Fabrication of superhydrophobic surface by oxidation growth of flower-like nanostructure on a steel foil

Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 7; no. 41; pp. 25341 - 25346
Main Authors Weng, Rui, Zhang, Haifeng, Yin, Liang, Rong, Wanting, Wu, Zhiwen, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published 01.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we present a novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil using the method of high-temperature oxidation. The wettability of the oxide films can be easily changed from super hydrophilic to superhydrophobic with chemical modification. We measure the liquid/solid friction of the as-prepared superhydrophobic surface using the self-assembly system. The drag reduction ratio for the superhydrophobic steel surface is 20-30% at low velocity. The superhydrophobic steel surface has numerous technical applications in drag reduction field. A novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil was presented here. The surface shows good drag reduction effect and has numerous technical applications in drag reduction field.
AbstractList Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we present a novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil using the method of high-temperature oxidation. The wettability of the oxide films can be easily changed from super hydrophilic to superhydrophobic with chemical modification. We measure the liquid/solid friction of the as-prepared superhydrophobic surface using the self-assembly system. The drag reduction ratio for the superhydrophobic steel surface is 20-30% at low velocity. The superhydrophobic steel surface has numerous technical applications in drag reduction field.
Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we present a novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil using the method of high-temperature oxidation. The wettability of the oxide films can be easily changed from super hydrophilic to superhydrophobic with chemical modification. We measure the liquid/solid friction of the as-prepared superhydrophobic surface using the self-assembly system. The drag reduction ratio for the superhydrophobic steel surface is 20-30% at low velocity. The superhydrophobic steel surface has numerous technical applications in drag reduction field. A novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil was presented here. The surface shows good drag reduction effect and has numerous technical applications in drag reduction field.
Author Liu, Xiaowei
Wu, Zhiwen
Rong, Wanting
Zhang, Haifeng
Yin, Liang
Weng, Rui
AuthorAffiliation MEMS Center
Harbin Institute of Technology
State Key Laboratory of Urban Water Resource & Environment
AuthorAffiliation_xml – name: MEMS Center
– name: Harbin Institute of Technology
– name: State Key Laboratory of Urban Water Resource & Environment
Author_xml – sequence: 1
  givenname: Rui
  surname: Weng
  fullname: Weng, Rui
– sequence: 2
  givenname: Haifeng
  surname: Zhang
  fullname: Zhang, Haifeng
– sequence: 3
  givenname: Liang
  surname: Yin
  fullname: Yin, Liang
– sequence: 4
  givenname: Wanting
  surname: Rong
  fullname: Rong, Wanting
– sequence: 5
  givenname: Zhiwen
  surname: Wu
  fullname: Wu, Zhiwen
– sequence: 6
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
BookMark eNqF0c9LwzAUB_AgE5xzF-9CvYlQbdI2TY9jOBUGgui55MeLi3ZNTVLm_nu7TVRENJeE8HkP3vseokFjG0DoGCcXOEnLS0kdJ4ykpdxDQ5JkNCYJLQff3gdo7P1z0h-aY0LxEC1mXDgjeTC2iayOfNeCW6yVs-3CCiP7D6e5hEisI_tm1A4-ObsKi43XtV2Bi2vzAlHDG-uD62ToHEQ945EPAHWkramP0L7mtYfxxz1Cj7Orh-lNPL-7vp1O5rHMsiLELBMlK0RKOdYsgX6uQhWMkAwIBlEIrkgORABVnGWEasEKXZa5SnMlc65kOkJnu76ts68d-FAtjZdQ17wB2_mKkDwlrGCY_EtxiXtLWEp7muyodNZ7B7qSJmx3ERw3dYWTahNBNaX3k20E077k_EdJ68ySu_Xv-HSHnZef7ivPqlW6Nyd_mfQdC3Kfdg
CitedBy_id crossref_primary_10_3390_mi12060656
crossref_primary_10_1016_j_tsf_2018_09_019
crossref_primary_10_3390_coatings14081028
crossref_primary_10_1016_j_oceaneng_2020_106962
crossref_primary_10_1088_2053_1591_ab3c90
crossref_primary_10_2174_1872212115666210929115445
crossref_primary_10_1016_j_matlet_2022_133651
crossref_primary_10_1080_02670844_2018_1433774
crossref_primary_10_1021_acs_nanolett_1c00436
crossref_primary_10_1002_pc_24982
crossref_primary_10_1016_j_colsurfa_2022_130291
Cites_doi 10.1039/b804854a
10.1021/la2011088
10.1002/anie.201409911
10.1002/adma.201003129
10.1002/adma.200700934
10.1039/C5RA00941C
10.1002/cvde.200904276
10.1021/la052424i
10.1016/j.apsusc.2013.12.147
10.1016/j.apsusc.2015.08.027
10.1021/ja062943n
10.1016/j.pmatsci.2008.07.003
10.1021/jp0461448
10.1016/j.matlet.2016.01.107
10.1002/adma.200501961
10.1021/la0401011
10.1016/j.cis.2011.08.005
10.1016/j.cplett.2003.08.061
10.1007/s11434-010-4163-7
10.1021/la5021143
10.1039/C5RA23842K
10.1039/c0sm01426e
10.1038/432036a
ContentType Journal Article
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7S9
L.6
DOI 10.1039/c6ra28239c
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 25346
ExternalDocumentID 10_1039_C6RA28239C
c6ra28239c
GroupedDBID -JG
0-7
AAEMU
ABGFH
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
R7C
R7E
R7G
RCNCU
RPMJG
RRC
RSCEA
SLH
SMJ
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABIQK
ABJNI
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AENEX
AESAV
AETIL
AFLYV
AFPKN
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
BCNDV
BLAPV
CITATION
EBS
ECGLT
EJD
GROUPED_DOAJ
H13
HZ~
J3G
J3H
M~E
O9-
OK1
PGMZT
RAOCF
RPM
RVUXY
YAE
ZCN
7SR
8BQ
8FD
JG9
7S9
L.6
ID FETCH-LOGICAL-c447t-84b987b36a1f80e1037d78224e21eb7bad25e2be6da8426fb87f995d35dc5adc3
ISSN 2046-2069
IngestDate Thu Jul 10 23:38:36 EDT 2025
Thu Jul 10 23:17:44 EDT 2025
Tue Jul 01 03:31:18 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Mon Jan 28 17:15:50 EST 2019
Thu May 30 17:53:40 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-84b987b36a1f80e1037d78224e21eb7bad25e2be6da8426fb87f995d35dc5adc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4917-746X
0000-0003-3830-7385
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2017/ra/c6ra28239c
PQID 1915322836
PQPubID 23500
PageCount 6
ParticipantIDs crossref_citationtrail_10_1039_C6RA28239C
crossref_primary_10_1039_C6RA28239C
rsc_primary_c6ra28239c
proquest_miscellaneous_2253287812
proquest_miscellaneous_1915322836
ProviderPackageCode J3I
R7E
RRC
R7G
AEFDR
RPMJG
-JG
AGSTE
RCNCU
AUDPV
EF-
SLH
BSQNT
EE0
SMJ
RSCEA
AFVBQ
C6K
H~N
0-7
ABGFH
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationTitle RSC advances
PublicationYear 2017
References Liu (C6RA28239C-(cit17)/*[position()=1]) 2015; 355
Koch (C6RA28239C-(cit10)/*[position()=1]) 2009; 54
Gao (C6RA28239C-(cit23)/*[position()=1]) 2006; 128
Zhang (C6RA28239C-(cit2)/*[position()=1]) 2011; 56
Zhou (C6RA28239C-(cit4)/*[position()=1]) 2011; 7
Verho (C6RA28239C-(cit20)/*[position()=1]) 2011; 23
Zhou (C6RA28239C-(cit3)/*[position()=1]) 2011; 16
Kim (C6RA28239C-(cit16)/*[position()=1]) 2016; 170
Jagdheesh (C6RA28239C-(cit18)/*[position()=1]) 2011; 27
Liang (C6RA28239C-(cit19)/*[position()=1]) 2014; 293
Fu (C6RA28239C-(cit22)/*[position()=1]) 2003; 379
Gao (C6RA28239C-(cit11)/*[position()=1]) 2004; 432
Ke (C6RA28239C-(cit1)/*[position()=1]) 2009; 39
Solomon (C6RA28239C-(cit5)/*[position()=1]) 2014; 30
Wang (C6RA28239C-(cit12)/*[position()=1]) 2007; 19
Zhang (C6RA28239C-(cit24)/*[position()=1]) 2016; 6
Koch (C6RA28239C-(cit9)/*[position()=1]) 2008; 4
Yan (C6RA28239C-(cit8)/*[position()=1]) 2011; 169
Gao (C6RA28239C-(cit15)/*[position()=1]) 2006; 22
Wen (C6RA28239C-(cit21)/*[position()=1]) 2005; 109
Fürstner (C6RA28239C-(cit7)/*[position()=1]) 2005; 21
Feng (C6RA28239C-(cit13)/*[position()=1]) 2006; 18
Wen (C6RA28239C-(cit14)/*[position()=1]) 2015; 54
Wang (C6RA28239C-(cit6)/*[position()=1]) 2015; 5
References_xml – volume: 4
  start-page: 1943
  year: 2008
  ident: C6RA28239C-(cit9)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/b804854a
– volume: 27
  start-page: 8464
  year: 2011
  ident: C6RA28239C-(cit18)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la2011088
– volume: 54
  start-page: 3387
  year: 2015
  ident: C6RA28239C-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409911
– volume: 23
  start-page: 673
  year: 2011
  ident: C6RA28239C-(cit20)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003129
– volume: 19
  start-page: 3423
  year: 2007
  ident: C6RA28239C-(cit12)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700934
– volume: 5
  start-page: 18909
  year: 2015
  ident: C6RA28239C-(cit6)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA00941C
– volume: 16
  start-page: 12
  year: 2011
  ident: C6RA28239C-(cit3)/*[position()=1]
  publication-title: Chem. Vap. Deposition
  doi: 10.1002/cvde.200904276
– volume: 22
  start-page: 3521
  year: 2006
  ident: C6RA28239C-(cit15)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la052424i
– volume: 293
  start-page: 265
  year: 2014
  ident: C6RA28239C-(cit19)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2013.12.147
– volume: 39
  start-page: 546
  year: 2009
  ident: C6RA28239C-(cit1)/*[position()=1]
  publication-title: Adv. Mech. Eng.
– volume: 355
  start-page: 1238
  year: 2015
  ident: C6RA28239C-(cit17)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.027
– volume: 128
  start-page: 9052
  year: 2006
  ident: C6RA28239C-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja062943n
– volume: 54
  start-page: 137
  year: 2009
  ident: C6RA28239C-(cit10)/*[position()=1]
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2008.07.003
– volume: 109
  start-page: 215
  year: 2005
  ident: C6RA28239C-(cit21)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0461448
– volume: 170
  start-page: 18
  year: 2016
  ident: C6RA28239C-(cit16)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.01.107
– volume: 18
  start-page: 3063
  year: 2006
  ident: C6RA28239C-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501961
– volume: 21
  start-page: 956
  year: 2005
  ident: C6RA28239C-(cit7)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0401011
– volume: 169
  start-page: 80
  year: 2011
  ident: C6RA28239C-(cit8)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2011.08.005
– volume: 379
  start-page: 373
  year: 2003
  ident: C6RA28239C-(cit22)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2003.08.061
– volume: 56
  start-page: 938
  year: 2011
  ident: C6RA28239C-(cit2)/*[position()=1]
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-010-4163-7
– volume: 30
  start-page: 10970
  year: 2014
  ident: C6RA28239C-(cit5)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la5021143
– volume: 6
  start-page: 14034
  year: 2016
  ident: C6RA28239C-(cit24)/*[position()=1]
  publication-title: RSC adv.
  doi: 10.1039/C5RA23842K
– volume: 7
  start-page: 4391
  year: 2011
  ident: C6RA28239C-(cit4)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c0sm01426e
– volume: 432
  start-page: 36
  year: 2004
  ident: C6RA28239C-(cit11)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/432036a
SSID ssj0000651261
Score 2.2199998
Snippet Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25341
SubjectTerms Drag reduction
energy conservation
foil
Foils
Friction
hydrophilicity
hydrophobicity
Liquids
nanomaterials
Oxidation
Oxide coatings
Self assembly
steel
Steels
wettability
Title Fabrication of superhydrophobic surface by oxidation growth of flower-like nanostructure on a steel foil
URI https://www.proquest.com/docview/1915322836
https://www.proquest.com/docview/2253287812
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEF8THTAZwQuqMto4cZzHKWKqEPBQVlaeIn9caEWVVFkrMfjnOSdOmm1FGrxEjXtNUt8v55_PvjtC3oRMcom034sFM16glfEE6NhjGsww49xoYWOHP33m42nwYRbOer3f3eiStTrRv3bGlfyPVrEN9WqjZP9Bs-1FsQE_o37xiBrG4510fCZV6XxulvRdblZQzq9MWazmhVpobCgziS8uUszi56KunjT4jhPv9dzKZ0tbIs1bLn7AIJd5UeeStSsKdovyAPUPNrrRbcJosnh_SZqNAy0dv4DaYkw2i1uO6LFcZOCGR2td6pwFHxGVbdvEbQu-kFXZiq4jYhR1HBGVvfJxqo3qqSuvnMCONmdwow6u6qxXjfUMmTuH9pzvtPNDZtOkJnxyilNGFifb0axZwb8xyLVbD6tFdxan29_ukQMf5xhoJA8mX6ezb62LDtnZyK8y7rZ_o0lwy-J32wtcpzTbecpe2RSRqcjK-UPywM0y6GkNmUekB_ljci9pivs9IfMOdGiR0ZvQoQ46VF3RFjq0ho6V70CHXoMORTFJK-hQC52nZHr2_jwZe67ohqeDIFp7IlCxiBTjcpSJIdgwUmNZZAD-CFSkpPFD8BVwIwWyu0yJKIvj0LDQ6FAazQ7Jfl7k8IzQALgQ2uYM5GEAEY-BKZFp0JGKkSOpPnnb9FuqXUZ6Wxhlmd5WUp-8bmVXdR6WnVKvmu5PsUPt2pfModhcpqMYh3ab6on_XQaHNuaLCClvnxyi7tobaV7K6ga6T452f5GuTHZ0p2d8Tu5v354XZB_1Ay-R2K7VceUQOnYw_AMQ7aaQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+superhydrophobic+surface+by+oxidation+growth+of+flower-like+nanostructure+on+a+steel+foil&rft.jtitle=RSC+advances&rft.au=Weng%2C+Rui&rft.au=Zhang%2C+Haifeng&rft.au=Yin%2C+Liang&rft.au=Rong%2C+Wanting&rft.date=2017-01-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=7&rft.issue=41&rft.spage=25341&rft.epage=25346&rft_id=info:doi/10.1039%2FC6RA28239C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6RA28239C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon