 23 start-page: 826 year: 2013 ident: 10.1074/jbc.RA120.014888_bib37 article-title: SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.05.002 – volume: 7 start-page: 338 year: 2016 ident: 10.1074/jbc.RA120.014888_bib21 article-title: SR-BI: linking cholesterol and lipoprotein metabolism with breast and prostate cancer publication-title: Front. Pharmacol. doi: 10.3389/fphar.2016.00338 – volume: 156 start-page: 317 year: 2014 ident: 10.1074/jbc.RA120.014888_bib8 article-title: Regulation of ferroptotic cancer cell death by GPX4 publication-title: Cell doi: 10.1016/j.cell.2013.12.010 – volume: 34 start-page: 308 year: 2016 ident: 10.1074/jbc.RA120.014888_bib30 article-title: Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway publication-title: Cardiovasc. Ther. doi: 10.1111/1755-5922.12199 – volume: 271 start-page: 518 year: 1996 ident: 10.1074/jbc.RA120.014888_bib48 article-title: Identification of scavenger receptor SR-BI as a high density lipoprotein receptor publication-title: Science doi: 10.1126/science.271.5248.518 – volume: 475 start-page: 1253 year: 2018 ident: 10.1074/jbc.RA120.014888_bib28 article-title: High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2 publication-title: Biochem. J. doi: 10.1042/BCJ20170703 – volume: 11 start-page: 1208 year: 2011 ident: 10.1074/jbc.RA120.014888_bib51 article-title: Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery publication-title: Nano Lett. doi: 10.1021/nl1041947 – volume: 26 start-page: 7824 year: 2016 ident: 10.1074/jbc.RA120.014888_bib34 article-title: Properties of native high-density lipoproteins inspire synthesis of actively targeted in vivo siRNA delivery vehicles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602600 – volume: 10 start-page: 6904 year: 2018 ident: 10.1074/jbc.RA120.014888_bib38 article-title: Nitric oxide-delivering high-density lipoprotein-like nanoparticles as a biomimetic nanotherapy for vascular disease publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b18525 – volume: 17 start-page: 686 year: 2018 ident: 10.1074/jbc.RA120.014888_bib52 article-title: Scavenger receptor type B1 and lipoprotein nanoparticle inhibit myeloid-derived suppressor cells publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-17-0981 – volume: 13 start-page: 260 year: 2011 ident: 10.1074/jbc.RA120.014888_bib17 article-title: Cholesterol-dependent degradation of squalene monooxygenase, a control point in cholesterol synthesis beyond HMG-CoA reductase publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.01.015 – volume: 289 start-page: 35421 year: 2014 ident: 10.1074/jbc.RA120.014888_bib41 article-title: Differential complement activation pathways promote C3b deposition on native and acetylated LDL thereby inducing lipoprotein binding to the complement receptor 1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.573840 – volume: 171 start-page: 199 year: 2001 ident: 10.1074/jbc.RA120.014888_bib18 article-title: 17beta-hydroxysteroid dehydrogenase type 7–an ancient 3-ketosteroid reductase of cholesterogenesis publication-title: Mol. Cell Endocrinol. doi: 10.1016/S0303-7207(00)00416-0 – volume: 102 start-page: 480 year: 2008 ident: 10.1074/jbc.RA120.014888_bib31 article-title: The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.107.159079 – year: 2011 ident: 10.1074/jbc.RA120.014888_bib54 article-title: Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes publication-title: J. Vis. Exp. doi: 10.3791/3573-v – volume: 15 start-page: 27 year: 2015 ident: 10.1074/jbc.RA120.014888_bib32 article-title: Synthetic high-density lipoprotein-like nanoparticles for cancer therapy publication-title: Expert Rev. Anticancer Ther. doi: 10.1586/14737140.2015.990889 |
SSID | ssj0000491 |
Score | 2.5083573 |
Snippet | Normal human cells can either synthesize cholesterol or take it up from lipoproteins to meet their metabolic requirements. In some malignant cells, de novo... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100100 |
SubjectTerms | Animals cholesterol Cholesterol - genetics Cholesterol - metabolism Ferroptosis glutathione peroxidase 4 (GPX4) high-density lipoprotein (HDL) Humans Jurkat Cells lipid peroxidation lymphoma Lymphoma - genetics Lymphoma - metabolism Lymphoma - pathology Mice Mice, SCID nanotechnology Neoplasm Proteins - metabolism Oxidation-Reduction Phospholipid Hydroperoxide Glutathione Peroxidase - genetics Phospholipid Hydroperoxide Glutathione Peroxidase - metabolism scavenger receptor type B1 (SCARB1) Scavenger Receptors, Class B - genetics Scavenger Receptors, Class B - metabolism U937 Cells |
Title | Targeted reduction of cholesterol uptake in cholesterol-addicted lymphoma cells blocks turnover of oxidized lipids to cause ferroptosis |
URI | https://dx.doi.org/10.1074/jbc.RA120.014888 https://www.ncbi.nlm.nih.gov/pubmed/33208460 https://www.proquest.com/docview/2462408748 https://pubmed.ncbi.nlm.nih.gov/PMC7949030 |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97C9jK3d1uxSNBiDEZz6ovjyGEpLWZOOjQSyJyPLMjVN7JA4sPQP7HU_eedItuO0Wen2YoIiy8bfZ5-Ljj4R8jH2wUgInhg-2AaDebFlRAHEPGbME0dyx3GUTvfw0j0fsy-T3qTV-t2oWloVUVfc7FxX8j-oQhvgiqtk_wHZelBogN-ALxwBYTg-DGNVxi1xAUqsVWBVlThueYv6B_m0s5oX_FrpgjRaDSwiEnjedA1g5jPewfz9EqvYxfWyA1Yow8pOHCz_mcbpDXZN52ms5CAEXy1lJ5GLRT4v8mW6bDq4m6VmysnVGk9ahaTaWq6e44EwuJnA32RhB6WwQcxnnR-rOmE9FEN-pasELvgaK-gbUyhY4V3UJZq8XGFR5jNsq5HP0J9gcApxfcFEW6gdbeV32w6aX17UklKap3eNAnhJaBQi0f3et2yzi0lUvZfgtv725dfwbDwYhKPTyegReWxD4IF7Ylx82-jPQzxl6SUb-n7KiW-4wvHt8f_m6NwNZG7X4zYcnNFz8qwEjfY1zV6Qlsz2yUEfsMlna_qJqlphNQmzT56cVGAekF8VC2nNQpontME3qllI04zuYiGtWEgVC6lmIa1YiINVLKSahbTIqWIhbbDwJRmfnY5Ozo1yew9DMOYVhp-4Mcb7jsuE9BKL2zJgkvHIcyOPJfB4pXCSns2l9L1AJMwPYl-IgLuuNAPRc16RvSzP5CGh3LEt7GUnZsQkl9yzIM7o-V7MHDOIkzY5rrAIRal9j1uwTENVg-GxENALFXqhRq9NPtdnzLXuyz19nQresPRbtT8aAgPvOetDxYQQEMMnzDOZr5ahzVwUHvQY9HmtmVHfg-PYJoQMZpt4W5ypO6Bc_PY_WXqlZOPB8gZg0t884LpvydPNq_mO7BWLlXwPzncRHamk1ZF6K_4AOZTkKA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeted+reduction+of+cholesterol+uptake+in+cholesterol-addicted+lymphoma+cells+blocks+turnover+of+oxidized+lipids+to+cause+ferroptosis&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Rink%2C+Jonathan+S&rft.au=Lin%2C+Adam+Yuh&rft.au=McMahon%2C+Kaylin+M&rft.au=Calvert%2C+Andrea+E&rft.date=2021-01-01&rft.issn=1083-351X&rft.eissn=1083-351X&rft.volume=296&rft.spage=100100&rft_id=info:doi/10.1074%2Fjbc.RA120.014888&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |