Comprehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell stress
Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized riboso...
Saved in:
Published in | Nucleic acids research Vol. 52; no. 13; pp. 7925 - 7946 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
22.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.
Graphical Abstract
Graphical Abstract |
---|---|
AbstractList | Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics. Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics. Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics. Graphical Abstract Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics. Graphical Abstract Graphical Abstract |
Author | Mahmud, Shafi Woodward, Katrina Janapala, Yoshika Cleynen, Alice Shirokikh, Nikolay E Preiss, Thomas Gardiner, Elizabeth E Horvath, Attila Hannan, Ross D Eyras, Eduardo |
Author_xml | – sequence: 1 givenname: Attila orcidid: 0000-0002-6127-8925 surname: Horvath fullname: Horvath, Attila – sequence: 2 givenname: Yoshika surname: Janapala fullname: Janapala, Yoshika – sequence: 3 givenname: Katrina surname: Woodward fullname: Woodward, Katrina – sequence: 4 givenname: Shafi surname: Mahmud fullname: Mahmud, Shafi – sequence: 5 givenname: Alice surname: Cleynen fullname: Cleynen, Alice – sequence: 6 givenname: Elizabeth E surname: Gardiner fullname: Gardiner, Elizabeth E – sequence: 7 givenname: Ross D orcidid: 0000-0002-2166-4493 surname: Hannan fullname: Hannan, Ross D – sequence: 8 givenname: Eduardo orcidid: 0000-0003-0793-6218 surname: Eyras fullname: Eyras, Eduardo – sequence: 9 givenname: Thomas orcidid: 0000-0001-6273-784X surname: Preiss fullname: Preiss, Thomas email: thomas.preiss@anu.edu.au – sequence: 10 givenname: Nikolay E orcidid: 0000-0001-8249-358X surname: Shirokikh fullname: Shirokikh, Nikolay E email: nikolay.shirokikh@anu.edu.au |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38721779$$D View this record in MEDLINE/PubMed https://hal.science/hal-04787783$$DView record in HAL |
BookMark | eNp9kc9vFCEYhompsdvqybvhZDRmLQwMzJyazaa_kk08WM-EhY9ddBamMLNJ_3sZd220iZ5I4HlfPnjO0EmIARB6S8lnSlp2EXS62PzQwET9As0oE9Wct6I6QTPCSD2nhDen6Czn74RQTmv-Cp2yRlZUynaGHpZx1yfYQsh-D3hIOuRODz4G3eE-Rec7HzZYB4u_3l_hxR0eg4l7SDjp3ltsYhhS7HB0Ez2AD3jtY34Mwxayz9iOacob6DqchwQ5v0Yvne4yvDmu5-jb9dX98na--nJzt1ys5oZzOcylFGttpDHSQmsd8Jq5xokaTCWYoDUVTWstF8Ta8gut4UxIJxl3jaXUOsbO0eWhtx_XO7AGyqC6U33yO50eVdRe_X0S_FZt4l5RWgnChSwNHw8N22e528VKTXuEy0bKhu1pYT8cb0vxYYQ8qJ3P06t1gDhmVUwwyiSrmoK--3Owp-bfUgrw6QCYFHNO4J4QStSkXBXl6qi80PQZbfzwy2B5le_-kXl_yMSx_2_5T2HswDQ |
CitedBy_id | crossref_primary_10_1186_s12935_024_03626_5 |
Cites_doi | 10.1002/wrna.1515 10.21468/SciPostPhysCodeb.22 10.1080/15476286.2022.2065784 10.2140/pjm.1958.8.87 10.1021/acs.accounts.1c00621 10.1021/jacs.7b07139 10.1093/nar/gkac705 10.1038/224957a0 10.1111/j.1365-2958.1993.tb01947.x 10.1016/j.celrep.2024.114098 10.1016/j.celrep.2016.01.043 10.15252/embj.2018100276 10.1016/j.cell.2020.06.006 10.1128/mSystems.00214-18 10.1038/s41467-017-00188-1 10.1016/0003-2697(83)90755-8 10.1038/s41596-019-0284-x 10.1016/j.cels.2017.08.004 10.1038/nature10098 10.1093/nar/gkac171 10.7554/eLife.60038 10.1016/j.molcel.2012.12.001 10.1073/pnas.1208138109 10.1016/j.molcel.2020.06.004 10.3390/microorganisms9122413 10.1186/s13059-020-02256-0 10.1016/j.fgb.2012.08.005 10.1101/cshperspect.a032607 10.1016/j.omtm.2020.03.019 10.3390/biomedicines10010050 10.1016/j.tcb.2016.05.004 10.1089/omi.2011.0118 10.1093/nar/gkac222 10.1073/pnas.1712396114 10.1080/17460441.2021.1935859 10.1128/MCB.00562-16 10.1016/j.molcel.2021.09.029 10.1002/adma.202004452 10.1089/omi.2010.0069 10.1093/jb/mvaa061 10.1074/jbc.271.48.30299 10.1038/nature18647 10.1242/jcs.214346 10.1038/s41580-018-0011-4 10.1038/nrm4010 10.1093/nar/gkaa678 10.15252/embj.2019103365 10.1038/s41586-020-2094-2 10.1261/rna.075523.120 10.1016/j.molcel.2018.08.037 10.3389/fgene.2018.00431 10.1016/S0021-9258(19)86406-2 10.1093/nar/gkz763 10.1093/nar/gkz710 10.1016/j.cell.2015.05.022 10.1093/nar/gkad433 10.1007/s10955-011-0183-1 10.1073/pnas.0804940105 10.1186/1471-2164-15-401 10.1038/s41467-021-24436-7 10.1038/s41467-020-17974-z 10.7554/eLife.01257 10.1038/nprot.2016.189 10.1371/journal.pcbi.1007070 10.1042/BST20210844 10.1038/s41592-023-02148-8 10.1083/jcb.200807043 10.1016/j.tibs.2017.03.004 10.1038/s41586-019-1561-0 10.1038/nrm4069 10.1111/j.1567-1364.2008.00371.x 10.1002/cbic.202300264 10.1091/mbc.e11-02-0153 10.1093/nar/gkz1190 10.1371/journal.pcbi.1011522 10.1002/wrna.1473 10.7554/eLife.76038 10.1091/mbc.11.3.833 10.1038/s41594-019-0331-x 10.1016/j.molcel.2020.09.021 10.1093/nargab/lqac012 10.1101/cshperspect.a033001 10.1016/j.cell.2019.05.001 10.1016/j.molcel.2018.12.009 10.1016/j.celrep.2020.107610 10.1038/nature25174 10.1093/nar/gkz223 10.7554/eLife.42591 10.3390/ijms20164043 10.1093/nar/gkaa1180 10.1038/s41598-019-47424-w 10.1093/nar/gkaa304 10.1038/s41594-018-0179-5 10.1016/j.bbamcr.2021.119140 10.1038/s41573-023-00827-x 10.1038/s41587-019-0164-5 10.1038/ncomms6123 10.1016/j.xpro.2020.100168 10.1186/s13059-018-1451-z 10.1016/j.molcel.2020.06.010 10.1038/s41586-023-06127-z 10.1515/hsz-2015-0197 10.18637/jss.v036.i07 10.1002/j.1460-2075.1988.tb03233.x 10.1534/genetics.112.146993 10.1093/nar/gkab1241 10.1038/s41594-020-0465-x 10.1093/nar/gkv781 10.1016/j.jmb.2008.06.068 10.1098/rstb.2016.0177 10.1016/j.celrep.2014.04.034 10.1016/bs.mie.2021.06.025 10.1371/journal.ppat.1006634 10.1126/science.aad9868 10.1002/yea.3681 10.1101/gr.257741.119 10.1038/201264a0 10.1101/cshperspect.a011551 10.1101/2023.12.13.571579 10.1002/yea.3349 10.7554/eLife.65722 10.1093/molbev/msv147 10.1038/s41586-022-04416-7 10.1098/rstb.2016.0183 10.1073/pnas.1916219117 10.1038/s41467-024-46092-3 10.1038/ncomms3171 10.1101/gr.164996.113 10.1093/nar/gkac547 10.1016/j.molcel.2021.01.029 10.1261/rna.059188.116 10.1016/j.molcel.2017.10.015 10.1073/pnas.1817299116 10.1126/science.1168978 10.1101/cshperspect.a032698 10.1073/pnas.1101494108 10.1016/j.cell.2019.12.031 10.1371/journal.pgen.1005732 10.1016/j.molcel.2018.06.041 10.1091/mbc.e04-11-0968 10.1093/nar/gkw1190 10.1093/nar/gkac053 10.1074/jbc.M201977200 10.1073/pnas.1921890117 10.1016/j.cell.2015.09.041 10.1073/pnas.93.7.2926 10.1038/msb.2009.2 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | TOX AAYXX CITATION NPM 7X8 1XC VOOES 5PM |
DOI | 10.1093/nar/gkae365 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 7946 |
ExternalDocumentID | PMC11260467 oai_HAL_hal_04787783v1 38721779 10_1093_nar_gkae365 10.1093/nar/gkae365 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Health and Medical Research Council grantid: GNT1175388 – fundername: Australian Research Council grantid: DP180100111 – fundername: NHMRC grantid: GNT1135928 – fundername: Bootes Foundation – fundername: European Union's Horizon 2020 - Research and innovation program Marie Sklodowska-Curie grantid: 890462 – fundername: ; – fundername: ; grantid: GNT1135928 – fundername: ; grantid: GNT1175388; GNT2018363 – fundername: ; grantid: DP180100111 – fundername: ; grantid: 890462 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX CITATION NPM 7X8 1XC AJDVS M49 UMC VOOES 5PM |
ID | FETCH-LOGICAL-c447t-776bac7cc7de9dfe453f8f65ec2636151689dd460dd1099c4367f734f8d11df33 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:32:52 EDT 2025 Fri May 09 12:17:22 EDT 2025 Fri Jul 11 16:50:22 EDT 2025 Mon Jul 21 05:53:40 EDT 2025 Tue Jul 01 02:59:29 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Mon Jun 30 08:34:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-776bac7cc7de9dfe453f8f65ec2636151689dd460dd1099c4367f734f8d11df33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The first two authors should be regarded as Joint First Authors. |
ORCID | 0000-0001-8249-358X 0000-0002-2166-4493 0000-0002-6127-8925 0000-0003-0793-6218 0000-0001-6273-784X 0000-0001-8083-0204 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkae365 |
PMID | 38721779 |
PQID | 3053137328 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11260467 hal_primary_oai_HAL_hal_04787783v1 proquest_miscellaneous_3053137328 pubmed_primary_38721779 crossref_primary_10_1093_nar_gkae365 crossref_citationtrail_10_1093_nar_gkae365 oup_primary_10_1093_nar_gkae365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-22 |
PublicationDateYYYYMMDD | 2024-07-22 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Houston (2024072123562951800_B8) 2020; 168 Mergner (2024072123562951800_B141) 2020; 579 Kolde (2024072123562951800_B87) 2012 Jiang (2024072123562951800_B158) 2022; 50 Riba (2024072123562951800_B85) 2019; 116 Johnson (2024072123562951800_B116) 2017; 372 Shirokikh (2024072123562951800_B2) 2018; 9 Petrov (2024072123562951800_B114) 2012; 4 Hothorn (2024072123562951800_B86) 2015; 16 Ingolia (2024072123562951800_B103) 2009; 324 Richter (2024072123562951800_B95) 2015; 163 Schmidt (2024072123562951800_B98) 1996; 93 Luthe (2024072123562951800_B80) 1983; 135 Darnell (2024072123562951800_B52) 2018; 71 Argüello (2024072123562951800_B113) 2018; 131 Sneddon (2024072123562951800_B83) 2022 Chandrasekaran (2024072123562951800_B94) 2019; 26 Yu (2024072123562951800_B41) 2021; 10 Serag (2024072123562951800_B99) 2014; 5 Sample (2024072123562951800_B13) 2019; 37 Hinnebusch (2024072123562951800_B24) 1993; 10 Juszkiewicz (2024072123562951800_B93) 2018; 72 Oertlin (2024072123562951800_B147) 2019; 47 Panasenko (2024072123562951800_B138) 2019; 26 Tauber (2024072123562951800_B74) 2020; 180 Archer (2024072123562951800_B82) 2014; 15 Möckl (2024072123562951800_B115) 2020; 117 Uebbing (2024072123562951800_B140) 2015; 32 Gibson (2024072123562951800_B152) 2008; 8 Arpat (2024072123562951800_B60) 2020; 30 Ikeuchi (2024072123562951800_B127) 2019; 38 Kusnadi (2024072123562951800_B146) 2022; 1869 Hedayioglu (2024072123562951800_B48) 2022; 50 Zhou (2024072123562951800_B142) 2013; 4 Ciandrini (2024072123562951800_B112) 2023 Mohammad (2024072123562951800_B50) 2019; 8 Castelli (2024072123562951800_B35) 2011; 22 Ouranidis (2024072123562951800_B9) 2021; 10 Janapala (2024072123562951800_B5) 2021; 178 Woodward (2024072123562951800_B159) 2021; 49 Han (2024072123562951800_B65) 2012; 109 Lareau (2024072123562951800_B105) 2014; 3 Meydan (2024072123562951800_B39) 2020; 79 Iyer (2024072123562951800_B157) 2023; 24 Zhang (2024072123562951800_B16) 2023; 621 Galdieri (2024072123562951800_B33) 2010; 14 Flügel (2024072123562951800_B130) 2024; 15 Zaman (2024072123562951800_B34) 2009; 5 Ye (2024072123562951800_B119) 2022; 50 Wierman (2024072123562951800_B154) 2017; 37 Shah (2024072123562951800_B30) 2013; 193 Visser (2024072123562951800_B84) 2010; 36 Schwanhäusser (2024072123562951800_B139) 2011; 473 Goldman (2024072123562951800_B67) 2021; 81 Wagner (2024072123562951800_B78) 2020; 79 Yu (2024072123562951800_B88) 2012; 16 Bresson (2024072123562951800_B38) 2020; 80 Wolfram Research, Inc (2024072123562951800_B89) 2024 Karlin (2024072123562951800_B125) 1958; 8 Karousis (2024072123562951800_B133) 2020; 11 Andreev (2024072123562951800_B22) 2017; 45 Hussmann (2024072123562951800_B51) 2015; 11 Shirokikh (2024072123562951800_B79) 2017; 12 Svitkin (2024072123562951800_B136) 2022; 50 Stern-Ginossar (2024072123562951800_B150) 2019; 11 Janapala (2024072123562951800_B6) 2019; 20 Matsuo (2024072123562951800_B68) 2017; 8 Wu (2024072123562951800_B69) 2019; 73 Meade (2024072123562951800_B149) 2019; 10 Corsi (2024072123562951800_B61) 1996; 271 Wu (2024072123562951800_B40) 2020; 182 Shirokikh (2024072123562951800_B4) 2021; 57 Sultana (2024072123562951800_B11) 2020; 17 Veltri (2024072123562951800_B70) 2022; 11 Mitarai (2024072123562951800_B57) 2008; 382 Staehelin (2024072123562951800_B106) 1964; 201 Johansson (2024072123562951800_B118) 2014; 7 To (2024072123562951800_B15) 2021; 16 Castillo-Hair (2024072123562951800_B20) 2022; 55 Wang (2024072123562951800_B145) 2018; 19 Bartholomäus (2024072123562951800_B49) 2016; 397 Brauer (2024072123562951800_B28) 2005; 16 Björkeroth (2024072123562951800_B156) 2020; 117 Brar (2024072123562951800_B43) 2015; 16 Cao (2024072123562951800_B14) 2021; 12 Rubio (2024072123562951800_B56) 2021; 49 Archer (2024072123562951800_B81) 2015; 85 Wang (2024072123562951800_B117) 2019; 573 Boersma (2024072123562951800_B91) 2019; 178 Lauria (2024072123562951800_B108) 2015; 43 Buskirk (2024072123562951800_B96) 2017; 372 Karamyshev (2024072123562951800_B134) 2018; 9 Rao (2024072123562951800_B31) 2017; 114 Zeng (2024072123562951800_B10) 2020; 32 Westhof (2024072123562951800_B122) 2022; 50 Bicknell (2024072123562951800_B135) 2024; 43 King (2024072123562951800_B47) 2016; 15 Khong (2024072123562951800_B75) 2017; 68 Petti (2024072123562951800_B153) 2011; 108 Juszkiewicz (2024072123562951800_B128) 2020; 9 Coudert (2024072123562951800_B46) 2014; 87 Schuller (2024072123562951800_B53) 2018; 19 Liu (2024072123562951800_B64) 2013; 49 Protter (2024072123562951800_B73) 2016; 26 Kim (2024072123562951800_B123) 2021; 658 Ingolia (2024072123562951800_B44) 2019; 11 Nedialkova (2024072123562951800_B124) 2015; 161 Sabi (2024072123562951800_B58) 2017; 23 Akiyama (2024072123562951800_B18) 2022; 4 Haight (2024072123562951800_B109) 1963 Khuperkar (2024072123562951800_B121) 2020; 15 Han (2024072123562951800_B92) 2020; 31 Steitz (2024072123562951800_B104) 1969; 224 Wolin (2024072123562951800_B62) 1988; 7 Yordanova (2024072123562951800_B132) 2018; 553 Boyd (2024072123562951800_B21) 2023 Archer (2024072123562951800_B76) 2016; 535 Sumi (2024072123562951800_B17) 2024; 21 Shirokikh (2024072123562951800_B77) 2017; 12 Meng (2024072123562951800_B120) 2023; 51 Jia (2024072123562951800_B12) 2020; 27 Wickramasinghe (2024072123562951800_B72) 2015; 16 Mito (2024072123562951800_B126) 2020; 1 Saito (2024072123562951800_B129) 2022; 603 Bergmann (2024072123562951800_B107) 1979; 254 McManus (2024072123562951800_B144) 2014; 24 Fan (2024072123562951800_B19) 2023 Collart (2024072123562951800_B66) 2020; 48 Ashe (2024072123562951800_B7) 2000; 11 Luan (2024072123562951800_B42) 2022; 50 Buchan (2024072123562951800_B29) 2008; 183 Chevalier (2024072123562951800_B102) 2023; 19 Grousl (2024072123562951800_B32) 2022; 39 Weinberg (2024072123562951800_B71) 2016; 14 Petkova (2024072123562951800_B155) 2012; 49 Crawford (2024072123562951800_B25) 2019; 36 Hinnebusch (2024072123562951800_B26) 2017; 42 Hinnebusch (2024072123562951800_B3) 2016; 352 Zhao (2024072123562951800_B63) 2021; 22 Walsh (2024072123562951800_B151) 2017; 13 Zinshteyn (2024072123562951800_B23) 2020; 26 Hershey (2024072123562951800_B1) 2019; 11 Guzikowski (2024072123562951800_B27) 2022; 19 Szavits-Nossan (2024072123562951800_B101) 2020; 48 Montero-Lomelí (2024072123562951800_B37) 2002; 277 Metkar (2024072123562951800_B160) 2024; 23 Chassé (2024072123562951800_B45) 2017; 45 Sharma (2024072123562951800_B90) 2019; 15 Bifeld (2024072123562951800_B111) 2018; 3 Zia (2024072123562951800_B110) 2011; 144 Tesina (2024072123562951800_B131) 2020; 39 Sen (2024072123562951800_B36) 2021; 9 Blevins (2024072123562951800_B143) 2019; 9 Zhang (2024072123562951800_B54) 2017; 5 Yang (2024072123562951800_B55) 2019; 47 Jobava (2024072123562951800_B137) 2021; 81 Gelsinger (2024072123562951800_B97) 2020; 48 Shirokikh (2024072123562951800_B148) 2008; 105 Takamatsu (2024072123562951800_B59) 2020; 48 Hendriks (2024072123562951800_B100) 2017; 139 |
References_xml | – volume: 10 start-page: e1515 year: 2019 ident: 2024072123562951800_B149 article-title: Translational control during poxvirus infection publication-title: WIREs RNA doi: 10.1002/wrna.1515 – year: 2023 ident: 2024072123562951800_B112 article-title: TASEPy: A Python-based package to iteratively solve the inhomogeneous exclusion process publication-title: SciPost Phys. Codebases doi: 10.21468/SciPostPhysCodeb.22 – volume: 19 start-page: 636 year: 2022 ident: 2024072123562951800_B27 article-title: Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast publication-title: RNA Biol doi: 10.1080/15476286.2022.2065784 – volume: 8 start-page: 87 year: 1958 ident: 2024072123562951800_B125 article-title: Many server queueing processes with Poisson input and exponential service times publication-title: Pac. J. Math. doi: 10.2140/pjm.1958.8.87 – volume: 55 start-page: 24 year: 2022 ident: 2024072123562951800_B20 article-title: Machine learning for designing next-generation mRNA therapeutics publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00621 – volume: 139 start-page: 13632 year: 2017 ident: 2024072123562951800_B100 article-title: Single-molecule fluorescence microscopy reveals local diffusion coefficients in the pore network of an individual catalyst particle publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07139 – volume: 50 start-page: e112 year: 2022 ident: 2024072123562951800_B48 article-title: Evaluating data integrity in ribosome footprinting datasets through modelled polysome profiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac705 – volume: 224 start-page: 957 year: 1969 ident: 2024072123562951800_B104 article-title: Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA publication-title: Nature doi: 10.1038/224957a0 – volume: 10 start-page: 215 year: 1993 ident: 2024072123562951800_B24 article-title: Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01947.x – volume: 43 start-page: 114098 year: 2024 ident: 2024072123562951800_B135 article-title: Attenuating ribosome load improves protein output from mRNA by limiting translation-dependent mRNA decay publication-title: Cell Rep. doi: 10.1016/j.celrep.2024.114098 – volume: 14 start-page: 1787 year: 2016 ident: 2024072123562951800_B71 article-title: Improved ribosome-footprint and mRNA measurements provide insights into dynamics and regulation of yeast translation publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.043 – volume: 38 start-page: e100276 year: 2019 ident: 2024072123562951800_B127 article-title: Collided ribosomes form a unique structural interface to induce Hel2-driven quality control pathways publication-title: EMBO J. doi: 10.15252/embj.2018100276 – volume: 182 start-page: 404 year: 2020 ident: 2024072123562951800_B40 article-title: Ribosome collisions trigger general stress responses to regulate cell fate publication-title: Cell doi: 10.1016/j.cell.2020.06.006 – volume: 3 start-page: e00214-18 year: 2018 ident: 2024072123562951800_B111 article-title: Ribosome profiling reveals HSP90 inhibitor effects on stage-specific protein synthesis in Leishmania donovani publication-title: mSystems doi: 10.1128/mSystems.00214-18 – volume: 8 start-page: 159 year: 2017 ident: 2024072123562951800_B68 article-title: Ubiquitination of stalled ribosome triggers ribosome-associated quality control publication-title: Nat. Commun. doi: 10.1038/s41467-017-00188-1 – volume: 135 start-page: 230 year: 1983 ident: 2024072123562951800_B80 article-title: A simple technique for the preparation and storage of sucrose gradients publication-title: Anal. Biochem. doi: 10.1016/0003-2697(83)90755-8 – volume: 85 start-page: 11.15.1 year: 2015 ident: 2024072123562951800_B81 article-title: Probe-directed degradation (PDD) for flexible removal of unwanted cDNA sequences from RNA-seq libraries publication-title: Curr. Protoc. Hum. Genet. – volume: 15 start-page: 1371 year: 2020 ident: 2024072123562951800_B121 article-title: Quantification of mRNA translation in live cells using single-molecule imaging publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0284-x – volume: 5 start-page: 212 year: 2017 ident: 2024072123562951800_B54 article-title: Analysis of ribosome stalling and translation elongation dynamics by Deep learning publication-title: Cell Syst. doi: 10.1016/j.cels.2017.08.004 – volume: 473 start-page: 337 year: 2011 ident: 2024072123562951800_B139 article-title: Global quantification of mammalian gene expression control publication-title: Nature doi: 10.1038/nature10098 – volume: 50 start-page: 4113 year: 2022 ident: 2024072123562951800_B119 article-title: Genetic code degeneracy is established by the decoding center of the ribosome publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac171 – volume: 9 start-page: e60038 year: 2020 ident: 2024072123562951800_B128 article-title: Ribosome collisions trigger cis-acting feedback inhibition of translation initiation publication-title: eLife doi: 10.7554/eLife.60038 – volume: 49 start-page: 453 year: 2013 ident: 2024072123562951800_B64 article-title: Cotranslational response to proteotoxic stress by elongation pausing of ribosomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.12.001 – volume: 109 start-page: 12467 year: 2012 ident: 2024072123562951800_B65 article-title: Monitoring cotranslational protein folding in mammalian cells at codon resolution publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1208138109 – volume: 79 start-page: 546 year: 2020 ident: 2024072123562951800_B78 article-title: Selective translation complex profiling reveals staged initiation and Co-translational assembly of initiation factor complexes publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.06.004 – volume: 9 start-page: 2413 year: 2021 ident: 2024072123562951800_B36 article-title: Down-regulation of yeast helicase Ded1 by glucose starvation or heat-shock differentially impairs translation of Ded1-dependent mRNAs publication-title: Microorganisms doi: 10.3390/microorganisms9122413 – volume: 22 start-page: 16 year: 2021 ident: 2024072123562951800_B63 article-title: Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding publication-title: Genome Biol. doi: 10.1186/s13059-020-02256-0 – volume: 49 start-page: 903 year: 2012 ident: 2024072123562951800_B155 article-title: Mtl1 O-mannosylation mediated by both Pmt1 and Pmt2 is important for cell survival under oxidative conditions and TOR blockade publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2012.08.005 – volume: 15 start-page: 22 year: 2016 ident: 2024072123562951800_B47 article-title: Translatome profiling: methods for genome-scale analysis of mRNA translation publication-title: Brief. Funct. Genomics – volume: 11 start-page: a032607 year: 2019 ident: 2024072123562951800_B1 article-title: Principles of translational control publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a032607 – volume: 17 start-page: 622 year: 2020 ident: 2024072123562951800_B11 article-title: Optimization of 5′ untranslated region of modified mRNA for use in cardiac or hepatic ischemic injury publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.03.019 – volume: 10 start-page: 50 year: 2021 ident: 2024072123562951800_B9 article-title: mRNA therapeutic modalities design, formulation and manufacturing under Pharma 4.0 principles publication-title: Biomedicines doi: 10.3390/biomedicines10010050 – volume: 26 start-page: 668 year: 2016 ident: 2024072123562951800_B73 article-title: Principles and properties of stress granules publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.05.004 – volume: 16 start-page: 3905 year: 2015 ident: 2024072123562951800_B86 article-title: partykit: A Modular Toolkit for Recursive Partytioning in R publication-title: Journal of Machine Learning Research – volume: 16 start-page: 284 year: 2012 ident: 2024072123562951800_B88 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters publication-title: Omics doi: 10.1089/omi.2011.0118 – volume: 50 start-page: 4100 year: 2022 ident: 2024072123562951800_B122 article-title: Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac222 – volume: 114 start-page: E9569 year: 2017 ident: 2024072123562951800_B31 article-title: Numerous interactions act redundantly to assemble a tunable size of P bodies in Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1712396114 – volume: 16 start-page: 1307 year: 2021 ident: 2024072123562951800_B15 article-title: An overview of rational design of mRNA-based therapeutics and vaccines publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2021.1935859 – volume: 37 start-page: e00562-16 year: 2017 ident: 2024072123562951800_B154 article-title: Caloric restriction extends yeast chronological life span by optimizing the Snf1 (AMPK) signaling pathway publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00562-16 – volume: 81 start-page: 4191 year: 2021 ident: 2024072123562951800_B137 article-title: Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.09.029 – volume: 32 start-page: 2004452 year: 2020 ident: 2024072123562951800_B10 article-title: Leveraging mRNA sequences and nanoparticles to deliver SARS-CoV-2 antigens In vivo publication-title: Adv. Mater. doi: 10.1002/adma.202004452 – volume: 14 start-page: 629 year: 2010 ident: 2024072123562951800_B33 article-title: Transcriptional regulation in yeast during diauxic shift and stationary phase publication-title: OMICS doi: 10.1089/omi.2010.0069 – volume: 168 start-page: 93 year: 2020 ident: 2024072123562951800_B8 article-title: The coupling of translational control and stress responses publication-title: J. Biochem. doi: 10.1093/jb/mvaa061 – volume: 271 start-page: 30299 year: 1996 ident: 2024072123562951800_B61 article-title: Mechanism of polypeptide translocation into the endoplasmic reticulum publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.48.30299 – volume: 535 start-page: 570 year: 2016 ident: 2024072123562951800_B76 article-title: Dynamics of ribosome scanning and recycling revealed by translation complex profiling publication-title: Nature doi: 10.1038/nature18647 – volume: 131 start-page: jcs214346 year: 2018 ident: 2024072123562951800_B113 article-title: SunRiSE - measuring translation elongation at single-cell resolution by means of flow cytometry publication-title: J. Cell Sci. doi: 10.1242/jcs.214346 – volume: 19 start-page: 526 year: 2018 ident: 2024072123562951800_B53 article-title: Roadblocks and resolutions in eukaryotic translation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0011-4 – volume: 16 start-page: 431 year: 2015 ident: 2024072123562951800_B72 article-title: Control of mammalian gene expression by selective mRNA export publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4010 – volume: 48 start-page: 9478 year: 2020 ident: 2024072123562951800_B101 article-title: Inferring efficiency of translation initiation and elongation from ribosome profiling publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa678 – volume: 39 start-page: e103365 year: 2020 ident: 2024072123562951800_B131 article-title: Molecular mechanism of translational stalling by inhibitory codon combinations and poly(A) tracts publication-title: EMBO J. doi: 10.15252/embj.2019103365 – volume: 579 start-page: 409 year: 2020 ident: 2024072123562951800_B141 article-title: Mass-spectrometry-based draft of the Arabidopsis proteome publication-title: Nature doi: 10.1038/s41586-020-2094-2 – volume: 26 start-page: 1481 year: 2020 ident: 2024072123562951800_B23 article-title: Nuclease-mediated depletion biases in ribosome footprint profiling libraries publication-title: RNA doi: 10.1261/rna.075523.120 – volume: 72 start-page: 469 year: 2018 ident: 2024072123562951800_B93 article-title: ZNF598 Is a quality control sensor of collided ribosomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.08.037 – volume: 9 start-page: 431 year: 2018 ident: 2024072123562951800_B134 article-title: Lost in translation: ribosome-associated mRNA and protein quality controls publication-title: Front. Genet. doi: 10.3389/fgene.2018.00431 – volume: 254 start-page: 11927 year: 1979 ident: 2024072123562951800_B107 article-title: A kinetic model of protein synthesis. Application to hemoglobin synthesis and translational control publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)86406-2 – volume: 48 start-page: 1043 year: 2020 ident: 2024072123562951800_B66 article-title: Ribosome pausing, a dangerous necessity for co-translational events publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz763 – volume: 47 start-page: 9243 year: 2019 ident: 2024072123562951800_B55 article-title: eRF1 mediates codon usage effects on mRNA translation efficiency through premature termination at rare codons publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz710 – volume: 161 start-page: 1606 year: 2015 ident: 2024072123562951800_B124 article-title: Optimization of codon translation rates via tRNA modifications maintains proteome integrity publication-title: Cell doi: 10.1016/j.cell.2015.05.022 – volume: 51 start-page: 6609 year: 2023 ident: 2024072123562951800_B120 article-title: Stochastic scanning events on the GCN4 mRNA 5' untranslated region generate cell-to-cell heterogeneity in the yeast nutritional stress response publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad433 – start-page: 67 volume-title: Mathematics in Science and Engineering year: 1963 ident: 2024072123562951800_B109 article-title: Chapter 3: Fundamental characteristics of road traffic – volume: 144 start-page: 405 year: 2011 ident: 2024072123562951800_B110 article-title: Modeling translation in protein synthesis with TASEP: a tutorial and recent developments publication-title: J. Stat. Phys. doi: 10.1007/s10955-011-0183-1 – volume: 105 start-page: 10738 year: 2008 ident: 2024072123562951800_B148 article-title: Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0804940105 – volume: 15 start-page: 401 year: 2014 ident: 2024072123562951800_B82 article-title: Selective and flexible depletion of problematic sequences from RNA-seq libraries at the cDNA stage publication-title: BMC Genomics doi: 10.1186/1471-2164-15-401 – volume: 12 start-page: 4138 year: 2021 ident: 2024072123562951800_B14 article-title: High-throughput 5′ UTR engineering for enhanced protein production in non-viral gene therapies publication-title: Nat. Commun. doi: 10.1038/s41467-021-24436-7 – volume: 11 start-page: 4134 year: 2020 ident: 2024072123562951800_B133 article-title: Human NMD ensues independently of stable ribosome stalling publication-title: Nat. Commun. doi: 10.1038/s41467-020-17974-z – start-page: 150 volume-title: Proceedings of the 17th Machine Learning in Computational Biology meeting, in Proceedings of Machine Learning Research year: 2022 ident: 2024072123562951800_B83 article-title: Language-Informed Basecalling Architecture for Nanopore Direct RNA Sequencing – volume: 3 start-page: e01257 year: 2014 ident: 2024072123562951800_B105 article-title: Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments publication-title: eLife doi: 10.7554/eLife.01257 – volume: 12 start-page: 697 year: 2017 ident: 2024072123562951800_B79 article-title: Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.189 – volume: 15 start-page: e1007070 year: 2019 ident: 2024072123562951800_B90 article-title: A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007070 – volume: 49 start-page: 2853 year: 2021 ident: 2024072123562951800_B159 article-title: Translational control in cell ageing: an update publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20210844 – volume: 21 start-page: 435 year: 2024 ident: 2024072123562951800_B17 article-title: Deep generative design of RNA family sequences publication-title: Nat. Methods doi: 10.1038/s41592-023-02148-8 – volume: 183 start-page: 441 year: 2008 ident: 2024072123562951800_B29 article-title: P bodies promote stress granule assembly in Saccharomyces cerevisiae publication-title: J. Cell Biol. doi: 10.1083/jcb.200807043 – volume: 42 start-page: 589 year: 2017 ident: 2024072123562951800_B26 article-title: Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation publication-title: Trends Biochem. Sci doi: 10.1016/j.tibs.2017.03.004 – volume: 573 start-page: 605 year: 2019 ident: 2024072123562951800_B117 article-title: eIF5B gates the transition from translation initiation to elongation publication-title: Nature doi: 10.1038/s41586-019-1561-0 – volume: 16 start-page: 651 year: 2015 ident: 2024072123562951800_B43 article-title: Ribosome profiling reveals the what, when, where and how of protein synthesis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4069 – volume: 8 start-page: 574 year: 2008 ident: 2024072123562951800_B152 article-title: The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation publication-title: FEMS Yeast Res. doi: 10.1111/j.1567-1364.2008.00371.x – volume: 24 start-page: e202300264 year: 2023 ident: 2024072123562951800_B157 article-title: Molecular highway patrol for ribosome collisions publication-title: Chem. Biol. Chem. doi: 10.1002/cbic.202300264 – volume: 22 start-page: 3379 year: 2011 ident: 2024072123562951800_B35 article-title: Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e11-02-0153 – volume: 48 start-page: 1985 year: 2020 ident: 2024072123562951800_B59 article-title: Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1190 – volume: 19 start-page: e1011522 year: 2023 ident: 2024072123562951800_B102 article-title: Physical modeling of ribosomes along messenger RNA: estimating kinetic parameters from ribosome profiling experiments using a ballistic model publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1011522 – volume: 9 start-page: e1473 year: 2018 ident: 2024072123562951800_B2 article-title: Translation initiation by cap-dependent ribosome recruitment: recent insights and open questions publication-title: Wiley Interdiscip. Rev. RNA doi: 10.1002/wrna.1473 – volume: 11 start-page: e76038 year: 2022 ident: 2024072123562951800_B70 article-title: Distinct elongation stalls during translation are linked with distinct pathways for mRNA degradation publication-title: eLife doi: 10.7554/eLife.76038 – volume: 11 start-page: 833 year: 2000 ident: 2024072123562951800_B7 article-title: Glucose depletion rapidly inhibits translation initiation in yeast publication-title: Mol. Biol. Cell doi: 10.1091/mbc.11.3.833 – volume: 26 start-page: 1132 year: 2019 ident: 2024072123562951800_B94 article-title: Mechanism of ribosome stalling during translation of a poly(A) tail publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0331-x – volume: 80 start-page: 470 year: 2020 ident: 2024072123562951800_B38 article-title: Stress-induced translation inhibition through rapid displacement of scanning initiation factors publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.09.021 – volume: 4 start-page: lqac012 year: 2022 ident: 2024072123562951800_B18 article-title: Informative RNA base embedding for RNA structural alignment and clustering by deep representation learning publication-title: NAR Genomics Bioinformatics doi: 10.1093/nargab/lqac012 – volume: 11 start-page: a033001 year: 2019 ident: 2024072123562951800_B150 article-title: Translational control in virus-infected cells publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a033001 – volume: 178 start-page: 458 year: 2019 ident: 2024072123562951800_B91 article-title: Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding publication-title: Cell doi: 10.1016/j.cell.2019.05.001 – volume: 73 start-page: 959 year: 2019 ident: 2024072123562951800_B69 article-title: High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.12.009 – volume: 31 start-page: 107610 year: 2020 ident: 2024072123562951800_B92 article-title: Genome-wide survey of ribosome collision publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107610 – volume: 553 start-page: 356 year: 2018 ident: 2024072123562951800_B132 article-title: AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation publication-title: Nature doi: 10.1038/nature25174 – volume: 47 start-page: e70 year: 2019 ident: 2024072123562951800_B147 article-title: Generally applicable transcriptome-wide analysis of translation using anota2seq publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz223 – volume: 8 start-page: e42591 year: 2019 ident: 2024072123562951800_B50 article-title: A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution publication-title: eLife doi: 10.7554/eLife.42591 – volume: 20 start-page: 4043 year: 2019 ident: 2024072123562951800_B6 article-title: Control of translation at the initiation phase during glucose starvation in yeast publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20164043 – volume: 49 start-page: 383 year: 2021 ident: 2024072123562951800_B56 article-title: Ribosome profiling reveals ribosome stalling on tryptophan codons and ribosome queuing upon oxidative stress in fission yeast publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1180 – volume: 9 start-page: 11005 year: 2019 ident: 2024072123562951800_B143 article-title: Extensive post-transcriptional buffering of gene expression in the response to severe oxidative stress in baker's yeast publication-title: Sci. Rep. doi: 10.1038/s41598-019-47424-w – volume: 45 start-page: e15 year: 2017 ident: 2024072123562951800_B45 article-title: Analysis of translation using polysome profiling publication-title: Nucleic Acids Res. – volume: 48 start-page: 5201 year: 2020 ident: 2024072123562951800_B97 article-title: Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa304 – volume: 26 start-page: 110 year: 2019 ident: 2024072123562951800_B138 article-title: Co-translational assembly of proteasome subunits in NOT1-containing assemblysomes publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0179-5 – volume: 178 start-page: e62639 year: 2021 ident: 2024072123562951800_B5 article-title: Rapid in vivo fixation and isolation of translational complexes from eukaryotic cells publication-title: J. Visual. Exp. – volume: 1869 start-page: 119140 year: 2022 ident: 2024072123562951800_B146 article-title: Regulation of gene expression via translational buffering publication-title: Biochim. Biophys. Acta. Mol. Cell Res. doi: 10.1016/j.bbamcr.2021.119140 – volume: 23 start-page: 67 year: 2024 ident: 2024072123562951800_B160 article-title: Tailor made: the art of therapeutic mRNA design publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-023-00827-x – volume: 37 start-page: 803 year: 2019 ident: 2024072123562951800_B13 article-title: Human 5′ UTR design and variant effect prediction from a massively parallel translation assay publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0164-5 – volume: 5 start-page: 5123 year: 2014 ident: 2024072123562951800_B99 article-title: Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations publication-title: Nat. Commun. doi: 10.1038/ncomms6123 – volume: 1 start-page: 100168 year: 2020 ident: 2024072123562951800_B126 article-title: Protocol for disome profiling to survey ribosome collision in humans and zebrafish publication-title: STAR Protoc doi: 10.1016/j.xpro.2020.100168 – volume: 19 start-page: 83 year: 2018 ident: 2024072123562951800_B145 article-title: Post-translational buffering leads to convergent protein expression levels between primates publication-title: Genome Biol. doi: 10.1186/s13059-018-1451-z – volume: 79 start-page: 588 year: 2020 ident: 2024072123562951800_B39 article-title: Disome and trisome profiling reveal genome-wide targets of ribosome quality control publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.06.010 – volume: 621 start-page: 396 year: 2023 ident: 2024072123562951800_B16 article-title: Algorithm for optimized mRNA design improves stability and immunogenicity publication-title: Nature doi: 10.1038/s41586-023-06127-z – volume: 397 start-page: 23 year: 2016 ident: 2024072123562951800_B49 article-title: Mapping the non-standardized biases of ribosome profiling publication-title: Biol. Chem. doi: 10.1515/hsz-2015-0197 – volume: 36 start-page: 1 year: 2010 ident: 2024072123562951800_B84 article-title: depmixS4: an R package for hidden markov models publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i07 – volume: 7 start-page: 3559 year: 1988 ident: 2024072123562951800_B62 article-title: Ribosome pausing and stacking during translation of a eukaryotic mRNA publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb03233.x – volume: 193 start-page: 109 year: 2013 ident: 2024072123562951800_B30 article-title: Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1534/genetics.112.146993 – volume: 50 start-page: 7202 year: 2022 ident: 2024072123562951800_B136 article-title: Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1241 – volume: 27 start-page: 814 year: 2020 ident: 2024072123562951800_B12 article-title: Decoding mRNA translatability and stability from the 5′ UTR publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0465-x – volume: 43 start-page: e153 year: 2015 ident: 2024072123562951800_B108 article-title: RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv781 – volume: 382 start-page: 236 year: 2008 ident: 2024072123562951800_B57 article-title: Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.06.068 – volume: 372 start-page: 20160177 year: 2017 ident: 2024072123562951800_B116 article-title: Dynamics of IRES-mediated translation publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci. doi: 10.1098/rstb.2016.0177 – volume: 7 start-page: 1534 year: 2014 ident: 2024072123562951800_B118 article-title: Sequence-dependent elongation dynamics on macrolide-bound ribosomes publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.04.034 – volume: 658 start-page: 191 year: 2021 ident: 2024072123562951800_B123 article-title: Analysis of codon-specific translation by ribosome profiling publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2021.06.025 – volume: 13 start-page: e1006634 year: 2017 ident: 2024072123562951800_B151 article-title: Poxviruses: slipping and sliding through transcription and translation publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1006634 – volume: 352 start-page: 1413 year: 2016 ident: 2024072123562951800_B3 article-title: Translational control by 5′-untranslated regions of eukaryotic mRNAs publication-title: Science doi: 10.1126/science.aad9868 – volume: 39 start-page: 247 year: 2022 ident: 2024072123562951800_B32 article-title: Yeast stress granules at a glance publication-title: Yeast doi: 10.1002/yea.3681 – volume: 30 start-page: 985 year: 2020 ident: 2024072123562951800_B60 article-title: Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing publication-title: Genome Res. doi: 10.1101/gr.257741.119 – volume: 201 start-page: 264 year: 1964 ident: 2024072123562951800_B106 article-title: Determination of the coding ratio based on molecular weight of messenger ribonucleic acid associated with ergosomes of different aggregate size publication-title: Nature doi: 10.1038/201264a0 – volume: 87 start-page: e51164 year: 2014 ident: 2024072123562951800_B46 article-title: Analysis of translation initiation during stress conditions by polysome profiling publication-title: J. Visual. Exp. – volume: 4 start-page: a011551 year: 2012 ident: 2024072123562951800_B114 article-title: Single-Molecule Analysis of Translational Dynamics publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a011551 – year: 2023 ident: 2024072123562951800_B21 article-title: ATOM-1: a foundation model for RNA structure and function built on chemical mapping data doi: 10.1101/2023.12.13.571579 – volume: 36 start-page: 5 year: 2019 ident: 2024072123562951800_B25 article-title: Translational regulation in response to stress in Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.3349 – year: 2023 ident: 2024072123562951800_B19 article-title: Accurate prediction of RNA translation with a deep learning architecture – volume: 57 start-page: 1 year: 2021 ident: 2024072123562951800_B4 article-title: Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 10 start-page: e65722 year: 2021 ident: 2024072123562951800_B41 article-title: Quantifying absolute gene expression profiles reveals distinct regulation of central carbon metabolism genes in yeast publication-title: eLife doi: 10.7554/eLife.65722 – volume: 32 start-page: 2716 year: 2015 ident: 2024072123562951800_B140 article-title: Quantitative mass spectrometry reveals partial translational regulation for dosage compensation in chicken publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msv147 – volume: 603 start-page: 503 year: 2022 ident: 2024072123562951800_B129 article-title: Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria publication-title: Nature doi: 10.1038/s41586-022-04416-7 – volume: 372 start-page: 20160183 year: 2017 ident: 2024072123562951800_B96 article-title: Ribosome pausing, arrest and rescue in bacteria and eukaryotes publication-title: Philos. Trans. Roy. Soc. B: Biol. Sci. doi: 10.1098/rstb.2016.0183 – volume: 117 start-page: 60 year: 2020 ident: 2024072123562951800_B115 article-title: Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1916219117 – volume: 15 start-page: 1756 year: 2024 ident: 2024072123562951800_B130 article-title: Transient disome complex formation in native polysomes during ongoing protein synthesis captured by cryo-EM publication-title: Nat. Commun. doi: 10.1038/s41467-024-46092-3 – volume: 4 start-page: 2171 year: 2013 ident: 2024072123562951800_B142 article-title: Genome-scale proteome quantification by DEEP SEQ mass spectrometry publication-title: Nat. Commun. doi: 10.1038/ncomms3171 – volume: 24 start-page: 422 year: 2014 ident: 2024072123562951800_B144 article-title: Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast publication-title: Genome Res. doi: 10.1101/gr.164996.113 – volume: 12 start-page: 697 year: 2017 ident: 2024072123562951800_B77 article-title: Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.189 – volume: 50 start-page: 9001 year: 2022 ident: 2024072123562951800_B158 article-title: A transformation clustering algorithm and its application in polyribosomes structural profiling publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac547 – volume: 81 start-page: 1830 year: 2021 ident: 2024072123562951800_B67 article-title: Live-cell imaging reveals kinetic determinants of quality control triggered by ribosome stalling publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.01.029 – volume: 23 start-page: 983 year: 2017 ident: 2024072123562951800_B58 article-title: Computational analysis of nascent peptides that induce ribosome stalling and their proteomic distribution in Saccharomyces cerevisiae publication-title: RNA doi: 10.1261/rna.059188.116 – volume: 68 start-page: 808 year: 2017 ident: 2024072123562951800_B75 article-title: The stress granule transcriptome reveals principles of mRNA accumulation in stress granules publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.10.015 – volume: 116 start-page: 15023 year: 2019 ident: 2024072123562951800_B85 article-title: Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1817299116 – volume: 324 start-page: 218 year: 2009 ident: 2024072123562951800_B103 article-title: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling publication-title: Science doi: 10.1126/science.1168978 – year: 2024 ident: 2024072123562951800_B89 article-title: Mathematica – volume: 11 start-page: a032698 year: 2019 ident: 2024072123562951800_B44 article-title: Ribosome profiling: global views of translation publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a032698 – volume: 108 start-page: E1089 year: 2011 ident: 2024072123562951800_B153 article-title: Survival of starving yeast is correlated with oxidative stress response and nonrespiratory mitochondrial function publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1101494108 – volume: 180 start-page: 411 year: 2020 ident: 2024072123562951800_B74 article-title: Modulation of RNA condensation by the DEAD-box protein eIF4A publication-title: Cell doi: 10.1016/j.cell.2019.12.031 – volume: 11 start-page: e1005732 year: 2015 ident: 2024072123562951800_B51 article-title: Understanding biases in ribosome profiling experiments reveals signatures of translation dynamics in yeast publication-title: PLos Genet. doi: 10.1371/journal.pgen.1005732 – volume: 71 start-page: 229 year: 2018 ident: 2024072123562951800_B52 article-title: Translational control through differential ribosome pausing during amino acid limitation in mammalian cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.06.041 – volume: 16 start-page: 2503 year: 2005 ident: 2024072123562951800_B28 article-title: Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures publication-title: MBoC doi: 10.1091/mbc.e04-11-0968 – volume: 45 start-page: 513 year: 2017 ident: 2024072123562951800_B22 article-title: Insights into the mechanisms of eukaryotic translation gained with ribosome profiling publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1190 – volume: 50 start-page: 6601 year: 2022 ident: 2024072123562951800_B42 article-title: Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac053 – volume: 277 start-page: 21542 year: 2002 ident: 2024072123562951800_B37 article-title: The initiation factor eIF4A is involved in the response to lithium stress in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201977200 – start-page: 726 volume-title: R Package Version year: 2012 ident: 2024072123562951800_B87 article-title: Pheatmap: pretty heatmaps – volume: 117 start-page: 21804 year: 2020 ident: 2024072123562951800_B156 article-title: Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1921890117 – volume: 163 start-page: 292 year: 2015 ident: 2024072123562951800_B95 article-title: Pausing on polyribosomes: make way for elongation in translational control publication-title: Cell doi: 10.1016/j.cell.2015.09.041 – volume: 93 start-page: 2926 year: 1996 ident: 2024072123562951800_B98 article-title: Imaging of single molecule diffusion publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.93.7.2926 – volume: 5 start-page: 245 year: 2009 ident: 2024072123562951800_B34 article-title: Glucose regulates transcription in yeast through a network of signaling pathways publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2009.2 |
SSID | ssj0014154 |
Score | 2.4718177 |
Snippet | Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins,... |
SourceID | pubmedcentral hal proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7925 |
SubjectTerms | Biochemistry, Molecular Biology Genomics Life Sciences Quantitative Methods RNA and RNA-protein complexes |
Title | Comprehensive translational profiling and STE AI uncover rapid control of protein biosynthesis during cell stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38721779 https://www.proquest.com/docview/3053137328 https://hal.science/hal-04787783 https://pubmed.ncbi.nlm.nih.gov/PMC11260467 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bT9swFLYGL9vLxGCXwOjOJrSHSRFJ7drJY4WKummXhxWpb5HjyxqNudCUSfz7nZOkFUGIvSaOZfmz8x2fy2fGTiTiLJNSxka4MhZS2ji3Jo1tSU7-VGirqRr523c5vRBf5qN5lyBbPxDCz_lp0KvTX7-145JqyZF-SSJ_9mO-DRYgB7UqUY2opsi6Mrx73_aIZ2dBaY-9krY7luX9BMk7jHO-x553piKMW2xfsCcu7LODccBj8p9b-AhN8mbjFd9nT882F7cdsGva4yu3aFPTYU1sdNn5_KC9oxv5CnSw8HM2gfFnQG6jTE5Y6avKQpe9DksPjYpDFaCslvVtQFuxrmpoKxuBXP7Qlpq8ZBfnk9nZNO5uVkBIhFqjSS1LbZQxyrrceidG3GdejpwZSk42jsxya4VMrKXImRFcKq-48JlNU-s5f8V2wzK4NwystE4lmqelohip0w6NKlNyrzKjUuEj9mkz7YXpZMfp9ovLog1_8wIxKjqMInaybXzVqm083OwD4rdtQQrZ0_HXgp41YkMq43_TiL1DeB_v5v0G-gIhomnTwS1v6oLTr4mTjlHEXrdLYdsRz_DQrFQesay3SHrD6b8J1aIR7qZyrQSZ6fC_Qztiz4ZoPZETeTh8y3bXqxt3jNbPuhywHZVMBo3vYNDsg3-2cwgG |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+translational+profiling+and+STE+AI+uncover+rapid+control+of+protein+biosynthesis+during+cell+stress&rft.jtitle=Nucleic+acids+research&rft.au=Horvath%2C+Attila&rft.au=Janapala%2C+Yoshika&rft.au=Woodward%2C+Katrina&rft.au=Mahmud%2C+Shafi&rft.date=2024-07-22&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=52&rft.issue=13&rft.spage=7925&rft_id=info:doi/10.1093%2Fnar%2Fgkae365&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |