Does an atom interferometer test the gravitational redshift at the Compton frequency?

Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical fre...

Full description

Saved in:
Bibliographic Details
Published inClassical and quantum gravity Vol. 28; no. 14; p. 145017
Main Authors Wolf, Peter, Blanchet, Luc, Bordé, Christian J, Reynaud, Serge, Salomon, Christophe, Cohen-Tannoudji, Claude
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 21.07.2011
Institute of Physics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, Müller, Peters and Chu [ A precision measurement of the gravitational redshift by the interference of matter waves, Nature 463, 926-929 (2010) ] argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In the present paper we analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of " Compton phases " between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been proposed to date, we conclude that the interpretation of atom interferometers as testing the gravitational redshift at the Compton frequency is unsound.
AbstractList Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, Müller, Peters and Chu [ A precision measurement of the gravitational redshift by the interference of matter waves, Nature 463, 926-929 (2010) ] argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In the present paper we analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of " Compton phases " between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been proposed to date, we conclude that the interpretation of atom interferometers as testing the gravitational redshift at the Compton frequency is unsound.
Author Bordé, Christian J
Reynaud, Serge
Wolf, Peter
Salomon, Christophe
Blanchet, Luc
Cohen-Tannoudji, Claude
Author_xml – sequence: 1
  fullname: Wolf, Peter
– sequence: 2
  fullname: Blanchet, Luc
– sequence: 3
  fullname: Bordé, Christian J
– sequence: 4
  fullname: Reynaud, Serge
– sequence: 5
  fullname: Salomon, Christophe
– sequence: 6
  fullname: Cohen-Tannoudji, Claude
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24354619$$DView record in Pascal Francis
https://hal.science/hal-00719841$$DView record in HAL
BookMark eNqFkE1LAzEQhoMo2Fb_guzFg4e1mU12N3uSUj8qFLzYc5imE7vSbtYkFvrv3brSi4IQSMj7PMPwDtlp4xpi7Ar4LXClxjwrZFoJBeNMjUF2J-dQnrABiALSQqjslA2O0DkbhvDOOYCCbMAW945Cgk2C0W2TuonkLXm3pe6RRAoxiWtK3jzu6oixdg1uEk-rsK5t7JzvdOq2bXRNYj19fFJj9ncX7MziJtDlzz1ii8eH1-ksnb88PU8n89RIWcZUSYO8EobnxFGZpchWZlnlYKsSDOTWGEPEFaIV3FZdlqtSlGSAMisVoBixm37uGje69fUW_V47rPVsMteHP85LqJSEHXRs0bPGuxA82aMAXB-K1IeO9KEjnSkNUvdFduJ1L7YYDG6sx8bU4WhnUuSygKrj0p6rXXtM_56p25XtePjN_7PLF4RNkf8
CODEN CQGRDG
CitedBy_id crossref_primary_10_1088_0264_9381_30_6_065006
crossref_primary_10_1103_PhysRevD_101_026005
crossref_primary_10_1103_PhysRevLett_120_043602
crossref_primary_10_1103_PhysRevResearch_2_043240
crossref_primary_10_1103_PhysRevA_98_013636
crossref_primary_10_1126_science_1230767
crossref_primary_10_1103_PhysRevA_89_014101
crossref_primary_10_1088_1367_2630_aa5d92
crossref_primary_10_1103_PhysRevD_109_022008
crossref_primary_10_1016_j_physleta_2012_11_012
crossref_primary_10_1103_PhysRevD_92_124050
crossref_primary_10_1126_science_abl7152
crossref_primary_10_12942_lrr_2014_4
crossref_primary_10_1103_PhysRevLett_125_213201
crossref_primary_10_1088_1367_2630_16_6_065008
crossref_primary_10_1103_PhysRevA_86_063622
crossref_primary_10_1016_j_newast_2014_01_012
crossref_primary_10_1038_news_2011_358
crossref_primary_10_1088_1361_6382_aad56b
crossref_primary_10_1088_1361_6382_aa864f
crossref_primary_10_1088_1367_2630_18_2_025018
crossref_primary_10_1126_sciadv_aax8966
crossref_primary_10_1103_PhysRevX_10_021014
crossref_primary_10_1093_ptep_ptu085
crossref_primary_10_1140_epjp_i2014_14178_y
crossref_primary_10_1103_PhysRevD_104_084001
crossref_primary_10_1002_prop_201500020
crossref_primary_10_1103_PRXQuantum_2_040333
crossref_primary_10_1103_PhysRevD_108_084038
crossref_primary_10_1116_5_0009093
crossref_primary_10_1119_10_0002638
crossref_primary_10_1103_PhysRevLett_110_010401
crossref_primary_10_1116_5_0178230
crossref_primary_10_1038_nature_2015_18780
crossref_primary_10_1088_1742_6596_327_1_012049
crossref_primary_10_1103_PhysRevLett_108_230404
crossref_primary_10_1088_1402_4896_ad340c
crossref_primary_10_1088_2058_9565_abd83e
crossref_primary_10_1016_j_ppnp_2020_103772
crossref_primary_10_1088_1367_2630_15_1_013007
crossref_primary_10_1007_s10686_021_09718_8
crossref_primary_10_1007_s10714_014_1701_7
crossref_primary_10_1103_PhysRevA_99_013627
crossref_primary_10_1088_0264_9381_29_4_048002
crossref_primary_10_1088_0264_9381_29_4_048001
crossref_primary_10_1088_1674_1056_24_5_053702
crossref_primary_10_1088_1367_2630_14_5_055010
crossref_primary_10_1007_s44214_024_00049_1
crossref_primary_10_1038_ncomms1498
crossref_primary_10_1016_j_asr_2014_07_014
crossref_primary_10_1088_1681_7575_ac7ca7
crossref_primary_10_1016_j_crhy_2015_04_002
crossref_primary_10_1088_0264_9381_28_14_145018
crossref_primary_10_1038_nature_2013_12191
Cites_doi 10.1007/BF00759854
10.1038/164637a0
10.1038/nature08776
10.1016/S1296-2147(01)01186-6
10.1103/PhysRevD.27.1705
10.1051/jp2:1994103
10.1016/0550-3213(94)90143-0
10.1038/nature09340
10.1023/B:GERG.0000010726.64769.6d
10.1140/epjst/e2008-00827-3
10.1103/PhysRevLett.97.240801
10.1103/PhysRevLett.100.041101
10.1103/PhysRev.124.925
10.1103/PhysRevD.8.364
10.1103/PhysRevD.11.245
10.1140/epjst/e2009-01041-7
10.1103/PhysRevLett.13.789
10.1119/1.1935800
10.1016/0375-9601(89)90537-9
10.1103/PhysRevLett.67.177
10.1103/RevModPhys.55.875
10.1209/epl/i2005-10163-6
10.1103/PhysRevLett.100.140801
10.1086/170323
10.1088/0954-3899/37/7A/075021
10.1103/PhysRevD.74.045001
10.1103/PhysRevLett.67.181
10.1016/S0375-9601(98)00881-0
10.1103/PhysRevA.80.063604
10.1016/0003-4916(64)90259-3
10.1088/0026-1394/47/4/L01
10.1016/0003-4916(79)90238-0
10.1103/PhysRevLett.38.301
10.1016/B978-012092460-8/50008-4
10.1103/PhysRevLett.34.1472
10.1016/0003-4916(57)90057-X
10.1103/PhysRevLett.106.151102
10.1038/nature09341
10.1103/PhysRevLett.100.043602
10.1017/CBO9780511564246
10.1103/PhysRevLett.93.261101
10.1103/PhysRevLett.4.337
10.1088/0026-1394/39/5/5
10.1038/23655
10.1103/PhysRevD.78.042003
10.1103/PhysRev.140.B788
10.1103/PhysRevLett.69.559
ContentType Journal Article
Copyright 2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID IQODW
AAYXX
CITATION
1XC
VOOES
DOI 10.1088/0264-9381/28/14/145017
DatabaseName Pascal-Francis
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 1361-6382
ExternalDocumentID oai_HAL_hal_00719841v1
10_1088_0264_9381_28_14_145017
24354619
GroupedDBID 1JI
1PV
1WK
29B
4.4
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AALHV
AAPBV
ABHWH
ABPTK
ABQJV
ABUFD
ACGFS
AEFHF
AENEX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
DU5
DZ
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
R4D
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TN5
UCJ
UNR
UQL
W28
X
XHC
XPP
ZMT
-DZ
-~X
02O
08R
6J9
AAGCF
AAJKP
AATNI
ABCXL
ABTAH
ABVAM
ACAFW
ACGFO
ACHIP
AFFNX
AI.
AKPSB
CBCFC
CEBXE
CRLBU
IJHAN
IQODW
JCGBZ
KC5
PJBAE
RKQ
T37
VH1
XOL
YYP
ZCG
ZY4
AAYXX
ABJNI
AOAED
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c447t-84ca093c05e0a8cb32dcb951f971c15fcccee08aaf30f9dcb58737ec1e2f481a3
IEDL.DBID IOP
ISSN 0264-9381
IngestDate Fri Sep 06 12:39:47 EDT 2024
Fri Aug 23 02:41:16 EDT 2024
Sun Oct 22 16:03:14 EDT 2023
Tue Nov 10 14:19:53 EST 2020
Mon May 13 15:27:58 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Red shift
General relativity
Duality
Equivalence principle
Free fall
Feynman path integral
Gravitational potential
Energy conservation
Gravitational red shift
Violations
Quantum mechanics
Matter wave
Gravity
Physical Sciences
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-84ca093c05e0a8cb32dcb951f971c15fcccee08aaf30f9dcb58737ec1e2f481a3
ORCID 0000-0003-1142-9534
0000-0002-1494-696X
0000-0001-6779-734X
OpenAccessLink https://hal.science/hal-00719841
ParticipantIDs pascalfrancis_primary_24354619
hal_primary_oai_HAL_hal_00719841v1
crossref_primary_10_1088_0264_9381_28_14_145017
iop_primary_10_1088_0264_9381_28_14_145017
PublicationCentury 2000
PublicationDate 2011-07-21
PublicationDateYYYYMMDD 2011-07-21
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-21
  day: 21
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Classical and quantum gravity
PublicationYear 2011
Publisher IOP Publishing
Institute of Physics
Publisher_xml – name: IOP Publishing
– name: Institute of Physics
References 44
46
47
49
Sinha S Samuel J (43) 2011
Bordé Ch J (24) 2002; 39
Damour T (48) 2010; 37
51
52
53
10
11
12
56
Braginsky V (5) 1972; 34
13
14
16
17
18
19
Chazy J (1) 1930
3
Hohensee M Estey B Monsalve F Kim G Kuan P-C Lan S-Y Yu N Peters A Chu S Müller H (36) 2010
4
6
7
8
9
20
21
22
23
25
26
Bertotti B (2) 1962
27
28
de Broglie L (38) 1923; 2
Kostelecky V Tasson J (54) 2010
29
Giulini D (55) 2011
Will C M (15) 1993
30
32
33
34
35
37
39
Cladé P (45) 2005; 71
Dicke R (50) 1964
Merlet S (31) 2010; 47
40
41
42
References_xml – ident: 11
  doi: 10.1007/BF00759854
– ident: 16
  doi: 10.1038/164637a0
– ident: 35
  doi: 10.1038/nature08776
– year: 2010
  ident: 54
  contributor:
    fullname: Kostelecky V Tasson J
– ident: 23
  doi: 10.1016/S1296-2147(01)01186-6
– ident: 13
  doi: 10.1103/PhysRevD.27.1705
– ident: 21
  doi: 10.1051/jp2:1994103
– ident: 49
  doi: 10.1016/0550-3213(94)90143-0
– ident: 39
  doi: 10.1038/nature09340
– ident: 25
  doi: 10.1023/B:GERG.0000010726.64769.6d
– ident: 26
  doi: 10.1140/epjst/e2008-00827-3
– ident: 33
  doi: 10.1103/PhysRevLett.97.240801
– ident: 6
  doi: 10.1103/PhysRevLett.100.041101
– ident: 17
  doi: 10.1103/PhysRev.124.925
– ident: 51
  doi: 10.1103/PhysRevD.8.364
– ident: 41
  doi: 10.1103/PhysRevD.11.245
– ident: 12
  doi: 10.1140/epjst/e2009-01041-7
– ident: 3
  doi: 10.1103/PhysRevLett.13.789
– ident: 44
  doi: 10.1119/1.1935800
– ident: 19
  doi: 10.1016/0375-9601(89)90537-9
– ident: 32
  doi: 10.1103/PhysRevLett.67.177
– ident: 29
  doi: 10.1103/RevModPhys.55.875
– volume: 71
  start-page: 730
  issn: 0295-5075
  year: 2005
  ident: 45
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2005-10163-6
  contributor:
    fullname: Cladé P
– ident: 14
  doi: 10.1103/PhysRevLett.100.140801
– ident: 10
  doi: 10.1086/170323
– start-page: 165
  year: 1964
  ident: 50
  publication-title: Relativity, Groups, and Topology
  contributor:
    fullname: Dicke R
– volume: 37
  start-page: 075021
  issn: 0954-3899
  year: 2010
  ident: 48
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/0954-3899/37/7A/075021
  contributor:
    fullname: Damour T
– ident: 53
  doi: 10.1103/PhysRevD.74.045001
– year: 2011
  ident: 55
  contributor:
    fullname: Giulini D
– ident: 20
  doi: 10.1103/PhysRevLett.67.181
– ident: 22
  doi: 10.1016/S0375-9601(98)00881-0
– ident: 34
  doi: 10.1103/PhysRevA.80.063604
– ident: 4
  doi: 10.1016/0003-4916(64)90259-3
– volume: 47
  start-page: L9
  issn: 0026-1394
  year: 2010
  ident: 31
  publication-title: Metrologia
  doi: 10.1088/0026-1394/47/4/L01
  contributor:
    fullname: Merlet S
– year: 2011
  ident: 43
  contributor:
    fullname: Sinha S Samuel J
– volume: 2
  start-page: 507
  year: 1923
  ident: 38
  publication-title: C. R. Acad. Sci., Paris
  contributor:
    fullname: de Broglie L
– ident: 42
  doi: 10.1016/0003-4916(79)90238-0
– ident: 47
  doi: 10.1103/PhysRevLett.38.301
– start-page: 1
  year: 1962
  ident: 2
  publication-title: Gravitation: An Introduction to Current Research
  contributor:
    fullname: Bertotti B
– ident: 56
  doi: 10.1016/B978-012092460-8/50008-4
– ident: 28
  doi: 10.1103/PhysRevLett.34.1472
– ident: 18
  doi: 10.1016/0003-4916(57)90057-X
– year: 2010
  ident: 36
  contributor:
    fullname: Hohensee M Estey B Monsalve F Kim G Kuan P-C Lan S-Y Yu N Peters A Chu S Müller H
– ident: 37
  doi: 10.1103/PhysRevLett.106.151102
– ident: 40
  doi: 10.1038/nature09341
– ident: 46
  doi: 10.1103/PhysRevLett.100.043602
– year: 1993
  ident: 15
  publication-title: Theory and Experiment in Gravitational Physics
  doi: 10.1017/CBO9780511564246
  contributor:
    fullname: Will C M
– ident: 7
  doi: 10.1103/PhysRevLett.93.261101
– ident: 8
  doi: 10.1103/PhysRevLett.4.337
– volume: 39
  start-page: 435
  issn: 0026-1394
  year: 2002
  ident: 24
  publication-title: Metrologia
  doi: 10.1088/0026-1394/39/5/5
  contributor:
    fullname: Bordé Ch J
– volume: 34
  start-page: 463
  issn: 0038-5646
  year: 1972
  ident: 5
  publication-title: Sov. Phys.-JETP
  contributor:
    fullname: Braginsky V
– ident: 30
  doi: 10.1038/23655
– ident: 27
  doi: 10.1103/PhysRevD.78.042003
– year: 1930
  ident: 1
  publication-title: La théorie de la relativité et de la mécanique céleste
  contributor:
    fullname: Chazy J
– ident: 9
  doi: 10.1103/PhysRev.140.B788
– ident: 52
  doi: 10.1103/PhysRevLett.69.559
SSID ssj0011812
Score 2.3562183
Snippet Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface....
SourceID hal
crossref
pascalfrancis
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 145017
SubjectTerms Exact sciences and technology
General relativity and gravitation
General Relativity and Quantum Cosmology
Physics
Title Does an atom interferometer test the gravitational redshift at the Compton frequency?
URI http://iopscience.iop.org/0264-9381/28/14/145017
https://hal.science/hal-00719841
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB7agqAPVqviaS1BxAdh7zabpMk-lVIth1h_gAd9W7LZhBbx7rjdCvrX-2Vzt7RYUGEfwiaTsJnZzDfJZIbolShq_EG2yZQIIpMq4J-Tpc2E8eWhhAy5Pt3b2cfD6Uy-P1fnW7RJgni5WK5X_jGK_Uk-jASZlVAsk8JMuMSjIEVYdGOYk3hj79Pn4dggqqu0qZJINleCYeXd3s0NbbR9EX0htzFw9JC0LSYppOwW11TO6S592VzcSZ4m38ZXXT12v_6M4_jPX_OA7q_xJztOAvOQtvx8j-6dDcFb2z2603uFuvYRzd4ufMvsnMEy_85iZIlV8DG-AQoMGLVjIGMxg9E60jd6XvmmvbgMHWj62rjgAF-ysEpO2z-PHtPs9N3Xk2m2zsOQOSl1B-Y5m5fC5crn1rhaFI2rgcxCqbnjKjgHTZsba4PIQ4k6ZbTQ3nFfBGm4FU9oZ76Y-6fEvEZNCEpbw6V1ACsqWGAW0WiQaTGiyYYf1TKF26j6Y3Jjqjh1VZy6qjCwWKo0dSN6CbYNjWO07Onxhyq-i_CpNJL_4CN6DQYMjW7vqVo2YURvrjf829AHN6RkICuAQSUs02f_09tzupv2q3VW8H3a6VZX_gUAT1cf9EL-G5JG77I
link.rule.ids 230,315,786,790,891,1564,27957,27958,53941
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED6alo3tod26jqW_JsbYw8CJZUmV_FRK25BubdeHBfomZFmiYywJsTvY_vqeLNe0o2WMgR-EpZPtO8n3STp9AnjPsgJ7kCkTwTxLuPDY53huEqZcvsexDdnmuLez873xhH-6FJdLcNzthZnN21__AJORKDiqsA2IU0McNfAkR08zzNSQcrxEIIGel74HK4LlPPTPky8X3WJCcGJxqiXK3W4UfrSuez6qdxUiJHv4NiFu0lSoOh_PvLjjiEZrMWCkavgLQ_zJ98F1XQzs7z_YHf_7G1_AagtVyUEUeglLbroOz886ntdqHZ40AaS2egWTo5mriJkSHMT_IIGEYuFdoELABEE4WxMUI-Gwo5YUHGteuLK6-uZrlGlyw78JoSjxixjf_Wt_Ayaj46-H46Q9siGxnMsa7WxNmjObCpcaZQuWlbZAEOdzSS0V3lp0yqkyxrPU55gnlGTSWeoyzxU17DUsT2dT9waIk5jjvZBGUW4s4hrhDcIbVkoUk6wPw1sj6Xlk5tDNirpSOqhPB_XpTOHgRkf19eEd2rIrHIi1xwenOtwLSCtXnP6kffiARukKPVyTRkP04ePdgn979O69ptOJZQhXOQ5iN_-ltrfw9OJopE9Pzj9vwbM4yy2TjG7Dcr24djsIk-pit-kEN7ls_50
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+an+atom+interferometer+test+the+gravitational+redshift+at+the+Compton+frequency%3F&rft.jtitle=Classical+and+quantum+gravity&rft.au=Wolf%2C+Peter&rft.au=Blanchet%2C+Luc&rft.au=Bord%C3%A9%2C+Christian+J&rft.au=Reynaud%2C+Serge&rft.date=2011-07-21&rft.pub=IOP+Publishing&rft.issn=0264-9381&rft.eissn=1361-6382&rft.volume=28&rft.spage=145017&rft_id=info:doi/10.1088%2F0264-9381%2F28%2F14%2F145017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0264_9381_28_14_145017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-9381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-9381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-9381&client=summon