Keratoconus Screening Based on Deep Learning Approach of Corneal Topography

To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods. We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigm...

Full description

Saved in:
Bibliographic Details
Published inTranslational vision science & technology Vol. 9; no. 2; p. 53
Main Authors Kuo, Bo-I, Chang, Wen-Yi, Liao, Tai-Shan, Liu, Fang-Yu, Liu, Hsin-Yu, Chu, Hsiao-Sang, Chen, Wei-Li, Hu, Fung-Rong, Yen, Jia-Yush, Wang, I-Jong
Format Journal Article
LanguageEnglish
Published United States The Association for Research in Vision and Ophthalmology 25.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods. We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization. Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes. The DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable. These high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps.
AbstractList To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.PurposeTo develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization.MethodsWe retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization.Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes.ResultsOverall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes.The DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable.ConclusionsThe DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable.These high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps.Translational RelevanceThese high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps.
To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods. We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization. Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes. The DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable. These high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps.
Author Chang, Wen-Yi
Liu, Hsin-Yu
Wang, I-Jong
Liu, Fang-Yu
Hu, Fung-Rong
Kuo, Bo-I
Yen, Jia-Yush
Chen, Wei-Li
Liao, Tai-Shan
Chu, Hsiao-Sang
AuthorAffiliation 6 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
7 Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
2 Department of Ophthalmology, Taipei City Hospital, Renai branch, Taipei, Taiwan
1 Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
3 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
4 Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
5 Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
AuthorAffiliation_xml – name: 4 Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
– name: 5 Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
– name: 6 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
– name: 2 Department of Ophthalmology, Taipei City Hospital, Renai branch, Taipei, Taiwan
– name: 7 Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
– name: 3 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
– name: 1 Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
Author_xml – sequence: 1
  givenname: Bo-I
  surname: Kuo
  fullname: Kuo, Bo-I
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Department of Ophthalmology, Taipei City Hospital, Renai branch, Taipei, Taiwan
– sequence: 2
  givenname: Wen-Yi
  surname: Chang
  fullname: Chang, Wen-Yi
  organization: National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
– sequence: 3
  givenname: Tai-Shan
  surname: Liao
  fullname: Liao, Tai-Shan
  organization: Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
– sequence: 4
  givenname: Fang-Yu
  surname: Liu
  fullname: Liu, Fang-Yu
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
– sequence: 5
  givenname: Hsin-Yu
  surname: Liu
  fullname: Liu, Hsin-Yu
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 6
  givenname: Hsiao-Sang
  surname: Chu
  fullname: Chu, Hsiao-Sang
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 7
  givenname: Wei-Li
  surname: Chen
  fullname: Chen, Wei-Li
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
– sequence: 8
  givenname: Fung-Rong
  surname: Hu
  fullname: Hu, Fung-Rong
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
– sequence: 9
  givenname: Jia-Yush
  surname: Yen
  fullname: Yen, Jia-Yush
  organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 10
  givenname: I-Jong
  surname: Wang
  fullname: Wang, I-Jong
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33062398$$D View this record in MEDLINE/PubMed
BookMark eNptUUtLw0AQXkTxUT15lxwFad13koug9UkLHqznZbKZtJF0N-6mgv_e1BcqzmWGmW--b5hvj2w675CQQ0ZHjOn0tHuJ3Sgf8ZESG2SXMy2HXOVs80e9Qw5ifKJ96ExJqbfJjhBUc5Fnu2QywQCdt96tYvJgA6Kr3Ty5gIhl4l1yidgmU4Tw3j5v2-DBLhJfJWMfHEKTzHzr5wHaxes-2aqgiXjwmQfk8fpqNr4dTu9v7sbn06GVMu2GKS00UIq8hLLMqGZMcKpAikqDFmVagM25LHmVFzSXKLJM6aKw2jLNK52WYkDOPnjbVbHE0qLrAjSmDfUSwqvxUJvfE1cvzNy_mFQJkUraExx_EgT_vMLYmWUdLTYNOPSraLhULFOpUnkPPfqp9S3y9cEewD4ANvgYA1bG1h10tV9L141h1KyNMmujTG646W8YkJM_O1-0_6HfAHgQlgE
CitedBy_id crossref_primary_10_1155_2022_8119685
crossref_primary_10_3390_diagnostics13101689
crossref_primary_10_1155_2021_4672688
crossref_primary_10_1088_2057_1976_adabea
crossref_primary_10_1016_j_compbiomed_2023_107804
crossref_primary_10_3390_diagnostics13162715
crossref_primary_10_1002_14651858_CD014911_pub2
crossref_primary_10_1016_j_jfo_2024_104242
crossref_primary_10_1097_IAE_0000000000003535
crossref_primary_10_1155_2022_9103551
crossref_primary_10_4103_ijo_IJO_1569_22
crossref_primary_10_4103_sjopt_sjopt_52_23
crossref_primary_10_1136_bmjophth_2023_001589
crossref_primary_10_1186_s40662_024_00376_3
crossref_primary_10_4236_jbm_2025_132039
crossref_primary_10_4103_joco_joco_18_24
crossref_primary_10_3389_fmed_2021_724902
crossref_primary_10_1007_s11042_023_17551_8
crossref_primary_10_1136_bmjophth_2021_000824
crossref_primary_10_1155_2021_9979560
crossref_primary_10_2196_27363
crossref_primary_10_30572_2018_KJE_160125
crossref_primary_10_52538_iduhes_1339320
crossref_primary_10_3389_fcell_2023_1133680
crossref_primary_10_1038_s41598_023_46903_5
crossref_primary_10_1097_ICU_0000000000000885
crossref_primary_10_3390_ijms242015105
crossref_primary_10_1167_tvst_10_14_16
crossref_primary_10_1007_s00417_023_06154_6
crossref_primary_10_3390_s24154834
crossref_primary_10_3389_fcell_2022_1107689
crossref_primary_10_3389_fmed_2024_1458356
crossref_primary_10_1007_s11831_022_09807_7
crossref_primary_10_1371_journal_pone_0264219
crossref_primary_10_3389_fopht_2024_1380701
crossref_primary_10_3390_jcm11030478
crossref_primary_10_1007_s10462_024_11016_6
crossref_primary_10_1038_s41433_023_02745_z
crossref_primary_10_1097_ICO_0000000000003467
crossref_primary_10_1364_BOE_480564
crossref_primary_10_1002_ima_22717
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_3389_fmed_2023_1264659
crossref_primary_10_1007_s12559_021_09880_3
crossref_primary_10_3928_1081597X_20220414_02
crossref_primary_10_1016_j_jtumed_2023_12_007
crossref_primary_10_17816_DD624022
crossref_primary_10_1097_ICU_0000000000000780
crossref_primary_10_1097_ICO_0000000000003038
crossref_primary_10_3389_fcell_2023_1170068
crossref_primary_10_1016_j_compbiomed_2021_104884
crossref_primary_10_1042_CS20210207
crossref_primary_10_1167_tvst_13_5_7
Cites_doi 10.1038/nature14539
10.1097/ICU.0000000000000593
10.1136/bjophthalmol-2018-313173
10.1109/ICCV.2017.74
10.3928/1081-597X-19891101-10
10.1016/j.jcrs.2014.04.013
10.1111/j.1442-9071.2004.00805.x
10.3928/1081597X-20160502-02
10.3928/1081597X-20100428-02
10.1007/s40123-019-0199-1
10.3928/1081597X-20090915-11
10.1016/j.jcrs.2009.03.050
10.1097/ICO.0000000000000834
10.1097/ICU.0000000000000552
10.1001/archopht.1995.01100070044023
10.1016/j.ophtha.2008.02.020
10.3928/1081-597X-19980701-09
10.1016/S1532-0464(02)00513-0
10.3928/1081597X-20160629-01
10.3928/1081597X-20160523-01
10.1016/j.ajo.2018.08.005
10.1016/j.jcrs.2010.12.049
10.3928/1081597X-20121011-01
10.1016/j.ophtha.2003.06.020
10.1097/00004397-199303320-00023
10.1016/S0161-6420(93)31531-9
10.1016/j.ophtha.2019.02.029
10.1016/0039-6257(84)90094-8
10.3928/1081597X-20200212-03
10.1136/bjo.80.7.610
10.3928/1081597X-20130823-01
10.1016/j.ajo.2013.03.034
10.1016/j.ophtha.2018.06.020
10.1097/ICO.0000000000000500
10.1109/MSP.2012.2205597
10.3928/1081597X-20170426-02
10.1167/iovs.18-24106
10.1016/j.survophthal.2017.06.009
10.1016/S0886-3350(99)00195-9
ContentType Journal Article
Copyright Copyright 2020 The Authors.
Copyright 2020 The Authors 2020
Copyright_xml – notice: Copyright 2020 The Authors.
– notice: Copyright 2020 The Authors 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1167/tvst.9.2.53
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Artificial Intelligence in Keratoconus Detection
EISSN 2164-2591
ExternalDocumentID PMC7533740
33062398
10_1167_tvst_9_2_53
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 53G
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
GROUPED_DOAJ
M~E
OK1
RPM
TRV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-70b6a00e2dadd806113205a43f6a63d7bac924d2f9b094e38856bbc6c162f67d3
ISSN 2164-2591
IngestDate Thu Aug 21 13:51:39 EDT 2025
Fri Jul 11 03:40:13 EDT 2025
Thu Apr 03 07:05:48 EDT 2025
Tue Jul 01 02:11:48 EDT 2025
Thu Apr 24 23:13:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
convolutional neuronal network
corneal topography
keratoconus
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Copyright 2020 The Authors.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-70b6a00e2dadd806113205a43f6a63d7bac924d2f9b094e38856bbc6c162f67d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1167/tvst.9.2.53
PMID 33062398
PQID 2451857559
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7533740
proquest_miscellaneous_2451857559
pubmed_primary_33062398
crossref_citationtrail_10_1167_tvst_9_2_53
crossref_primary_10_1167_tvst_9_2_53
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200925
PublicationDateYYYYMMDD 2020-09-25
PublicationDate_xml – month: 9
  year: 2020
  text: 20200925
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Translational vision science & technology
PublicationTitleAlternate Transl Vis Sci Technol
PublicationYear 2020
Publisher The Association for Research in Vision and Ophthalmology
Publisher_xml – name: The Association for Research in Vision and Ophthalmology
References Ambrosio (bib51) 2017; 33
Accardo (bib21) 2002; 35
Ferdi (bib5) 2019; 126
Maeda (bib36) 1995; 113
Hinton (bib43) 2012
Ting (bib15) 2019; 103
Ambrosio (bib49) 2010; 26
Sherwin (bib4) 2004; 32
Reid (bib19) 2019; 30
Mas Tur (bib8) 2017; 62
Henriquez (bib29) 2020; 36
Randleman (bib44) 2015; 34
Luz (bib37) 2016; 32
Jacobs (bib3) 1993; 33
Holladay (bib11) 2009; 25
Li (bib42) 2004; 111
Maeda (bib39) 1995; 36
Maeda (bib6) 1994; 35
Zheng (bib17) 2019; 30
Ramos (bib24) 2013; 29
Rabinowitz (bib27) 1996; 80
Dastjerdi (bib10) 1998; 14
Hwang (bib22) 2018; 125
Smadja (bib40) 2013; 156
Lopes (bib23) 2018; 195
Smolek (bib20) 1997; 38
Krizhevsky (bib33) 2012
Moshirfar (bib45) 2019; 8
Selvaraju (bib35) 2017
He (bib32) 2016
Ruiz Hidalgo (bib41) 2016; 35
Ucakhan (bib48) 2011; 37
Szegedy (bib31) 2015
Schmidt-Erfurth (bib18) 2018; 59
Zeiler (bib34) 2014
Roberts (bib50) 2014; 40
Hustead (bib7) 1993; 100
Tompson (bib13) 2014; 27
Li (bib28) 2009; 35
Hinton (bib14) 2012; 29
Rabinowitz (bib9) 1989; 5
Simonyan (bib30)
Vinciguerra (bib38) 2016; 32
Rabinowitz (bib25) 1989; 5
LeCun (bib12) 2015; 521
Saad (bib46) 2016; 32
Cheung (bib16)
Rabinowitz (bib26) 1999; 25
Chatzis (bib2) 2012; 28
Krachmer (bib1) 1984; 28
de Sanctis (bib47) 2008; 115
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: bib12
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 30
  start-page: 337
  year: 2019
  ident: bib19
  article-title: Artificial intelligence for pediatric ophthalmology
  publication-title: Curr Opin Ophthalmol
  doi: 10.1097/ICU.0000000000000593
– volume: 103
  start-page: 167
  year: 2019
  ident: bib15
  article-title: Artificial intelligence and deep learning in ophthalmology
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjophthalmol-2018-313173
– start-page: 618
  volume-title: IEEE International Conference on Computer Vision (ICCV): The Institute of Electrical and Electronics Engineers (IEEE)
  year: 2017
  ident: bib35
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
  doi: 10.1109/ICCV.2017.74
– volume: 36
  start-page: 1327
  year: 1995
  ident: bib39
  article-title: Neural network classification of corneal topography. Preliminary demonstration
  publication-title: Invest Ophthalmol Vis Sci
– volume: 5
  start-page: 400
  year: 1989
  ident: bib9
  article-title: Computer-assisted corneal topography in keratoconus
  publication-title: Refract Corneal Surg
  doi: 10.3928/1081-597X-19891101-10
– volume: 40
  start-page: 991
  year: 2014
  ident: bib50
  article-title: Biomechanics of corneal ectasia and biomechanical treatments
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2014.04.013
– volume: 32
  start-page: 211
  year: 2004
  ident: bib4
  article-title: Morphological changes in keratoconus: pathology or pathogenesis
  publication-title: Clin Exp Ophthalmol
  doi: 10.1111/j.1442-9071.2004.00805.x
– volume: 32
  start-page: 479
  year: 2016
  ident: bib37
  article-title: Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20160502-02
– volume: 26
  start-page: 906
  year: 2010
  ident: bib49
  article-title: Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20100428-02
– volume: 35
  start-page: 2749
  year: 1994
  ident: bib6
  article-title: Automated keratoconus screening with corneal topography analysis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 8
  start-page: 367
  year: 2019
  ident: bib45
  article-title: Keratoconus Screening in Elementary School Children
  publication-title: Ophthalmol Ther
  doi: 10.1007/s40123-019-0199-1
– volume: 25
  start-page: S958
  year: 2009
  ident: bib11
  article-title: Keratoconus detection using corneal topography
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20090915-11
– volume: 35
  start-page: 1597
  year: 2009
  ident: bib28
  article-title: Keratoconus: classification scheme based on videokeratography and clinical signs
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2009.03.050
– volume: 35
  start-page: 827
  year: 2016
  ident: bib41
  article-title: Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000000834
– volume: 30
  start-page: 97
  year: 2019
  ident: bib17
  article-title: Artificial intelligence in glaucoma
  publication-title: Curr Opin Ophthalmol
  doi: 10.1097/ICU.0000000000000552
– volume: 38
  start-page: 2290
  year: 1997
  ident: bib20
  article-title: Current keratoconus detection methods compared with a neural network approach
  publication-title: Invest Ophthalmol Vis Sci
– volume: 113
  start-page: 870
  year: 1995
  ident: bib36
  article-title: Comparison of methods for detecting keratoconus using videokeratography
  publication-title: Arch Ophthalmol
  doi: 10.1001/archopht.1995.01100070044023
– volume: 115
  start-page: 1534
  year: 2008
  ident: bib47
  article-title: Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2008.02.020
– volume: 14
  start-page: 427
  year: 1998
  ident: bib10
  article-title: A quantitative corneal topography index for detection of keratoconus
  publication-title: J Refract Surg
  doi: 10.3928/1081-597X-19980701-09
– volume: 35
  start-page: 151
  year: 2002
  ident: bib21
  article-title: Neural network-based system for early keratoconus detection from corneal topography
  publication-title: J Biomed Inform
  doi: 10.1016/S1532-0464(02)00513-0
– volume: 32
  start-page: 803
  year: 2016
  ident: bib38
  article-title: Detection of Keratoconus With a New Biomechanical Index
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20160629-01
– year: 2012
  ident: bib43
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– volume: 5
  start-page: 400
  year: 1989
  ident: bib25
  article-title: Computer-assisted corneal topography in keratoconus
  publication-title: Refract Corneal Surg
  doi: 10.3928/1081-597X-19891101-10
– volume: 32
  start-page: 510
  year: 2016
  ident: bib46
  article-title: Combining placido and corneal wavefront data for the detection of forme fruste keratoconus
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20160523-01
– volume: 195
  start-page: 223
  year: 2018
  ident: bib23
  article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2018.08.005
– volume: 37
  start-page: 1116
  year: 2011
  ident: bib48
  article-title: Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes
  publication-title: J Cataract Refract Surg
  doi: 10.1016/j.jcrs.2010.12.049
– volume: 28
  start-page: 753
  year: 2012
  ident: bib2
  article-title: Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20121011-01
– volume: 27
  start-page: 1799
  year: 2014
  ident: bib13
  article-title: Joint training of a convolutional network and a graphical model for human pose estimation
  publication-title: Adv Neural Information Processing Syst
– volume: 111
  start-page: 440
  year: 2004
  ident: bib42
  article-title: Longitudinal study of the normal eyes in unilateral keratoconus patients
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2003.06.020
– volume: 33
  start-page: 249
  year: 1993
  ident: bib3
  article-title: Is keratoconus genetic?
  publication-title: Int Ophthalmol Clin
  doi: 10.1097/00004397-199303320-00023
– volume: 100
  start-page: 975
  year: 1993
  ident: bib7
  article-title: Detection of keratoconus before keratorefractive surgery
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(93)31531-9
– volume: 126
  start-page: 935
  year: 2019
  ident: bib5
  article-title: Keratoconus natural progression: a systematic review and meta-analysis of 11 529 eyes
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2019.02.029
– volume: 28
  start-page: 293
  year: 1984
  ident: bib1
  article-title: Keratoconus and related noninflammatory corneal thinning disorders
  publication-title: Surv Ophthalmol
  doi: 10.1016/0039-6257(84)90094-8
– volume: 36
  start-page: 270
  year: 2020
  ident: bib29
  article-title: A systematic review of subclinical keratoconus and forme fruste keratoconus
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20200212-03
– volume: 80
  start-page: 610
  year: 1996
  ident: bib27
  article-title: Videokeratography database of normal human corneas
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.80.7.610
– volume: 29
  start-page: 770
  year: 2013
  ident: bib24
  article-title: Variability of subjective classifications of corneal topography maps from LASIK candidates
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20130823-01
– volume: 156
  start-page: 237–246 e231
  year: 2013
  ident: bib40
  article-title: Detection of subclinical keratoconus using an automated decision tree classification
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2013.03.034
– ident: bib16
  article-title: Artificial intelligence in diabetic eye disease screening
  publication-title: Asia Pac J Ophthalmol (Phila)
– volume: 125
  start-page: 1862
  year: 2018
  ident: bib22
  article-title: Distinguishing highly asymmetric keratoconus eyes using combined scheimpflug and spectral-domain OCT analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.06.020
– volume: 34
  start-page: e20
  year: 2015
  ident: bib44
  article-title: Screening for Keratoconus and Related Ectatic Corneal Disorders
  publication-title: Cornea
  doi: 10.1097/ICO.0000000000000500
– volume: 29
  start-page: 82
  year: 2012
  ident: bib14
  article-title: Deep neural networks for acoustic modeling in speech recognition
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2012.2205597
– volume: 33
  start-page: 434
  year: 2017
  ident: bib51
  article-title: Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection
  publication-title: J Refract Surg
  doi: 10.3928/1081597X-20170426-02
– start-page: 1097
  year: 2012
  ident: bib33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: bib31
  article-title: Going deeper with convolutions
– start-page: 818
  volume-title: The European Conference on Computer Vision (ECCV)
  year: 2014
  ident: bib34
  article-title: Visualizing and Understanding Convolutional Networks
– volume: 59
  start-page: 3199
  year: 2018
  ident: bib18
  article-title: Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-24106
– volume: 62
  start-page: 770
  year: 2017
  ident: bib8
  article-title: A review of keratoconus: diagnosis, pathophysiology, and genetics
  publication-title: Surv Ophthalmol
  doi: 10.1016/j.survophthal.2017.06.009
– volume: 25
  start-page: 1327
  year: 1999
  ident: bib26
  article-title: KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus
  publication-title: J Cataract Refract Surg
  doi: 10.1016/S0886-3350(99)00195-9
– ident: bib30
  article-title: Very deep convolutional networks for large-scale image recognition
– start-page: 770
  volume-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: bib32
  article-title: Deep residual learning for image recognition
SSID ssj0000685446
Score 2.4032974
Snippet To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods. We...
To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.PurposeTo...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 53
SubjectTerms Cornea - diagnostic imaging
Corneal Topography
Deep Learning
Humans
Keratoconus - diagnosis
Retrospective Studies
Special Issue
Title Keratoconus Screening Based on Deep Learning Approach of Corneal Topography
URI https://www.ncbi.nlm.nih.gov/pubmed/33062398
https://www.proquest.com/docview/2451857559
https://pubmed.ncbi.nlm.nih.gov/PMC7533740
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggEK_lJSP1BHLI2o6dHGkBVazgwla0p8hOHJqqSlbdhAO_npm81tvdQ-ESrbzOQ56xZ77xzGdCDuU802B2Q8aFlExmRcTiuCgYN0qaOXjQeYzFyd--q5NT-fUsOttsxXTVJY0Nsj9760r-R6rQBnLFKtl_kOz0UGiA3yBfuIKE4XorGS-QEbkGRNuuYZJiBg0C_yMwTDluAnxybjUSqP5Cf7OvnsIEjPq6QkbhZb3yKasvPft1NUYJ--rz92P9D6pKsxOPX7RdyPWoZlMU9ngMRf90FTsvp8yf0nRdl6ZkPy68jKCy7RxpuImdt34wAkSM-zPRZs3igL6goT-AK3B72oZFN_F0i3sLaM8cvLuuK9xZbn6vmyAJeND32mbPvmHVplzDDuUoneLNaZLyNBJ3yT0OqMJH4L3hjiPZlXZNnzxUdML9H7yXb_swO8DkZn6t57AsH5IHA9KgH3u1eUTuuOoxWXgqQyeVoZ3K0LqiqDJ0VBk6qgytCzqoDN2ozBNy-uXz8viEDedpsExK3TAdWmXC0PEcjFoMjhyWz0dGikIZJXJtTQZoPOdFYgH0OxHHkbI2UxnM2ULpXDwlB1VdueeEZrEAz9aKuS2cBB_IWq2tyrHQWZvQJjPybhyhNBvI5vHMk6t0jzhm5HDqvOo5VvZ3ezsOdQprIG5smcrV7TrlMkJKMwDHM_KsH_rpQQIwMXJczojeEsrUAfnVt_-pyouOZx2QvNAyfHG7z3tJ7m9mxCty0Fy37jU4rI1906nZXwb5mcU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Keratoconus+Screening+Based+on+Deep+Learning+Approach+of+Corneal+Topography&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Kuo%2C+Bo-I&rft.au=Chang%2C+Wen-Yi&rft.au=Liao%2C+Tai-Shan&rft.au=Liu%2C+Fang-Yu&rft.date=2020-09-25&rft.issn=2164-2591&rft.eissn=2164-2591&rft.volume=9&rft.issue=2&rft.spage=53&rft_id=info:doi/10.1167%2Ftvst.9.2.53&rft.externalDBID=n%2Fa&rft.externalDocID=10_1167_tvst_9_2_53
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon