DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conf...
Saved in:
Published in | Nucleic acids research Vol. 50; no. 9; pp. 4974 - 4987 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
20.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced ‘power stroke’ to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site (‘safety belt’), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function. |
---|---|
AbstractList | Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function. Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced ‘power stroke’ to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site (‘safety belt’), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function. |
Author | Carlon, Enrico Marko, John F Gruber, Stephan Nomidis, Stefanos K |
Author_xml | – sequence: 1 givenname: Stefanos K surname: Nomidis fullname: Nomidis, Stefanos K organization: Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium, Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium – sequence: 2 givenname: Enrico surname: Carlon fullname: Carlon, Enrico organization: Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium – sequence: 3 givenname: Stephan surname: Gruber fullname: Gruber, Stephan organization: Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland – sequence: 4 givenname: John F orcidid: 0000-0003-4151-9530 surname: Marko fullname: Marko, John F organization: Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35474142$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1v1DAQxS1URLeFE3fkIxIK9Wc2uSBVCy1IBQ7A2Ro7k2Jw7MVOqu5_j5duESBOljzv_Z5m3gk5iikiIU85e8lZL88i5LPr7-BE2z0gKy5b0ai-FUdkxSTTDWeqOyYnpXxjjCuu1SNyLLVaK67EiuTXH87pjLH4FJspDUuAGQc6Z4glJAdz_acQBxpS2lK8nfOyl1K7o5_eb6hL0zbgLRaa8QYhVGudTCmgq6RMh12EybtCi5_26Gotj8nDEULBJ4f3lHy5ePN587a5-nj5bnN-1Til1nPTag4oNfSDAqGt7XqlQHNp2cg1orRrGJhmoxZ8DWPrbKdtOyjHe5Sd5U6ekld33O1iJxwcxrpVMNvsJ8g7k8CbvyfRfzXX6cb0XAgtdAU8PwBy-rFgmc3ki8MQIGJaihGtbgXjvRRV-uzPrN8h94euAn4ncDmVknE0zs-_7lGjfTCcmX2ZppZpDmVWz4t_PPfY_6l_AmCepfU |
CitedBy_id | crossref_primary_10_1016_j_molcel_2022_11_015 crossref_primary_10_1016_j_celrep_2022_111273 crossref_primary_10_1016_j_celrep_2022_111491 crossref_primary_10_1038_s41586_023_05961_5 crossref_primary_10_1016_j_bpj_2022_10_017 crossref_primary_10_1016_j_sbi_2022_102485 crossref_primary_10_7554_eLife_68745 crossref_primary_10_1016_j_cell_2024_10_026 crossref_primary_10_1016_j_gde_2023_102061 crossref_primary_10_3390_dna4010005 crossref_primary_10_1038_s41467_023_39696_8 crossref_primary_10_1126_science_adi8308 crossref_primary_10_1103_PhysRevResearch_7_013044 crossref_primary_10_1042_BST20240650 crossref_primary_10_1111_1751_7915_14257 crossref_primary_10_1038_s42003_024_06557_z crossref_primary_10_1016_j_sbi_2023_102598 crossref_primary_10_1016_j_molcel_2023_09_019 crossref_primary_10_1038_s41598_023_35359_2 crossref_primary_10_1016_j_cell_2025_02_028 crossref_primary_10_1126_sciadv_adt1832 crossref_primary_10_3389_fcell_2023_1214962 crossref_primary_10_1016_j_physrep_2024_04_002 crossref_primary_10_1146_annurev_biochem_032620_110506 crossref_primary_10_1007_s10867_024_09661_7 |
Cites_doi | 10.1016/S0006-3495(99)77207-3 10.1074/jbc.M402439200 10.1006/jcph.1995.1039 10.15252/embj.2021107807 10.1016/j.cell.2016.01.033 10.1103/PhysRevLett.119.138101 10.1016/0092-8674(94)90254-2 10.1126/science.aan6516 10.1093/nar/gkab1268 10.1038/s41467-021-26167-1 10.7554/eLife.59560 10.1016/j.molcel.2019.05.023 10.7554/eLife.53558 10.1101/2021.10.29.466147 10.1073/pnas.1907009116 10.1038/emboj.2010.315 10.1038/s41594-020-0379-7 10.1038/s41594-020-0508-3 10.1093/nar/gkt303 10.1016/S0092-8674(01)80007-6 10.1073/pnas.1518552112 10.1016/j.celrep.2016.04.085 10.1016/j.cell.2017.12.027 10.1016/j.ceb.2021.12.003 10.1146/annurev.genet.35.102401.091334 10.1038/nature07098 10.1038/s41594-019-0196-z 10.1038/s41598-017-14701-5 10.1016/j.molcel.2021.10.011 10.1093/emboj/cdf575 10.1074/jbc.M115.670794 10.1038/ncomms14011 10.1093/nar/gkaa871 10.7554/eLife.53885 10.1073/pnas.90.11.5307 10.1038/s41594-020-0457-x 10.1016/j.cub.2018.08.034 10.1016/j.bpj.2021.11.015 10.1101/gad.9.5.587 10.1093/nar/gkq038 10.1093/nar/gks925 10.1016/j.molcel.2020.11.011 10.1073/pnas.2026844118 10.1126/science.1227126 10.1093/nar/gkz696 10.1016/j.molcel.2020.07.013 10.1126/science.aao6135 10.1016/j.molcel.2017.06.010 10.7554/eLife.14864 10.1083/jcb.123.6.1635 10.7554/eLife.31522 10.1016/j.sbi.2020.06.009 10.1016/j.molcel.2019.05.001 10.1016/j.cell.2017.09.008 10.1016/j.jmb.2015.07.015 10.7554/eLife.67268 10.1016/j.celrep.2016.01.063 10.1101/2021.07.15.452501 10.1002/j.1460-2075.1991.tb07935.x 10.1016/j.molcel.2020.11.012 10.1126/science.aai8982 10.1093/emboj/17.23.7139 10.1016/j.molcel.2020.04.026 10.1093/nar/gkz497 10.1126/science.1256917 10.1126/science.aaz3418 10.1126/science.abb0981 10.1016/j.molcel.2020.02.003 10.1016/j.molcel.2014.11.023 10.7554/eLife.06659 10.15252/embj.201797596 10.1038/nsmb.2087 10.1038/s41594-018-0135-4 10.15252/embj.201592462 10.1038/s41586-020-2067-5 10.1016/j.cub.2004.04.038 10.1016/j.bpj.2016.02.041 10.1016/S0092-8674(01)80008-8 10.1126/science.aar7831 10.1038/s41594-021-00626-1 10.1126/science.aaz4475 10.1016/j.cell.2021.09.016 10.15252/embj.201592934 10.1016/j.celrep.2016.04.003 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkac268 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 4987 |
ExternalDocumentID | PMC9122525 35474142 10_1093_nar_gkac268 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA193419 – fundername: NHGRI NIH HHS grantid: UM1 HG011536 – fundername: NIGMS NIH HHS grantid: R01 GM105847 – fundername: ; grantid: VITO-FWO 11.59.71.7N – fundername: ; grantid: R01GM105847; U54CA193419; UM1-HG011536 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAVAP AAYXX ABEJV ABGNP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ACUTJ ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFYAG AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS BAWUL BAYMD BCNDV CAG CIDKT CITATION CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI OAWHX OBC OBS OEB OES OJQWA OVT P2P PEELM PQQKQ R44 RD5 RNS ROL ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c447t-651ae35a9d4a25bb8944a513b0f15ee3b7ad050f5217af6cb85b6d4c19e38b1c3 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:10:47 EDT 2025 Fri Jul 11 00:59:01 EDT 2025 Mon Jul 21 06:07:28 EDT 2025 Tue Jul 01 02:59:14 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-651ae35a9d4a25bb8944a513b0f15ee3b7ad050f5217af6cb85b6d4c19e38b1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4151-9530 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkac268 |
PMID | 35474142 |
PQID | 2656201932 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9122525 proquest_miscellaneous_2656201932 pubmed_primary_35474142 crossref_citationtrail_10_1093_nar_gkac268 crossref_primary_10_1093_nar_gkac268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-20 |
PublicationDateYYYYMMDD | 2022-05-20 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2022 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Ryu (2022052021440845500_B54) 2022; 50 Chapard (2022052021440845500_B62) 2019; 75 Giuntoli (2022052021440845500_B78) 2015; 427 Hirano (2022052021440845500_B55) 2002; 21 Marko (2022052021440845500_B42) 2019; 47 Kim (2022052021440845500_B39) 2019; 366 Badrinarayanan (2022052021440845500_B79) 2012; 338 Davidson (2022052021440845500_B38) 2019; 366 Ryu (2022052021440845500_B48) 2020; 27 Haering (2022052021440845500_B22) 2008; 454 Rajasekar (2022052021440845500_B81) 2019; 47 Kong (2022052021440845500_B41) 2020; 79 Hirano (2022052021440845500_B14) 1998; 17 Hirano (2022052021440845500_B4) 1994; 79 Muir (2022052021440845500_B70) 2020; 27 Lawrimore (2022052021440845500_B44) 2017 Brandão (2022052021440845500_B76) 2019; 116 Wilhelm (2022052021440845500_B24) 2015; 4 Pradhan (2022052021440845500_B82) 2021 Cuylen (2022052021440845500_B23) 2011; 18 Bürmann (2022052021440845500_B28) 2021; 81 Shaltiel (2022052021440845500_B67) 2021 Lee (2022052021440845500_B20) 2020; 27 Strick (2022052021440845500_B35) 2004; 14 Guacci (2022052021440845500_B10) 1997; 91 Michaelis (2022052021440845500_B11) 1997; 91 Lioy (2022052021440845500_B17) 2018; 172 Uchiyama (2022052021440845500_B60) 2015; 290 He (2022052021440845500_B74) 2020; 48 Eeftens (2022052021440845500_B77) 2016; 14 Nunez (2022052021440845500_B25) 2019; 75 Taschner (2022052021440845500_B52) 2021; 40 Serrano (2022052021440845500_B29) 2020; 80 Petela (2022052021440845500_B53) 2021; 10 Bürmann (2022052021440845500_B26) 2019; 26 Hirano (2022052021440845500_B21) 2016; 164 Kim (2022052021440845500_B84) 2020; 579 Shi (2022052021440845500_B27) 2020; 368 Hassler (2022052021440845500_B49) 2018; 28 Seifert (2022052021440845500_B64) 2016; 35 Higashi (2022052021440845500_B83) 2022; 74 Golfier (2022052021440845500_B40) 2020; 9 Gutierrez-Escribano (2022052021440845500_B30) 2020; 80 Stigler (2022052021440845500_B75) 2016; 15 Banigan (2022052021440845500_B69) 2020; 9 Diebold-Durand (2022052021440845500_B19) 2017; 67 Bouchiat (2022052021440845500_B73) 1999; 76 Yu (2022052021440845500_B51) 2021; 118 Goloborodko (2022052021440845500_B7) 2016; 5 Gligoris (2022052021440845500_B68) 2014; 346 Fudenberg (2022052021440845500_B13) 2016; 15 Goloborodko (2022052021440845500_B6) 2016; 110 Sun (2022052021440845500_B59) 2013; 41 Niki (2022052021440845500_B16) 1991; 10 Alt (2022052021440845500_B61) 2017; 8 Bauer (2022052021440845500_B50) 2021; 184 Datta (2022052021440845500_B3) 2020; 65 Eeftens (2022052021440845500_B33) 2017; 36 Sanborn (2022052021440845500_B12) 2015; 112 Nichols (2022052021440845500_B43) 2018; 25 Griese (2022052021440845500_B57) 2010; 38 Rybenkov (2022052021440845500_B72) 1993; 90 Mäkelä (2022052021440845500_B18) 2020; 78 Higashi (2022052021440845500_B66) 2020; 79 Alipour (2022052021440845500_B2) 2012; 40 Collier (2022052021440845500_B63) 2020; 9 Brandão (2022052021440845500_B85) 2021; 28 Strunnikov (2022052021440845500_B5) 1995; 9 Gibcus (2022052021440845500_B8) 2018; 359 Kschonsak (2022052021440845500_B32) 2017; 171 Ganji (2022052021440845500_B37) 2018; 360 Strunnikov (2022052021440845500_B9) 1993; 123 Keenholtz (2022052021440845500_B34) 2017; 7 Terakawa (2022052021440845500_B36) 2017; 358 Kurze (2022052021440845500_B58) 2011; 30 Nasmyth (2022052021440845500_B1) 2001; 35 Chiu (2022052021440845500_B56) 2004; 279 Liu (2022052021440845500_B65) 2016; 35 Bonato (2022052021440845500_B46) 2021; 120 Soh (2022052021440845500_B31) 2015; 57 Brackley (2022052021440845500_B45) 2017; 119 Wang (2022052021440845500_B15) 2017; 355 Plimpton (2022052021440845500_B71) 1995; 117 Zawadzka (2022052021440845500_B80) 2018; 7 Takaki (2022052021440845500_B47) 2021; 12 |
References_xml | – volume: 76 start-page: 409 year: 1999 ident: 2022052021440845500_B73 article-title: Estimating the persistence length of a worm-like chain molecule from force-extension measurements publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77207-3 – volume: 279 start-page: 26233 year: 2004 ident: 2022052021440845500_B56 article-title: DNA interaction and dimerization of eukaryotic SMC hinge domains publication-title: J. Biol. Chem. doi: 10.1074/jbc.M402439200 – volume: 117 start-page: 1 year: 1995 ident: 2022052021440845500_B71 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 40 start-page: e107807 year: 2021 ident: 2022052021440845500_B52 article-title: Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding publication-title: EMBO J doi: 10.15252/embj.2021107807 – volume: 164 start-page: 847 year: 2016 ident: 2022052021440845500_B21 article-title: Condensin-Based Chromosome Organization from Bacteria to Vertebrates publication-title: Cell doi: 10.1016/j.cell.2016.01.033 – volume: 119 start-page: 138101 year: 2017 ident: 2022052021440845500_B45 article-title: Nonequilibrium Chromosome Looping via Molecular Slip Links publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.138101 – volume: 79 start-page: 449 year: 1994 ident: 2022052021440845500_B4 article-title: A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro publication-title: Cell doi: 10.1016/0092-8674(94)90254-2 – volume: 358 start-page: 672 year: 2017 ident: 2022052021440845500_B36 article-title: The condensin complex is a mechanochemical motor that translocates along DNA publication-title: Science doi: 10.1126/science.aan6516 – volume: 50 start-page: 820 year: 2022 ident: 2022052021440845500_B54 article-title: Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab1268 – volume: 12 start-page: 5865 year: 2021 ident: 2022052021440845500_B47 article-title: Theory and simulations of condensin mediated loop extrusion in DNA publication-title: Nat. Commun. doi: 10.1038/s41467-021-26167-1 – volume: 9 start-page: e59560 year: 2020 ident: 2022052021440845500_B63 article-title: Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3 publication-title: Elife doi: 10.7554/eLife.59560 – volume: 75 start-page: 224 year: 2019 ident: 2022052021440845500_B62 article-title: Sister DNA entrapment between juxtaposed smc heads and kleisin of the cohesin complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.023 – volume: 9 start-page: e53558 year: 2020 ident: 2022052021440845500_B69 article-title: Chromosome organization by one-sided and two-sided loop extrusion publication-title: Elife doi: 10.7554/eLife.53558 – year: 2021 ident: 2022052021440845500_B67 article-title: A hold-and-feed mechanism drives directional DNA loop extrusion by condensin doi: 10.1101/2021.10.29.466147 – volume: 116 start-page: 20489 year: 2019 ident: 2022052021440845500_B76 article-title: RNA polymerases as moving barriers to condensin loop extrusion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1907009116 – volume: 30 start-page: 364 year: 2011 ident: 2022052021440845500_B58 article-title: A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion publication-title: EMBO J. doi: 10.1038/emboj.2010.315 – volume: 27 start-page: 233 year: 2020 ident: 2022052021440845500_B70 article-title: The structure of the cohesin ATPase elucidates the mechanism of SMC-kleisin ring opening publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0379-7 – volume: 27 start-page: 1134 year: 2020 ident: 2022052021440845500_B48 article-title: The condensin holocomplex cycles dynamically between open and collapsed states publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0508-3 – volume: 41 start-page: 6149 year: 2013 ident: 2022052021440845500_B59 article-title: The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt303 – volume: 91 start-page: 35 year: 1997 ident: 2022052021440845500_B11 article-title: Cohesins: chromosomal proteins that prevent premature separation of sister chromatids publication-title: Cell doi: 10.1016/S0092-8674(01)80007-6 – volume: 112 start-page: E6456 year: 2015 ident: 2022052021440845500_B12 article-title: Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1518552112 – volume: 15 start-page: 2038 year: 2016 ident: 2022052021440845500_B13 article-title: Formation of chromosomal domains by loop extrusion publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.04.085 – volume: 172 start-page: 771 year: 2018 ident: 2022052021440845500_B17 article-title: Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins publication-title: Cell doi: 10.1016/j.cell.2017.12.027 – volume: 74 start-page: 13 year: 2022 ident: 2022052021440845500_B83 article-title: SMC complexes: Lifting the lid on loop extrusion publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2021.12.003 – volume: 35 start-page: 673 year: 2001 ident: 2022052021440845500_B1 article-title: Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.35.102401.091334 – volume: 454 start-page: 297 year: 2008 ident: 2022052021440845500_B22 article-title: The cohesin ring concatenates sister DNA molecules publication-title: Nature doi: 10.1038/nature07098 – volume: 26 start-page: 227 year: 2019 ident: 2022052021440845500_B26 article-title: A folded conformation of MukBEF and cohesin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-019-0196-z – volume: 7 start-page: 14279 year: 2017 ident: 2022052021440845500_B34 article-title: Oligomerization and ATP stimulate condensin-mediated DNA compaction publication-title: Sci. Rep. doi: 10.1038/s41598-017-14701-5 – volume: 81 start-page: 4891 year: 2021 ident: 2022052021440845500_B28 article-title: Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.10.011 – volume: 21 start-page: 5733 year: 2002 ident: 2022052021440845500_B55 article-title: Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA publication-title: EMBO J. doi: 10.1093/emboj/cdf575 – volume: 290 start-page: 29461 year: 2015 ident: 2022052021440845500_B60 article-title: Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.670794 – volume: 8 start-page: 14011 year: 2017 ident: 2022052021440845500_B61 article-title: Specialized interfaces of Smc5/6 control hinge stability and DNA association publication-title: Nat. Commun. doi: 10.1038/ncomms14011 – volume: 48 start-page: 11284 year: 2020 ident: 2022052021440845500_B74 article-title: Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkaa871 – volume: 9 start-page: e53885 year: 2020 ident: 2022052021440845500_B40 article-title: Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner publication-title: Elife doi: 10.7554/eLife.53885 – volume: 90 start-page: 5307 year: 1993 ident: 2022052021440845500_B72 article-title: Probability of DNA knotting and the effective diameter of the DNA double helix publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.11.5307 – volume: 27 start-page: 743 year: 2020 ident: 2022052021440845500_B20 article-title: Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0457-x – volume: 28 start-page: R1266 year: 2018 ident: 2022052021440845500_B49 article-title: Towards a Unified Model of SMC Complex Function publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.08.034 – volume: 120 start-page: 5544 year: 2021 ident: 2022052021440845500_B46 article-title: Three-dimensional loop extrusion publication-title: Biophys. J doi: 10.1016/j.bpj.2021.11.015 – volume: 9 start-page: 587 year: 1995 ident: 2022052021440845500_B5 article-title: SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family publication-title: Genes Dev. doi: 10.1101/gad.9.5.587 – volume: 38 start-page: 3454 year: 2010 ident: 2022052021440845500_B57 article-title: Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq038 – volume: 40 start-page: 11202 year: 2012 ident: 2022052021440845500_B2 article-title: Self-organization of domain structures by DNA-loop-extruding enzymes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks925 – volume: 80 start-page: 1025 year: 2020 ident: 2022052021440845500_B29 article-title: The Smc5/6 Core Complex Is a Structure-Specific DNA Binding and Compacting Machine publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.11.011 – volume: 118 start-page: e2026844118 year: 2021 ident: 2022052021440845500_B51 article-title: Integrative analysis reveals unique structural and functional features of the Smc5/6 complex publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2026844118 – volume: 338 start-page: 528 year: 2012 ident: 2022052021440845500_B79 article-title: In vivo architecture and action of bacterial structural maintenance of chromosome proteins publication-title: Science doi: 10.1126/science.1227126 – volume: 47 start-page: 9696 year: 2019 ident: 2022052021440845500_B81 article-title: Dynamic architecture of the Escherichia coli structural maintenance of chromosomes (SMC) complex, MukBEF publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz696 – volume: 79 start-page: 917 year: 2020 ident: 2022052021440845500_B66 article-title: A Structure-Based Mechanism for DNA Entry into the Cohesin Ring publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.07.013 – volume: 359 start-page: eaao6135 year: 2018 ident: 2022052021440845500_B8 article-title: A pathway for mitotic chromosome formation publication-title: Science doi: 10.1126/science.aao6135 – volume: 67 start-page: 334 year: 2017 ident: 2022052021440845500_B19 article-title: Structure of full-length SMC and rearrangements required for chromosome organization publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.06.010 – volume: 5 start-page: e14864 year: 2016 ident: 2022052021440845500_B7 article-title: Compaction and segregation of sister chromatids via active loop extrusion publication-title: eLife doi: 10.7554/eLife.14864 – volume: 123 start-page: 1635 year: 1993 ident: 2022052021440845500_B9 article-title: SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family publication-title: J. Cell Biol. doi: 10.1083/jcb.123.6.1635 – volume: 7 start-page: e31522 year: 2018 ident: 2022052021440845500_B80 article-title: MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin publication-title: Elife doi: 10.7554/eLife.31522 – volume: 65 start-page: 102 year: 2020 ident: 2022052021440845500_B3 article-title: Structural insights into DNA loop extrusion by SMC protein complexes publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2020.06.009 – volume: 75 start-page: 209 year: 2019 ident: 2022052021440845500_B25 article-title: Transient DNA occupancy of the SMC interarm space in prokaryotic condensin publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.05.001 – volume: 171 start-page: 588 year: 2017 ident: 2022052021440845500_B32 article-title: Structural basis for a safety-belt mechanism that anchors condensin to chromosomes publication-title: Cell doi: 10.1016/j.cell.2017.09.008 – volume: 427 start-page: 3123 year: 2015 ident: 2022052021440845500_B78 article-title: DNA-segment-facilitated dissociation of Fis and NHP6A from DNA detected via single-molecule mechanical response publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.07.015 – volume: 10 start-page: e67268 year: 2021 ident: 2022052021440845500_B53 article-title: Folding of cohesin’s coiled coil is important for Scc2/4-induced association with chromosomes publication-title: Elife doi: 10.7554/eLife.67268 – volume: 14 start-page: 1813 year: 2016 ident: 2022052021440845500_B77 article-title: Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.063 – year: 2021 ident: 2022052021440845500_B82 article-title: SMC complexes can traverse physical roadblocks bigger than their ring size doi: 10.1101/2021.07.15.452501 – volume: 10 start-page: 183 year: 1991 ident: 2022052021440845500_B16 article-title: The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E coli publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07935.x – volume: 80 start-page: 1039 year: 2020 ident: 2022052021440845500_B30 article-title: Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction publication-title: Mol Cell doi: 10.1016/j.molcel.2020.11.012 – volume: 355 start-page: 524 year: 2017 ident: 2022052021440845500_B15 article-title: Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus publication-title: Science doi: 10.1126/science.aai8982 – volume: 17 start-page: 7139 year: 1998 ident: 2022052021440845500_B14 article-title: ATP-dependent aggregation of single-stranded DNA by a bacterial SMC homodimer publication-title: EMBO J. doi: 10.1093/emboj/17.23.7139 – volume: 79 start-page: 99 year: 2020 ident: 2022052021440845500_B41 article-title: Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.026 – volume: 47 start-page: 6956 year: 2019 ident: 2022052021440845500_B42 article-title: DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz497 – volume: 346 start-page: 963 year: 2014 ident: 2022052021440845500_B68 article-title: Closing the cohesin ring: structure and function of its Smc3-kleisin interface publication-title: Science doi: 10.1126/science.1256917 – volume: 366 start-page: 1338 year: 2019 ident: 2022052021440845500_B38 article-title: DNA loop extrusion by human cohesin publication-title: Science doi: 10.1126/science.aaz3418 – volume: 368 start-page: 1454 year: 2020 ident: 2022052021440845500_B27 article-title: Cryo-EM structure of the human cohesin-NIPBL-DNA complex publication-title: Science doi: 10.1126/science.abb0981 – volume: 78 start-page: 250 year: 2020 ident: 2022052021440845500_B18 article-title: Organization of the Escherichia coli chromosome by a MukBEF axial core publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.003 – volume: 57 start-page: 290 year: 2015 ident: 2022052021440845500_B31 article-title: Molecular basis for SMC rod formation and its dissolution upon DNA binding publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.11.023 – volume: 4 start-page: e06659 year: 2015 ident: 2022052021440845500_B24 article-title: SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis publication-title: Elife doi: 10.7554/eLife.06659 – start-page: 101 volume-title: Cold Spring Harb. Symp. Quant. Biol year: 2017 ident: 2022052021440845500_B44 article-title: RotoStep: a chromosome dynamics simulator reveals mechanisms of loop extrusion – volume: 36 start-page: 3448 year: 2017 ident: 2022052021440845500_B33 article-title: Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism publication-title: EMBO J. doi: 10.15252/embj.201797596 – volume: 18 start-page: 894 year: 2011 ident: 2022052021440845500_B23 article-title: Condensin structures chromosomal DNA through topological links publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2087 – volume: 25 start-page: 906 year: 2018 ident: 2022052021440845500_B43 article-title: A tethered-inchworm model of SMC DNA translocation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0135-4 – volume: 35 start-page: 743 year: 2016 ident: 2022052021440845500_B65 article-title: ATP-dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex publication-title: EMBO J. doi: 10.15252/embj.201592462 – volume: 579 start-page: 438 year: 2020 ident: 2022052021440845500_B84 article-title: DNA-loop extruding condensin complexes can traverse one another publication-title: Nature doi: 10.1038/s41586-020-2067-5 – volume: 14 start-page: 874 year: 2004 ident: 2022052021440845500_B35 article-title: Real-time detection of single-molecule DNA compaction by condensin I publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.04.038 – volume: 110 start-page: 2162 year: 2016 ident: 2022052021440845500_B6 article-title: Chromosome compaction by active loop extrusion publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.02.041 – volume: 91 start-page: 47 year: 1997 ident: 2022052021440845500_B10 article-title: A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae publication-title: Cell doi: 10.1016/S0092-8674(01)80008-8 – volume: 360 start-page: 102 year: 2018 ident: 2022052021440845500_B37 article-title: Real-time imaging of DNA loop extrusion by condensin publication-title: Science doi: 10.1126/science.aar7831 – volume: 28 start-page: 642 year: 2021 ident: 2022052021440845500_B85 article-title: DNA-loop-extruding SMC complexes can traverse one another in vivo publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00626-1 – volume: 366 start-page: 1345 year: 2019 ident: 2022052021440845500_B39 article-title: Human cohesin compacts DNA by loop extrusion publication-title: Science doi: 10.1126/science.aaz4475 – volume: 184 start-page: 5448 year: 2021 ident: 2022052021440845500_B50 article-title: Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism publication-title: Cell doi: 10.1016/j.cell.2021.09.016 – volume: 35 start-page: 759 year: 2016 ident: 2022052021440845500_B64 article-title: Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50 publication-title: EMBO J. doi: 10.15252/embj.201592934 – volume: 15 start-page: 988 year: 2016 ident: 2022052021440845500_B75 article-title: Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.04.003 |
SSID | ssj0014154 |
Score | 2.5396833 |
Snippet | Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4974 |
SubjectTerms | Adenosine Triphosphate - metabolism Cell Cycle Proteins - metabolism Chromosomes - metabolism DNA - chemistry Gene regulation, Chromatin and Epigenetics Humans Molecular Conformation Molecular Dynamics Simulation Translocation, Genetic |
Title | DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35474142 https://www.proquest.com/docview/2656201932 https://pubmed.ncbi.nlm.nih.gov/PMC9122525 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHOCCYONH-TEZaeJAFZbEdpMcq9JqQls5rJV6i-zEGRVtMrUpYvz1vBc7aUp7GFyiKrZeo3yfXz7bz-8RcibDIJICx3cmpcO9TDtKMNfxvQT4EWYgyXFp4Grcu5jyrzMx224XVKdLSvU5-X3wXMn_oAr3AFc8JfsPyDZG4Qb8BnzhCgjD9V4Yfxn3u1UEepE7yyLFSlygH0v8_OA3qqxDjRdFcdsFL7zaYFdUnNdXAxNNrn9p3Dj4iXqx0qLLul5uNzXF6tfd9Xxpi3yt21p2jKmQMd1rMk_RRmtdrIqZXc5Tk8DgutSZzIv1dkl1IFeLuogIOOJiGwW0UbYSGEafbZmLR4qKOnTYRiPbtQqY5rrC8d2We63OaEXW_-oD96xPFm6Le1HLwfLIFPXZ8_wmK1aOUemjmx8y8U21nt0M2-Nv8Wh6eRlPhrPJQ_LIh6kFVr0I3GGz8wSCxhRCtk9lz3SC-XMwfm5N76qYvanJ3xG2LckyeUae2rkG7RviPCcPdH5MTvq5LIvlHf1Iq-jfalvlmDwe1JX_TsgKeEX3eEV3eEWBVxR5RRteUXVHgVe04RWteYUtDa9ozSva4tULMh0NJ4MLx9bmcBLOg9LpCU9qJmSUcukLpcKIcxjzTLmZJ7RmKpCpK9wM1GEgs16iQqF6KU-8SLNQeQl7SY7yItevCY20DlnKtAySkKeMgRkdKMZcHQAcSnbIp_pdx4lNXI_1UxaxCaBgMQATW2A65KzpfGvytRzu9qEGLYaXi5tkMtfFZh37MMEBUQzTmg55ZUBsDDHBQYBzaAl24G06YK723ZZ8_r3K2R558OH0xZt7_O9b8mQ7dt6RIwBRvwflW6rTiqqn1brRH7GKurI |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+tension-modulated+translocation+and+loop+extrusion+by+SMC+complexes+revealed+by+molecular+dynamics+simulations&rft.jtitle=Nucleic+acids+research&rft.au=Nomidis%2C+Stefanos+K&rft.au=Carlon%2C+Enrico&rft.au=Gruber%2C+Stephan&rft.au=Marko%2C+John+F&rft.date=2022-05-20&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=50&rft.issue=9&rft.spage=4974&rft_id=info:doi/10.1093%2Fnar%2Fgkac268&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |