Fabrication of superhydrophobic surface by oxidation growth of flower-like nanostructure on a steel foil
Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we...
Saved in:
Published in | RSC advances Vol. 7; no. 41; pp. 25341 - 25346 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we present a novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil using the method of high-temperature oxidation. The wettability of the oxide films can be easily changed from super hydrophilic to superhydrophobic with chemical modification. We measure the liquid/solid friction of the as-prepared superhydrophobic surface using the self-assembly system. The drag reduction ratio for the superhydrophobic steel surface is 20-30% at low velocity. The superhydrophobic steel surface has numerous technical applications in drag reduction field.
A novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil was presented here. The surface shows good drag reduction effect and has numerous technical applications in drag reduction field. |
---|---|
AbstractList | Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we present a novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil using the method of high-temperature oxidation. The wettability of the oxide films can be easily changed from super hydrophilic to superhydrophobic with chemical modification. We measure the liquid/solid friction of the as-prepared superhydrophobic surface using the self-assembly system. The drag reduction ratio for the superhydrophobic steel surface is 20-30% at low velocity. The superhydrophobic steel surface has numerous technical applications in drag reduction field. Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically and experimentally. However, there has been little experimental analysis on the drag reduction of superhydrophobic steel surfaces. Here, we present a novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil using the method of high-temperature oxidation. The wettability of the oxide films can be easily changed from super hydrophilic to superhydrophobic with chemical modification. We measure the liquid/solid friction of the as-prepared superhydrophobic surface using the self-assembly system. The drag reduction ratio for the superhydrophobic steel surface is 20-30% at low velocity. The superhydrophobic steel surface has numerous technical applications in drag reduction field. A novel method to fabricate the superhydrophobic surface with a 3D flower-like micro-nanostructure on the steel foil was presented here. The surface shows good drag reduction effect and has numerous technical applications in drag reduction field. |
Author | Liu, Xiaowei Wu, Zhiwen Rong, Wanting Zhang, Haifeng Yin, Liang Weng, Rui |
AuthorAffiliation | MEMS Center Harbin Institute of Technology State Key Laboratory of Urban Water Resource & Environment |
AuthorAffiliation_xml | – name: MEMS Center – name: Harbin Institute of Technology – name: State Key Laboratory of Urban Water Resource & Environment |
Author_xml | – sequence: 1 givenname: Rui surname: Weng fullname: Weng, Rui – sequence: 2 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng – sequence: 3 givenname: Liang surname: Yin fullname: Yin, Liang – sequence: 4 givenname: Wanting surname: Rong fullname: Rong, Wanting – sequence: 5 givenname: Zhiwen surname: Wu fullname: Wu, Zhiwen – sequence: 6 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei |
BookMark | eNqF0c9LwzAUB_AgE5xzF-9CvYlQbdI2TY9jOBUGgui55MeLi3ZNTVLm_nu7TVRENJeE8HkP3vseokFjG0DoGCcXOEnLS0kdJ4ykpdxDQ5JkNCYJLQff3gdo7P1z0h-aY0LxEC1mXDgjeTC2iayOfNeCW6yVs-3CCiP7D6e5hEisI_tm1A4-ObsKi43XtV2Bi2vzAlHDG-uD62ToHEQ945EPAHWkramP0L7mtYfxxz1Cj7Orh-lNPL-7vp1O5rHMsiLELBMlK0RKOdYsgX6uQhWMkAwIBlEIrkgORABVnGWEasEKXZa5SnMlc65kOkJnu76ts68d-FAtjZdQ17wB2_mKkDwlrGCY_EtxiXtLWEp7muyodNZ7B7qSJmx3ERw3dYWTahNBNaX3k20E077k_EdJ68ySu_Xv-HSHnZef7ivPqlW6Nyd_mfQdC3Kfdg |
CitedBy_id | crossref_primary_10_3390_mi12060656 crossref_primary_10_1016_j_tsf_2018_09_019 crossref_primary_10_3390_coatings14081028 crossref_primary_10_1016_j_oceaneng_2020_106962 crossref_primary_10_1088_2053_1591_ab3c90 crossref_primary_10_2174_1872212115666210929115445 crossref_primary_10_1016_j_matlet_2022_133651 crossref_primary_10_1080_02670844_2018_1433774 crossref_primary_10_1021_acs_nanolett_1c00436 crossref_primary_10_1002_pc_24982 crossref_primary_10_1016_j_colsurfa_2022_130291 |
Cites_doi | 10.1039/b804854a 10.1021/la2011088 10.1002/anie.201409911 10.1002/adma.201003129 10.1002/adma.200700934 10.1039/C5RA00941C 10.1002/cvde.200904276 10.1021/la052424i 10.1016/j.apsusc.2013.12.147 10.1016/j.apsusc.2015.08.027 10.1021/ja062943n 10.1016/j.pmatsci.2008.07.003 10.1021/jp0461448 10.1016/j.matlet.2016.01.107 10.1002/adma.200501961 10.1021/la0401011 10.1016/j.cis.2011.08.005 10.1016/j.cplett.2003.08.061 10.1007/s11434-010-4163-7 10.1021/la5021143 10.1039/C5RA23842K 10.1039/c0sm01426e 10.1038/432036a |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7S9 L.6 |
DOI | 10.1039/c6ra28239c |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 25346 |
ExternalDocumentID | 10_1039_C6RA28239C c6ra28239c |
GroupedDBID | -JG 0-7 AAEMU ABGFH AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- H~N J3I R7C R7E R7G RCNCU RPMJG RRC RSCEA SLH SMJ 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABIQK ABJNI ABPDG ABXOH ACGFS ADBBV ADMRA AENEX AESAV AETIL AFLYV AFPKN AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT BCNDV BLAPV CITATION EBS ECGLT EJD GROUPED_DOAJ H13 HZ~ J3G J3H M~E O9- OK1 PGMZT RAOCF RPM RVUXY YAE ZCN 7SR 8BQ 8FD JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c447t-84b987b36a1f80e1037d78224e21eb7bad25e2be6da8426fb87f995d35dc5adc3 |
ISSN | 2046-2069 |
IngestDate | Thu Jul 10 23:38:36 EDT 2025 Thu Jul 10 23:17:44 EDT 2025 Tue Jul 01 03:31:18 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Mon Jan 28 17:15:50 EST 2019 Thu May 30 17:53:40 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-84b987b36a1f80e1037d78224e21eb7bad25e2be6da8426fb87f995d35dc5adc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4917-746X 0000-0003-3830-7385 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2017/ra/c6ra28239c |
PQID | 1915322836 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1039_C6RA28239C crossref_primary_10_1039_C6RA28239C rsc_primary_c6ra28239c proquest_miscellaneous_2253287812 proquest_miscellaneous_1915322836 |
ProviderPackageCode | J3I R7E RRC R7G AEFDR RPMJG -JG AGSTE RCNCU AUDPV EF- SLH BSQNT EE0 SMJ RSCEA AFVBQ C6K H~N 0-7 ABGFH AAEMU R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | RSC advances |
PublicationYear | 2017 |
References | Liu (C6RA28239C-(cit17)/*[position()=1]) 2015; 355 Koch (C6RA28239C-(cit10)/*[position()=1]) 2009; 54 Gao (C6RA28239C-(cit23)/*[position()=1]) 2006; 128 Zhang (C6RA28239C-(cit2)/*[position()=1]) 2011; 56 Zhou (C6RA28239C-(cit4)/*[position()=1]) 2011; 7 Verho (C6RA28239C-(cit20)/*[position()=1]) 2011; 23 Zhou (C6RA28239C-(cit3)/*[position()=1]) 2011; 16 Kim (C6RA28239C-(cit16)/*[position()=1]) 2016; 170 Jagdheesh (C6RA28239C-(cit18)/*[position()=1]) 2011; 27 Liang (C6RA28239C-(cit19)/*[position()=1]) 2014; 293 Fu (C6RA28239C-(cit22)/*[position()=1]) 2003; 379 Gao (C6RA28239C-(cit11)/*[position()=1]) 2004; 432 Ke (C6RA28239C-(cit1)/*[position()=1]) 2009; 39 Solomon (C6RA28239C-(cit5)/*[position()=1]) 2014; 30 Wang (C6RA28239C-(cit12)/*[position()=1]) 2007; 19 Zhang (C6RA28239C-(cit24)/*[position()=1]) 2016; 6 Koch (C6RA28239C-(cit9)/*[position()=1]) 2008; 4 Yan (C6RA28239C-(cit8)/*[position()=1]) 2011; 169 Gao (C6RA28239C-(cit15)/*[position()=1]) 2006; 22 Wen (C6RA28239C-(cit21)/*[position()=1]) 2005; 109 Fürstner (C6RA28239C-(cit7)/*[position()=1]) 2005; 21 Feng (C6RA28239C-(cit13)/*[position()=1]) 2006; 18 Wen (C6RA28239C-(cit14)/*[position()=1]) 2015; 54 Wang (C6RA28239C-(cit6)/*[position()=1]) 2015; 5 |
References_xml | – volume: 4 start-page: 1943 year: 2008 ident: C6RA28239C-(cit9)/*[position()=1] publication-title: Soft Matter doi: 10.1039/b804854a – volume: 27 start-page: 8464 year: 2011 ident: C6RA28239C-(cit18)/*[position()=1] publication-title: Langmuir doi: 10.1021/la2011088 – volume: 54 start-page: 3387 year: 2015 ident: C6RA28239C-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409911 – volume: 23 start-page: 673 year: 2011 ident: C6RA28239C-(cit20)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201003129 – volume: 19 start-page: 3423 year: 2007 ident: C6RA28239C-(cit12)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200700934 – volume: 5 start-page: 18909 year: 2015 ident: C6RA28239C-(cit6)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C5RA00941C – volume: 16 start-page: 12 year: 2011 ident: C6RA28239C-(cit3)/*[position()=1] publication-title: Chem. Vap. Deposition doi: 10.1002/cvde.200904276 – volume: 22 start-page: 3521 year: 2006 ident: C6RA28239C-(cit15)/*[position()=1] publication-title: Langmuir doi: 10.1021/la052424i – volume: 293 start-page: 265 year: 2014 ident: C6RA28239C-(cit19)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2013.12.147 – volume: 39 start-page: 546 year: 2009 ident: C6RA28239C-(cit1)/*[position()=1] publication-title: Adv. Mech. Eng. – volume: 355 start-page: 1238 year: 2015 ident: C6RA28239C-(cit17)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.027 – volume: 128 start-page: 9052 year: 2006 ident: C6RA28239C-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja062943n – volume: 54 start-page: 137 year: 2009 ident: C6RA28239C-(cit10)/*[position()=1] publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2008.07.003 – volume: 109 start-page: 215 year: 2005 ident: C6RA28239C-(cit21)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0461448 – volume: 170 start-page: 18 year: 2016 ident: C6RA28239C-(cit16)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.01.107 – volume: 18 start-page: 3063 year: 2006 ident: C6RA28239C-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200501961 – volume: 21 start-page: 956 year: 2005 ident: C6RA28239C-(cit7)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0401011 – volume: 169 start-page: 80 year: 2011 ident: C6RA28239C-(cit8)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2011.08.005 – volume: 379 start-page: 373 year: 2003 ident: C6RA28239C-(cit22)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2003.08.061 – volume: 56 start-page: 938 year: 2011 ident: C6RA28239C-(cit2)/*[position()=1] publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-010-4163-7 – volume: 30 start-page: 10970 year: 2014 ident: C6RA28239C-(cit5)/*[position()=1] publication-title: Langmuir doi: 10.1021/la5021143 – volume: 6 start-page: 14034 year: 2016 ident: C6RA28239C-(cit24)/*[position()=1] publication-title: RSC adv. doi: 10.1039/C5RA23842K – volume: 7 start-page: 4391 year: 2011 ident: C6RA28239C-(cit4)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c0sm01426e – volume: 432 start-page: 36 year: 2004 ident: C6RA28239C-(cit11)/*[position()=1] publication-title: Nature doi: 10.1038/432036a |
SSID | ssj0000651261 |
Score | 2.2199998 |
Snippet | Energy saving has drawn attention all around the world. The fluidic drag reduction effect of superhydrophobic surfaces has been investigated both theoretically... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25341 |
SubjectTerms | Drag reduction energy conservation foil Foils Friction hydrophilicity hydrophobicity Liquids nanomaterials Oxidation Oxide coatings Self assembly steel Steels wettability |
Title | Fabrication of superhydrophobic surface by oxidation growth of flower-like nanostructure on a steel foil |
URI | https://www.proquest.com/docview/1915322836 https://www.proquest.com/docview/2253287812 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67QFeEF8THTAZwQuqMto4cZzHKWKqEPBQVlaeIn9caEWVVFkrMfjnOSdOmm1FGrxEjXtNUt8v55_PvjtC3oRMcom034sFM16glfEE6NhjGsww49xoYWOHP33m42nwYRbOer3f3eiStTrRv3bGlfyPVrEN9WqjZP9Bs-1FsQE_o37xiBrG4510fCZV6XxulvRdblZQzq9MWazmhVpobCgziS8uUszi56KunjT4jhPv9dzKZ0tbIs1bLn7AIJd5UeeStSsKdovyAPUPNrrRbcJosnh_SZqNAy0dv4DaYkw2i1uO6LFcZOCGR2td6pwFHxGVbdvEbQu-kFXZiq4jYhR1HBGVvfJxqo3qqSuvnMCONmdwow6u6qxXjfUMmTuH9pzvtPNDZtOkJnxyilNGFifb0axZwb8xyLVbD6tFdxan29_ukQMf5xhoJA8mX6ezb62LDtnZyK8y7rZ_o0lwy-J32wtcpzTbecpe2RSRqcjK-UPywM0y6GkNmUekB_ljci9pivs9IfMOdGiR0ZvQoQ46VF3RFjq0ho6V70CHXoMORTFJK-hQC52nZHr2_jwZe67ohqeDIFp7IlCxiBTjcpSJIdgwUmNZZAD-CFSkpPFD8BVwIwWyu0yJKIvj0LDQ6FAazQ7Jfl7k8IzQALgQ2uYM5GEAEY-BKZFp0JGKkSOpPnnb9FuqXUZ6Wxhlmd5WUp-8bmVXdR6WnVKvmu5PsUPt2pfModhcpqMYh3ab6on_XQaHNuaLCClvnxyi7tobaV7K6ga6T452f5GuTHZ0p2d8Tu5v354XZB_1Ay-R2K7VceUQOnYw_AMQ7aaQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+superhydrophobic+surface+by+oxidation+growth+of+flower-like+nanostructure+on+a+steel+foil&rft.jtitle=RSC+advances&rft.au=Weng%2C+Rui&rft.au=Zhang%2C+Haifeng&rft.au=Yin%2C+Liang&rft.au=Rong%2C+Wanting&rft.date=2017-01-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=7&rft.issue=41&rft.spage=25341&rft.epage=25346&rft_id=info:doi/10.1039%2FC6RA28239C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6RA28239C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |