Transformation of Vestibular Signals for the Control of Standing in Humans

During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 36; no. 45; pp. 11510 - 11520
Main Authors Forbes, Patrick A., Luu, Billy L., Van der Loos, H.F. Machiel, Croft, Elizabeth A., Inglis, J. Timothy, Blouin, Jean-Sébastien
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 09.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances. SIGNIFICANCE STATEMENT The postural corrections critical to standing balance and navigation rely on transformation of sensory information into reference frames that are relevant for the required motor actions. Here, we demonstrate that the nervous system transforms vestibular sensory signals of head motion according to a muscle's ability to stabilize the body along the direction of a vestibular-evoked disturbance. By manipulating the direction of the imposed vestibular signal relative to a muscle's action, we show that the vestibular contribution to muscle activity is a highly flexible and organized balance response. This study provides insight into the neural integration and central processing associated with transformed vestibulomotor relationships that are essential to standing upright.
AbstractList During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances.
During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances.SIGNIFICANCE STATEMENTThe postural corrections critical to standing balance and navigation rely on transformation of sensory information into reference frames that are relevant for the required motor actions. Here, we demonstrate that the nervous system transforms vestibular sensory signals of head motion according to a muscle's ability to stabilize the body along the direction of a vestibular-evoked disturbance. By manipulating the direction of the imposed vestibular signal relative to a muscle's action, we show that the vestibular contribution to muscle activity is a highly flexible and organized balance response. This study provides insight into the neural integration and central processing associated with transformed vestibulomotor relationships that are essential to standing upright.
During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances. SIGNIFICANCE STATEMENT The postural corrections critical to standing balance and navigation rely on transformation of sensory information into reference frames that are relevant for the required motor actions. Here, we demonstrate that the nervous system transforms vestibular sensory signals of head motion according to a muscle's ability to stabilize the body along the direction of a vestibular-evoked disturbance. By manipulating the direction of the imposed vestibular signal relative to a muscle's action, we show that the vestibular contribution to muscle activity is a highly flexible and organized balance response. This study provides insight into the neural integration and central processing associated with transformed vestibulomotor relationships that are essential to standing upright.
During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the whole body. This transformation must account for head-on-body orientation as well as the muscle actions generating the postural response. Here, we investigate whether this transformation is dependent upon a muscle's ability to stabilize the body along the direction of a vestibular disturbance. Subjects were braced on top of a robotic balance system that simulated the mechanics of standing while being exposed to an electrical vestibular stimulus that evoked a craniocentric vestibular error of head roll. The balance system was limited to move in a single plane while the vestibular error direction was manipulated by having subjects rotate their head in yaw. Vestibular-evoked muscle responses were greatest when the vestibular error was aligned with the balance direction and decreased to zero as the two directions became orthogonal. This demonstrates that muscles respond only to the component of the error that is aligned with the balance direction and thus relevant to the balance task, not to the cumulative afferent activity, as expected for vestibulospinal reflex loops. When we reversed the relationship between balancing motor commands and associated vestibular sensory feedback, the direction of vestibular-evoked ankle compensatory responses was also reversed. This implies that the nervous system quickly reassociates new relationships between vestibular sensory signals and motor commands related to maintaining balance. These results indicate that vestibular-evoked muscle activity is a highly flexible balance response organized to compensate for vestibular disturbances. The postural corrections critical to standing balance and navigation rely on transformation of sensory information into reference frames that are relevant for the required motor actions. Here, we demonstrate that the nervous system transforms vestibular sensory signals of head motion according to a muscle's ability to stabilize the body along the direction of a vestibular-evoked disturbance. By manipulating the direction of the imposed vestibular signal relative to a muscle's action, we show that the vestibular contribution to muscle activity is a highly flexible and organized balance response. This study provides insight into the neural integration and central processing associated with transformed vestibulomotor relationships that are essential to standing upright.
Author Van der Loos, H.F. Machiel
Inglis, J. Timothy
Luu, Billy L.
Forbes, Patrick A.
Croft, Elizabeth A.
Blouin, Jean-Sébastien
Author_xml – sequence: 1
  givenname: Patrick A.
  orcidid: 0000-0002-0230-9971
  surname: Forbes
  fullname: Forbes, Patrick A.
– sequence: 2
  givenname: Billy L.
  surname: Luu
  fullname: Luu, Billy L.
– sequence: 3
  givenname: H.F. Machiel
  orcidid: 0000-0003-1355-980X
  surname: Van der Loos
  fullname: Van der Loos, H.F. Machiel
– sequence: 4
  givenname: Elizabeth A.
  orcidid: 0000-0002-9639-5291
  surname: Croft
  fullname: Croft, Elizabeth A.
– sequence: 5
  givenname: J. Timothy
  surname: Inglis
  fullname: Inglis, J. Timothy
– sequence: 6
  givenname: Jean-Sébastien
  surname: Blouin
  fullname: Blouin, Jean-Sébastien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27911755$$D View this record in MEDLINE/PubMed
BookMark eNqFUctO3DAUtSqqMkB_AWXZTQZfJ35EqipVI1pAqEgMdGvdcZzBVWJTO0Hq39cBOips8MaL89A59xyQPR-8JeQY6BI4q04ufpzeXl-tV-dLaCgrQSwZBfGOLDLalKymsEcWlElailrW--QgpV-UUklBfiD7TDYAkvMFubiJ6FMX4oCjC74IXfHTptFtph5jsXZbj30qMl6Md7ZYBT_G0M-s9Yi-dX5bOF-cTUM2OSLvu0y2H5__Q3L77fRmdVZeXn0_X329LE1dy7EUaE1nhG0BEYxFrlpGRY217aBB0zWVpRYBlOQoJbZV26haVZ0yiqsNh-qQfHnyvZ82g22NzZmw1_fRDRj_6IBOv0S8u9Pb8KCFyO2BZYNPzwYx_J5yWz24ZGzfo7dhShoUp1LKKr-3qTVXrJHN7Hr8f6xdnn-3zgTxRDAxpBRtt6MA1fOoejeqnkfVIPQ8ahZ-fiU0bnycK9dz_VvyvyFlqj4
CitedBy_id crossref_primary_10_1038_s42003_024_06029_4
crossref_primary_10_1523_JNEUROSCI_1148_22_2023
crossref_primary_10_1002_brb3_782
crossref_primary_10_1007_s00221_018_5442_9
crossref_primary_10_12965_jer_2040106_053
crossref_primary_10_1007_s00221_019_05607_x
crossref_primary_10_1038_s42003_024_07093_6
crossref_primary_10_1152_jn_00112_2017
crossref_primary_10_29254_2077_4214_2024_4_175_91_102
crossref_primary_10_1371_journal_pone_0231334
crossref_primary_10_1016_j_ejpn_2024_06_008
crossref_primary_10_3389_fneur_2023_1126214
crossref_primary_10_3389_fnhum_2023_1229484
crossref_primary_10_1109_LRA_2023_3264199
crossref_primary_10_1152_jn_00421_2019
crossref_primary_10_1016_j_jneumeth_2019_108363
crossref_primary_10_1016_j_neuroscience_2018_02_036
crossref_primary_10_1007_s00221_024_06918_4
crossref_primary_10_3389_fneur_2019_00748
crossref_primary_10_1113_JP272614
crossref_primary_10_1007_s10439_021_02831_x
crossref_primary_10_7554_eLife_36123
crossref_primary_10_1152_jn_00483_2018
crossref_primary_10_1007_s00421_024_05620_1
crossref_primary_10_1097_WCO_0000000000001228
crossref_primary_10_1152_jn_00171_2023
crossref_primary_10_1152_jn_00166_2024
crossref_primary_10_1113_JP278642
crossref_primary_10_1016_j_jbiomech_2020_109712
crossref_primary_10_1016_j_gaitpost_2024_12_026
crossref_primary_10_1093_pnasnexus_pgac174
crossref_primary_10_1016_j_neucli_2020_10_012
crossref_primary_10_1073_pnas_2404909121
crossref_primary_10_1152_jn_00470_2018
crossref_primary_10_14814_phy2_13391
crossref_primary_10_3390_e24070909
crossref_primary_10_1007_s00221_024_06905_9
crossref_primary_10_1007_s00421_022_05043_w
crossref_primary_10_1152_jn_00076_2020
crossref_primary_10_1038_s41467_019_09738_1
crossref_primary_10_2196_31020
crossref_primary_10_3389_fneur_2018_00535
crossref_primary_10_1523_JNEUROSCI_0987_22_2023
crossref_primary_10_3389_fneur_2018_00899
crossref_primary_10_5114_pq_186132
crossref_primary_10_1007_s00221_022_06488_3
crossref_primary_10_1038_s41598_021_93037_7
crossref_primary_10_1038_s42003_024_06802_5
crossref_primary_10_1007_s00221_017_5061_x
crossref_primary_10_3389_fresc_2024_1414198
crossref_primary_10_7554_eLife_65085
crossref_primary_10_1113_JP272998
Cites_doi 10.1523/JNEUROSCI.1937-09.2009
10.1007/s004220000196
10.1113/jphysiol.2005.092544
10.1111/j.1748-1716.1983.tb07212.x
10.1152/jn.1984.51.6.1236
10.1007/BF00238745
10.1523/JNEUROSCI.0733-14.2014
10.1002/9781118287422
10.1152/japplphysiol.00008.2004
10.1113/jphysiol.1976.sp011330
10.1152/jn.00881.2009
10.1113/jphysiol.1992.sp019308
10.1109/EMBC.2012.6347480
10.1113/jphysiol.2007.133264
10.1007/s00221-011-2549-7
10.1113/jphysiol.2012.230334
10.1016/j.brainresbull.2004.07.008
10.1007/BF00229416
10.1016/S0079-6107(96)00009-0
10.1152/jn.1994.72.2.928
10.1113/jphysiol.2011.209163
10.1007/s00221-012-3002-2
10.1113/jphysiol.1994.sp020257
10.1113/jphysiol.2002.019513
10.1093/brain/116.5.1177
10.1098/rstb.1977.0045
10.1113/jphysiol.2004.079525
10.1152/jn.00832.2004
10.1007/s00221-009-2017-9
10.1113/jphysiol.2010.197053
10.1152/jn.00114.2015
10.1523/JNEUROSCI.0109-04.2004
10.1109/TNSRE.2011.2140332
10.1152/japplphysiol.00906.2013
10.1152/jn.00849.2003
10.1152/jn.1980.43.5.1437
10.1159/000046815
10.1152/jn.00512.2015
10.1007/BF00230477
10.1113/jphysiol.2010.195222
10.1007/s00221-004-1982-2
10.1113/jphysiol.2003.045971
10.1152/jn.00296.2014
10.1371/journal.pone.0124532
10.1371/journal.pone.0084385
10.1016/0006-8993(74)90276-5
10.1152/jn.1980.43.5.1406
10.1111/j.1469-7793.1997.661bj.x
10.1152/jn.00856.2004
10.1093/brain/awf212
10.3389/fnint.2014.00094
10.1113/jphysiol.2002.025049
ContentType Journal Article
Copyright Copyright © 2016 the authors 0270-6474/16/3611510-11$15.00/0.
Copyright © 2016 the authors 0270-6474/16/3611510-11$15.00/0 2016
Copyright_xml – notice: Copyright © 2016 the authors 0270-6474/16/3611510-11$15.00/0.
– notice: Copyright © 2016 the authors 0270-6474/16/3611510-11$15.00/0 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
5PM
DOI 10.1523/JNEUROSCI.1902-16.2016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList Neurosciences Abstracts
MEDLINE - Academic

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 11520
ExternalDocumentID PMC6601712
27911755
10_1523_JNEUROSCI_1902_16_2016
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AFCFT
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
AFHIN
AIZTS
CGR
CUY
CVF
ECM
EIF
NPM
RHF
7X8
7TK
5PM
ID FETCH-LOGICAL-c447t-6aecfc6ed1aa1cea58d2064a4ef19acf93e0ea11875a77ad3d98483f8c858b513
ISSN 0270-6474
IngestDate Thu Aug 21 14:31:36 EDT 2025
Fri Jul 11 02:34:08 EDT 2025
Fri Jul 11 03:04:12 EDT 2025
Wed Feb 19 02:34:06 EST 2025
Thu Apr 24 23:06:19 EDT 2025
Tue Jul 01 03:47:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords vestibular transformations
standing balance
postural control
vestibular-evoked response
electrical vestibular stimulation
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
Copyright © 2016 the authors 0270-6474/16/3611510-11$15.00/0.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-6aecfc6ed1aa1cea58d2064a4ef19acf93e0ea11875a77ad3d98483f8c858b513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: P.A.F., B.L.L., H.F.M.V.d.L., E.C., J.T.I., and J.-S.B. designed research; P.A.F., B.L.L., and J.-S.B. performed research; P.A.F., B.L.L., and J.-S.B. analyzed data; P.A.F. and J.-S.B. wrote the paper.
ORCID 0000-0002-0230-9971
0000-0003-1355-980X
0000-0002-9639-5291
OpenAccessLink https://www.jneurosci.org/content/jneuro/36/45/11510.full.pdf
PMID 27911755
PQID 1845829792
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6601712
proquest_miscellaneous_1850777333
proquest_miscellaneous_1845829792
pubmed_primary_27911755
crossref_primary_10_1523_JNEUROSCI_1902_16_2016
crossref_citationtrail_10_1523_JNEUROSCI_1902_16_2016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-09
20161109
PublicationDateYYYYMMDD 2016-11-09
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2016
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References 2023041803220599000_36.45.11510.40
2023041803220599000_36.45.11510.42
2023041803220599000_36.45.11510.41
2023041803220599000_36.45.11510.44
2023041803220599000_36.45.11510.43
2023041803220599000_36.45.11510.46
2023041803220599000_36.45.11510.45
2023041803220599000_36.45.11510.36
2023041803220599000_36.45.11510.39
2023041803220599000_36.45.11510.31
2023041803220599000_36.45.11510.30
2023041803220599000_36.45.11510.33
2023041803220599000_36.45.11510.32
2023041803220599000_36.45.11510.35
2023041803220599000_36.45.11510.26
2023041803220599000_36.45.11510.25
2023041803220599000_36.45.11510.27
2023041803220599000_36.45.11510.29
Goldberg (2023041803220599000_36.45.11510.19) 1984; 51
Miles (2023041803220599000_36.45.11510.37) 1980; 43
2023041803220599000_36.45.11510.9
Mergner (2023041803220599000_36.45.11510.34) 1991; 85
2023041803220599000_36.45.11510.7
2023041803220599000_36.45.11510.8
2023041803220599000_36.45.11510.5
2023041803220599000_36.45.11510.6
2023041803220599000_36.45.11510.4
2023041803220599000_36.45.11510.1
2023041803220599000_36.45.11510.20
2023041803220599000_36.45.11510.22
2023041803220599000_36.45.11510.21
2023041803220599000_36.45.11510.24
2023041803220599000_36.45.11510.23
2023041803220599000_36.45.11510.15
2023041803220599000_36.45.11510.14
2023041803220599000_36.45.11510.17
2023041803220599000_36.45.11510.16
2023041803220599000_36.45.11510.18
Berthoz (2023041803220599000_36.45.11510.2) 1981; 44
Miles (2023041803220599000_36.45.11510.38) 1980; 43
2023041803220599000_36.45.11510.51
2023041803220599000_36.45.11510.50
2023041803220599000_36.45.11510.52
2023041803220599000_36.45.11510.11
2023041803220599000_36.45.11510.10
2023041803220599000_36.45.11510.13
Lisberger (2023041803220599000_36.45.11510.28) 1994; 72
2023041803220599000_36.45.11510.12
2023041803220599000_36.45.11510.48
2023041803220599000_36.45.11510.47
2023041803220599000_36.45.11510.49
Britton (2023041803220599000_36.45.11510.3) 1993; 94
References_xml – ident: 2023041803220599000_36.45.11510.4
  doi: 10.1523/JNEUROSCI.1937-09.2009
– ident: 2023041803220599000_36.45.11510.51
  doi: 10.1007/s004220000196
– ident: 2023041803220599000_36.45.11510.13
  doi: 10.1113/jphysiol.2005.092544
– ident: 2023041803220599000_36.45.11510.30
  doi: 10.1111/j.1748-1716.1983.tb07212.x
– volume: 51
  start-page: 1236
  year: 1984
  ident: 2023041803220599000_36.45.11510.19
  article-title: Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel-monkey
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1984.51.6.1236
– volume: 44
  start-page: 19
  year: 1981
  ident: 2023041803220599000_36.45.11510.2
  article-title: Differential visual-adaptation of vertical canal-dependent vestibulo-ocular reflexes
  publication-title: Exp Brain Res
  doi: 10.1007/BF00238745
– ident: 2023041803220599000_36.45.11510.35
  doi: 10.1523/JNEUROSCI.0733-14.2014
– ident: 2023041803220599000_36.45.11510.43
  doi: 10.1002/9781118287422
– ident: 2023041803220599000_36.45.11510.15
  doi: 10.1152/japplphysiol.00008.2004
– ident: 2023041803220599000_36.45.11510.20
  doi: 10.1113/jphysiol.1976.sp011330
– ident: 2023041803220599000_36.45.11510.8
  doi: 10.1152/jn.00881.2009
– ident: 2023041803220599000_36.45.11510.24
  doi: 10.1113/jphysiol.1992.sp019308
– ident: 2023041803220599000_36.45.11510.44
  doi: 10.1109/EMBC.2012.6347480
– ident: 2023041803220599000_36.45.11510.7
  doi: 10.1113/jphysiol.2007.133264
– ident: 2023041803220599000_36.45.11510.9
  doi: 10.1007/s00221-011-2549-7
– ident: 2023041803220599000_36.45.11510.32
  doi: 10.1113/jphysiol.2012.230334
– ident: 2023041803220599000_36.45.11510.26
  doi: 10.1016/j.brainresbull.2004.07.008
– volume: 85
  start-page: 389
  year: 1991
  ident: 2023041803220599000_36.45.11510.34
  article-title: Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation
  publication-title: Exp Brain Res
  doi: 10.1007/BF00229416
– ident: 2023041803220599000_36.45.11510.21
  doi: 10.1016/S0079-6107(96)00009-0
– volume: 72
  start-page: 928
  year: 1994
  ident: 2023041803220599000_36.45.11510.28
  article-title: Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain-stem neurons
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1994.72.2.928
– ident: 2023041803220599000_36.45.11510.47
  doi: 10.1113/jphysiol.2011.209163
– ident: 2023041803220599000_36.45.11510.39
  doi: 10.1007/s00221-012-3002-2
– ident: 2023041803220599000_36.45.11510.16
  doi: 10.1113/jphysiol.1994.sp020257
– ident: 2023041803220599000_36.45.11510.33
  doi: 10.1113/jphysiol.2002.019513
– ident: 2023041803220599000_36.45.11510.41
  doi: 10.1093/brain/116.5.1177
– ident: 2023041803220599000_36.45.11510.25
  doi: 10.1098/rstb.1977.0045
– ident: 2023041803220599000_36.45.11510.5
  doi: 10.1113/jphysiol.2004.079525
– ident: 2023041803220599000_36.45.11510.45
  doi: 10.1152/jn.00832.2004
– ident: 2023041803220599000_36.45.11510.46
  doi: 10.1007/s00221-009-2017-9
– ident: 2023041803220599000_36.45.11510.49
  doi: 10.1113/jphysiol.2010.197053
– ident: 2023041803220599000_36.45.11510.42
  doi: 10.1152/jn.00114.2015
– ident: 2023041803220599000_36.45.11510.48
  doi: 10.1523/JNEUROSCI.0109-04.2004
– ident: 2023041803220599000_36.45.11510.31
  doi: 10.1109/TNSRE.2011.2140332
– ident: 2023041803220599000_36.45.11510.22
  doi: 10.1152/japplphysiol.00906.2013
– ident: 2023041803220599000_36.45.11510.27
  doi: 10.1152/jn.00849.2003
– volume: 43
  start-page: 1437
  year: 1980
  ident: 2023041803220599000_36.45.11510.38
  article-title: Long-term adaptive-changes in primate vestibuloocular reflex. 3. Electro-physiological observations in flocculus of normal monkeys
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1980.43.5.1437
– ident: 2023041803220599000_36.45.11510.50
  doi: 10.1159/000046815
– ident: 2023041803220599000_36.45.11510.11
  doi: 10.1152/jn.00512.2015
– volume: 94
  start-page: 143
  year: 1993
  ident: 2023041803220599000_36.45.11510.3
  article-title: Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man
  publication-title: Exp Brain Res
  doi: 10.1007/BF00230477
– ident: 2023041803220599000_36.45.11510.36
  doi: 10.1113/jphysiol.2010.195222
– ident: 2023041803220599000_36.45.11510.1
  doi: 10.1007/s00221-004-1982-2
– ident: 2023041803220599000_36.45.11510.52
  doi: 10.1113/jphysiol.2003.045971
– ident: 2023041803220599000_36.45.11510.10
  doi: 10.1152/jn.00296.2014
– ident: 2023041803220599000_36.45.11510.23
  doi: 10.1371/journal.pone.0124532
– ident: 2023041803220599000_36.45.11510.17
  doi: 10.1371/journal.pone.0084385
– ident: 2023041803220599000_36.45.11510.40
  doi: 10.1016/0006-8993(74)90276-5
– volume: 43
  start-page: 1406
  year: 1980
  ident: 2023041803220599000_36.45.11510.37
  article-title: Long-term adaptive-changes in primate vestibuloocular reflex. 1. Behavioral observations
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1980.43.5.1406
– ident: 2023041803220599000_36.45.11510.14
  doi: 10.1111/j.1469-7793.1997.661bj.x
– ident: 2023041803220599000_36.45.11510.6
  doi: 10.1152/jn.00856.2004
– ident: 2023041803220599000_36.45.11510.12
  doi: 10.1093/brain/awf212
– ident: 2023041803220599000_36.45.11510.18
  doi: 10.3389/fnint.2014.00094
– ident: 2023041803220599000_36.45.11510.29
  doi: 10.1113/jphysiol.2002.025049
SSID ssj0007017
Score 2.4482489
Snippet During standing balance, vestibular signals encode head movement and are transformed into coordinates that are relevant to maintaining upright posture of the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 11510
SubjectTerms Adult
Feedback, Physiological - physiology
Humans
Male
Muscle Contraction - physiology
Muscle, Skeletal - physiology
Postural Balance - physiology
Posture - physiology
Vestibular Evoked Myogenic Potentials - physiology
Vestibule, Labyrinth - physiology
Title Transformation of Vestibular Signals for the Control of Standing in Humans
URI https://www.ncbi.nlm.nih.gov/pubmed/27911755
https://www.proquest.com/docview/1845829792
https://www.proquest.com/docview/1850777333
https://pubmed.ncbi.nlm.nih.gov/PMC6601712
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgvPCCBuOj40NGQrxU2erEiZPHqVpVSilCa6e-WY7tbBElQVv6MH49146TplsFg5eozYdb-Z7eHtvnHiP0QWRSKqCxnpXQUEGVl8ap8pSkkWKZ1tSWj32ZReMFnSzD5a3qkio9kr921pX8T1ThHMTVVMn-Q2TbRuEEvIb4whEiDMf7xbjDOmved25MM1IrLT3LL6w3cqMjHDpRuqlS6RSz2Fn86y5H3VSL2Zs7jpctCNKuv__3zXzodL22gMlXq5t-O618Lozi9qo_LWtN37g_MhseXea6lXcMm7-DVmbmGnUTEiSylXl12tMuifp21YZ0s2xtc-LQRMNOzgRO6pStunlv6-PuZvfQukxMZkbkeDb8dARkxveIEZqQHXbas698tJhO-fx0OX-IHvkwjjCJ8PO3jZ08g3zkysah7ePdLW8zljvDkNtq2g49me-jJy5e-KQGyVP0QBfP0MFJIaryxw3-iK3S1y6hHKDJNm5wmeENbrDDDYbrGHCDHW7MXQ1ucF7gGjfP0WJ0Oh-OPbenhicpZZUXCS0zGWlFhCBSizBWPrBSQXVGEiGzJNADLcwe9KFgTKhAJTGNgyyWcRinIQleoL2iLPQrhONMCp8qSTLBaBrFCTDBTAJlpwNfUzroobDpNy6d4bzZ92TFzcAT-pu3_c1Nf3MScdPfPXTcPveztlz56xPvm7BwyI5myUsUulxfcxKbdeGEJf6f7oExEWNBEPTQyzqU7ef6LDFetmEPsa0gtzcYd_btK0V-aV3ao8hYUfmH9_hur9HjzQ_pDdqrrtb6LXDdKn1n8foblxesQA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transformation+of+Vestibular+Signals+for+the+Control+of+Standing+in+Humans&rft.jtitle=The+Journal+of+neuroscience&rft.au=bes%2C+Patrick+A&rft.au=Luu%2C+Billy+L&rft.au=Van+der+Loos%2C+H+F+Machiel&rft.au=Croft%2C+Elizabeth+A&rft.date=2016-11-09&rft.eissn=1529-2401&rft.volume=36&rft.issue=45&rft.spage=11510&rft.epage=11520&rft_id=info:doi/10.1523%2FJNEUROSCI.1902-16.2016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon