DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations

Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conf...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 50; no. 9; pp. 4974 - 4987
Main Authors Nomidis, Stefanos K, Carlon, Enrico, Gruber, Stephan, Marko, John F
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced ‘power stroke’ to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site (‘safety belt’), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
AbstractList Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced 'power stroke' to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site ('safety belt'), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities of these large (≈50 nm) complexes are controlled by ATP binding and hydrolysis, we developed a molecular dynamics model that accounts for conformational motions of the SMC and DNA. The model combines DNA loop capture with an ATP-induced ‘power stroke’ to translocate the SMC complex along DNA. This process is sensitive to DNA tension: at low tension (0.1 pN), the model makes loop-capture steps of average 60 nm and up to 200 nm along DNA (larger than the complex itself), while at higher tension, a distinct inchworm-like translocation mode appears. By tethering DNA to an experimentally-observed additional binding site (‘safety belt’), the model SMC complex can perform loop extrusion (LE). The dependence of LE on DNA tension is distinct for fixed DNA tension vs. fixed DNA end points: LE reversal occurs above 0.5 pN for fixed tension, while LE stalling without reversal occurs at about 2 pN for fixed end points. Our model matches recent experimental results for condensin and cohesin, and makes testable predictions for how specific structural variations affect SMC function.
Author Carlon, Enrico
Marko, John F
Gruber, Stephan
Nomidis, Stefanos K
Author_xml – sequence: 1
  givenname: Stefanos K
  surname: Nomidis
  fullname: Nomidis, Stefanos K
  organization: Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium, Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium
– sequence: 2
  givenname: Enrico
  surname: Carlon
  fullname: Carlon, Enrico
  organization: Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
– sequence: 3
  givenname: Stephan
  surname: Gruber
  fullname: Gruber, Stephan
  organization: Départment de Microbiologie Fondamentale, Université de Lausanne, 1015 Lausanne, Switzerland
– sequence: 4
  givenname: John F
  orcidid: 0000-0003-4151-9530
  surname: Marko
  fullname: Marko, John F
  organization: Department of Physics and Astronomy, and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35474142$$D View this record in MEDLINE/PubMed
BookMark eNptkc1v1DAQxS1URLeFE3fkIxIK9Wc2uSBVCy1IBQ7A2Ro7k2Jw7MVOqu5_j5duESBOljzv_Z5m3gk5iikiIU85e8lZL88i5LPr7-BE2z0gKy5b0ai-FUdkxSTTDWeqOyYnpXxjjCuu1SNyLLVaK67EiuTXH87pjLH4FJspDUuAGQc6Z4glJAdz_acQBxpS2lK8nfOyl1K7o5_eb6hL0zbgLRaa8QYhVGudTCmgq6RMh12EybtCi5_26Gotj8nDEULBJ4f3lHy5ePN587a5-nj5bnN-1Til1nPTag4oNfSDAqGt7XqlQHNp2cg1orRrGJhmoxZ8DWPrbKdtOyjHe5Sd5U6ekld33O1iJxwcxrpVMNvsJ8g7k8CbvyfRfzXX6cb0XAgtdAU8PwBy-rFgmc3ki8MQIGJaihGtbgXjvRRV-uzPrN8h94euAn4ncDmVknE0zs-_7lGjfTCcmX2ZppZpDmVWz4t_PPfY_6l_AmCepfU
CitedBy_id crossref_primary_10_1016_j_molcel_2022_11_015
crossref_primary_10_1016_j_celrep_2022_111273
crossref_primary_10_1016_j_celrep_2022_111491
crossref_primary_10_1038_s41586_023_05961_5
crossref_primary_10_1016_j_bpj_2022_10_017
crossref_primary_10_1016_j_sbi_2022_102485
crossref_primary_10_7554_eLife_68745
crossref_primary_10_1016_j_cell_2024_10_026
crossref_primary_10_1016_j_gde_2023_102061
crossref_primary_10_3390_dna4010005
crossref_primary_10_1038_s41467_023_39696_8
crossref_primary_10_1126_science_adi8308
crossref_primary_10_1103_PhysRevResearch_7_013044
crossref_primary_10_1042_BST20240650
crossref_primary_10_1111_1751_7915_14257
crossref_primary_10_1038_s42003_024_06557_z
crossref_primary_10_1016_j_sbi_2023_102598
crossref_primary_10_1016_j_molcel_2023_09_019
crossref_primary_10_1038_s41598_023_35359_2
crossref_primary_10_1016_j_cell_2025_02_028
crossref_primary_10_1126_sciadv_adt1832
crossref_primary_10_3389_fcell_2023_1214962
crossref_primary_10_1016_j_physrep_2024_04_002
crossref_primary_10_1146_annurev_biochem_032620_110506
crossref_primary_10_1007_s10867_024_09661_7
Cites_doi 10.1016/S0006-3495(99)77207-3
10.1074/jbc.M402439200
10.1006/jcph.1995.1039
10.15252/embj.2021107807
10.1016/j.cell.2016.01.033
10.1103/PhysRevLett.119.138101
10.1016/0092-8674(94)90254-2
10.1126/science.aan6516
10.1093/nar/gkab1268
10.1038/s41467-021-26167-1
10.7554/eLife.59560
10.1016/j.molcel.2019.05.023
10.7554/eLife.53558
10.1101/2021.10.29.466147
10.1073/pnas.1907009116
10.1038/emboj.2010.315
10.1038/s41594-020-0379-7
10.1038/s41594-020-0508-3
10.1093/nar/gkt303
10.1016/S0092-8674(01)80007-6
10.1073/pnas.1518552112
10.1016/j.celrep.2016.04.085
10.1016/j.cell.2017.12.027
10.1016/j.ceb.2021.12.003
10.1146/annurev.genet.35.102401.091334
10.1038/nature07098
10.1038/s41594-019-0196-z
10.1038/s41598-017-14701-5
10.1016/j.molcel.2021.10.011
10.1093/emboj/cdf575
10.1074/jbc.M115.670794
10.1038/ncomms14011
10.1093/nar/gkaa871
10.7554/eLife.53885
10.1073/pnas.90.11.5307
10.1038/s41594-020-0457-x
10.1016/j.cub.2018.08.034
10.1016/j.bpj.2021.11.015
10.1101/gad.9.5.587
10.1093/nar/gkq038
10.1093/nar/gks925
10.1016/j.molcel.2020.11.011
10.1073/pnas.2026844118
10.1126/science.1227126
10.1093/nar/gkz696
10.1016/j.molcel.2020.07.013
10.1126/science.aao6135
10.1016/j.molcel.2017.06.010
10.7554/eLife.14864
10.1083/jcb.123.6.1635
10.7554/eLife.31522
10.1016/j.sbi.2020.06.009
10.1016/j.molcel.2019.05.001
10.1016/j.cell.2017.09.008
10.1016/j.jmb.2015.07.015
10.7554/eLife.67268
10.1016/j.celrep.2016.01.063
10.1101/2021.07.15.452501
10.1002/j.1460-2075.1991.tb07935.x
10.1016/j.molcel.2020.11.012
10.1126/science.aai8982
10.1093/emboj/17.23.7139
10.1016/j.molcel.2020.04.026
10.1093/nar/gkz497
10.1126/science.1256917
10.1126/science.aaz3418
10.1126/science.abb0981
10.1016/j.molcel.2020.02.003
10.1016/j.molcel.2014.11.023
10.7554/eLife.06659
10.15252/embj.201797596
10.1038/nsmb.2087
10.1038/s41594-018-0135-4
10.15252/embj.201592462
10.1038/s41586-020-2067-5
10.1016/j.cub.2004.04.038
10.1016/j.bpj.2016.02.041
10.1016/S0092-8674(01)80008-8
10.1126/science.aar7831
10.1038/s41594-021-00626-1
10.1126/science.aaz4475
10.1016/j.cell.2021.09.016
10.15252/embj.201592934
10.1016/j.celrep.2016.04.003
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
– notice: The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkac268
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 4987
ExternalDocumentID PMC9122525
35474142
10_1093_nar_gkac268
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA193419
– fundername: NHGRI NIH HHS
  grantid: UM1 HG011536
– fundername: NIGMS NIH HHS
  grantid: R01 GM105847
– fundername: ;
  grantid: VITO-FWO 11.59.71.7N
– fundername: ;
  grantid: R01GM105847; U54CA193419; UM1-HG011536
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAVAP
AAYXX
ABEJV
ABGNP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ACUTJ
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFYAG
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AOIJS
BAWUL
BAYMD
BCNDV
CAG
CIDKT
CITATION
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVT
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c447t-651ae35a9d4a25bb8944a513b0f15ee3b7ad050f5217af6cb85b6d4c19e38b1c3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:10:47 EDT 2025
Fri Jul 11 00:59:01 EDT 2025
Mon Jul 21 06:07:28 EDT 2025
Tue Jul 01 02:59:14 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c447t-651ae35a9d4a25bb8944a513b0f15ee3b7ad050f5217af6cb85b6d4c19e38b1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4151-9530
OpenAccessLink http://dx.doi.org/10.1093/nar/gkac268
PMID 35474142
PQID 2656201932
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9122525
proquest_miscellaneous_2656201932
pubmed_primary_35474142
crossref_citationtrail_10_1093_nar_gkac268
crossref_primary_10_1093_nar_gkac268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-20
PublicationDateYYYYMMDD 2022-05-20
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Ryu (2022052021440845500_B54) 2022; 50
Chapard (2022052021440845500_B62) 2019; 75
Giuntoli (2022052021440845500_B78) 2015; 427
Hirano (2022052021440845500_B55) 2002; 21
Marko (2022052021440845500_B42) 2019; 47
Kim (2022052021440845500_B39) 2019; 366
Badrinarayanan (2022052021440845500_B79) 2012; 338
Davidson (2022052021440845500_B38) 2019; 366
Ryu (2022052021440845500_B48) 2020; 27
Haering (2022052021440845500_B22) 2008; 454
Rajasekar (2022052021440845500_B81) 2019; 47
Kong (2022052021440845500_B41) 2020; 79
Hirano (2022052021440845500_B14) 1998; 17
Hirano (2022052021440845500_B4) 1994; 79
Muir (2022052021440845500_B70) 2020; 27
Lawrimore (2022052021440845500_B44) 2017
Brandão (2022052021440845500_B76) 2019; 116
Wilhelm (2022052021440845500_B24) 2015; 4
Pradhan (2022052021440845500_B82) 2021
Cuylen (2022052021440845500_B23) 2011; 18
Bürmann (2022052021440845500_B28) 2021; 81
Shaltiel (2022052021440845500_B67) 2021
Lee (2022052021440845500_B20) 2020; 27
Strick (2022052021440845500_B35) 2004; 14
Guacci (2022052021440845500_B10) 1997; 91
Michaelis (2022052021440845500_B11) 1997; 91
Lioy (2022052021440845500_B17) 2018; 172
Uchiyama (2022052021440845500_B60) 2015; 290
He (2022052021440845500_B74) 2020; 48
Eeftens (2022052021440845500_B77) 2016; 14
Nunez (2022052021440845500_B25) 2019; 75
Taschner (2022052021440845500_B52) 2021; 40
Serrano (2022052021440845500_B29) 2020; 80
Petela (2022052021440845500_B53) 2021; 10
Bürmann (2022052021440845500_B26) 2019; 26
Hirano (2022052021440845500_B21) 2016; 164
Kim (2022052021440845500_B84) 2020; 579
Shi (2022052021440845500_B27) 2020; 368
Hassler (2022052021440845500_B49) 2018; 28
Seifert (2022052021440845500_B64) 2016; 35
Higashi (2022052021440845500_B83) 2022; 74
Golfier (2022052021440845500_B40) 2020; 9
Gutierrez-Escribano (2022052021440845500_B30) 2020; 80
Stigler (2022052021440845500_B75) 2016; 15
Banigan (2022052021440845500_B69) 2020; 9
Diebold-Durand (2022052021440845500_B19) 2017; 67
Bouchiat (2022052021440845500_B73) 1999; 76
Yu (2022052021440845500_B51) 2021; 118
Goloborodko (2022052021440845500_B7) 2016; 5
Gligoris (2022052021440845500_B68) 2014; 346
Fudenberg (2022052021440845500_B13) 2016; 15
Goloborodko (2022052021440845500_B6) 2016; 110
Sun (2022052021440845500_B59) 2013; 41
Niki (2022052021440845500_B16) 1991; 10
Alt (2022052021440845500_B61) 2017; 8
Bauer (2022052021440845500_B50) 2021; 184
Datta (2022052021440845500_B3) 2020; 65
Eeftens (2022052021440845500_B33) 2017; 36
Sanborn (2022052021440845500_B12) 2015; 112
Nichols (2022052021440845500_B43) 2018; 25
Griese (2022052021440845500_B57) 2010; 38
Rybenkov (2022052021440845500_B72) 1993; 90
Mäkelä (2022052021440845500_B18) 2020; 78
Higashi (2022052021440845500_B66) 2020; 79
Alipour (2022052021440845500_B2) 2012; 40
Collier (2022052021440845500_B63) 2020; 9
Brandão (2022052021440845500_B85) 2021; 28
Strunnikov (2022052021440845500_B5) 1995; 9
Gibcus (2022052021440845500_B8) 2018; 359
Kschonsak (2022052021440845500_B32) 2017; 171
Ganji (2022052021440845500_B37) 2018; 360
Strunnikov (2022052021440845500_B9) 1993; 123
Keenholtz (2022052021440845500_B34) 2017; 7
Terakawa (2022052021440845500_B36) 2017; 358
Kurze (2022052021440845500_B58) 2011; 30
Nasmyth (2022052021440845500_B1) 2001; 35
Chiu (2022052021440845500_B56) 2004; 279
Liu (2022052021440845500_B65) 2016; 35
Bonato (2022052021440845500_B46) 2021; 120
Soh (2022052021440845500_B31) 2015; 57
Brackley (2022052021440845500_B45) 2017; 119
Wang (2022052021440845500_B15) 2017; 355
Plimpton (2022052021440845500_B71) 1995; 117
Zawadzka (2022052021440845500_B80) 2018; 7
Takaki (2022052021440845500_B47) 2021; 12
References_xml – volume: 76
  start-page: 409
  year: 1999
  ident: 2022052021440845500_B73
  article-title: Estimating the persistence length of a worm-like chain molecule from force-extension measurements
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77207-3
– volume: 279
  start-page: 26233
  year: 2004
  ident: 2022052021440845500_B56
  article-title: DNA interaction and dimerization of eukaryotic SMC hinge domains
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M402439200
– volume: 117
  start-page: 1
  year: 1995
  ident: 2022052021440845500_B71
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 40
  start-page: e107807
  year: 2021
  ident: 2022052021440845500_B52
  article-title: Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding
  publication-title: EMBO J
  doi: 10.15252/embj.2021107807
– volume: 164
  start-page: 847
  year: 2016
  ident: 2022052021440845500_B21
  article-title: Condensin-Based Chromosome Organization from Bacteria to Vertebrates
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.033
– volume: 119
  start-page: 138101
  year: 2017
  ident: 2022052021440845500_B45
  article-title: Nonequilibrium Chromosome Looping via Molecular Slip Links
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.138101
– volume: 79
  start-page: 449
  year: 1994
  ident: 2022052021440845500_B4
  article-title: A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90254-2
– volume: 358
  start-page: 672
  year: 2017
  ident: 2022052021440845500_B36
  article-title: The condensin complex is a mechanochemical motor that translocates along DNA
  publication-title: Science
  doi: 10.1126/science.aan6516
– volume: 50
  start-page: 820
  year: 2022
  ident: 2022052021440845500_B54
  article-title: Condensin extrudes DNA loops in steps up to hundreds of base pairs that are generated by ATP binding events
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1268
– volume: 12
  start-page: 5865
  year: 2021
  ident: 2022052021440845500_B47
  article-title: Theory and simulations of condensin mediated loop extrusion in DNA
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26167-1
– volume: 9
  start-page: e59560
  year: 2020
  ident: 2022052021440845500_B63
  article-title: Transport of DNA within cohesin involves clamping on top of engaged heads by Scc2 and entrapment within the ring by Scc3
  publication-title: Elife
  doi: 10.7554/eLife.59560
– volume: 75
  start-page: 224
  year: 2019
  ident: 2022052021440845500_B62
  article-title: Sister DNA entrapment between juxtaposed smc heads and kleisin of the cohesin complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.023
– volume: 9
  start-page: e53558
  year: 2020
  ident: 2022052021440845500_B69
  article-title: Chromosome organization by one-sided and two-sided loop extrusion
  publication-title: Elife
  doi: 10.7554/eLife.53558
– year: 2021
  ident: 2022052021440845500_B67
  article-title: A hold-and-feed mechanism drives directional DNA loop extrusion by condensin
  doi: 10.1101/2021.10.29.466147
– volume: 116
  start-page: 20489
  year: 2019
  ident: 2022052021440845500_B76
  article-title: RNA polymerases as moving barriers to condensin loop extrusion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1907009116
– volume: 30
  start-page: 364
  year: 2011
  ident: 2022052021440845500_B58
  article-title: A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.315
– volume: 27
  start-page: 233
  year: 2020
  ident: 2022052021440845500_B70
  article-title: The structure of the cohesin ATPase elucidates the mechanism of SMC-kleisin ring opening
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0379-7
– volume: 27
  start-page: 1134
  year: 2020
  ident: 2022052021440845500_B48
  article-title: The condensin holocomplex cycles dynamically between open and collapsed states
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0508-3
– volume: 41
  start-page: 6149
  year: 2013
  ident: 2022052021440845500_B59
  article-title: The SMC1-SMC3 cohesin heterodimer structures DNA through supercoiling-dependent loop formation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt303
– volume: 91
  start-page: 35
  year: 1997
  ident: 2022052021440845500_B11
  article-title: Cohesins: chromosomal proteins that prevent premature separation of sister chromatids
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)80007-6
– volume: 112
  start-page: E6456
  year: 2015
  ident: 2022052021440845500_B12
  article-title: Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1518552112
– volume: 15
  start-page: 2038
  year: 2016
  ident: 2022052021440845500_B13
  article-title: Formation of chromosomal domains by loop extrusion
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.04.085
– volume: 172
  start-page: 771
  year: 2018
  ident: 2022052021440845500_B17
  article-title: Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.027
– volume: 74
  start-page: 13
  year: 2022
  ident: 2022052021440845500_B83
  article-title: SMC complexes: Lifting the lid on loop extrusion
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2021.12.003
– volume: 35
  start-page: 673
  year: 2001
  ident: 2022052021440845500_B1
  article-title: Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.35.102401.091334
– volume: 454
  start-page: 297
  year: 2008
  ident: 2022052021440845500_B22
  article-title: The cohesin ring concatenates sister DNA molecules
  publication-title: Nature
  doi: 10.1038/nature07098
– volume: 26
  start-page: 227
  year: 2019
  ident: 2022052021440845500_B26
  article-title: A folded conformation of MukBEF and cohesin
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-019-0196-z
– volume: 7
  start-page: 14279
  year: 2017
  ident: 2022052021440845500_B34
  article-title: Oligomerization and ATP stimulate condensin-mediated DNA compaction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14701-5
– volume: 81
  start-page: 4891
  year: 2021
  ident: 2022052021440845500_B28
  article-title: Cryo-EM structure of MukBEF reveals DNA loop entrapment at chromosomal unloading sites
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.10.011
– volume: 21
  start-page: 5733
  year: 2002
  ident: 2022052021440845500_B55
  article-title: Hinge-mediated dimerization of SMC protein is essential for its dynamic interaction with DNA
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf575
– volume: 290
  start-page: 29461
  year: 2015
  ident: 2022052021440845500_B60
  article-title: Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.670794
– volume: 8
  start-page: 14011
  year: 2017
  ident: 2022052021440845500_B61
  article-title: Specialized interfaces of Smc5/6 control hinge stability and DNA association
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14011
– volume: 48
  start-page: 11284
  year: 2020
  ident: 2022052021440845500_B74
  article-title: Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkaa871
– volume: 9
  start-page: e53885
  year: 2020
  ident: 2022052021440845500_B40
  article-title: Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner
  publication-title: Elife
  doi: 10.7554/eLife.53885
– volume: 90
  start-page: 5307
  year: 1993
  ident: 2022052021440845500_B72
  article-title: Probability of DNA knotting and the effective diameter of the DNA double helix
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.11.5307
– volume: 27
  start-page: 743
  year: 2020
  ident: 2022052021440845500_B20
  article-title: Cryo-EM structures of holo condensin reveal a subunit flip-flop mechanism
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0457-x
– volume: 28
  start-page: R1266
  year: 2018
  ident: 2022052021440845500_B49
  article-title: Towards a Unified Model of SMC Complex Function
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.08.034
– volume: 120
  start-page: 5544
  year: 2021
  ident: 2022052021440845500_B46
  article-title: Three-dimensional loop extrusion
  publication-title: Biophys. J
  doi: 10.1016/j.bpj.2021.11.015
– volume: 9
  start-page: 587
  year: 1995
  ident: 2022052021440845500_B5
  article-title: SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.5.587
– volume: 38
  start-page: 3454
  year: 2010
  ident: 2022052021440845500_B57
  article-title: Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq038
– volume: 40
  start-page: 11202
  year: 2012
  ident: 2022052021440845500_B2
  article-title: Self-organization of domain structures by DNA-loop-extruding enzymes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks925
– volume: 80
  start-page: 1025
  year: 2020
  ident: 2022052021440845500_B29
  article-title: The Smc5/6 Core Complex Is a Structure-Specific DNA Binding and Compacting Machine
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.11.011
– volume: 118
  start-page: e2026844118
  year: 2021
  ident: 2022052021440845500_B51
  article-title: Integrative analysis reveals unique structural and functional features of the Smc5/6 complex
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2026844118
– volume: 338
  start-page: 528
  year: 2012
  ident: 2022052021440845500_B79
  article-title: In vivo architecture and action of bacterial structural maintenance of chromosome proteins
  publication-title: Science
  doi: 10.1126/science.1227126
– volume: 47
  start-page: 9696
  year: 2019
  ident: 2022052021440845500_B81
  article-title: Dynamic architecture of the Escherichia coli structural maintenance of chromosomes (SMC) complex, MukBEF
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz696
– volume: 79
  start-page: 917
  year: 2020
  ident: 2022052021440845500_B66
  article-title: A Structure-Based Mechanism for DNA Entry into the Cohesin Ring
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.07.013
– volume: 359
  start-page: eaao6135
  year: 2018
  ident: 2022052021440845500_B8
  article-title: A pathway for mitotic chromosome formation
  publication-title: Science
  doi: 10.1126/science.aao6135
– volume: 67
  start-page: 334
  year: 2017
  ident: 2022052021440845500_B19
  article-title: Structure of full-length SMC and rearrangements required for chromosome organization
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.06.010
– volume: 5
  start-page: e14864
  year: 2016
  ident: 2022052021440845500_B7
  article-title: Compaction and segregation of sister chromatids via active loop extrusion
  publication-title: eLife
  doi: 10.7554/eLife.14864
– volume: 123
  start-page: 1635
  year: 1993
  ident: 2022052021440845500_B9
  article-title: SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.123.6.1635
– volume: 7
  start-page: e31522
  year: 2018
  ident: 2022052021440845500_B80
  article-title: MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin
  publication-title: Elife
  doi: 10.7554/eLife.31522
– volume: 65
  start-page: 102
  year: 2020
  ident: 2022052021440845500_B3
  article-title: Structural insights into DNA loop extrusion by SMC protein complexes
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2020.06.009
– volume: 75
  start-page: 209
  year: 2019
  ident: 2022052021440845500_B25
  article-title: Transient DNA occupancy of the SMC interarm space in prokaryotic condensin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.05.001
– volume: 171
  start-page: 588
  year: 2017
  ident: 2022052021440845500_B32
  article-title: Structural basis for a safety-belt mechanism that anchors condensin to chromosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.008
– volume: 427
  start-page: 3123
  year: 2015
  ident: 2022052021440845500_B78
  article-title: DNA-segment-facilitated dissociation of Fis and NHP6A from DNA detected via single-molecule mechanical response
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.07.015
– volume: 10
  start-page: e67268
  year: 2021
  ident: 2022052021440845500_B53
  article-title: Folding of cohesin’s coiled coil is important for Scc2/4-induced association with chromosomes
  publication-title: Elife
  doi: 10.7554/eLife.67268
– volume: 14
  start-page: 1813
  year: 2016
  ident: 2022052021440845500_B77
  article-title: Condensin Smc2-Smc4 Dimers Are Flexible and Dynamic
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.063
– year: 2021
  ident: 2022052021440845500_B82
  article-title: SMC complexes can traverse physical roadblocks bigger than their ring size
  doi: 10.1101/2021.07.15.452501
– volume: 10
  start-page: 183
  year: 1991
  ident: 2022052021440845500_B16
  article-title: The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E coli
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07935.x
– volume: 80
  start-page: 1039
  year: 2020
  ident: 2022052021440845500_B30
  article-title: Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2020.11.012
– volume: 355
  start-page: 524
  year: 2017
  ident: 2022052021440845500_B15
  article-title: Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus
  publication-title: Science
  doi: 10.1126/science.aai8982
– volume: 17
  start-page: 7139
  year: 1998
  ident: 2022052021440845500_B14
  article-title: ATP-dependent aggregation of single-stranded DNA by a bacterial SMC homodimer
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.23.7139
– volume: 79
  start-page: 99
  year: 2020
  ident: 2022052021440845500_B41
  article-title: Human Condensin I and II Drive Extensive ATP-Dependent Compaction of Nucleosome-Bound DNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.026
– volume: 47
  start-page: 6956
  year: 2019
  ident: 2022052021440845500_B42
  article-title: DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz497
– volume: 346
  start-page: 963
  year: 2014
  ident: 2022052021440845500_B68
  article-title: Closing the cohesin ring: structure and function of its Smc3-kleisin interface
  publication-title: Science
  doi: 10.1126/science.1256917
– volume: 366
  start-page: 1338
  year: 2019
  ident: 2022052021440845500_B38
  article-title: DNA loop extrusion by human cohesin
  publication-title: Science
  doi: 10.1126/science.aaz3418
– volume: 368
  start-page: 1454
  year: 2020
  ident: 2022052021440845500_B27
  article-title: Cryo-EM structure of the human cohesin-NIPBL-DNA complex
  publication-title: Science
  doi: 10.1126/science.abb0981
– volume: 78
  start-page: 250
  year: 2020
  ident: 2022052021440845500_B18
  article-title: Organization of the Escherichia coli chromosome by a MukBEF axial core
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.003
– volume: 57
  start-page: 290
  year: 2015
  ident: 2022052021440845500_B31
  article-title: Molecular basis for SMC rod formation and its dissolution upon DNA binding
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.11.023
– volume: 4
  start-page: e06659
  year: 2015
  ident: 2022052021440845500_B24
  article-title: SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis
  publication-title: Elife
  doi: 10.7554/eLife.06659
– start-page: 101
  volume-title: Cold Spring Harb. Symp. Quant. Biol
  year: 2017
  ident: 2022052021440845500_B44
  article-title: RotoStep: a chromosome dynamics simulator reveals mechanisms of loop extrusion
– volume: 36
  start-page: 3448
  year: 2017
  ident: 2022052021440845500_B33
  article-title: Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism
  publication-title: EMBO J.
  doi: 10.15252/embj.201797596
– volume: 18
  start-page: 894
  year: 2011
  ident: 2022052021440845500_B23
  article-title: Condensin structures chromosomal DNA through topological links
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2087
– volume: 25
  start-page: 906
  year: 2018
  ident: 2022052021440845500_B43
  article-title: A tethered-inchworm model of SMC DNA translocation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-018-0135-4
– volume: 35
  start-page: 743
  year: 2016
  ident: 2022052021440845500_B65
  article-title: ATP-dependent DNA binding, unwinding, and resection by the Mre11/Rad50 complex
  publication-title: EMBO J.
  doi: 10.15252/embj.201592462
– volume: 579
  start-page: 438
  year: 2020
  ident: 2022052021440845500_B84
  article-title: DNA-loop extruding condensin complexes can traverse one another
  publication-title: Nature
  doi: 10.1038/s41586-020-2067-5
– volume: 14
  start-page: 874
  year: 2004
  ident: 2022052021440845500_B35
  article-title: Real-time detection of single-molecule DNA compaction by condensin I
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.04.038
– volume: 110
  start-page: 2162
  year: 2016
  ident: 2022052021440845500_B6
  article-title: Chromosome compaction by active loop extrusion
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.02.041
– volume: 91
  start-page: 47
  year: 1997
  ident: 2022052021440845500_B10
  article-title: A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)80008-8
– volume: 360
  start-page: 102
  year: 2018
  ident: 2022052021440845500_B37
  article-title: Real-time imaging of DNA loop extrusion by condensin
  publication-title: Science
  doi: 10.1126/science.aar7831
– volume: 28
  start-page: 642
  year: 2021
  ident: 2022052021440845500_B85
  article-title: DNA-loop-extruding SMC complexes can traverse one another in vivo
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-021-00626-1
– volume: 366
  start-page: 1345
  year: 2019
  ident: 2022052021440845500_B39
  article-title: Human cohesin compacts DNA by loop extrusion
  publication-title: Science
  doi: 10.1126/science.aaz4475
– volume: 184
  start-page: 5448
  year: 2021
  ident: 2022052021440845500_B50
  article-title: Cohesin mediates DNA loop extrusion by a “swing and clamp” mechanism
  publication-title: Cell
  doi: 10.1016/j.cell.2021.09.016
– volume: 35
  start-page: 759
  year: 2016
  ident: 2022052021440845500_B64
  article-title: Structural mechanism of ATP-dependent DNA binding and DNA end bridging by eukaryotic Rad50
  publication-title: EMBO J.
  doi: 10.15252/embj.201592934
– volume: 15
  start-page: 988
  year: 2016
  ident: 2022052021440845500_B75
  article-title: Single-molecule imaging reveals a collapsed conformational state for DNA-bound cohesin
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.04.003
SSID ssj0014154
Score 2.5396833
Snippet Structural Maintenance of Chromosomes (SMC) complexes play essential roles in genome organization across all domains of life. To determine how the activities...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4974
SubjectTerms Adenosine Triphosphate - metabolism
Cell Cycle Proteins - metabolism
Chromosomes - metabolism
DNA - chemistry
Gene regulation, Chromatin and Epigenetics
Humans
Molecular Conformation
Molecular Dynamics Simulation
Translocation, Genetic
Title DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations
URI https://www.ncbi.nlm.nih.gov/pubmed/35474142
https://www.proquest.com/docview/2656201932
https://pubmed.ncbi.nlm.nih.gov/PMC9122525
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgHOCCYONH-TEZaeJAFZbEdpMcq9JqQls5rJV6i-zEGRVtMrUpYvz1vBc7aUp7GFyiKrZeo3yfXz7bz-8RcibDIJICx3cmpcO9TDtKMNfxvQT4EWYgyXFp4Grcu5jyrzMx224XVKdLSvU5-X3wXMn_oAr3AFc8JfsPyDZG4Qb8BnzhCgjD9V4Yfxn3u1UEepE7yyLFSlygH0v8_OA3qqxDjRdFcdsFL7zaYFdUnNdXAxNNrn9p3Dj4iXqx0qLLul5uNzXF6tfd9Xxpi3yt21p2jKmQMd1rMk_RRmtdrIqZXc5Tk8DgutSZzIv1dkl1IFeLuogIOOJiGwW0UbYSGEafbZmLR4qKOnTYRiPbtQqY5rrC8d2We63OaEXW_-oD96xPFm6Le1HLwfLIFPXZ8_wmK1aOUemjmx8y8U21nt0M2-Nv8Wh6eRlPhrPJQ_LIh6kFVr0I3GGz8wSCxhRCtk9lz3SC-XMwfm5N76qYvanJ3xG2LckyeUae2rkG7RviPCcPdH5MTvq5LIvlHf1Iq-jfalvlmDwe1JX_TsgKeEX3eEV3eEWBVxR5RRteUXVHgVe04RWteYUtDa9ozSva4tULMh0NJ4MLx9bmcBLOg9LpCU9qJmSUcukLpcKIcxjzTLmZJ7RmKpCpK9wM1GEgs16iQqF6KU-8SLNQeQl7SY7yItevCY20DlnKtAySkKeMgRkdKMZcHQAcSnbIp_pdx4lNXI_1UxaxCaBgMQATW2A65KzpfGvytRzu9qEGLYaXi5tkMtfFZh37MMEBUQzTmg55ZUBsDDHBQYBzaAl24G06YK723ZZ8_r3K2R558OH0xZt7_O9b8mQ7dt6RIwBRvwflW6rTiqqn1brRH7GKurI
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+tension-modulated+translocation+and+loop+extrusion+by+SMC+complexes+revealed+by+molecular+dynamics+simulations&rft.jtitle=Nucleic+acids+research&rft.au=Nomidis%2C+Stefanos+K&rft.au=Carlon%2C+Enrico&rft.au=Gruber%2C+Stephan&rft.au=Marko%2C+John+F&rft.date=2022-05-20&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=50&rft.issue=9&rft.spage=4974&rft_id=info:doi/10.1093%2Fnar%2Fgkac268&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon