Keratoconus Screening Based on Deep Learning Approach of Corneal Topography
To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods. We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigm...
Saved in:
Published in | Translational vision science & technology Vol. 9; no. 2; p. 53 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Association for Research in Vision and Ophthalmology
25.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.
We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization.
Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes.
The DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable.
These high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps. |
---|---|
AbstractList | To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.PurposeTo develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization.MethodsWe retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization.Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes.ResultsOverall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes.The DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable.ConclusionsThe DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable.These high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps.Translational RelevanceThese high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps. To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods. We retrospectively collected corneal topographies of the study group with clinically manifested keratoconus and the control group with regular astigmatism. All images were divided into training and test datasets. We adopted three convolutional neural network (CNN) models for learning. The test dataset was applied to analyze the performance of the three models. In addition, for better discrimination and understanding, we displayed the pixel-wise discriminative features and class-discriminative heat map of diopter images for visualization. Overall, 170 keratoconus, 28 subclinical keratoconus and 156 normal topographic pictures were collected. The convergence of accuracy and loss for the training and test datasets after training revealed no overfitting in all three CNN models. The sensitivity and specificity of all CNN models were over 0.90, and the area under the receiver operating characteristic curve reached 0.995 in the ResNet152 model. The pixel-wise discriminative features and the heat map of the prediction layer in the VGG16 model both revealed it focused on the largest gradient difference of topographic maps, which was corresponding to the diagnostic clues of ophthalmologists. The subclinical keratoconus was positively predicted with our model and also correlated with topographic indexes. The DL models had fair accuracy for keratoconus screening based on corneal topographic images. The visualization mentioned in the current study revealed that the model focused on the appropriate region for diagnosis and rendered clinical explainability of deep learning more acceptable. These high accuracy CNN models can aid ophthalmologists in keratoconus screening with color-coded corneal topography maps. |
Author | Chang, Wen-Yi Liu, Hsin-Yu Wang, I-Jong Liu, Fang-Yu Hu, Fung-Rong Kuo, Bo-I Yen, Jia-Yush Chen, Wei-Li Liao, Tai-Shan Chu, Hsiao-Sang |
AuthorAffiliation | 6 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan 7 Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 2 Department of Ophthalmology, Taipei City Hospital, Renai branch, Taipei, Taiwan 1 Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan 3 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan 4 Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan 5 Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan |
AuthorAffiliation_xml | – name: 4 Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan – name: 5 Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan – name: 6 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan – name: 2 Department of Ophthalmology, Taipei City Hospital, Renai branch, Taipei, Taiwan – name: 7 Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan – name: 3 National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan – name: 1 Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan |
Author_xml | – sequence: 1 givenname: Bo-I surname: Kuo fullname: Kuo, Bo-I organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Department of Ophthalmology, Taipei City Hospital, Renai branch, Taipei, Taiwan – sequence: 2 givenname: Wen-Yi surname: Chang fullname: Chang, Wen-Yi organization: National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan – sequence: 3 givenname: Tai-Shan surname: Liao fullname: Liao, Tai-Shan organization: Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan – sequence: 4 givenname: Fang-Yu surname: Liu fullname: Liu, Fang-Yu organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan – sequence: 5 givenname: Hsin-Yu surname: Liu fullname: Liu, Hsin-Yu organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan – sequence: 6 givenname: Hsiao-Sang surname: Chu fullname: Chu, Hsiao-Sang organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan – sequence: 7 givenname: Wei-Li surname: Chen fullname: Chen, Wei-Li organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan – sequence: 8 givenname: Fung-Rong surname: Hu fullname: Hu, Fung-Rong organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan – sequence: 9 givenname: Jia-Yush surname: Yen fullname: Yen, Jia-Yush organization: Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan – sequence: 10 givenname: I-Jong surname: Wang fullname: Wang, I-Jong organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan, Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33062398$$D View this record in MEDLINE/PubMed |
BookMark | eNptUUtLw0AQXkTxUT15lxwFad13koug9UkLHqznZbKZtJF0N-6mgv_e1BcqzmWGmW--b5hvj2w675CQQ0ZHjOn0tHuJ3Sgf8ZESG2SXMy2HXOVs80e9Qw5ifKJ96ExJqbfJjhBUc5Fnu2QywQCdt96tYvJgA6Kr3Ty5gIhl4l1yidgmU4Tw3j5v2-DBLhJfJWMfHEKTzHzr5wHaxes-2aqgiXjwmQfk8fpqNr4dTu9v7sbn06GVMu2GKS00UIq8hLLMqGZMcKpAikqDFmVagM25LHmVFzSXKLJM6aKw2jLNK52WYkDOPnjbVbHE0qLrAjSmDfUSwqvxUJvfE1cvzNy_mFQJkUraExx_EgT_vMLYmWUdLTYNOPSraLhULFOpUnkPPfqp9S3y9cEewD4ANvgYA1bG1h10tV9L141h1KyNMmujTG646W8YkJM_O1-0_6HfAHgQlgE |
CitedBy_id | crossref_primary_10_1155_2022_8119685 crossref_primary_10_3390_diagnostics13101689 crossref_primary_10_1155_2021_4672688 crossref_primary_10_1088_2057_1976_adabea crossref_primary_10_1016_j_compbiomed_2023_107804 crossref_primary_10_3390_diagnostics13162715 crossref_primary_10_1002_14651858_CD014911_pub2 crossref_primary_10_1016_j_jfo_2024_104242 crossref_primary_10_1097_IAE_0000000000003535 crossref_primary_10_1155_2022_9103551 crossref_primary_10_4103_ijo_IJO_1569_22 crossref_primary_10_4103_sjopt_sjopt_52_23 crossref_primary_10_1136_bmjophth_2023_001589 crossref_primary_10_1186_s40662_024_00376_3 crossref_primary_10_4236_jbm_2025_132039 crossref_primary_10_4103_joco_joco_18_24 crossref_primary_10_3389_fmed_2021_724902 crossref_primary_10_1007_s11042_023_17551_8 crossref_primary_10_1136_bmjophth_2021_000824 crossref_primary_10_1155_2021_9979560 crossref_primary_10_2196_27363 crossref_primary_10_30572_2018_KJE_160125 crossref_primary_10_52538_iduhes_1339320 crossref_primary_10_3389_fcell_2023_1133680 crossref_primary_10_1038_s41598_023_46903_5 crossref_primary_10_1097_ICU_0000000000000885 crossref_primary_10_3390_ijms242015105 crossref_primary_10_1167_tvst_10_14_16 crossref_primary_10_1007_s00417_023_06154_6 crossref_primary_10_3390_s24154834 crossref_primary_10_3389_fcell_2022_1107689 crossref_primary_10_3389_fmed_2024_1458356 crossref_primary_10_1007_s11831_022_09807_7 crossref_primary_10_1371_journal_pone_0264219 crossref_primary_10_3389_fopht_2024_1380701 crossref_primary_10_3390_jcm11030478 crossref_primary_10_1007_s10462_024_11016_6 crossref_primary_10_1038_s41433_023_02745_z crossref_primary_10_1097_ICO_0000000000003467 crossref_primary_10_1364_BOE_480564 crossref_primary_10_1002_ima_22717 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_3389_fmed_2023_1264659 crossref_primary_10_1007_s12559_021_09880_3 crossref_primary_10_3928_1081597X_20220414_02 crossref_primary_10_1016_j_jtumed_2023_12_007 crossref_primary_10_17816_DD624022 crossref_primary_10_1097_ICU_0000000000000780 crossref_primary_10_1097_ICO_0000000000003038 crossref_primary_10_3389_fcell_2023_1170068 crossref_primary_10_1016_j_compbiomed_2021_104884 crossref_primary_10_1042_CS20210207 crossref_primary_10_1167_tvst_13_5_7 |
Cites_doi | 10.1038/nature14539 10.1097/ICU.0000000000000593 10.1136/bjophthalmol-2018-313173 10.1109/ICCV.2017.74 10.3928/1081-597X-19891101-10 10.1016/j.jcrs.2014.04.013 10.1111/j.1442-9071.2004.00805.x 10.3928/1081597X-20160502-02 10.3928/1081597X-20100428-02 10.1007/s40123-019-0199-1 10.3928/1081597X-20090915-11 10.1016/j.jcrs.2009.03.050 10.1097/ICO.0000000000000834 10.1097/ICU.0000000000000552 10.1001/archopht.1995.01100070044023 10.1016/j.ophtha.2008.02.020 10.3928/1081-597X-19980701-09 10.1016/S1532-0464(02)00513-0 10.3928/1081597X-20160629-01 10.3928/1081597X-20160523-01 10.1016/j.ajo.2018.08.005 10.1016/j.jcrs.2010.12.049 10.3928/1081597X-20121011-01 10.1016/j.ophtha.2003.06.020 10.1097/00004397-199303320-00023 10.1016/S0161-6420(93)31531-9 10.1016/j.ophtha.2019.02.029 10.1016/0039-6257(84)90094-8 10.3928/1081597X-20200212-03 10.1136/bjo.80.7.610 10.3928/1081597X-20130823-01 10.1016/j.ajo.2013.03.034 10.1016/j.ophtha.2018.06.020 10.1097/ICO.0000000000000500 10.1109/MSP.2012.2205597 10.3928/1081597X-20170426-02 10.1167/iovs.18-24106 10.1016/j.survophthal.2017.06.009 10.1016/S0886-3350(99)00195-9 |
ContentType | Journal Article |
Copyright | Copyright 2020 The Authors. Copyright 2020 The Authors 2020 |
Copyright_xml | – notice: Copyright 2020 The Authors. – notice: Copyright 2020 The Authors 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1167/tvst.9.2.53 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Artificial Intelligence in Keratoconus Detection |
EISSN | 2164-2591 |
ExternalDocumentID | PMC7533740 33062398 10_1167_tvst_9_2_53 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 53G AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION EBS EJD GROUPED_DOAJ M~E OK1 RPM TRV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-70b6a00e2dadd806113205a43f6a63d7bac924d2f9b094e38856bbc6c162f67d3 |
ISSN | 2164-2591 |
IngestDate | Thu Aug 21 13:51:39 EDT 2025 Fri Jul 11 03:40:13 EDT 2025 Thu Apr 03 07:05:48 EDT 2025 Tue Jul 01 02:11:48 EDT 2025 Thu Apr 24 23:13:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | deep learning convolutional neuronal network corneal topography keratoconus |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 Copyright 2020 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-70b6a00e2dadd806113205a43f6a63d7bac924d2f9b094e38856bbc6c162f67d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://dx.doi.org/10.1167/tvst.9.2.53 |
PMID | 33062398 |
PQID | 2451857559 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7533740 proquest_miscellaneous_2451857559 pubmed_primary_33062398 crossref_citationtrail_10_1167_tvst_9_2_53 crossref_primary_10_1167_tvst_9_2_53 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200925 |
PublicationDateYYYYMMDD | 2020-09-25 |
PublicationDate_xml | – month: 9 year: 2020 text: 20200925 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Translational vision science & technology |
PublicationTitleAlternate | Transl Vis Sci Technol |
PublicationYear | 2020 |
Publisher | The Association for Research in Vision and Ophthalmology |
Publisher_xml | – name: The Association for Research in Vision and Ophthalmology |
References | Ambrosio (bib51) 2017; 33 Accardo (bib21) 2002; 35 Ferdi (bib5) 2019; 126 Maeda (bib36) 1995; 113 Hinton (bib43) 2012 Ting (bib15) 2019; 103 Ambrosio (bib49) 2010; 26 Sherwin (bib4) 2004; 32 Reid (bib19) 2019; 30 Mas Tur (bib8) 2017; 62 Henriquez (bib29) 2020; 36 Randleman (bib44) 2015; 34 Luz (bib37) 2016; 32 Jacobs (bib3) 1993; 33 Holladay (bib11) 2009; 25 Li (bib42) 2004; 111 Maeda (bib39) 1995; 36 Maeda (bib6) 1994; 35 Zheng (bib17) 2019; 30 Ramos (bib24) 2013; 29 Rabinowitz (bib27) 1996; 80 Dastjerdi (bib10) 1998; 14 Hwang (bib22) 2018; 125 Smadja (bib40) 2013; 156 Lopes (bib23) 2018; 195 Smolek (bib20) 1997; 38 Krizhevsky (bib33) 2012 Moshirfar (bib45) 2019; 8 Selvaraju (bib35) 2017 He (bib32) 2016 Ruiz Hidalgo (bib41) 2016; 35 Ucakhan (bib48) 2011; 37 Szegedy (bib31) 2015 Schmidt-Erfurth (bib18) 2018; 59 Zeiler (bib34) 2014 Roberts (bib50) 2014; 40 Hustead (bib7) 1993; 100 Tompson (bib13) 2014; 27 Li (bib28) 2009; 35 Hinton (bib14) 2012; 29 Rabinowitz (bib9) 1989; 5 Simonyan (bib30) Vinciguerra (bib38) 2016; 32 Rabinowitz (bib25) 1989; 5 LeCun (bib12) 2015; 521 Saad (bib46) 2016; 32 Cheung (bib16) Rabinowitz (bib26) 1999; 25 Chatzis (bib2) 2012; 28 Krachmer (bib1) 1984; 28 de Sanctis (bib47) 2008; 115 |
References_xml | – volume: 521 start-page: 436 year: 2015 ident: bib12 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 30 start-page: 337 year: 2019 ident: bib19 article-title: Artificial intelligence for pediatric ophthalmology publication-title: Curr Opin Ophthalmol doi: 10.1097/ICU.0000000000000593 – volume: 103 start-page: 167 year: 2019 ident: bib15 article-title: Artificial intelligence and deep learning in ophthalmology publication-title: Br J Ophthalmol doi: 10.1136/bjophthalmol-2018-313173 – start-page: 618 volume-title: IEEE International Conference on Computer Vision (ICCV): The Institute of Electrical and Electronics Engineers (IEEE) year: 2017 ident: bib35 article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization doi: 10.1109/ICCV.2017.74 – volume: 36 start-page: 1327 year: 1995 ident: bib39 article-title: Neural network classification of corneal topography. Preliminary demonstration publication-title: Invest Ophthalmol Vis Sci – volume: 5 start-page: 400 year: 1989 ident: bib9 article-title: Computer-assisted corneal topography in keratoconus publication-title: Refract Corneal Surg doi: 10.3928/1081-597X-19891101-10 – volume: 40 start-page: 991 year: 2014 ident: bib50 article-title: Biomechanics of corneal ectasia and biomechanical treatments publication-title: J Cataract Refract Surg doi: 10.1016/j.jcrs.2014.04.013 – volume: 32 start-page: 211 year: 2004 ident: bib4 article-title: Morphological changes in keratoconus: pathology or pathogenesis publication-title: Clin Exp Ophthalmol doi: 10.1111/j.1442-9071.2004.00805.x – volume: 32 start-page: 479 year: 2016 ident: bib37 article-title: Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus publication-title: J Refract Surg doi: 10.3928/1081597X-20160502-02 – volume: 26 start-page: 906 year: 2010 ident: bib49 article-title: Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye publication-title: J Refract Surg doi: 10.3928/1081597X-20100428-02 – volume: 35 start-page: 2749 year: 1994 ident: bib6 article-title: Automated keratoconus screening with corneal topography analysis publication-title: Invest Ophthalmol Vis Sci – volume: 8 start-page: 367 year: 2019 ident: bib45 article-title: Keratoconus Screening in Elementary School Children publication-title: Ophthalmol Ther doi: 10.1007/s40123-019-0199-1 – volume: 25 start-page: S958 year: 2009 ident: bib11 article-title: Keratoconus detection using corneal topography publication-title: J Refract Surg doi: 10.3928/1081597X-20090915-11 – volume: 35 start-page: 1597 year: 2009 ident: bib28 article-title: Keratoconus: classification scheme based on videokeratography and clinical signs publication-title: J Cataract Refract Surg doi: 10.1016/j.jcrs.2009.03.050 – volume: 35 start-page: 827 year: 2016 ident: bib41 article-title: Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography publication-title: Cornea doi: 10.1097/ICO.0000000000000834 – volume: 30 start-page: 97 year: 2019 ident: bib17 article-title: Artificial intelligence in glaucoma publication-title: Curr Opin Ophthalmol doi: 10.1097/ICU.0000000000000552 – volume: 38 start-page: 2290 year: 1997 ident: bib20 article-title: Current keratoconus detection methods compared with a neural network approach publication-title: Invest Ophthalmol Vis Sci – volume: 113 start-page: 870 year: 1995 ident: bib36 article-title: Comparison of methods for detecting keratoconus using videokeratography publication-title: Arch Ophthalmol doi: 10.1001/archopht.1995.01100070044023 – volume: 115 start-page: 1534 year: 2008 ident: bib47 article-title: Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus publication-title: Ophthalmology doi: 10.1016/j.ophtha.2008.02.020 – volume: 14 start-page: 427 year: 1998 ident: bib10 article-title: A quantitative corneal topography index for detection of keratoconus publication-title: J Refract Surg doi: 10.3928/1081-597X-19980701-09 – volume: 35 start-page: 151 year: 2002 ident: bib21 article-title: Neural network-based system for early keratoconus detection from corneal topography publication-title: J Biomed Inform doi: 10.1016/S1532-0464(02)00513-0 – volume: 32 start-page: 803 year: 2016 ident: bib38 article-title: Detection of Keratoconus With a New Biomechanical Index publication-title: J Refract Surg doi: 10.3928/1081597X-20160629-01 – year: 2012 ident: bib43 article-title: Improving neural networks by preventing co-adaptation of feature detectors – volume: 5 start-page: 400 year: 1989 ident: bib25 article-title: Computer-assisted corneal topography in keratoconus publication-title: Refract Corneal Surg doi: 10.3928/1081-597X-19891101-10 – volume: 32 start-page: 510 year: 2016 ident: bib46 article-title: Combining placido and corneal wavefront data for the detection of forme fruste keratoconus publication-title: J Refract Surg doi: 10.3928/1081597X-20160523-01 – volume: 195 start-page: 223 year: 2018 ident: bib23 article-title: Enhanced tomographic assessment to detect corneal ectasia based on artificial intelligence publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2018.08.005 – volume: 37 start-page: 1116 year: 2011 ident: bib48 article-title: Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes publication-title: J Cataract Refract Surg doi: 10.1016/j.jcrs.2010.12.049 – volume: 28 start-page: 753 year: 2012 ident: bib2 article-title: Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents publication-title: J Refract Surg doi: 10.3928/1081597X-20121011-01 – volume: 27 start-page: 1799 year: 2014 ident: bib13 article-title: Joint training of a convolutional network and a graphical model for human pose estimation publication-title: Adv Neural Information Processing Syst – volume: 111 start-page: 440 year: 2004 ident: bib42 article-title: Longitudinal study of the normal eyes in unilateral keratoconus patients publication-title: Ophthalmology doi: 10.1016/j.ophtha.2003.06.020 – volume: 33 start-page: 249 year: 1993 ident: bib3 article-title: Is keratoconus genetic? publication-title: Int Ophthalmol Clin doi: 10.1097/00004397-199303320-00023 – volume: 100 start-page: 975 year: 1993 ident: bib7 article-title: Detection of keratoconus before keratorefractive surgery publication-title: Ophthalmology doi: 10.1016/S0161-6420(93)31531-9 – volume: 126 start-page: 935 year: 2019 ident: bib5 article-title: Keratoconus natural progression: a systematic review and meta-analysis of 11 529 eyes publication-title: Ophthalmology doi: 10.1016/j.ophtha.2019.02.029 – volume: 28 start-page: 293 year: 1984 ident: bib1 article-title: Keratoconus and related noninflammatory corneal thinning disorders publication-title: Surv Ophthalmol doi: 10.1016/0039-6257(84)90094-8 – volume: 36 start-page: 270 year: 2020 ident: bib29 article-title: A systematic review of subclinical keratoconus and forme fruste keratoconus publication-title: J Refract Surg doi: 10.3928/1081597X-20200212-03 – volume: 80 start-page: 610 year: 1996 ident: bib27 article-title: Videokeratography database of normal human corneas publication-title: Br J Ophthalmol doi: 10.1136/bjo.80.7.610 – volume: 29 start-page: 770 year: 2013 ident: bib24 article-title: Variability of subjective classifications of corneal topography maps from LASIK candidates publication-title: J Refract Surg doi: 10.3928/1081597X-20130823-01 – volume: 156 start-page: 237–246 e231 year: 2013 ident: bib40 article-title: Detection of subclinical keratoconus using an automated decision tree classification publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2013.03.034 – ident: bib16 article-title: Artificial intelligence in diabetic eye disease screening publication-title: Asia Pac J Ophthalmol (Phila) – volume: 125 start-page: 1862 year: 2018 ident: bib22 article-title: Distinguishing highly asymmetric keratoconus eyes using combined scheimpflug and spectral-domain OCT analysis publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.06.020 – volume: 34 start-page: e20 year: 2015 ident: bib44 article-title: Screening for Keratoconus and Related Ectatic Corneal Disorders publication-title: Cornea doi: 10.1097/ICO.0000000000000500 – volume: 29 start-page: 82 year: 2012 ident: bib14 article-title: Deep neural networks for acoustic modeling in speech recognition publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2205597 – volume: 33 start-page: 434 year: 2017 ident: bib51 article-title: Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection publication-title: J Refract Surg doi: 10.3928/1081597X-20170426-02 – start-page: 1097 year: 2012 ident: bib33 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – start-page: 1 volume-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2015 ident: bib31 article-title: Going deeper with convolutions – start-page: 818 volume-title: The European Conference on Computer Vision (ECCV) year: 2014 ident: bib34 article-title: Visualizing and Understanding Convolutional Networks – volume: 59 start-page: 3199 year: 2018 ident: bib18 article-title: Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.18-24106 – volume: 62 start-page: 770 year: 2017 ident: bib8 article-title: A review of keratoconus: diagnosis, pathophysiology, and genetics publication-title: Surv Ophthalmol doi: 10.1016/j.survophthal.2017.06.009 – volume: 25 start-page: 1327 year: 1999 ident: bib26 article-title: KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus publication-title: J Cataract Refract Surg doi: 10.1016/S0886-3350(99)00195-9 – ident: bib30 article-title: Very deep convolutional networks for large-scale image recognition – start-page: 770 volume-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2016 ident: bib32 article-title: Deep residual learning for image recognition |
SSID | ssj0000685446 |
Score | 2.4032974 |
Snippet | To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.
We... To develop and compare deep learning (DL) algorithms to detect keratoconus on the basis of corneal topography and validate with visualization methods.PurposeTo... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 53 |
SubjectTerms | Cornea - diagnostic imaging Corneal Topography Deep Learning Humans Keratoconus - diagnosis Retrospective Studies Special Issue |
Title | Keratoconus Screening Based on Deep Learning Approach of Corneal Topography |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33062398 https://www.proquest.com/docview/2451857559 https://pubmed.ncbi.nlm.nih.gov/PMC7533740 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggEK_lJSP1BHLI2o6dHGkBVazgwla0p8hOHJqqSlbdhAO_npm81tvdQ-ESrbzOQ56xZ77xzGdCDuU802B2Q8aFlExmRcTiuCgYN0qaOXjQeYzFyd--q5NT-fUsOttsxXTVJY0Nsj9760r-R6rQBnLFKtl_kOz0UGiA3yBfuIKE4XorGS-QEbkGRNuuYZJiBg0C_yMwTDluAnxybjUSqP5Cf7OvnsIEjPq6QkbhZb3yKasvPft1NUYJ--rz92P9D6pKsxOPX7RdyPWoZlMU9ngMRf90FTsvp8yf0nRdl6ZkPy68jKCy7RxpuImdt34wAkSM-zPRZs3igL6goT-AK3B72oZFN_F0i3sLaM8cvLuuK9xZbn6vmyAJeND32mbPvmHVplzDDuUoneLNaZLyNBJ3yT0OqMJH4L3hjiPZlXZNnzxUdML9H7yXb_swO8DkZn6t57AsH5IHA9KgH3u1eUTuuOoxWXgqQyeVoZ3K0LqiqDJ0VBk6qgytCzqoDN2ozBNy-uXz8viEDedpsExK3TAdWmXC0PEcjFoMjhyWz0dGikIZJXJtTQZoPOdFYgH0OxHHkbI2UxnM2ULpXDwlB1VdueeEZrEAz9aKuS2cBB_IWq2tyrHQWZvQJjPybhyhNBvI5vHMk6t0jzhm5HDqvOo5VvZ3ezsOdQprIG5smcrV7TrlMkJKMwDHM_KsH_rpQQIwMXJczojeEsrUAfnVt_-pyouOZx2QvNAyfHG7z3tJ7m9mxCty0Fy37jU4rI1906nZXwb5mcU |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Keratoconus+Screening+Based+on+Deep+Learning+Approach+of+Corneal+Topography&rft.jtitle=Translational+vision+science+%26+technology&rft.au=Kuo%2C+Bo-I&rft.au=Chang%2C+Wen-Yi&rft.au=Liao%2C+Tai-Shan&rft.au=Liu%2C+Fang-Yu&rft.date=2020-09-25&rft.issn=2164-2591&rft.eissn=2164-2591&rft.volume=9&rft.issue=2&rft.spage=53&rft_id=info:doi/10.1167%2Ftvst.9.2.53&rft.externalDBID=n%2Fa&rft.externalDocID=10_1167_tvst_9_2_53 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-2591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-2591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-2591&client=summon |