Threat of Punishment Motivates Memory Encoding via Amygdala, Not Midbrain, Interactions with the Medial Temporal Lobe

Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mech...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 32; no. 26; pp. 8969 - 8976
Main Authors Murty, V. P., LaBar, K. S., Adcock, R. A.
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 27.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.
AbstractList Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.
Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these systems to punishment-motivated encoding remains unknown. The current study used functional magnetic resonance imaging in humans to examine mechanisms of declarative memory enhancement when subjects were motivated to avoid punishments that were contingent on forgetting. A motivational cue on each trial informed participants whether they would be punished or not for forgetting an upcoming scene image. Items associated with the threat of shock were better recognized 24 h later. Punishment-motivated enhancements in subsequent memory were associated with anticipatory activation of right amygdala and increases in its functional connectivity with parahippocampal and orbitofrontal cortices. On a trial-by-trial basis, right amygdala activation during the motivational cue predicted hippocampal activation during encoding of the subsequent scene; across participants, the strength of this interaction predicted memory advantages due to motivation. Of note, punishment-motivated learning was not associated with activation of dopaminergic midbrain, as would be predicted by valence-independent models of motivation to learn. These data are consistent with the view that motivation by punishment activates the amygdala, which in turn prepares the medial temporal lobe for memory formation. The findings further suggest a brain system for declarative learning motivated by punishment that is distinct from that for learning motivated by reward.
Author Murty, V. P.
LaBar, K. S.
Adcock, R. A.
Author_xml – sequence: 1
  givenname: V. P.
  surname: Murty
  fullname: Murty, V. P.
– sequence: 2
  givenname: K. S.
  surname: LaBar
  fullname: LaBar, K. S.
– sequence: 3
  givenname: R. A.
  surname: Adcock
  fullname: Adcock, R. A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22745496$$D View this record in MEDLINE/PubMed
BookMark eNqFkVFv0zAUhS00xLrBX5j8yMNSrh3HSSWENFUFiroNQfdsOY7TGCV2sZ2i_nscbVTAy55s6X7n6Nx7LtCZdVYjdEVgTgqav_tyt3r4dv99uZ4DLFhG6JwCoS_QLE0XGWVAztAMaAkZZyU7Rxch_ACAEkj5Cp1TWrKCLfgMjdvOaxmxa_HX0ZrQDdpGfOuiOcioA77Vg_NHvLLKNcbu8MFIfDMcd43s5TW-c4k1Te2lsdd4baP2UkXjbMC_TOxw7HRyaIzs8VYPe-fTZ-Nq_Rq9bGUf9Jun9xI9fFxtl5-zzf2n9fJmkynGyphVpKKqaaakvCSyVExBTUidt4pyRiWoiuZNldOiraDmXC-4KiiTqqlKWOQ6v0QfHn33Yz3oRqXdUgSx92aQ_iicNOLfiTWd2LmDyAsAznkyePtk4N3PUYcoBhOU7ntptRuDIEVBeLo20OdRoLRiFDgk9OrvWKc8f2pJAH8ElHcheN2eEAJi6l-c-hdT_4JQMfWfhO__EyoT5dRIWs_0z8l_A-srt8E
CitedBy_id crossref_primary_10_1016_j_nlm_2016_01_018
crossref_primary_10_1016_j_neubiorev_2014_02_002
crossref_primary_10_1093_cercor_bhac452
crossref_primary_10_1007_s11031_023_10036_z
crossref_primary_10_1523_JNEUROSCI_3160_14_2015
crossref_primary_10_1016_j_neuropsychologia_2013_09_031
crossref_primary_10_1176_appi_focus_20210024
crossref_primary_10_1016_j_neuropsychologia_2013_07_018
crossref_primary_10_3758_s13415_014_0300_0
crossref_primary_10_1016_j_neuroimage_2020_116890
crossref_primary_10_1093_scan_nsz006
crossref_primary_10_1016_j_cortex_2019_01_029
crossref_primary_10_1016_j_tics_2022_06_009
crossref_primary_10_1371_journal_pone_0053894
crossref_primary_10_3389_fnbeh_2017_00121
crossref_primary_10_1162_jocn_a_02220
crossref_primary_10_1073_pnas_1302982110
crossref_primary_10_1523_ENEURO_0459_21_2022
crossref_primary_10_1051_bioconf_20248601039
crossref_primary_10_1523_JNEUROSCI_4181_14_2015
crossref_primary_10_1016_j_neuroimage_2017_12_053
crossref_primary_10_1016_j_neuroimage_2019_01_009
crossref_primary_10_3758_s13415_014_0275_x
crossref_primary_10_3758_s13415_016_0468_6
crossref_primary_10_1101_lm_029728_112
crossref_primary_10_1523_JNEUROSCI_4151_12_2013
crossref_primary_10_1016_j_nlm_2014_03_006
crossref_primary_10_1002_hipo_23216
crossref_primary_10_1073_pnas_2304881120
crossref_primary_10_1525_collabra_111
crossref_primary_10_3758_s13414_020_02072_5
crossref_primary_10_1093_cercor_bhs415
crossref_primary_10_1146_annurev_psych_010814_015044
crossref_primary_10_1016_j_janxdis_2025_102979
crossref_primary_10_1016_j_neuropsychologia_2020_107733
crossref_primary_10_1177_1747021819871173
crossref_primary_10_1007_s00426_019_01212_3
crossref_primary_10_1007_s00221_024_06850_7
crossref_primary_10_1038_s41467_018_07280_0
crossref_primary_10_3758_s13423_021_01978_x
crossref_primary_10_1523_JNEUROSCI_2097_17_2017
crossref_primary_10_1002_hbm_24432
crossref_primary_10_1002_hbm_22497
crossref_primary_10_1002_hbm_25564
crossref_primary_10_1093_scan_nsad054
crossref_primary_10_1162_jocn_a_02242
crossref_primary_10_1016_j_biopsycho_2019_05_001
crossref_primary_10_1080_17470218_2016_1233439
crossref_primary_10_1016_j_nlm_2013_11_005
crossref_primary_10_1177_15226379231167134
crossref_primary_10_1016_j_jml_2017_05_003
crossref_primary_10_1080_13506285_2021_1914796
crossref_primary_10_1080_02699931_2021_1951175
ContentType Journal Article
Copyright Copyright © 2012 the authors 0270-6474/12/328969-08$15.00/0 2012
Copyright_xml – notice: Copyright © 2012 the authors 0270-6474/12/328969-08$15.00/0 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
DOI 10.1523/JNEUROSCI.0094-12.2012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Animal Behavior Abstracts
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 8976
ExternalDocumentID PMC3500666
22745496
10_1523_JNEUROSCI_0094_12_2012
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: 2P01 NS41328-06
– fundername: NINDS NIH HHS
  grantid: P01 NS041328
– fundername: NIDA NIH HHS
  grantid: R01 DA027802
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
ID FETCH-LOGICAL-c447t-8182cdd5496671a7c4c0b11b3fc2642a0c823d8325f80b66e96c524acd87093e3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 13:59:24 EDT 2025
Fri Jul 11 02:57:27 EDT 2025
Fri Jul 11 08:32:22 EDT 2025
Thu Apr 03 07:07:01 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Tue Jul 01 03:46:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-8182cdd5496671a7c4c0b11b3fc2642a0c823d8325f80b66e96c524acd87093e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: V.P.M., K.S.L., and R.A.A. designed research; V.P.M., K.S.L., and R.A.A. performed research; V.P.M. analyzed data; V.P.M., K.S.L., and R.A.A. wrote the paper.
OpenAccessLink https://www.jneurosci.org/content/jneuro/32/26/8969.full.pdf
PMID 22745496
PQID 1022842060
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3500666
proquest_miscellaneous_1551624002
proquest_miscellaneous_1022842060
pubmed_primary_22745496
crossref_primary_10_1523_JNEUROSCI_0094_12_2012
crossref_citationtrail_10_1523_JNEUROSCI_0094_12_2012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-27
2012-Jun-27
20120627
PublicationDateYYYYMMDD 2012-06-27
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2012
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 12453496 - Neuroscience. 2002;115(4):1261-79
22279232 - J Neurosci. 2012 Jan 25;32(4):1481-7
20001121 - Emotion. 2009 Dec;9(6):763-81
16371950 - Nat Rev Neurosci. 2006 Jan;7(1):54-64
18375529 - Cereb Cortex. 2008 Nov;18(11):2494-504
15548223 - Eur J Neurosci. 2004 Nov;20(10):2804-10
15217324 - Annu Rev Neurosci. 2004;27:1-28
17390317 - Hum Brain Mapp. 2008 Feb;29(2):237-49
19794181 - Learn Mem. 2009 Oct;16(10):573-85
22118937 - Biol Psychol. 2012 Feb;89(2):300-5
22021253 - Learn Mem. 2011;18(11):712-7
19753142 - Front Behav Neurosci. 2009 Aug 27;3:21
21262244 - Neuropsychologia. 2011 Mar;49(4):663-73
11592989 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12760-6
16675403 - Neuron. 2006 May 4;50(3):507-17
21668114 - Emotion. 2011 Jun;11(3):647-55
21292249 - Cognition. 2011 Apr;119(1):120-4
17717184 - Science. 2007 Aug 24;317(5841):1079-83
20928833 - Hippocampus. 2010 Nov;20(11):1263-90
11520704 - Trends Cogn Sci. 2001 Sep 1;5(9):394-400
21535456 - Eur J Neurosci. 2011 Jul;34(1):134-45
19793982 - J Neurosci. 2009 Sep 30;29(39):12236-43
20688087 - Neuropsychologia. 2010 Oct;48(12):3459-69
21325435 - Learn Mem. 2011 Mar;18(3):136-43
17097284 - Curr Opin Neurobiol. 2006 Dec;16(6):693-700
17872400 - Ann N Y Acad Sci. 2007 Dec;1121:336-54
21637321 - Front Neurosci. 2011 May 20;5:71
21571575 - Trends Cogn Sci. 2011 Jun;15(6):280-8
16963565 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14200-5
9858756 - Brain Res Brain Res Rev. 1998 Dec;28(3):309-69
7890828 - J Comp Neurol. 1994 Dec 22;350(4):497-533
6520247 - J Comp Neurol. 1984 Dec 20;230(4):465-96
19675245 - J Neurosci. 2009 Aug 12;29(32):10111-9
15182723 - Neuron. 2004 Jun 10;42(5):855-63
18295746 - Biol Psychiatry. 2008 Jul 1;64(1):70-3
21568639 - J Cogn Neurosci. 2011 Nov;23(11):3498-514
20600966 - Neuroimage. 2010 Nov 1;53(2):769-76
20350176 - J Cogn Neurosci. 2011 Apr;23(4):757-71
20829095 - Trends Cogn Sci. 2010 Oct;14(10):464-72
18550763 - J Neurosci. 2008 Jun 11;28(24):6211-9
19879918 - Biol Psychol. 2010 Jul;84(3):437-50
15488425 - Neuroimage. 2004 Oct;23(2):752-63
6164704 - J Comp Neurol. 1981 May 1;198(1):121-36
15152198 - Nat Rev Neurosci. 2004 Jun;5(6):483-94
19619181 - Psychol Sci. 2009 Aug;20(8):963-73
17698988 - Ann N Y Acad Sci. 2007 Dec;1121:320-35
16434476 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1599-604
References_xml – reference: 20688087 - Neuropsychologia. 2010 Oct;48(12):3459-69
– reference: 16434476 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1599-604
– reference: 20928833 - Hippocampus. 2010 Nov;20(11):1263-90
– reference: 17097284 - Curr Opin Neurobiol. 2006 Dec;16(6):693-700
– reference: 20600966 - Neuroimage. 2010 Nov 1;53(2):769-76
– reference: 9858756 - Brain Res Brain Res Rev. 1998 Dec;28(3):309-69
– reference: 16963565 - Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14200-5
– reference: 20829095 - Trends Cogn Sci. 2010 Oct;14(10):464-72
– reference: 6520247 - J Comp Neurol. 1984 Dec 20;230(4):465-96
– reference: 19794181 - Learn Mem. 2009 Oct;16(10):573-85
– reference: 11592989 - Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12760-6
– reference: 21325435 - Learn Mem. 2011 Mar;18(3):136-43
– reference: 21568639 - J Cogn Neurosci. 2011 Nov;23(11):3498-514
– reference: 17698988 - Ann N Y Acad Sci. 2007 Dec;1121:320-35
– reference: 20001121 - Emotion. 2009 Dec;9(6):763-81
– reference: 16675403 - Neuron. 2006 May 4;50(3):507-17
– reference: 22021253 - Learn Mem. 2011;18(11):712-7
– reference: 12453496 - Neuroscience. 2002;115(4):1261-79
– reference: 21571575 - Trends Cogn Sci. 2011 Jun;15(6):280-8
– reference: 15182723 - Neuron. 2004 Jun 10;42(5):855-63
– reference: 17717184 - Science. 2007 Aug 24;317(5841):1079-83
– reference: 15217324 - Annu Rev Neurosci. 2004;27:1-28
– reference: 11520704 - Trends Cogn Sci. 2001 Sep 1;5(9):394-400
– reference: 19619181 - Psychol Sci. 2009 Aug;20(8):963-73
– reference: 21535456 - Eur J Neurosci. 2011 Jul;34(1):134-45
– reference: 17390317 - Hum Brain Mapp. 2008 Feb;29(2):237-49
– reference: 18295746 - Biol Psychiatry. 2008 Jul 1;64(1):70-3
– reference: 16371950 - Nat Rev Neurosci. 2006 Jan;7(1):54-64
– reference: 15548223 - Eur J Neurosci. 2004 Nov;20(10):2804-10
– reference: 15488425 - Neuroimage. 2004 Oct;23(2):752-63
– reference: 21668114 - Emotion. 2011 Jun;11(3):647-55
– reference: 18375529 - Cereb Cortex. 2008 Nov;18(11):2494-504
– reference: 22118937 - Biol Psychol. 2012 Feb;89(2):300-5
– reference: 19793982 - J Neurosci. 2009 Sep 30;29(39):12236-43
– reference: 18550763 - J Neurosci. 2008 Jun 11;28(24):6211-9
– reference: 19753142 - Front Behav Neurosci. 2009 Aug 27;3:21
– reference: 7890828 - J Comp Neurol. 1994 Dec 22;350(4):497-533
– reference: 21637321 - Front Neurosci. 2011 May 20;5:71
– reference: 15152198 - Nat Rev Neurosci. 2004 Jun;5(6):483-94
– reference: 17872400 - Ann N Y Acad Sci. 2007 Dec;1121:336-54
– reference: 20350176 - J Cogn Neurosci. 2011 Apr;23(4):757-71
– reference: 21262244 - Neuropsychologia. 2011 Mar;49(4):663-73
– reference: 19879918 - Biol Psychol. 2010 Jul;84(3):437-50
– reference: 6164704 - J Comp Neurol. 1981 May 1;198(1):121-36
– reference: 21292249 - Cognition. 2011 Apr;119(1):120-4
– reference: 22279232 - J Neurosci. 2012 Jan 25;32(4):1481-7
– reference: 19675245 - J Neurosci. 2009 Aug 12;29(32):10111-9
SSID ssj0007017
Score 2.3488412
Snippet Neural circuits associated with motivated declarative encoding and active threat avoidance have both been described, but the relative contribution of these...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 8969
SubjectTerms Adolescent
Adult
Amygdala - blood supply
Amygdala - physiology
Efferent Pathways - blood supply
Efferent Pathways - physiology
Electroshock - adverse effects
Emotions - physiology
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Memory - physiology
Mesencephalon - blood supply
Mesencephalon - physiology
Motivation - physiology
Oxygen - blood
Punishment - psychology
Temporal Lobe - blood supply
Temporal Lobe - physiology
Young Adult
Title Threat of Punishment Motivates Memory Encoding via Amygdala, Not Midbrain, Interactions with the Medial Temporal Lobe
URI https://www.ncbi.nlm.nih.gov/pubmed/22745496
https://www.proquest.com/docview/1022842060
https://www.proquest.com/docview/1551624002
https://pubmed.ncbi.nlm.nih.gov/PMC3500666
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCgPIILy0S4uLatdfvY6iKSksqoCnqzdqXaaTURm2CFP4Mf5WZXdtx2qpQLlbkrDex5_PszM43M4S8FZmCRVEIF41hNxKR7-Z5qd1Ygu_hl4EsfcwdHh8me8fR_kl8Mhj87rGWFnPhyV_X5pX8j1ThHMgVs2RvIdluUjgBn0G-cAQJw_EfZWwcfKSxYVT61AT2x7Zjmb5wxsiiXTq7laxN6srPKXdGZ8vvis-4jdnA6KkS59wWEjC7gzbRoUl6Q6t0bHNLJraG1cz5VIs1-tAqucyYtb0CmbonTdt74JvnfPY6DhB_b9ndB55z1J0dqVZFf_WckdfflUB6R-LaJP9GebEU3NLIduDxdKNcmYnmBH3tu9rdXLTJ840uzXLbxKVdl3PbKOaKzo9N7Yn9Q6Q-Hu189JAs6QaYZNcQtNeKbF9a_DpKIjpDMFPRzVPgPEXACpznDrnLwA9BRXrwZVWOPvVNS-fuZpsUdJhn-_r_s279XHFpLjNze6bO5AG53wiTjizgHpKBrh6RzVHF5_XZkr6jhjVswjGbZGExSOuSrjBIOwxSi0HaYpACBmmLwS0KCKQtArdoH38U8UcBf9Tij7b4o4i_x-T4w-5kZ89tWnm48M6ncxfMQiaViiPwrtOApzKSvggCEZYSLHLGfZmxUMHqEpeZL5JE54mMWcSlgvUkD3X4hGxUdaWfEcoYVj2MmSpFBliCi5JQKxUprhOVJdmQxO0jLmRT5x7brcyKm0U8JNvddT9spZe_XvGmlWABShkjbbzS9eKiwG2ULGJ-4t8wBkPUyOCGeZ5aqXe_y1ga4bMaknQND90ALAq__k01PTXF4cMYvYjk-a3v5gW5t3qRX5KN-flCvwKDey5eG9D_ATTiz8E
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Threat+of+Punishment+Motivates+Memory+Encoding+via+Amygdala%2C+Not+Midbrain%2C+Interactions+with+the+Medial+Temporal+Lobe&rft.jtitle=The+Journal+of+neuroscience&rft.au=Murty%2C+V.+P.&rft.au=LaBar%2C+K.+S.&rft.au=Adcock%2C+R.+A.&rft.date=2012-06-27&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=32&rft.issue=26&rft.spage=8969&rft.epage=8976&rft_id=info:doi/10.1523%2FJNEUROSCI.0094-12.2012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_0094_12_2012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon