Sensitive Physiological Indices of Pain Based on Differential Characteristics of Electrodermal Activity

Objective: Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 68; no. 10; pp. 3122 - 3130
Main Authors Kong, Youngsun, Posada-Quintero, Hugo F., Chon, Ki H.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses. Methods: We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation. Results: The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation). Conclusion: The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study. Significance: Our approach has the potential for accurate pain quantification using EDA.
AbstractList Objective: Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses. Methods: We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation. Results: The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation). Conclusion: The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study. Significance: Our approach has the potential for accurate pain quantification using EDA.
Electrodermal activity (EDA) is a measure of sweat gland activation due to sympathetic arousal, and it has been widely used to assess human response to stressful stimuli, including pain. Tonic and phasic components are typically obtained from EDA to assess sympathetic arousal. More recently, spectral analysis of EDA has been found to be more sensitive and reproducible than tonic and phasic components. However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses. We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation. The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation). The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study.
Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses.OBJECTIVEElectrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses.We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation.METHODSWe have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation.The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation).RESULTSThe maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation).The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study.CONCLUSIONThe differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study.Our approach has the potential for accurate pain quantification using EDA.SIGNIFICANCEOur approach has the potential for accurate pain quantification using EDA.
Author Posada-Quintero, Hugo F.
Chon, Ki H.
Kong, Youngsun
Author_xml – sequence: 1
  givenname: Youngsun
  orcidid: 0000-0001-5409-3888
  surname: Kong
  fullname: Kong, Youngsun
  organization: Biomedical Engineering Department, University of Connecticut, USA
– sequence: 2
  givenname: Hugo F.
  surname: Posada-Quintero
  fullname: Posada-Quintero, Hugo F.
  organization: Biomedical Engineering Department, University of Connecticut, USA
– sequence: 3
  givenname: Ki H.
  orcidid: 0000-0002-4422-4837
  surname: Chon
  fullname: Chon, Ki H.
  email: ki.chon@uconn.edu
  organization: Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33705307$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPCAyAkNBIbNhP8P_YGqQ0BKhVRibK2HM-dxNXEbm2nUt4eh4QIumBlXfk7556rc4ZOQgyA0GuCp4Rg_eH28tt8SjElU4aloEQ9QxMihGqpYOQETTAmqtVU81N0lvNdHbni8gU6ZazDguFugpY_IGRf_CM0N6tt9nGMS-_s2FyF3jvITRyaG-tDc2kz9E0MzSc_DJAgFF-p2com6wokn4t3v-n5CK6k2ENaV-DCVW9fti_R88GOGV4d3nP08_P8dva1vf7-5Wp2cd06zrvSKuDSwYL1C6qUkgwopZyRBdaMDRQ73rleaucWTmiuwFIGICWQXhHNsQV2jj7ufe83izX0ruZMdjT3ya9t2ppovfn3J_iVWcZHo7hiQulq8P5gkOLDBnIxa58djKMNEDfZUIEJFVprXtF3T9C7uEmhnlepThCqaScr9fbvRMcofzqoANkDLsWcEwxHhGCz69nseja7ns2h56rpnmicL7b4uDvKj_9VvtkrPQAcN2nWSckl-wWzwrYt
CODEN IEBEAX
CitedBy_id crossref_primary_10_3390_life13091828
crossref_primary_10_3389_fpain_2023_1150264
crossref_primary_10_34133_cbsystems_0160
crossref_primary_10_1016_j_bspc_2022_103483
crossref_primary_10_3390_s23198231
crossref_primary_10_3390_s25030680
crossref_primary_10_2147_JPR_S503975
crossref_primary_10_1109_TNSRE_2024_3461589
crossref_primary_10_1038_s41746_023_00810_1
crossref_primary_10_1109_TBME_2024_3355215
crossref_primary_10_3390_s24030917
crossref_primary_10_3389_fpain_2022_764128
crossref_primary_10_3390_s23041959
crossref_primary_10_1016_j_compbiomed_2024_108070
crossref_primary_10_1016_j_medj_2024_07_016
crossref_primary_10_1038_s41598_024_71219_3
crossref_primary_10_1016_j_cmpb_2023_107859
crossref_primary_10_1109_JBHI_2023_3291955
crossref_primary_10_1063_5_0200395
crossref_primary_10_3390_ani13020229
crossref_primary_10_1038_s41597_024_03878_w
crossref_primary_10_1007_s13311_023_01396_y
crossref_primary_10_1016_j_bspc_2024_107454
crossref_primary_10_1007_s10209_023_01053_3
crossref_primary_10_3390_s21123956
crossref_primary_10_3390_bios15020078
crossref_primary_10_3390_s21144838
crossref_primary_10_3389_fphys_2024_1463784
Cites_doi 10.1109/ISDA.2009.230
10.1007/978-1-4614-1126-0
10.1097/j.pain.0000000000001035
10.1109/TBME.2009.2019766
10.1002/j.1532-2149.2013.00349.x
10.1111/j.1469-8986.2010.01052.x
10.1016/j.jneumeth.2010.04.028
10.1016/S0304-3959(02)00037-4
10.1098/rspa.1998.0193
10.1109/ACCESS.2020.2984508
10.1093/gigascience/gix019
10.1007/978-3-642-01818-3_25
10.1109/TBME.2002.805478
10.1016/B978-0-12-410396-2.00022-0
10.1016/j.neuroimage.2013.08.030
10.1016/j.gaitpost.2017.11.025
10.1613/jair.953
10.1007/s10439-016-1606-6
10.1016/j.autneu.2010.01.008
10.1080/01621459.1951.10500769
10.1016/j.pain.2006.06.013
10.1038/s41598-020-67936-0
10.1111/j.1469-8986.2012.01384.x
10.1002/j.1532-2149.2013.00379.x
10.1097/j.pain.0000000000001010
10.1063/1.1147748
10.1109/TBME.2015.2474131
10.1109/ACCESS.2019.2899485
10.1515/sjpain-2018-0012
10.1016/j.pain.2010.11.032
10.2307/2280807
10.1016/j.neuroimage.2017.01.011
10.1152/ajpregu.00180.2016
10.1016/j.pain.2012.04.008
10.1016/j.jpainsymman.2010.08.016
10.1109/EMBC44109.2020.9176077
10.1111/j.1469-8986.1976.tb03088.x
10.3390/s20020479
10.1109/EMBC.2018.8513575
10.1152/ajpregu.00102.2020
10.1111/psyp.12434
10.1371/journal.pone.0231659
10.1017/S0033291700055343
10.1007/s10439-005-9035-y
10.1109/TBME.2020.3034632
10.1007/s11926-005-0018-7
10.1017/CBO9780511546396.007
10.1016/j.ijpsycho.2007.03.012
10.1504/IJKESDP.2011.039875
10.1016/j.neubiorev.2004.06.004
10.1109/JBHI.2017.2780252
10.18637/jss.v008.i18
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2021.3065218
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 3130
ExternalDocumentID PMC8483589
33705307
10_1109_TBME_2021_3065218
9376646
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIH
  grantid: R21 DE029563-01
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-8e46ceb3db288863e222431b0933f20c47cd69ccbc5948ea23ee66e1d81940ae3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:39:14 EDT 2025
Fri Jul 11 04:12:12 EDT 2025
Mon Jun 30 10:20:25 EDT 2025
Thu Apr 03 07:03:41 EDT 2025
Tue Jul 01 03:28:35 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Wed Aug 27 02:27:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-8e46ceb3db288863e222431b0933f20c47cd69ccbc5948ea23ee66e1d81940ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4422-4837
0000-0001-5409-3888
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8483589
PMID 33705307
PQID 2575129276
PQPubID 85474
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8483589
ieee_primary_9376646
proquest_journals_2575129276
crossref_primary_10_1109_TBME_2021_3065218
proquest_miscellaneous_2501259994
pubmed_primary_33705307
crossref_citationtrail_10_1109_TBME_2021_3065218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
greenfield (ref22) 1972
fletcher (ref55) 2013
ref46
ref45
ref48
kingma (ref53) 2014
ref47
ref42
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
jensen (ref2) 2011
alpaydin (ref54) 2020
ref40
ref35
ref34
ref37
cacioppo (ref20) 2007
ref36
ref31
ref30
ref33
ref32
lemaître (ref59) 2017; 18
ref1
ref39
ref38
(ref41) 2019
ref24
ref23
ref26
ref25
pedregosa (ref60) 2011; 12
ref63
ref21
cardillo (ref52) 2006
ref28
ref27
ref29
ref62
ref61
(ref43) 2020
References_xml – ident: ref61
  doi: 10.1109/ISDA.2009.230
– ident: ref30
  doi: 10.1007/978-1-4614-1126-0
– ident: ref6
  doi: 10.1097/j.pain.0000000000001035
– ident: ref44
  doi: 10.1109/TBME.2009.2019766
– ident: ref18
  doi: 10.1002/j.1532-2149.2013.00349.x
– year: 2020
  ident: ref43
  article-title: Central differences
– ident: ref31
  doi: 10.1111/j.1469-8986.2010.01052.x
– ident: ref25
  doi: 10.1016/j.jneumeth.2010.04.028
– ident: ref4
  doi: 10.1016/S0304-3959(02)00037-4
– ident: ref48
  doi: 10.1098/rspa.1998.0193
– ident: ref35
  doi: 10.1109/ACCESS.2020.2984508
– ident: ref56
  doi: 10.1093/gigascience/gix019
– ident: ref62
  doi: 10.1007/978-3-642-01818-3_25
– ident: ref47
  doi: 10.1109/TBME.2002.805478
– ident: ref23
  doi: 10.1016/B978-0-12-410396-2.00022-0
– ident: ref10
  doi: 10.1016/j.neuroimage.2013.08.030
– ident: ref26
  doi: 10.1016/j.gaitpost.2017.11.025
– ident: ref57
  doi: 10.1613/jair.953
– ident: ref37
  doi: 10.1007/s10439-016-1606-6
– year: 2014
  ident: ref53
  article-title: Adam: A method for stochastic optimization
– ident: ref24
  doi: 10.1016/j.autneu.2010.01.008
– ident: ref49
  doi: 10.1080/01621459.1951.10500769
– ident: ref5
  doi: 10.1016/j.pain.2006.06.013
– year: 2020
  ident: ref54
  publication-title: Introduction to Machine Learning
– ident: ref28
  doi: 10.1038/s41598-020-67936-0
– ident: ref12
  doi: 10.1111/j.1469-8986.2012.01384.x
– ident: ref15
  doi: 10.1002/j.1532-2149.2013.00379.x
– ident: ref7
  doi: 10.1097/j.pain.0000000000001010
– ident: ref46
  doi: 10.1063/1.1147748
– ident: ref32
  doi: 10.1109/TBME.2015.2474131
– ident: ref39
  doi: 10.1109/ACCESS.2019.2899485
– ident: ref1
  doi: 10.1515/sjpain-2018-0012
– ident: ref17
  doi: 10.1016/j.pain.2010.11.032
– ident: ref50
  doi: 10.2307/2280807
– year: 2006
  ident: ref52
  publication-title: Dunn Test A Procedure For Multiple Not Parametric Comparisons
– ident: ref8
  doi: 10.1016/j.neuroimage.2017.01.011
– ident: ref38
  doi: 10.1152/ajpregu.00180.2016
– ident: ref19
  doi: 10.1016/j.pain.2012.04.008
– ident: ref3
  doi: 10.1016/j.jpainsymman.2010.08.016
– ident: ref40
  doi: 10.1109/EMBC44109.2020.9176077
– ident: ref13
  doi: 10.1111/j.1469-8986.1976.tb03088.x
– ident: ref9
  doi: 10.3390/s20020479
– volume: 18
  start-page: 559
  year: 2017
  ident: ref59
  article-title: Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J Mach Learn Res
– year: 2019
  ident: ref41
  article-title: 257 - Safe use of electrical stimulators | BIOPAC
  publication-title: BIOPAC Systems Inc
– ident: ref29
  doi: 10.1109/EMBC.2018.8513575
– ident: ref27
  doi: 10.1152/ajpregu.00102.2020
– year: 2013
  ident: ref55
  publication-title: Practical Methods of Optimization
– ident: ref42
  doi: 10.1111/psyp.12434
– ident: ref36
  doi: 10.1371/journal.pone.0231659
– ident: ref21
  doi: 10.1017/S0033291700055343
– year: 1972
  ident: ref22
  publication-title: Handbook of Psychophysiology
– ident: ref45
  doi: 10.1007/s10439-005-9035-y
– ident: ref34
  doi: 10.1109/TBME.2020.3034632
– ident: ref63
  doi: 10.1007/s11926-005-0018-7
– ident: ref11
  doi: 10.1017/CBO9780511546396.007
– ident: ref16
  doi: 10.1016/j.ijpsycho.2007.03.012
– ident: ref58
  doi: 10.1504/IJKESDP.2011.039875
– ident: ref14
  doi: 10.1016/j.neubiorev.2004.06.004
– ident: ref33
  doi: 10.1109/JBHI.2017.2780252
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref60
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J Mach Learn Res
– start-page: 19
  year: 2011
  ident: ref2
  article-title: Self-report scales and procedures for assessing pain in adults
  publication-title: Handbook of Pain Assessment
– year: 2007
  ident: ref20
  publication-title: Handbook of Psychophysiology
– ident: ref51
  doi: 10.18637/jss.v008.i18
SSID ssj0014846
Score 2.510799
Snippet Objective: Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA...
Electrodermal activity (EDA) is a measure of sweat gland activation due to sympathetic arousal, and it has been widely used to assess human response to...
Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3122
SubjectTerms Arousal
Biomedical measurement
Electrodermal activity
Electrodes
Heuristic algorithms
Human response
machine learning
Multilayers
Pain
Pain sensitivity
phasic component
Radial basis function
Resonant frequency
Segments
Spectral analysis
Spectrum analysis
Stimulation
Support vector machines
Time-frequency analysis
tonic component
Title Sensitive Physiological Indices of Pain Based on Differential Characteristics of Electrodermal Activity
URI https://ieeexplore.ieee.org/document/9376646
https://www.ncbi.nlm.nih.gov/pubmed/33705307
https://www.proquest.com/docview/2575129276
https://www.proquest.com/docview/2501259994
https://pubmed.ncbi.nlm.nih.gov/PMC8483589
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9QwDLa2PUzjYYwNWMdAQeIJ0Vva5tL2cRs3DaRDSGzS3qo0cWFiahHcvfDrZzdpdTdNiLeqcatEtmM7dj4DvJsaiimkrGPXGBsrLLPYNC6PGRvNKM7zIAeK8y_68lp9vpnebMCH8S4MIvbFZzjhxz6X7zq75KOyEzKlWiu9CZsUuPm7WmPGQBX-Uo5MSIHTUoUMZiLLk6uz-YwiwTSZcJt0smk7sJ1lOYkfN5FdMUd9f5XHXM2HFZMrJujiKcyHyfvKk5-T5aKe2L8PcB3_d3V7sBt8UXHqhecZbGC7D09WEAr3YXsecu8H8P0b17rz7ij6stFh1xSfWse7jega8dXctuKMDKMTXSs-huYrtIncifN1ZGimnvkWPI6NA03D-kYWz-H6YnZ1fhmHNg2xVSpfxAUqbSkmd3VK4bTOkFwOcktqPitpUmlVbp0ura0tQ8OgSTNErTFx5IwoaTB7AVtt1-IhCHrfZE1ZEEGhmkSa3DVIEbwh-ikmdQRy4FZlA4Y5t9K4q_pYRpYV87piXleB1xG8Hz_55QE8_kV8wHwZCQNLIjgeRKIKKv6nSjljlZZpTsNvx2FSTs64mBa7JdOQ_Z-SD64ieOklaPz3IIER5GuyNRIw8Pf6SHv7owcALxT5zUV59PhsX8EOr8lXHB7D1uL3El-T57So3_Qqcw8YuxR_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVy4NEHBAoYiRMi2zyc15GWrbbQVEhspd4ix55A1SpBsHvh1zMTO9FuVSFuUTyJHM3Y801m_A3Au0RRTBEEtW8apX2JReyrxmQ-c6MpyXke5ECxPE9nF_LzZXK5AR_GszCI2Bef4YQv-1y-6fSSf5UdkitNU5neg_vk95PQntYacwYyt8dygpCWcFRIl8MMg-JwflROKRaMwgk3Sievtg1bcZyRAXIb2RWH1HdYuQts3q6ZXHFCJ4-hHKZva0-uJ8tFPdF_bjE7_u_3PYFHDo2Kj9Z8nsIGtjvwcIWjcAe2Spd934Xv37janfdH0ReODvumOG0N7zeia8RXddWKI3KNRnSt-OTar9A2ciOO17mhWXpqm_AYdg80DW1bWezBxcl0fjzzXaMGX0uZLfwcZaopKjd1RAF1GiOBDgImNf8taaJAy0ybtNC61kwOgyqKEdMUQ0NwRAYK433YbLsWn4Og-03cFDkJ5LIJA5WZBimGVySfYFh7EAzaqrRjMedmGjdVH80ERcW6rljXldO1B-_HR35aCo9_Ce-yXkZBpxIPDgaTqNwi_11FnLOKiiij4bfjMC1PzrmoFrslyxACSAiFSw-eWQsa3z1YoAfZmm2NAkz9vT7SXv3oKcBzScg5L17cPds38GA2L8-qs9PzLy9hm7_P1h8ewObi1xJfEY5a1K_75fMXoFIXyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitive+Physiological+Indices+of+Pain+Based+on+Differential+Characteristics+of+Electrodermal+Activity&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Kong%2C+Youngsun&rft.au=Posada-Quintero%2C+Hugo+F&rft.au=Chon%2C+Ki+H&rft.date=2021-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=68&rft.issue=10&rft.spage=3122&rft_id=info:doi/10.1109%2FTBME.2021.3065218&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon