Facile and Green Synthesis of Graphene-Based Conductive Adhesives via Liquid Exfoliation Process

In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic f...

Full description

Saved in:
Bibliographic Details
Published inNanomaterials (Basel, Switzerland) Vol. 9; no. 1; p. 38
Main Authors Wu, Jhao-Yi, Lai, Yi-Chin, Chang, Chien-Liang, Hung, Wu-Ching, Wu, Hsiao-Min, Liao, Ying-Chih, Huang, Chia-Hung, Liu, Wei-Ren
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 28.12.2018
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectroscopy, were carried out. The results of SEM show that the lateral size of as-synthesized FLG is 1–5 μm. The results of TEM and AFM indicate more than 80% of graphene layers is <10 layers. The most surprising thing is that D/G ratio of graphite and FLG are 0.15 and 0.19, respectively. The result of the similar D/G ratio demonstrates that little structural defects were created via the liquid exfoliation process. Electronic conductivity tests and resistance of composite film, in terms of different contents of graphite/polyvinylidene difluoride (PVDF) and FLG/PVDF, were carried out. Dramatically, the FLG/PVDF composite demonstrates superior performance compared to the graphite/PVDF composite at the same ratio. In addition, the post-sintering process plays an important role in improving electronic conductivity by 85%. The composition-optimized FLG/PVDF thin film exhibits 81.9 S·cm−1. These results indicate that the developed FLG/PVDF composite adhesives could be a potential candidate for conductive adhesive applications.
AbstractList In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectroscopy, were carried out. The results of SEM show that the lateral size of as-synthesized FLG is 1-5 μm. The results of TEM and AFM indicate more than 80% of graphene layers is <10 layers. The most surprising thing is that D/G ratio of graphite and FLG are 0.15 and 0.19, respectively. The result of the similar D/G ratio demonstrates that little structural defects were created via the liquid exfoliation process. Electronic conductivity tests and resistance of composite film, in terms of different contents of graphite/polyvinylidene difluoride (PVDF) and FLG/PVDF, were carried out. Dramatically, the FLG/PVDF composite demonstrates superior performance compared to the graphite/PVDF composite at the same ratio. In addition, the post-sintering process plays an important role in improving electronic conductivity by 85%. The composition-optimized FLG/PVDF thin film exhibits 81.9 S·cm−1. These results indicate that the developed FLG/PVDF composite adhesives could be a potential candidate for conductive adhesive applications.
In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectroscopy, were carried out. The results of SEM show that the lateral size of as-synthesized FLG is 1⁻5 μm. The results of TEM and AFM indicate more than 80% of graphene layers is <10 layers. The most surprising thing is that D/G ratio of graphite and FLG are 0.15 and 0.19, respectively. The result of the similar D/G ratio demonstrates that little structural defects were created via the liquid exfoliation process. Electronic conductivity tests and resistance of composite film, in terms of different contents of graphite/polyvinylidene difluoride (PVDF) and FLG/PVDF, were carried out. Dramatically, the FLG/PVDF composite demonstrates superior performance compared to the graphite/PVDF composite at the same ratio. In addition, the post-sintering process plays an important role in improving electronic conductivity by 85%. The composition-optimized FLG/PVDF thin film exhibits 81.9 S·cm-1. These results indicate that the developed FLG/PVDF composite adhesives could be a potential candidate for conductive adhesive applications.In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectroscopy, were carried out. The results of SEM show that the lateral size of as-synthesized FLG is 1⁻5 μm. The results of TEM and AFM indicate more than 80% of graphene layers is <10 layers. The most surprising thing is that D/G ratio of graphite and FLG are 0.15 and 0.19, respectively. The result of the similar D/G ratio demonstrates that little structural defects were created via the liquid exfoliation process. Electronic conductivity tests and resistance of composite film, in terms of different contents of graphite/polyvinylidene difluoride (PVDF) and FLG/PVDF, were carried out. Dramatically, the FLG/PVDF composite demonstrates superior performance compared to the graphite/PVDF composite at the same ratio. In addition, the post-sintering process plays an important role in improving electronic conductivity by 85%. The composition-optimized FLG/PVDF thin film exhibits 81.9 S·cm-1. These results indicate that the developed FLG/PVDF composite adhesives could be a potential candidate for conductive adhesive applications.
In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectroscopy, were carried out. The results of SEM show that the lateral size of as-synthesized FLG is 1–5 μm. The results of TEM and AFM indicate more than 80% of graphene layers is <10 layers. The most surprising thing is that D/G ratio of graphite and FLG are 0.15 and 0.19, respectively. The result of the similar D/G ratio demonstrates that little structural defects were created via the liquid exfoliation process. Electronic conductivity tests and resistance of composite film, in terms of different contents of graphite/polyvinylidene difluoride (PVDF) and FLG/PVDF, were carried out. Dramatically, the FLG/PVDF composite demonstrates superior performance compared to the graphite/PVDF composite at the same ratio. In addition, the post-sintering process plays an important role in improving electronic conductivity by 85%. The composition-optimized FLG/PVDF thin film exhibits 81.9 S·cm −1 . These results indicate that the developed FLG/PVDF composite adhesives could be a potential candidate for conductive adhesive applications.
In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation process. The corresponding characterizations of FLG, such as scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and Raman spectroscopy, were carried out. The results of SEM show that the lateral size of as-synthesized FLG is 1⁻5 μm. The results of TEM and AFM indicate more than 80% of graphene layers is <10 layers. The most surprising thing is that D/G ratio of graphite and FLG are 0.15 and 0.19, respectively. The result of the similar D/G ratio demonstrates that little structural defects were created via the liquid exfoliation process. Electronic conductivity tests and resistance of composite film, in terms of different contents of graphite/polyvinylidene difluoride (PVDF) and FLG/PVDF, were carried out. Dramatically, the FLG/PVDF composite demonstrates superior performance compared to the graphite/PVDF composite at the same ratio. In addition, the post-sintering process plays an important role in improving electronic conductivity by 85%. The composition-optimized FLG/PVDF thin film exhibits 81.9 S·cm . These results indicate that the developed FLG/PVDF composite adhesives could be a potential candidate for conductive adhesive applications.
Author Lai, Yi-Chin
Liu, Wei-Ren
Chang, Chien-Liang
Hung, Wu-Ching
Huang, Chia-Hung
Liao, Ying-Chih
Wu, Jhao-Yi
Wu, Hsiao-Min
AuthorAffiliation 2 Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; yijin10221339@gmail.com
1 Department of Chemical Engineering, Chung Yuan Christian University, R&D Center for Membrane Technology, 32023, No. 200, Chun Pei Rd., Chung Li District, Taoyuan 32023, Taiwan; james19931201@gmail.com
3 National Chung Shan Institute of Science & Technology, Neighborhood, Sec. Jia’an, Zhongzheng Rd., Longtan Dist., Taoyuan 32546, Taiwan; rodin2005@yahoo.com.tw (C.-L.C.); 5000blackblue@gmail.com (W.-C.H.); prettysandy119@gmail.com (H.-M.W.)
4 Metal Industries Research and Development Centre, Kaohsiung 81160, Taiwan; chiahung@mail.mirdc.org.tw
AuthorAffiliation_xml – name: 3 National Chung Shan Institute of Science & Technology, Neighborhood, Sec. Jia’an, Zhongzheng Rd., Longtan Dist., Taoyuan 32546, Taiwan; rodin2005@yahoo.com.tw (C.-L.C.); 5000blackblue@gmail.com (W.-C.H.); prettysandy119@gmail.com (H.-M.W.)
– name: 1 Department of Chemical Engineering, Chung Yuan Christian University, R&D Center for Membrane Technology, 32023, No. 200, Chun Pei Rd., Chung Li District, Taoyuan 32023, Taiwan; james19931201@gmail.com
– name: 2 Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; yijin10221339@gmail.com
– name: 4 Metal Industries Research and Development Centre, Kaohsiung 81160, Taiwan; chiahung@mail.mirdc.org.tw
Author_xml – sequence: 1
  givenname: Jhao-Yi
  surname: Wu
  fullname: Wu, Jhao-Yi
– sequence: 2
  givenname: Yi-Chin
  surname: Lai
  fullname: Lai, Yi-Chin
– sequence: 3
  givenname: Chien-Liang
  surname: Chang
  fullname: Chang, Chien-Liang
– sequence: 4
  givenname: Wu-Ching
  surname: Hung
  fullname: Hung, Wu-Ching
– sequence: 5
  givenname: Hsiao-Min
  surname: Wu
  fullname: Wu, Hsiao-Min
– sequence: 6
  givenname: Ying-Chih
  orcidid: 0000-0001-9496-4190
  surname: Liao
  fullname: Liao, Ying-Chih
– sequence: 7
  givenname: Chia-Hung
  surname: Huang
  fullname: Huang, Chia-Hung
– sequence: 8
  givenname: Wei-Ren
  surname: Liu
  fullname: Liu, Wei-Ren
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30597905$$D View this record in MEDLINE/PubMed
BookMark eNptks9PHCEUgEljU6168m44mphp-TUzcGmiG7Umm7RJ7Zky8MbFzMIKMxv974uuNWsjByCPj-9B3vuMdkIMgNARJV84V-RrMCEqQgnh8gPaY6RVlVCK7mztd9FhznekDEW5rPkntMtJrVpF6j3059JYPwA2weGrBBDwr8cwLiD7jGNfQma1gADVucng8CwGN9nRrwGfuSdoDRmvvcFzfz95hy8e-jh4M_oY8M8ULeR8gD72Zshw-LLuo9-XFzez79X8x9X17GxeWSHasWpaBrblvXKdqwWTjjNBXddIy6gtv-ga5Yjq-tpZIsrcSUIttMw2TnBhe76PrjdeF82dXiW_NOlRR-P1cyCmW23S6O0A2khWO0IlIR0TAMQ0qheyiBWIruV1cX3buFZTtwRnIYzJDG-kb0-CX-jbuNYNr6VUvAhOXgQp3k-QR7302cIwmABxyprRhonCyaagx9u5XpP8K1EBTjeATTHnBP0rQol-6gG91QOFpv_R1o_PBSkP9cO7d_4CH9i1ag
CitedBy_id crossref_primary_10_3390_ma12172793
crossref_primary_10_3390_antiox13050522
crossref_primary_10_3390_cryst10100902
crossref_primary_10_3390_nano10050926
crossref_primary_10_1007_s10854_020_03513_5
crossref_primary_10_1155_2020_7915641
Cites_doi 10.1039/B512799H
10.1021/ja807449u
10.1088/1361-6528/aa66a2
10.3390/nano6110206
10.1126/science.1157996
10.1007/978-3-319-13875-6_2
10.1002/adma.201300155
10.1016/j.microrel.2011.11.002
10.1021/cm100998e
10.1002/polb.21070
10.1038/nnano.2010.232
10.1063/1.2949074
10.1038/nnano.2008.215
10.1126/science.1110168
10.1002/macp.201200029
10.1038/nnano.2010.192
10.3390/ma11030345
10.1166/jnn.2015.9201
10.1002/anie.201201084
10.1126/science.1102896
10.1016/j.carbon.2007.02.034
10.1038/nnano.2008.199
10.1021/nl0731872
10.1016/j.ijadhadh.2004.11.008
10.1016/j.ijadhadh.2005.10.001
10.1039/c2jm00044j
10.1088/1361-6463/aac562
10.1002/polb.21695
10.1016/j.compscitech.2014.05.018
10.1016/j.compositesb.2017.10.020
10.1021/nl801827v
10.1039/C5RA08643D
10.3144/expresspolymlett.2012.68
10.1016/j.carbon.2013.07.055
10.1016/j.ijadhadh.2006.03.006
10.1016/S0026-2714(00)00033-0
10.1002/pc.10452
10.1109/6104.816098
10.1016/j.compscitech.2011.05.010
10.1016/j.polymer.2008.08.057
10.1038/nature04969
10.1103/PhysRevB.78.245403
10.1163/156856108X305471
10.1021/am200628c
10.1016/S1369-7021(06)71446-8
10.1021/nl803279t
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/nano9010038
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-4991
ExternalDocumentID oai_doaj_org_article_a825d01800b24ee0a69f48dc09e4b735
PMC6358893
30597905
10_3390_nano9010038
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
GROUPED_DOAJ
HCIFZ
HYE
I-F
IPNFZ
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RPM
NPM
7X8
PQGLB
5PM
PUEGO
ID FETCH-LOGICAL-c447t-672ec73f9dbd5428d3241db68c21c499b69d09bf5dc04f5db801ce72c6d434cf3
IEDL.DBID DOA
ISSN 2079-4991
IngestDate Wed Aug 27 00:20:08 EDT 2025
Thu Aug 21 14:10:01 EDT 2025
Fri Jul 11 15:43:54 EDT 2025
Wed Feb 19 02:33:05 EST 2025
Tue Jul 01 01:16:39 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords flexiable
conductive adhesives
graphene
liquid exfoliation
polyvinylidene fluoride
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-672ec73f9dbd5428d3241db68c21c499b69d09bf5dc04f5db801ce72c6d434cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9496-4190
OpenAccessLink https://doaj.org/article/a825d01800b24ee0a69f48dc09e4b735
PMID 30597905
PQID 2162493386
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a825d01800b24ee0a69f48dc09e4b735
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6358893
proquest_miscellaneous_2162493386
pubmed_primary_30597905
crossref_primary_10_3390_nano9010038
crossref_citationtrail_10_3390_nano9010038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181228
PublicationDateYYYYMMDD 2018-12-28
PublicationDate_xml – month: 12
  year: 2018
  text: 20181228
  day: 28
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Nanomaterials (Basel, Switzerland)
PublicationTitleAlternate Nanomaterials (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Qi (ref_26) 2011; 3
Du (ref_19) 2008; 3
Stankovich (ref_42) 2007; 45
Huang (ref_23) 2010; 22
Xie (ref_22) 2008; 92
Stankovich (ref_25) 2006; 442
ref_14
Chun (ref_10) 2010; 5
Cipriano (ref_45) 2008; 49
Ji (ref_11) 2017; 28
Virojanadara (ref_30) 2008; 78
Reina (ref_32) 2008; 9
Wei (ref_33) 2009; 9
Li (ref_3) 2005; 308
Gorrasi (ref_12) 2007; 45
Palza (ref_43) 2012; 6
Zhao (ref_8) 2007; 27
ref_16
ref_15
Lewis (ref_47) 2006; 9
Kim (ref_13) 2012; 52
Danto (ref_1) 2000; 40
Ansari (ref_27) 2009; 47
Lotya (ref_29) 2009; 131
Balandin (ref_17) 2008; 8
Wong (ref_2) 2008; 22
Chen (ref_34) 2013; 64
Chen (ref_37) 2012; 51
Kotthaus (ref_5) 1997; 20
Lee (ref_6) 2005; 25
Gorrasi (ref_24) 2018; 135
Stankovich (ref_41) 2006; 16
ref_21
Lee (ref_18) 2008; 321
Du (ref_20) 2012; 213
Wu (ref_7) 2006; 26
Nacken (ref_39) 2015; 5
Zhang (ref_36) 2012; 22
Palza (ref_44) 2011; 71
Ye (ref_4) 1999; 22
Jia (ref_9) 2002; 23
Sprinkle (ref_31) 2010; 5
Liang (ref_38) 2015; 15
Hernandez (ref_28) 2008; 3
Palza (ref_46) 2014; 99
Eigler (ref_35) 2013; 25
Novoselov (ref_40) 2004; 306
References_xml – volume: 16
  start-page: 155
  year: 2006
  ident: ref_41
  article-title: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)
  publication-title: J. Mater. Chem.
  doi: 10.1039/B512799H
– volume: 131
  start-page: 3611
  year: 2009
  ident: ref_29
  article-title: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja807449u
– volume: 28
  start-page: 165301
  year: 2017
  ident: ref_11
  article-title: Laser patterning of highly conductive flexible circuits
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa66a2
– ident: ref_14
  doi: 10.3390/nano6110206
– volume: 321
  start-page: 385
  year: 2008
  ident: ref_18
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
  doi: 10.1126/science.1157996
– ident: ref_21
  doi: 10.1007/978-3-319-13875-6_2
– volume: 25
  start-page: 3583
  year: 2013
  ident: ref_35
  article-title: Wet chemical synthesis of graphene
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300155
– volume: 52
  start-page: 595
  year: 2012
  ident: ref_13
  article-title: The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs)
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2011.11.002
– volume: 22
  start-page: 4096
  year: 2010
  ident: ref_23
  article-title: Polypropylene/Graphene Oxide Nanocomposites Prepared by In Situ Ziegler−Natta Polymerization
  publication-title: Chem. Mater.
  doi: 10.1021/cm100998e
– volume: 45
  start-page: 597
  year: 2007
  ident: ref_12
  article-title: Incorporation of carbon nanotubes into polyethylene by high energy ball milling: Morphology and physical properties
  publication-title: J. Polym. Sci. Part B Polym. Phys.
  doi: 10.1002/polb.21070
– volume: 5
  start-page: 853
  year: 2010
  ident: ref_10
  article-title: Highly conductive, printable and stretchable composite films of carbon nanotubes and silver
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.232
– volume: 92
  start-page: 243121
  year: 2008
  ident: ref_22
  article-title: Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2949074
– volume: 3
  start-page: 563
  year: 2008
  ident: ref_28
  article-title: High-yield production of graphene by liquid-phase exfoliation of graphite
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 308
  start-page: 1419
  year: 2005
  ident: ref_3
  article-title: Electronics without lead
  publication-title: Science
  doi: 10.1126/science.1110168
– volume: 213
  start-page: 1060
  year: 2012
  ident: ref_20
  article-title: The fabrication, properties, and uses of graphene/polymer composites
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201200029
– volume: 5
  start-page: 727
  year: 2010
  ident: ref_31
  article-title: Scalable templated growth of graphene nanoribbons on SiC
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.192
– ident: ref_15
  doi: 10.3390/ma11030345
– volume: 15
  start-page: 2686
  year: 2015
  ident: ref_38
  article-title: Effects of Processing Parameters on Massive Production of Graphene by Jet Cavitation
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2015.9201
– volume: 51
  start-page: 7640
  year: 2012
  ident: ref_37
  article-title: From nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201084
– volume: 306
  start-page: 666
  year: 2004
  ident: ref_40
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 45
  start-page: 1558
  year: 2007
  ident: ref_42
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 3
  start-page: 491
  year: 2008
  ident: ref_19
  article-title: Approaching ballistic transport in suspended graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.199
– volume: 8
  start-page: 902
  year: 2008
  ident: ref_17
  article-title: Superior thermal conductivity of single-layer graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl0731872
– volume: 25
  start-page: 437
  year: 2005
  ident: ref_6
  article-title: Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2004.11.008
– volume: 26
  start-page: 617
  year: 2006
  ident: ref_7
  article-title: High conductivity of isotropic conductive adhesives filled with silver nanowires
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2005.10.001
– volume: 22
  start-page: 6575
  year: 2012
  ident: ref_36
  article-title: Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm00044j
– ident: ref_16
  doi: 10.1088/1361-6463/aac562
– volume: 47
  start-page: 888
  year: 2009
  ident: ref_27
  article-title: Functionalized graphene sheet—Poly (vinylidene fluoride) conductive nanocomposites
  publication-title: J. Polym. Sci. Part B Polym. Phys.
  doi: 10.1002/polb.21695
– volume: 99
  start-page: 117
  year: 2014
  ident: ref_46
  article-title: Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2014.05.018
– volume: 135
  start-page: 149
  year: 2018
  ident: ref_24
  article-title: Effect of temperature and morphology on the electrical properties of PET/conductive nano fillers composites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2017.10.020
– volume: 9
  start-page: 30
  year: 2008
  ident: ref_32
  article-title: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 5
  start-page: 57328
  year: 2015
  ident: ref_39
  article-title: Delamination of graphite in a high pressure homogenizer
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08643D
– volume: 6
  start-page: 639
  year: 2012
  ident: ref_43
  article-title: Modifying the electrical behaviour of polypropylene/carbon nanotube composites by adding a second nanoparticle and by annealing processes
  publication-title: Express Polym. Lett.
  doi: 10.3144/expresspolymlett.2012.68
– volume: 64
  start-page: 225
  year: 2013
  ident: ref_34
  article-title: An improved Hummers method for eco-friendly synthesis of graphene oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.055
– volume: 27
  start-page: 429
  year: 2007
  ident: ref_8
  article-title: Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2006.03.006
– volume: 40
  start-page: 1227
  year: 2000
  ident: ref_1
  article-title: Reliability evaluation of adhesive bonded SMT components in industrial applications
  publication-title: Microelectron. Reliab.
  doi: 10.1016/S0026-2714(00)00033-0
– volume: 23
  start-page: 510
  year: 2002
  ident: ref_9
  article-title: The role of a third component on the conductivity behavior of ternary epoxy/Ag conductive composites
  publication-title: Polym. Compos.
  doi: 10.1002/pc.10452
– volume: 22
  start-page: 299
  year: 1999
  ident: ref_4
  article-title: Effect of Ag particle size on electrical conductivity of isotropically conductive adhesives
  publication-title: IEEE Trans. Electron. Packag. Manuf.
  doi: 10.1109/6104.816098
– volume: 20
  start-page: 15
  year: 1997
  ident: ref_5
  article-title: Study of isotropically conductive bondings filled with aggregates of nano-sited Ag-particles
  publication-title: IEEE Trans. Electron. Packag. Manuf.
– volume: 71
  start-page: 1361
  year: 2011
  ident: ref_44
  article-title: Morphological changes of carbon nanotubes in polyethylene matrices under oscillatory tests as determined by dielectrical measurements
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2011.05.010
– volume: 49
  start-page: 4846
  year: 2008
  ident: ref_45
  article-title: Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing
  publication-title: Polymer
  doi: 10.1016/j.polymer.2008.08.057
– volume: 442
  start-page: 282
  year: 2006
  ident: ref_25
  article-title: Graphene-based composite materials
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 78
  start-page: 245403
  year: 2008
  ident: ref_30
  article-title: Homogeneous large-area graphene layer growth on 6 H-SiC (0001)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.245403
– volume: 22
  start-page: 815
  year: 2008
  ident: ref_2
  article-title: Recent advances in nano-conductive adhesives
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/156856108X305471
– volume: 3
  start-page: 3130
  year: 2011
  ident: ref_26
  article-title: Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am200628c
– volume: 9
  start-page: 38
  year: 2006
  ident: ref_47
  article-title: Material challenge for flexible organic devices
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71446-8
– volume: 9
  start-page: 1752
  year: 2009
  ident: ref_33
  article-title: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties
  publication-title: Nano Lett.
  doi: 10.1021/nl803279t
SSID ssj0000913853
Score 2.1110587
Snippet In this study, we report a facile and green process to synthesize high-quality and few-layer graphene (FLG) derived from graphite via a liquid exfoliation...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 38
SubjectTerms conductive adhesives
flexiable
graphene
liquid exfoliation
polyvinylidene fluoride
Title Facile and Green Synthesis of Graphene-Based Conductive Adhesives via Liquid Exfoliation Process
URI https://www.ncbi.nlm.nih.gov/pubmed/30597905
https://www.proquest.com/docview/2162493386
https://pubmed.ncbi.nlm.nih.gov/PMC6358893
https://doaj.org/article/a825d01800b24ee0a69f48dc09e4b735
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB9a-2IfxNZ-xNpjBZ-EYJLd2-w-enJXkSqlKvgW9xMDsml7d9L-951N4pErQl98SSA7kM3M7M5vyMxvAQ6o8c5r41KTe5eykrK4pESqlSsYbspo8tiNfH7BT6_Z2c34ZnDUV6wJ6-iBO8UdKUxhbGSZynTBnMsUl54JazLpmC5py16KMW-QTLV7sMwpBqKuIY9iXn8UVGhiKUIWO1EGIahl6n8KXv5bJTkIO7Nt2OrxIjnu5vkGXrjwFl4PWAR34HamDK5tooIlbRkNufwTENfN6zlpPD5SsY7LpRMMWJacNCFSvOImR45tFHpwc_JQK_K1_rmsLZn-9s19Zy_SdxG8g-vZ9OrkNO0PTkgNY-Ui5WXhTEm9tNqOMb-wiJpyq7kwRW4wxdFc2kxqP0Y1MrxqDFPGlYXhllFmPH0PG6EJ7iMQqwoczPHGJNNSKGqoz4UxMneKl1kCh4-6rEzPKh4Pt7ivMLuIiq8Gik_gYCX8oyPTeFpsEo2yEokM2O0D9Iuq94vqf36RwP6jSStcMfE3iAquWc6rIuf4MZia8wQ-dCZevQp3PxkpyxIo14y_Npf1kVDftazciNwEgr_d55j8J9hEYCZi2Uwh9mBj8WvpPiP4WegRvBSzLyN4NZlefPs-ar3-L11kB88
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+and+Green+Synthesis+of+Graphene-Based+Conductive+Adhesives+via+Liquid+Exfoliation+Process&rft.jtitle=Nanomaterials+%28Basel%2C+Switzerland%29&rft.au=Jhao-Yi+Wu&rft.au=Yi-Chin+Lai&rft.au=Chien-Liang+Chang&rft.au=Wu-Ching+Hung&rft.date=2018-12-28&rft.pub=MDPI+AG&rft.eissn=2079-4991&rft.volume=9&rft.issue=1&rft.spage=38&rft_id=info:doi/10.3390%2Fnano9010038&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a825d01800b24ee0a69f48dc09e4b735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-4991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-4991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-4991&client=summon