Removal of organic compounds by nanoscale zero-valent iron and its composites

During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) partic...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 792; p. 148546
Main Authors Li, Qian, Chen, Zhongshan, Wang, Huihui, Yang, Hui, Wen, Tao, Wang, Shuqin, Hu, Baowei, Wang, Xiangke
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants. [Display omitted] •Synthesis and modification of NZVI and NZVI-based composites were summarized.•Removal of organic pollutants by NZVI and NZVI-based composites were reviewed and compared.•The interaction mechanism was discussed from spectroscopy analysis and theoretical calculation.•The challenges and perspectives for NZVI-based composites were discussed.
AbstractList During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants.During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants.
During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO₂ group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO₂ and H₂O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants.
During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants. [Display omitted] •Synthesis and modification of NZVI and NZVI-based composites were summarized.•Removal of organic pollutants by NZVI and NZVI-based composites were reviewed and compared.•The interaction mechanism was discussed from spectroscopy analysis and theoretical calculation.•The challenges and perspectives for NZVI-based composites were discussed.
ArticleNumber 148546
Author Li, Qian
Wang, Xiangke
Wen, Tao
Wang, Shuqin
Chen, Zhongshan
Hu, Baowei
Wang, Huihui
Yang, Hui
Author_xml – sequence: 1
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: School of Life Science, Shaoxing University, Shaoxing 312000, China
– sequence: 2
  givenname: Zhongshan
  surname: Chen
  fullname: Chen, Zhongshan
  email: zschen@ncepu.edu.cn
  organization: School of Life Science, Shaoxing University, Shaoxing 312000, China
– sequence: 3
  givenname: Huihui
  surname: Wang
  fullname: Wang, Huihui
  organization: MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 4
  givenname: Hui
  surname: Yang
  fullname: Yang, Hui
  organization: MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 5
  givenname: Tao
  surname: Wen
  fullname: Wen, Tao
  organization: MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 6
  givenname: Shuqin
  surname: Wang
  fullname: Wang, Shuqin
  organization: School of Life Science, Shaoxing University, Shaoxing 312000, China
– sequence: 7
  givenname: Baowei
  surname: Hu
  fullname: Hu, Baowei
  email: hbw@usx.edu.cn
  organization: School of Life Science, Shaoxing University, Shaoxing 312000, China
– sequence: 8
  givenname: Xiangke
  surname: Wang
  fullname: Wang, Xiangke
  email: xkwang@ncepu.edu.cn
  organization: School of Life Science, Shaoxing University, Shaoxing 312000, China
BookMark eNqNkL1u2zAURonCBWqnfYZyzCL3UqJIaehgGElawEGAoJ0J_lwXNGTSIWkDztNXhooOWZy73OWcbzgLMgsxICFfGSwZMPFtt8zWl1gwnJY11GzJeNdy8YHMWSf7ikEtZmQOwLuqF738RBY572A82bE5eXzGfTzpgcYtjemPDt5SG_eHeAwuU3OmQYeYrR6QvmKK1YhiKNSnGKgOjvqSJz77gvkz-bjVQ8Yv__4N-X1_92v9o9o8PfxcrzaV5VyWSgAYg8KZxqButxo7J6FtuW46y1tnW81YLzn2Ap10skEJpmeiMaY1EixvbsjttHtI8eWIuai9zxaHQQeMx6xqIRhA3QFcR1vR1byXNRvR7xNqU8w54VaNYXXxMZSk_aAYqEtxtVP_i6tLcTUVH335xj8kv9fp_A5zNZk4Rjt5TBcOg0XnE9qiXPRXN_4ChbKj1A
CitedBy_id crossref_primary_10_1039_D3RA01505J
crossref_primary_10_1080_01496395_2021_1972009
crossref_primary_10_1016_j_colsurfa_2021_128069
crossref_primary_10_4028_p_40bl00
crossref_primary_10_1016_j_cej_2022_139420
crossref_primary_10_1016_j_jwpe_2022_102653
crossref_primary_10_1016_j_scitotenv_2024_169922
crossref_primary_10_1007_s11356_023_31281_2
crossref_primary_10_3390_w16111607
crossref_primary_10_1016_j_colsurfa_2024_135675
crossref_primary_10_3390_w15030540
crossref_primary_10_1016_j_cej_2023_144053
crossref_primary_10_1016_j_jtice_2021_11_021
crossref_primary_10_1007_s42773_023_00231_z
crossref_primary_10_1016_j_molstruc_2024_139163
crossref_primary_10_1016_j_jhazmat_2021_128004
crossref_primary_10_1016_j_molstruc_2021_132003
crossref_primary_10_3390_w16091241
crossref_primary_10_1016_j_inoche_2022_109705
crossref_primary_10_1016_j_jksus_2022_102050
crossref_primary_10_1039_D3EW00801K
crossref_primary_10_1016_j_ijbiomac_2024_131141
crossref_primary_10_1016_j_cej_2025_159683
crossref_primary_10_3390_w15122303
crossref_primary_10_1007_s11356_022_19906_4
crossref_primary_10_1016_j_seppur_2021_119605
crossref_primary_10_1016_j_techfore_2024_123898
crossref_primary_10_1016_j_seppur_2024_128134
crossref_primary_10_1080_09593330_2023_2179944
crossref_primary_10_1039_D3CE01058A
crossref_primary_10_1016_j_seppur_2023_123781
crossref_primary_10_3390_molecules29235697
crossref_primary_10_1016_j_ceja_2022_100321
crossref_primary_10_1016_j_jece_2024_114410
crossref_primary_10_1016_j_jwpe_2024_105463
crossref_primary_10_1007_s11368_021_03116_5
crossref_primary_10_1016_j_jconhyd_2022_104019
crossref_primary_10_1016_j_jhazmat_2022_128513
crossref_primary_10_1016_j_envres_2023_115986
crossref_primary_10_2174_1877946812666211217152703
crossref_primary_10_1016_j_jcis_2021_12_175
crossref_primary_10_1016_j_enmm_2022_100720
crossref_primary_10_1016_j_jece_2023_110896
crossref_primary_10_1016_j_jwpe_2022_102671
crossref_primary_10_1021_acsearthspacechem_4c00132
crossref_primary_10_3390_w16121639
crossref_primary_10_1016_j_cjche_2022_05_010
crossref_primary_10_1016_j_surfin_2021_101568
crossref_primary_10_1016_j_envpol_2021_118076
crossref_primary_10_1016_j_reactfunctpolym_2021_105132
crossref_primary_10_1016_j_jece_2021_106870
crossref_primary_10_1016_j_scitotenv_2022_157961
crossref_primary_10_1016_j_apmt_2021_101339
crossref_primary_10_1016_j_jcis_2021_07_154
crossref_primary_10_1021_acs_jpca_3c00134
crossref_primary_10_1021_acsestengg_2c00212
crossref_primary_10_3390_toxics12110814
crossref_primary_10_1016_j_nanoso_2024_101101
crossref_primary_10_1016_j_eti_2023_103301
crossref_primary_10_1016_j_ccr_2024_216120
crossref_primary_10_1016_j_ijbiomac_2022_06_136
crossref_primary_10_1016_j_jwpe_2022_103413
crossref_primary_10_1016_j_envpol_2024_124961
crossref_primary_10_1016_j_colsurfa_2023_132094
crossref_primary_10_1016_j_matchemphys_2023_127944
crossref_primary_10_1016_j_jes_2021_10_003
crossref_primary_10_1061_IJGNAI_GMENG_8325
crossref_primary_10_1007_s10876_022_02293_8
crossref_primary_10_1007_s11356_022_22408_y
crossref_primary_10_1016_j_jics_2022_100598
crossref_primary_10_1016_j_cej_2023_145591
crossref_primary_10_1016_j_cej_2024_154911
crossref_primary_10_1016_j_mtchem_2022_101344
crossref_primary_10_1016_j_jenvman_2024_121393
crossref_primary_10_1016_j_scitotenv_2023_168084
crossref_primary_10_1007_s11356_021_18179_7
crossref_primary_10_1016_j_aej_2022_07_055
crossref_primary_10_1039_D1EW00501D
crossref_primary_10_1016_j_jenvman_2024_121971
crossref_primary_10_3390_polym15183764
crossref_primary_10_1016_j_seppur_2021_119634
crossref_primary_10_1016_j_scitotenv_2021_152280
crossref_primary_10_1080_09593330_2022_2068377
crossref_primary_10_1016_j_cjche_2021_12_029
crossref_primary_10_1016_j_cej_2024_151060
crossref_primary_10_1016_j_chemosphere_2023_140923
crossref_primary_10_2166_wrd_2022_103
crossref_primary_10_1016_j_envadv_2024_100542
crossref_primary_10_1360_SSC_2022_0241
crossref_primary_10_1021_acsestengg_4c00423
crossref_primary_10_1007_s11051_022_05436_0
crossref_primary_10_3390_su14159451
crossref_primary_10_1016_j_seppur_2022_122631
crossref_primary_10_1039_D4EN00267A
crossref_primary_10_1016_j_envres_2023_117911
crossref_primary_10_1016_j_rineng_2024_102938
crossref_primary_10_1039_D2NA00610C
crossref_primary_10_1016_j_jwpe_2023_104222
crossref_primary_10_1016_j_hybadv_2023_100113
crossref_primary_10_1016_j_jece_2022_107851
crossref_primary_10_1016_j_jwpe_2021_102555
crossref_primary_10_1016_j_cej_2025_160995
crossref_primary_10_1016_j_inoche_2022_109588
crossref_primary_10_20935_AcadBiol6264
crossref_primary_10_1016_j_envpol_2022_119398
crossref_primary_10_1039_D4MA00178H
crossref_primary_10_1021_acsestwater_3c00002
crossref_primary_10_1007_s11356_022_25047_5
crossref_primary_10_1016_j_jclepro_2022_132980
crossref_primary_10_1016_j_jwpe_2022_103281
crossref_primary_10_1016_j_seppur_2021_120286
crossref_primary_10_15377_2410_3624_2022_09_1
crossref_primary_10_1016_j_seppur_2021_120042
crossref_primary_10_1016_j_jwpe_2023_104216
crossref_primary_10_1007_s11356_024_31823_2
crossref_primary_10_1016_j_seppur_2021_119975
crossref_primary_10_1016_j_ijbiomac_2022_08_034
crossref_primary_10_1016_j_chemosphere_2022_134509
crossref_primary_10_1007_s11368_023_03682_w
crossref_primary_10_2166_wst_2023_270
crossref_primary_10_1002_aesr_202300055
crossref_primary_10_1016_j_matpr_2023_07_071
crossref_primary_10_1155_2022_9739915
crossref_primary_10_1016_j_jhazmat_2024_134649
crossref_primary_10_31857_S0044460X23110100
crossref_primary_10_1016_j_jhazmat_2022_129482
crossref_primary_10_1016_j_molliq_2022_121005
crossref_primary_10_1021_acsomega_2c01031
crossref_primary_10_17482_uumfd_990044
crossref_primary_10_1016_j_jece_2024_115012
crossref_primary_10_1016_j_jphotochem_2022_114309
crossref_primary_10_1016_j_jallcom_2022_167461
crossref_primary_10_1007_s11356_023_28168_7
crossref_primary_10_1016_j_jclepro_2021_128641
crossref_primary_10_1021_acsami_1c21850
crossref_primary_10_1016_j_chemosphere_2023_139958
crossref_primary_10_1080_21622515_2023_2220090
crossref_primary_10_1007_s00289_023_04715_7
crossref_primary_10_1007_s13201_021_01554_7
crossref_primary_10_1016_j_chemosphere_2021_132600
crossref_primary_10_3390_catal12090999
crossref_primary_10_1007_s13762_022_04498_w
crossref_primary_10_1016_j_matchemphys_2024_130132
crossref_primary_10_1016_j_jhazmat_2022_129013
crossref_primary_10_1016_j_psep_2022_02_034
crossref_primary_10_1071_EN22014
crossref_primary_10_1007_s11706_023_0661_9
crossref_primary_10_1016_j_seppur_2024_126936
crossref_primary_10_5004_dwt_2022_28302
crossref_primary_10_1016_j_psep_2024_01_010
crossref_primary_10_1016_j_matpr_2021_09_534
crossref_primary_10_1016_j_enmm_2022_100666
crossref_primary_10_1039_D3EN00785E
crossref_primary_10_1007_s11051_023_05742_1
crossref_primary_10_1016_j_cej_2025_160937
crossref_primary_10_1021_acsomega_1c04938
crossref_primary_10_1016_j_scp_2022_100653
crossref_primary_10_1016_j_seppur_2024_127331
crossref_primary_10_1007_s11356_022_18857_0
crossref_primary_10_1016_j_jenvman_2022_115403
crossref_primary_10_1039_D1NA00843A
crossref_primary_10_1007_s11783_024_1841_2
crossref_primary_10_1098_rsos_240380
crossref_primary_10_1016_j_jphotochem_2022_114010
crossref_primary_10_1016_j_cej_2025_161594
crossref_primary_10_1016_j_jhazmat_2023_130867
crossref_primary_10_1007_s11356_021_16483_w
crossref_primary_10_1007_s10653_024_01879_7
crossref_primary_10_1016_j_powtec_2022_118023
crossref_primary_10_1016_j_ccr_2022_214562
crossref_primary_10_1016_j_jhazmat_2021_127439
crossref_primary_10_1016_j_jhazmat_2022_128703
crossref_primary_10_1007_s10570_021_04358_9
crossref_primary_10_1134_S1070363223110087
crossref_primary_10_1007_s11164_022_04789_4
crossref_primary_10_3390_s25020585
crossref_primary_10_1007_s13201_021_01555_6
crossref_primary_10_1016_j_jclepro_2023_137812
crossref_primary_10_1007_s11051_023_05919_8
crossref_primary_10_3390_ijerph182413107
crossref_primary_10_1016_j_cej_2024_150836
crossref_primary_10_1002_wer_1673
crossref_primary_10_1039_D2EW00440B
crossref_primary_10_1007_s00339_022_05532_x
crossref_primary_10_1515_gps_2022_0024
crossref_primary_10_1016_j_enmm_2021_100607
crossref_primary_10_1007_s11356_021_18432_z
crossref_primary_10_1016_j_seppur_2021_120408
crossref_primary_10_1016_j_susmat_2025_e01362
crossref_primary_10_1016_j_susmat_2022_e00430
crossref_primary_10_1016_j_jenvman_2022_116831
crossref_primary_10_1016_j_envres_2023_117408
crossref_primary_10_1016_j_cej_2023_146049
crossref_primary_10_1016_j_seppur_2021_119660
crossref_primary_10_1016_j_scitotenv_2021_149662
crossref_primary_10_1016_j_jhazmat_2021_127537
crossref_primary_10_1039_D4EN00613E
crossref_primary_10_1002_idm2_12203
crossref_primary_10_1016_j_ijbiomac_2022_04_149
crossref_primary_10_1016_j_seppur_2022_121241
crossref_primary_10_1007_s00449_021_02645_0
crossref_primary_10_1016_j_jbiotec_2021_11_007
crossref_primary_10_1016_j_watres_2024_121309
crossref_primary_10_1007_s11356_023_29879_7
crossref_primary_10_1016_j_biortech_2023_129603
crossref_primary_10_1016_j_ceramint_2025_01_219
crossref_primary_10_1016_j_rser_2021_111643
crossref_primary_10_1007_s13762_022_03924_3
crossref_primary_10_1007_s42773_022_00173_y
crossref_primary_10_1021_acs_langmuir_1c02275
crossref_primary_10_1016_j_jhazmat_2023_130730
crossref_primary_10_1016_j_jhazmat_2023_132113
crossref_primary_10_1021_acs_cgd_3c00497
crossref_primary_10_1002_slct_202104188
crossref_primary_10_1007_s11270_023_06417_2
crossref_primary_10_1016_j_seppur_2021_120222
crossref_primary_10_1007_s11356_022_20516_3
crossref_primary_10_1016_j_enmm_2021_100584
crossref_primary_10_1007_s11356_022_18682_5
crossref_primary_10_1016_j_scitotenv_2022_155279
crossref_primary_10_1016_j_colsurfa_2023_132001
crossref_primary_10_1016_j_jhazmat_2024_136520
crossref_primary_10_1016_j_surfin_2022_101787
crossref_primary_10_1016_j_inoche_2023_110591
crossref_primary_10_1016_j_jece_2023_110115
crossref_primary_10_1016_j_jes_2021_07_015
crossref_primary_10_1016_j_seppur_2025_131404
crossref_primary_10_1016_j_chemosphere_2022_135349
crossref_primary_10_1039_D3NJ02301J
crossref_primary_10_1007_s42773_022_00146_1
crossref_primary_10_1016_j_jwpe_2023_104625
crossref_primary_10_1007_s12221_023_00100_3
crossref_primary_10_1016_j_envres_2022_114998
crossref_primary_10_1016_j_chemosphere_2021_133443
crossref_primary_10_1016_j_seppur_2021_120345
crossref_primary_10_1016_j_molliq_2022_119323
crossref_primary_10_1007_s11356_021_17782_y
crossref_primary_10_1016_j_biortech_2022_126690
crossref_primary_10_1016_j_jwpe_2023_104187
crossref_primary_10_1007_s11356_022_22245_z
crossref_primary_10_1016_j_chemosphere_2023_140082
crossref_primary_10_1016_j_chemosphere_2024_143535
crossref_primary_10_1016_j_ijbiomac_2024_131625
crossref_primary_10_1039_D4RA02789B
crossref_primary_10_1002_tqem_21877
crossref_primary_10_1016_j_jece_2022_107214
crossref_primary_10_1016_j_jhazmat_2021_127192
crossref_primary_10_1039_D4RA04336G
crossref_primary_10_1016_j_seppur_2021_120118
crossref_primary_10_1016_j_matchemphys_2025_130376
crossref_primary_10_3390_min13111385
crossref_primary_10_1016_j_jhazmat_2022_130657
crossref_primary_10_1016_j_surfin_2022_102053
crossref_primary_10_3390_molecules29204928
crossref_primary_10_1039_D4EN00737A
crossref_primary_10_1007_s00396_021_04926_2
crossref_primary_10_1007_s10876_022_02276_9
crossref_primary_10_1016_j_jhazmat_2021_127748
crossref_primary_10_1016_j_molliq_2024_125356
crossref_primary_10_1016_j_seppur_2025_131748
crossref_primary_10_1016_j_chemosphere_2022_134118
crossref_primary_10_1021_acs_iecr_2c00037
crossref_primary_10_1016_j_jhazmat_2022_128672
crossref_primary_10_1016_j_surfin_2021_101482
crossref_primary_10_3390_gels9040344
crossref_primary_10_5004_dwt_2022_27963
crossref_primary_10_1016_j_ese_2024_100457
crossref_primary_10_1016_j_eti_2022_102998
crossref_primary_10_1002_adsu_202200106
crossref_primary_10_1016_j_surfin_2022_101771
crossref_primary_10_1016_j_colsurfa_2023_131366
crossref_primary_10_1016_j_jece_2022_108081
crossref_primary_10_1016_j_envres_2022_114041
crossref_primary_10_1007_s13762_023_04951_4
crossref_primary_10_1016_j_jclepro_2022_135513
crossref_primary_10_1021_acsomega_1c04950
crossref_primary_10_1039_D1TA08335J
crossref_primary_10_1016_j_jhazmat_2022_129092
crossref_primary_10_1039_D1DT03592D
crossref_primary_10_1007_s13201_022_01725_0
crossref_primary_10_1515_biol_2022_0056
crossref_primary_10_3390_catal13111440
crossref_primary_10_1016_j_chemosphere_2021_132204
crossref_primary_10_1016_j_jenvman_2024_120383
crossref_primary_10_1016_j_jwpe_2025_106937
crossref_primary_10_5004_dwt_2022_28025
crossref_primary_10_1016_j_jclepro_2022_131276
crossref_primary_10_1016_j_seppur_2023_123644
Cites_doi 10.1021/es702589u
10.1016/j.scitotenv.2013.01.008
10.4028/www.scientific.net/AMR.1097.3
10.1016/j.jenvman.2020.110105
10.1016/j.jhazmat.2019.02.077
10.1016/j.jhazmat.2020.124053
10.1016/j.cej.2015.11.038
10.1016/j.chemosphere.2010.11.018
10.1007/s10853-019-03606-5
10.1021/acs.est.8b06834
10.1016/j.chroma.2017.01.046
10.1021/acs.est.9b04210
10.1007/s11051-004-6672-2
10.1016/j.envpol.2018.04.084
10.15255/CABEQ.2016.1025
10.1016/j.jes.2017.10.006
10.1016/j.jenvman.2019.04.062
10.1007/s11051-012-1239-0
10.1016/j.biortech.2016.08.014
10.1016/j.jhazmat.2017.07.030
10.1021/es801947h
10.1007/s11164-018-3436-7
10.1016/j.apcata.2017.05.028
10.2166/wst.2013.358
10.1002/apj.1720
10.1016/j.cej.2016.03.005
10.1016/j.jssc.2011.04.018
10.1016/j.jclepro.2018.08.117
10.3390/w12102909
10.1016/j.jenvman.2014.12.022
10.1016/j.watres.2015.04.009
10.1016/j.cej.2015.09.078
10.1016/j.chemosphere.2016.11.092
10.1016/j.cjche.2016.04.027
10.1016/j.scitotenv.2020.142795
10.2166/wst.2019.234
10.1007/s11783-020-1360-8
10.1021/acs.est.5b04988
10.1016/j.jhazmat.2011.11.009
10.1016/j.chemosphere.2019.125260
10.1016/j.cej.2016.08.073
10.1016/j.scitotenv.2011.02.045
10.1016/j.cej.2017.03.141
10.1016/j.cej.2011.11.037
10.1016/j.cej.2017.04.063
10.1016/j.cej.2018.11.111
10.1007/s00604-017-2638-9
10.1039/C8TA11661J
10.1016/j.apsusc.2016.08.027
10.1016/j.colsurfa.2018.08.081
10.1016/j.seppur.2017.01.071
10.1007/s11356-016-6488-5
10.1016/j.cej.2015.09.079
10.1016/j.jhazmat.2004.09.005
10.1016/j.jcis.2014.07.022
10.3389/fphys.2018.00888
10.1039/C6EN00398B
10.1007/s11356-016-6626-0
10.1016/j.chemosphere.2010.02.011
10.1177/0263617418822917
10.1007/s11356-015-5850-3
10.1021/acs.est.7b02480
10.1007/s11270-017-3664-2
10.1021/jp3097814
10.1016/j.chemosphere.2016.09.056
10.1016/j.biortech.2019.122068
10.1016/j.jenvman.2016.12.068
10.1016/j.cej.2015.11.046
10.1016/j.cej.2018.04.088
10.1016/j.scitotenv.2015.06.091
10.1002/prep.200700205
10.1016/j.jhazmat.2019.02.096
10.1016/j.apcatb.2015.02.016
10.1016/j.cej.2019.122059
10.1016/j.marpolbul.2012.11.014
10.1016/j.molliq.2020.113317
10.1016/j.seppur.2019.116023
10.1039/C8RA04314K
10.1016/j.chemosphere.2020.128576
10.1016/j.jhazmat.2014.06.030
10.1016/j.cej.2019.03.007
10.1016/j.molliq.2018.04.032
10.1016/j.seppur.2016.08.008
10.1007/s11426-015-5452-4
10.1021/acs.est.8b01735
10.1016/j.seppur.2020.116942
10.1007/s11783-020-1351-9
10.1021/jf9913458
10.1016/j.jcis.2011.07.057
10.1016/j.cej.2017.10.060
10.1016/j.ultsonch.2013.04.015
10.1021/es800649p
10.1016/j.cej.2018.11.080
10.1016/j.cej.2014.11.128
10.1016/j.cej.2018.12.024
10.1021/acs.est.6b02170
10.1016/j.jpowsour.2016.05.031
10.1016/j.cej.2017.02.070
10.1016/j.cej.2014.09.038
10.1016/j.jhazmat.2016.05.040
10.1016/j.cej.2011.09.014
10.1016/j.apsusc.2015.02.025
10.1021/es048743y
10.1061/(ASCE)1090-025X(2009)13:2(110)
10.1039/C8RA08386J
10.1021/es049190u
10.1021/acs.est.6b03997
10.1016/j.clay.2017.07.023
10.1016/j.compscitech.2016.08.018
10.1016/j.jhazmat.2016.11.032
10.1016/j.apsusc.2014.09.202
10.1016/j.seppur.2018.03.048
10.1016/j.chemosphere.2013.10.085
10.1016/j.seppur.2015.07.009
10.1016/j.jenvman.2016.04.034
10.1016/j.apsusc.2016.10.020
10.1016/j.cej.2018.08.126
10.1016/j.jhazmat.2016.05.041
10.1021/es903801r
10.1016/j.scitotenv.2009.05.033
10.1021/acs.est.7b02695
10.1016/j.scitotenv.2020.143413
10.1016/j.cep.2018.11.011
10.1016/j.foodchem.2014.11.050
10.1016/j.jhazmat.2011.10.056
10.1016/j.seppur.2019.03.028
10.1016/j.cej.2018.11.180
10.1016/j.jhazmat.2013.12.062
10.1016/j.envint.2019.01.047
10.1016/j.apcata.2016.11.001
10.1016/j.seppur.2018.01.032
10.1016/S1385-8947(01)00218-2
10.1016/j.cep.2017.05.001
10.1021/acssuschemeng.8b01416
10.1016/j.scitotenv.2020.143333
10.1016/j.cej.2016.11.154
10.1016/j.molstruc.2019.03.003
10.1016/j.watres.2013.09.006
10.1021/ie990549a
10.1061/(ASCE)EE.1943-7870.0000705
10.1016/j.scitotenv.2017.09.006
10.1016/j.chemosphere.2016.11.100
10.1016/j.chemosphere.2018.03.057
10.1016/j.chemosphere.2015.11.095
10.1016/j.watres.2016.05.019
10.1016/j.cej.2017.12.090
10.1016/j.jes.2018.04.025
10.1021/acs.est.7b05847
10.1016/j.psep.2018.02.009
10.1016/S1672-2515(07)60110-9
10.1016/j.jhazmat.2015.12.063
10.1016/j.envpol.2018.08.061
10.1021/jp501846f
10.1016/j.jhazmat.2017.06.006
10.1021/es050006u
10.1007/s11356-017-0796-2
10.1016/j.xinn.2021.100076
10.1080/10643389.2020.1734433
10.1016/j.jhazmat.2015.10.034
10.1016/j.ultsonch.2011.03.015
10.1016/j.seppur.2019.115929
10.1016/j.chemosphere.2019.02.074
10.1016/j.chemosphere.2012.09.040
10.1016/j.apsusc.2015.03.131
10.1016/j.jhazmat.2018.11.073
10.1016/j.jssc.2018.09.013
10.1039/C8NR08302A
10.1039/b913056j
10.1016/j.apcatb.2016.01.047
10.1016/j.cej.2016.10.125
10.1016/j.envpol.2016.12.030
10.1016/j.cej.2017.03.104
10.1007/s11270-018-4033-5
10.1016/j.jes.2015.10.033
10.1016/j.jcis.2013.08.020
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2021.148546
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2021_148546
S0048969721036184
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
7X8
7S9
L.6
ID FETCH-LOGICAL-c447t-600bbe6db3bea5fae8d70554a38c45dc5a11974e96ed7d73e70b9163bb5b70c43
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 21:11:12 EDT 2025
Fri Jul 11 00:46:09 EDT 2025
Tue Jul 01 04:25:04 EDT 2025
Thu Apr 24 23:05:06 EDT 2025
Fri Feb 23 02:44:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords NZVI-based composites
Removal
Organic pollutants
NZVI
Mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-600bbe6db3bea5fae8d70554a38c45dc5a11974e96ed7d73e70b9163bb5b70c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2568249721
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2661002800
proquest_miscellaneous_2568249721
crossref_citationtrail_10_1016_j_scitotenv_2021_148546
crossref_primary_10_1016_j_scitotenv_2021_148546
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_148546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-20
  day: 20
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Qiu, Wang, Zhao, Hu, Zhu (bb0565) 2018; 201
Luo, Chen, Megharaj, Naidu (bb0490) 2016; 294
Xiong, Zhang, Zhang, Lai, Yao (bb0775) 2019; 359
Wen, Zhu, Wei, Huang, Ma (bb0735) 2017; 307
Zhao, Liu, Cai, Han, Qian, Zhao (bb0845) 2016; 100
Sun, Yu, Tsang, Cao, Lin, Wang, Graham, Alessi, Komarek, Ok, Feng, Li (bb0655) 2019; 124
Li, Yan, Zhang (bb0370) 2009; 11
Shi, Chen, Lu, Shi, Wu, Hu (bb0620) 2021; 15
Liu, Pang, Liu, Li, Zhang, Mao, Qiu, Hu, Yang, Wang (bb0475) 2021; 2
Guo, Huang, Chen, Zhao, Liu, Sun, Gong (bb0210) 2017; 339
Han, Yan (bb0215) 2016; 50
Xu, Zhang, Cheng, Tian, Zhao, Tang (bb0800) 2019; 37
Zhou, Wang, Zhi, Guo, Zhou, Nie, Huang, Yang, Huang, Luo (bb0875) 2019; 54
Liu, Diao, Huo, Kong, Du (bb0465) 2018; 239
Šimkovič, Derco, Dudáš, Urminská (bb0640) 2017; 31
Xu, Liu, Chen, Tang (bb0780) 2016; 48
Lv, Ma, Li, Yang (bb0500) 2020; 12
Pulido, Bravo, Saura-Calixto (bb0555) 2000; 48
Rahmani, Poormohammadi, Zamani, Tahmasebi Birgani, Jorfi, Gholizadeh, Mohammadi, Almasi (bb0570) 2018; 44
Maamoun, Falyouna, Eljamal, Bensaida, Eljamal (bb0510) 2021; 12
Hua, Liu, Gu, Wang, Zhang (bb0260) 2018; 67
Li, Chen, Zhang, Wang (bb0385) 2016; 59
Janssen, Koene (bb0280) 2002; 85
Oleszczuk, Kołtowski (bb0540) 2017; 168
Fan, O Brien Johnson, Tratnyek, Johnson (bb0175) 2016; 50
Wang, Lu, Lin, Huang, Tang, Xue, Yang, Yin, Dang (bb0715) 2017; 222
Wang, Song, Tang, Yu (bb0730) 2020; 243
Huang, Li, Wu, Dong, Cao, Liu, Lin, Jiang (bb0265) 2016; 134
Wang, Nan (bb0685) 2020; 233
Ahmed, Zhou, Ngo, Guo, Johir, Sornalingam, Belhaj, Kallel (bb0005) 2017; 322
He, Ma, Collins, Waite (bb0240) 2016; 50
Sahu, Shih (bb0600) 2019; 378
Xu, Tian, Zhang, Tang, Zhao, Chen (bb0785) 2018; 229
Zhu, Fang, Dionysiou, Liu, Gao, Qin, Zhou (bb0880) 2016; 316
Lee, Sedlak (bb0365) 2008; 42
Chen, Jin, Chen, Megharaj, Naidu (bb0080) 2011; 363
Luo, Yang, Chen, Megharaj, Naidu (bb0495) 2016; 303
Wang, Zhu, Liu, Ma, Li (bb0690) 2013; 449
Liu, Li, Ma, Qin, He (bb0455) 2014; 321
Dehghani, Karri, Alimohammadi, Nazmara, Zarei, Saeedi (bb0130) 2020; 311
Lu, Dong, Zhang, Hu, Wen, Yang, Wu (bb0485) 2018; 558
Kim, Eichhorn, Jensen, Weber, Aga (bb0330) 2005; 39
Gu, Jia, Li, Teppen, Boyd (bb0205) 2015; 44
Li, Xu, Jin, Li, Dharmarajan, Chen (bb0405) 2018; 197
Chen, Hsu, Li (bb0075) 2004; 6
Jamei, Khosravi, Anvaripour (bb0270) 2013; 8
Wang, Wang, Ma, Liu, Ning (bb0695) 2015; 345
Shan, Yan, Tyagi, Surampalli, Zhang (bb0605) 2015; 13
Xie, Ren, Zhu, Gou, Chen (bb0765) 2018; 116
Wan, Feng, Li, He, Zhao, Liu, Lin, Yang, Liang (bb0680) 2019; 135
Banks, Jun, Heo, Her, Park, Yoon (bb0025) 2020; 231
Lin, Lo, Liou (bb0435) 2004; 116
Machado, Pacheco, Nouws, Albergaria, Delerue-Matos (bb0515) 2015; 533
Xu, Cao, Zhou, Lou, Wang, Xu, Lowry (bb0795) 2019; 53
Ezzatahmadi, Ayoko, Millar, Speight, Yan, Li, Li, Zhu, Xi (bb0165) 2017; 312
Zhou, Lei, Wu, Yuan (bb0860) 2017; 1487
Kim, Ahn, Kim, Shin, Hwang (bb0335) 2018; 52
Lin, Chen (bb0430) 2017; 119
Rasheed, Pandian, Muthukumar (bb0590) 2011; 18
Katsenovich, Miralles-Wilhelm (bb0310) 2009; 407
Lin, Weng, Dharmarajan, Chen (bb0445) 2017; 169
Tang, Tang, Zeng, Yang, Xie, Zhou, Pang, Fang, Wang, Xiong (bb0670) 2015; 333
Feng, Zhong, Zhang, Fan, Yang, Shih, Li, Wu, Yan (bb0180) 2020; 247
Hao, Qiu, Yang, Hu, Wang (bb0230) 2021; 760
Diao, Xu, Chen, Jiang, Yang, Kong, Sun, Hu, Hao, Liu (bb0145) 2016; 316
Stefaniuk, Oleszczuk, Ok (bb0650) 2016; 287
Shi, Zhu, Zhang, Zhang, Li, Fan (bb0615) 2019; 11
Si, Yang, Wang, Cheng (bb0635) 2010; 79
Bystrzejewski (bb0045) 2011; 184
Chen, Yu, Zhang, Liu, Liu, Zhou, Han, Zhou (bb0095) 2016; 322
Kang, Liu, Wang, Cai (bb0305) 2016; 307
Chen, Lin, Hao, Xu, Huang (bb0100) 2019; 371
Gomes, Dias-Ferreira, Ottosen, Ribeiro (bb0200) 2014; 433
Oprčkal, Mladenovič, Vidmar, Mauko Pranjić, Milačič, Ščančar (bb0545) 2017; 321
Bharti, Khurana, Shaw, Saxena, Khurana, Rai (bb0030) 2018; 229
Blum, Andersson, Ahrens, Wiberg, Haglund (bb0035) 2017; 612
Song, Fang, Zhu, Zhu, Wu, Chen, Wu, Wang, Gao, Zhou (bb0645) 2019; 355
Jin, Zhang, Wen, Wang, Gu, Zhao, Wang, Chen, Hayat, Wang (bb0300) 2018; 243
Wu, Yue, Gao, Ren, Gao (bb0745) 2018; 69
Filip, Karlicky, Marusak, Lazar, Cerník, Otyepka, Zboril (bb0185) 2014; 118
Han, Shi, Wang, Pan, Fang, Yu (bb0225) 2016; 23
Wang, Sun, Duan, Ang, Tade, Wang (bb0700) 2015; 172-173
Wu, Yue, Ren, Gao (bb0750) 2018; 262
Zeng, Walker, Zhu (bb0825) 2017; 324
Pustovalov, Zhuravkov (bb0560) 2015; 1097
Dai, Fan, Yi, Dong, Yuan (bb0115) 2019; 7
Cao, Liu, Xu, Zhang, Yang, Zhou, Xu, Lowry (bb0060) 2017; 51
Li, Zhao, Zhu (bb0420) 2021; 760
Han, Liu, Horita, Yan (bb0220) 2016; 188
He, Lin, Dong, Li, Wang, Chu, Luo, Liu (bb0250) 2018; 347
Li, Yang, Li, Yin, Tao, Wu, Luo (bb0415) 2019; 269
Wang, Wang, Ma, Fu (bb0725) 2017; 166
He, Li, Shi, Xu, Sheng, Gu, Jiang, Xi (bb0245) 2018; 52
Xue, Sethi (bb0805) 2012; 14
Chen, Qiu, Fang, Yang, Pokeung, Gu, Cheng, Lan (bb0085) 2012; 181-182
Fan, Li, Cao (bb0170) 2015; 174
Li, Li, Xiao, Wei, Han, Huang (bb0395) 2016; 284
Zhang, Gao, He, Yang, Wang, Ma, Xia, Xu (bb0835) 2017; 172
Zhao, Chang, Hao, Yu, Morel, Zhang (bb0850) 2019; 369
Zhou, Lei, Li, Zhao, Liu (bb0865) 2017; 182
Liang, Yang, Xu, Peng, Lu, Xiang (bb0425) 2014; 278
Tan, Vakili, Horri, Poh, Abdullah, Salamatinia (bb0665) 2015; 150
Gao, Wang, Wu, Naidu, Chen (bb0195) 2016; 285
Pourfadakari, Yousefi, Mahvi (bb0550) 2016; 24
Ma, Lv, Yang, Wang, Chen (bb0505) 2017; 542
Li, Hu, Shi, Fan, Luo, Wei (bb0390) 2016; 23
He, Zhao (bb0235) 2005; 39
Kumar, Bae, Han, Chang, Lee (bb0350) 2017; 340
Liu, Yang, Wang, Yan (bb0450) 2013; 47
Hoch, Mack, Hydutsky, Hershman, Skluzacek, Mallouk (bb0255) 2008; 42
Xu, Cao, Wang, Zhang, Gao, Ahmed, Zhang, Yang, Zhou, Lowry (bb0790) 2019; 359
Wu, Wang, Blaney, Peng, Chen, Cui, Deng, Wang, Huang, Yu (bb0755) 2019; 361
Yoon, Bae (bb0820) 2019; 365
Lazar, Otyepka (bb0360) 2012; 116
Yang, Li, Wang, Wang, Chu, Xia (bb0810) 2018; 185
Liu, Ma, Zhuang, Hu, Chen, Liu, Wang (bb0480) 2021; 51
Zhao, Zhou, Yan, Yang, Xing, Li, Wu, Wang, Zheng (bb6005) 2021; 765
Atashgahi, Shetty, Smidt, de Vos (bb0020) 2018; 9
Rajajayavel, Ghoshal (bb0575) 2015; 78
Choi, Lee (bb0110) 2012; 211-212
Kuang, Wang, Chen, Megharaj, Naidu (bb0345) 2013; 410
Raychoudhury, Scheytt (bb0595) 2013; 68
Danish, Gu, Lu, Brusseau, Ahmad, Naqvi, Farooq, Zaman, Fu, Miao (bb0125) 2017; 531
Lin, Shih, Macfarlane, Lin (bb0440) 2015; 262
Zhang, Li, Tong, Jiang, Wang, Sun, Li, Liu, Shen (bb0840) 2018; 8
Kose, Kirpik, Kose (bb0340) 2019; 1185
Wang, Wang, Lu, Ma (bb0720) 2017; 337
Dong, Hou, Qiao, Cheng, Zhang, Wang, Li, Wang, Ning, Zeng (bb0150) 2019; 359
Li, Jin, Megharaj, Naidu, Chen (bb0380) 2015; 264
Danish, Gu, Lu, Naqvi (bb0120) 2016; 23
Lai, Zhou, Yang, Yang, Wang (bb0355) 2013; 90
Liu, Wei, Luo, Li, Wang, Luo, Crittenden (bb0470) 2019; 368
Weng, Cai, Lin, Chen (bb0740) 2017; 147
Deng, Li, Yang, Xing, Li, Zhang (bb0135) 2016; 219
Alshabib, Onaizi (bb0015) 2019; 219
Kecić, Kerkez, Prica, Lužanin, Bečelić-Tomin, Pilipović, Dalmacija (bb0320) 2018; 202
Shi, Xu, Liu, Chen, Fan, Liu, Chen (bb0625) 2021; 403
Mehrabi, Masud, Afolabi, Hwang, Calderon Ortiz, Aich (bb0525) 2019; 9
Li, Ji, Li, Song, Wang, Qi, Li (bb0410) 2019; 293
Shimizu, Tokumura, Nakajima, Kawase (bb0630) 2012; 201-202
Wang, Du, Ma (bb0705) 2016; 390
Bao, Damtie, Hosseinzadeh, Wei, Jin, Vo, Ye, Liu, Wang, Yu, Chen, Wu, Frost, Ni (bb6000) 2020; 260
Yao, Yang, Chen, Qiu, Hu, Wang (bb0815) 2021; 273
Mu, Jia, Ai, Zhang (bb0530) 2016; 4
Sun, Liu, Han, Qin, Yang, Xing (bb0660) 2019; 79
Zhou, Ma, Liu, Lin, Sun, Zhang, Li, Fan (bb0870) 2019; 223
Wang, Chen, Yang, Huang, Yang, He, Wang, Qiu (bb0710) 2017; 317
Li, Duan, Li, Zhang (bb0375) 2013; 66
Alizadeh Fard, Torabian, Bidhendi, Aminzadeh (bb0010) 2013; 139
Deng, Dong, Zhang, Jiang, Cheng, Hou, Zhang, Fan (bb0140) 2018; 202
Ezzat, Moustafa (bb0160) 2021; 15
Jiao, Luo, He, Liu (bb0290) 2017; 313
Zhou, Thanh, Gong, Kim, Kim, Chang (bb0855) 2014; 104
Cao, Xu, Tang, Tang, Cao (bb0055) 2011; 409
Jiang, Lu, Liu, Li, Dai, Xu, Chu (bb0285) 2011; 174
Jamei, Khosravi, Anvaripour (bb0275) 2014; 21
Khalil, Eljamal, Jribi, Matsunaga (bb0325) 2016; 287
Chen, Wang, Guo, Wang, Zheng (bb0070) 2000; 39
Rani, Shanker, Jassal (bb0585) 2017; 190
Brausch, Rand (bb0040) 2011; 82
Dong, Wang, Geng, Li, Zhao (bb0155) 2019; 244
Marican, Durán-Lara (bb0520) 2018; 25
Li, Zhang, Sun, Liang, Pan, Zhang, Guan (bb0400) 2017; 51
Calderon, Smith, Aracil, Fullana (bb0050) 2018; 6
Katsoyiannis, Ruettimann, Hug (bb0315) 2008; 42
Nurmi, Tratnyek, Sarathy, Baer, Amonette, Pecher, Wang, Linehan, Matson, Penn, Driessen (bb0535) 2005; 39
Liu, Cao, Yuan, Zhang, Guo, Yang, He, Zhao, Xu (bb0460) 2018; 334
Jiao, Qin, Luo, He, Feng, Liu (bb0295) 2017; 321
Wu, Zhao, Hou, Zeng, Xing (bb0760) 2019; 53
Xin, Han, Zheng, Shao, Kolditz (bb0770) 2015; 150
Fu, Dionysiou, Liu (bb0190) 2014; 267
Raman, Kanmani (bb0580) 2016; 177
Zhang (bb0830) 2008; 33
Chen, Cao, Wei, Gong, Xian (bb0090) 2016; 146
Chen, Shao (bb0065) 2003; 1
Shen, Mu, Wang, Ai, Zhang (bb0610) 2017; 393
Yang (10.1016/j.scitotenv.2021.148546_bb0810) 2018; 185
Danish (10.1016/j.scitotenv.2021.148546_bb0120) 2016; 23
Chen (10.1016/j.scitotenv.2021.148546_bb0070) 2000; 39
Jamei (10.1016/j.scitotenv.2021.148546_bb0275) 2014; 21
Mu (10.1016/j.scitotenv.2021.148546_bb0530) 2016; 4
Šimkovič (10.1016/j.scitotenv.2021.148546_bb0640) 2017; 31
Liu (10.1016/j.scitotenv.2021.148546_bb0470) 2019; 368
Zhou (10.1016/j.scitotenv.2021.148546_bb0875) 2019; 54
Kim (10.1016/j.scitotenv.2021.148546_bb0330) 2005; 39
Jiao (10.1016/j.scitotenv.2021.148546_bb0290) 2017; 313
Luo (10.1016/j.scitotenv.2021.148546_bb0490) 2016; 294
Guo (10.1016/j.scitotenv.2021.148546_bb0210) 2017; 339
Pourfadakari (10.1016/j.scitotenv.2021.148546_bb0550) 2016; 24
Shi (10.1016/j.scitotenv.2021.148546_bb0625) 2021; 403
Wen (10.1016/j.scitotenv.2021.148546_bb0735) 2017; 307
Janssen (10.1016/j.scitotenv.2021.148546_bb0280) 2002; 85
Luo (10.1016/j.scitotenv.2021.148546_bb0495) 2016; 303
Pulido (10.1016/j.scitotenv.2021.148546_bb0555) 2000; 48
Sun (10.1016/j.scitotenv.2021.148546_bb0660) 2019; 79
Chen (10.1016/j.scitotenv.2021.148546_bb0090) 2016; 146
Li (10.1016/j.scitotenv.2021.148546_bb0395) 2016; 284
Shi (10.1016/j.scitotenv.2021.148546_bb0620) 2021; 15
Dong (10.1016/j.scitotenv.2021.148546_bb0155) 2019; 244
Weng (10.1016/j.scitotenv.2021.148546_bb0740) 2017; 147
Ahmed (10.1016/j.scitotenv.2021.148546_bb0005) 2017; 322
Xu (10.1016/j.scitotenv.2021.148546_bb0780) 2016; 48
Kumar (10.1016/j.scitotenv.2021.148546_bb0350) 2017; 340
Gao (10.1016/j.scitotenv.2021.148546_bb0195) 2016; 285
Lin (10.1016/j.scitotenv.2021.148546_bb0440) 2015; 262
Katsenovich (10.1016/j.scitotenv.2021.148546_bb0310) 2009; 407
Wang (10.1016/j.scitotenv.2021.148546_bb0715) 2017; 222
He (10.1016/j.scitotenv.2021.148546_bb0250) 2018; 347
Li (10.1016/j.scitotenv.2021.148546_bb0405) 2018; 197
Wang (10.1016/j.scitotenv.2021.148546_bb0685) 2020; 233
Cao (10.1016/j.scitotenv.2021.148546_bb0060) 2017; 51
Cao (10.1016/j.scitotenv.2021.148546_bb0055) 2011; 409
Choi (10.1016/j.scitotenv.2021.148546_bb0110) 2012; 211-212
Dehghani (10.1016/j.scitotenv.2021.148546_bb0130) 2020; 311
Hao (10.1016/j.scitotenv.2021.148546_bb0230) 2021; 760
Xu (10.1016/j.scitotenv.2021.148546_bb0800) 2019; 37
Han (10.1016/j.scitotenv.2021.148546_bb0225) 2016; 23
Xu (10.1016/j.scitotenv.2021.148546_bb0785) 2018; 229
Maamoun (10.1016/j.scitotenv.2021.148546_bb0510) 2021; 12
Hoch (10.1016/j.scitotenv.2021.148546_bb0255) 2008; 42
Zhou (10.1016/j.scitotenv.2021.148546_bb0870) 2019; 223
Chen (10.1016/j.scitotenv.2021.148546_bb0080) 2011; 363
Sahu (10.1016/j.scitotenv.2021.148546_bb0600) 2019; 378
Liang (10.1016/j.scitotenv.2021.148546_bb0425) 2014; 278
Mehrabi (10.1016/j.scitotenv.2021.148546_bb0525) 2019; 9
Wu (10.1016/j.scitotenv.2021.148546_bb0745) 2018; 69
Deng (10.1016/j.scitotenv.2021.148546_bb0135) 2016; 219
Xue (10.1016/j.scitotenv.2021.148546_bb0805) 2012; 14
Shimizu (10.1016/j.scitotenv.2021.148546_bb0630) 2012; 201-202
Han (10.1016/j.scitotenv.2021.148546_bb0215) 2016; 50
Khalil (10.1016/j.scitotenv.2021.148546_bb0325) 2016; 287
Dai (10.1016/j.scitotenv.2021.148546_bb0115) 2019; 7
Huang (10.1016/j.scitotenv.2021.148546_bb0265) 2016; 134
Bao (10.1016/j.scitotenv.2021.148546_bb6000) 2020; 260
Qiu (10.1016/j.scitotenv.2021.148546_bb0565) 2018; 201
He (10.1016/j.scitotenv.2021.148546_bb0240) 2016; 50
Rahmani (10.1016/j.scitotenv.2021.148546_bb0570) 2018; 44
Diao (10.1016/j.scitotenv.2021.148546_bb0145) 2016; 316
Lin (10.1016/j.scitotenv.2021.148546_bb0435) 2004; 116
Li (10.1016/j.scitotenv.2021.148546_bb0375) 2013; 66
Jamei (10.1016/j.scitotenv.2021.148546_bb0270) 2013; 8
Hua (10.1016/j.scitotenv.2021.148546_bb0260) 2018; 67
Kang (10.1016/j.scitotenv.2021.148546_bb0305) 2016; 307
Sun (10.1016/j.scitotenv.2021.148546_bb0655) 2019; 124
Wu (10.1016/j.scitotenv.2021.148546_bb0760) 2019; 53
Tan (10.1016/j.scitotenv.2021.148546_bb0665) 2015; 150
Wu (10.1016/j.scitotenv.2021.148546_bb0750) 2018; 262
Oleszczuk (10.1016/j.scitotenv.2021.148546_bb0540) 2017; 168
Wang (10.1016/j.scitotenv.2021.148546_bb0710) 2017; 317
Zhou (10.1016/j.scitotenv.2021.148546_bb0855) 2014; 104
Lu (10.1016/j.scitotenv.2021.148546_bb0485) 2018; 558
Zhao (10.1016/j.scitotenv.2021.148546_bb0850) 2019; 369
Gu (10.1016/j.scitotenv.2021.148546_bb0205) 2015; 44
Wan (10.1016/j.scitotenv.2021.148546_bb0680) 2019; 135
Song (10.1016/j.scitotenv.2021.148546_bb0645) 2019; 355
Wang (10.1016/j.scitotenv.2021.148546_bb0705) 2016; 390
Jiang (10.1016/j.scitotenv.2021.148546_bb0285) 2011; 174
Xin (10.1016/j.scitotenv.2021.148546_bb0770) 2015; 150
Zhang (10.1016/j.scitotenv.2021.148546_bb0830) 2008; 33
Shan (10.1016/j.scitotenv.2021.148546_bb0605) 2015; 13
Oprčkal (10.1016/j.scitotenv.2021.148546_bb0545) 2017; 321
Danish (10.1016/j.scitotenv.2021.148546_bb0125) 2017; 531
Kim (10.1016/j.scitotenv.2021.148546_bb0335) 2018; 52
Rasheed (10.1016/j.scitotenv.2021.148546_bb0590) 2011; 18
Zhao (10.1016/j.scitotenv.2021.148546_bb0845) 2016; 100
Fan (10.1016/j.scitotenv.2021.148546_bb0175) 2016; 50
Nurmi (10.1016/j.scitotenv.2021.148546_bb0535) 2005; 39
Zhang (10.1016/j.scitotenv.2021.148546_bb0835) 2017; 172
Alshabib (10.1016/j.scitotenv.2021.148546_bb0015) 2019; 219
Chen (10.1016/j.scitotenv.2021.148546_bb0100) 2019; 371
Lin (10.1016/j.scitotenv.2021.148546_bb0430) 2017; 119
Ezzat (10.1016/j.scitotenv.2021.148546_bb0160) 2021; 15
Lin (10.1016/j.scitotenv.2021.148546_bb0445) 2017; 169
Zhou (10.1016/j.scitotenv.2021.148546_bb0865) 2017; 182
Xu (10.1016/j.scitotenv.2021.148546_bb0790) 2019; 359
Ma (10.1016/j.scitotenv.2021.148546_bb0505) 2017; 542
Pustovalov (10.1016/j.scitotenv.2021.148546_bb0560) 2015; 1097
Si (10.1016/j.scitotenv.2021.148546_bb0635) 2010; 79
Jiao (10.1016/j.scitotenv.2021.148546_bb0295) 2017; 321
Xie (10.1016/j.scitotenv.2021.148546_bb0765) 2018; 116
Liu (10.1016/j.scitotenv.2021.148546_bb0480) 2021; 51
Liu (10.1016/j.scitotenv.2021.148546_bb0450) 2013; 47
Zhu (10.1016/j.scitotenv.2021.148546_bb0880) 2016; 316
Xiong (10.1016/j.scitotenv.2021.148546_bb0775) 2019; 359
Alizadeh Fard (10.1016/j.scitotenv.2021.148546_bb0010) 2013; 139
Atashgahi (10.1016/j.scitotenv.2021.148546_bb0020) 2018; 9
Zhou (10.1016/j.scitotenv.2021.148546_bb0860) 2017; 1487
Lv (10.1016/j.scitotenv.2021.148546_bb0500) 2020; 12
Wang (10.1016/j.scitotenv.2021.148546_bb0720) 2017; 337
Machado (10.1016/j.scitotenv.2021.148546_bb0515) 2015; 533
Lazar (10.1016/j.scitotenv.2021.148546_bb0360) 2012; 116
Liu (10.1016/j.scitotenv.2021.148546_bb0465) 2018; 239
Li (10.1016/j.scitotenv.2021.148546_bb0370) 2009; 11
Li (10.1016/j.scitotenv.2021.148546_bb0390) 2016; 23
Chen (10.1016/j.scitotenv.2021.148546_bb0085) 2012; 181-182
Bystrzejewski (10.1016/j.scitotenv.2021.148546_bb0045) 2011; 184
Han (10.1016/j.scitotenv.2021.148546_bb0220) 2016; 188
Chen (10.1016/j.scitotenv.2021.148546_bb0095) 2016; 322
Gomes (10.1016/j.scitotenv.2021.148546_bb0200) 2014; 433
Feng (10.1016/j.scitotenv.2021.148546_bb0180) 2020; 247
Shen (10.1016/j.scitotenv.2021.148546_bb0610) 2017; 393
Xu (10.1016/j.scitotenv.2021.148546_bb0795) 2019; 53
Calderon (10.1016/j.scitotenv.2021.148546_bb0050) 2018; 6
Filip (10.1016/j.scitotenv.2021.148546_bb0185) 2014; 118
Li (10.1016/j.scitotenv.2021.148546_bb0385) 2016; 59
Lee (10.1016/j.scitotenv.2021.148546_bb0365) 2008; 42
He (10.1016/j.scitotenv.2021.148546_bb0235) 2005; 39
Liu (10.1016/j.scitotenv.2021.148546_bb0475) 2021; 2
Stefaniuk (10.1016/j.scitotenv.2021.148546_bb0650) 2016; 287
Kose (10.1016/j.scitotenv.2021.148546_bb0340) 2019; 1185
Liu (10.1016/j.scitotenv.2021.148546_bb0460) 2018; 334
Katsoyiannis (10.1016/j.scitotenv.2021.148546_bb0315) 2008; 42
Wang (10.1016/j.scitotenv.2021.148546_bb0695) 2015; 345
Fan (10.1016/j.scitotenv.2021.148546_bb0170) 2015; 174
Shi (10.1016/j.scitotenv.2021.148546_bb0615) 2019; 11
Zeng (10.1016/j.scitotenv.2021.148546_bb0825) 2017; 324
Blum (10.1016/j.scitotenv.2021.148546_bb0035) 2017; 612
Fu (10.1016/j.scitotenv.2021.148546_bb0190) 2014; 267
Wang (10.1016/j.scitotenv.2021.148546_bb0700) 2015; 172-173
Yao (10.1016/j.scitotenv.2021.148546_bb0815) 2021; 273
Kuang (10.1016/j.scitotenv.2021.148546_bb0345) 2013; 410
Ezzatahmadi (10.1016/j.scitotenv.2021.148546_bb0165) 2017; 312
Jin (10.1016/j.scitotenv.2021.148546_bb0300) 2018; 243
Lai (10.1016/j.scitotenv.2021.148546_bb0355) 2013; 90
He (10.1016/j.scitotenv.2021.148546_bb0245) 2018; 52
Li (10.1016/j.scitotenv.2021.148546_bb0410) 2019; 293
Zhao (10.1016/j.scitotenv.2021.148546_bb6005) 2021; 765
Rajajayavel (10.1016/j.scitotenv.2021.148546_bb0575) 2015; 78
Li (10.1016/j.scitotenv.2021.148546_bb0400) 2017; 51
Deng (10.1016/j.scitotenv.2021.148546_bb0140) 2018; 202
Liu (10.1016/j.scitotenv.2021.148546_bb0455) 2014; 321
Marican (10.1016/j.scitotenv.2021.148546_bb0520) 2018; 25
Wu (10.1016/j.scitotenv.2021.148546_bb0755) 2019; 361
Yoon (10.1016/j.scitotenv.2021.148546_bb0820) 2019; 365
Bharti (10.1016/j.scitotenv.2021.148546_bb0030) 2018; 229
Brausch (10.1016/j.scitotenv.2021.148546_bb0040) 2011; 82
Raman (10.1016/j.scitotenv.2021.148546_bb0580) 2016; 177
Wang (10.1016/j.scitotenv.2021.148546_bb0730) 2020; 243
Banks (10.1016/j.scitotenv.2021.148546_bb0025) 2020; 231
Raychoudhury (10.1016/j.scitotenv.2021.148546_bb0595) 2013; 68
Wang (10.1016/j.scitotenv.2021.148546_bb0690) 2013; 449
Rani (10.1016/j.scitotenv.2021.148546_bb0585) 2017; 190
Zhang (10.1016/j.scitotenv.2021.148546_bb0840) 2018; 8
Li (10.1016/j.scitotenv.2021.148546_bb0415) 2019; 269
Dong (10.1016/j.scitotenv.2021.148546_bb0150) 2019; 359
Tang (10.1016/j.scitotenv.2021.148546_bb0670) 2015; 333
Kecić (10.1016/j.scitotenv.2021.148546_bb0320) 2018; 202
Chen (10.1016/j.scitotenv.2021.148546_bb0065) 2003; 1
Chen (10.1016/j.scitotenv.2021.148546_bb0075) 2004; 6
Li (10.1016/j.scitotenv.2021.148546_bb0380) 2015; 264
Li (10.1016/j.scitotenv.2021.148546_bb0420) 2021; 760
Wang (10.1016/j.scitotenv.2021.148546_bb0725) 2017; 166
References_xml – volume: 244
  start-page: 1
  year: 2019
  end-page: 12
  ident: bb0155
  article-title: Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater
  publication-title: J. Environ. Manag.
– volume: 337
  start-page: 372
  year: 2017
  end-page: 384
  ident: bb0720
  article-title: Synthesis of magnetically recoverable Fe
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 13344
  year: 2019
  end-page: 13352
  ident: bb0795
  article-title: Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron
  publication-title: Environ. Sci. Technol.
– volume: 433
  start-page: 189
  year: 2014
  end-page: 195
  ident: bb0200
  article-title: Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants
  publication-title: J. Colloid Interface Sci.
– volume: 262
  start-page: 19
  year: 2018
  end-page: 28
  ident: bb0750
  article-title: Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP)
  publication-title: J. Mol. Liq.
– volume: 100
  start-page: 245
  year: 2016
  end-page: 266
  ident: bb0845
  article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation
  publication-title: Water Res.
– volume: 262
  start-page: 59
  year: 2015
  end-page: 67
  ident: bb0440
  article-title: Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles
  publication-title: Chem. Eng. J.
– volume: 201
  start-page: 764
  year: 2018
  end-page: 771
  ident: bb0565
  article-title: XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate
  publication-title: Chemosphere
– volume: 531
  start-page: 177
  year: 2017
  end-page: 186
  ident: bb0125
  article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite
  publication-title: Appl. Catal. A Gen.
– volume: 146
  start-page: 32
  year: 2016
  end-page: 39
  ident: bb0090
  article-title: Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water
  publication-title: Chemosphere
– volume: 21
  start-page: 226
  year: 2014
  end-page: 233
  ident: bb0275
  article-title: A novel ultrasound assisted method in synthesis of NZVI particles
  publication-title: Ultrason. Sonochem.
– volume: 201-202
  start-page: 60
  year: 2012
  end-page: 67
  ident: bb0630
  article-title: Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation
  publication-title: J. Hazard. Mater.
– volume: 760
  year: 2021
  ident: bb0230
  article-title: Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 22161
  year: 2018
  end-page: 22168
  ident: bb0840
  article-title: Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene
  publication-title: RSC Adv.
– volume: 51
  start-page: 11269
  year: 2017
  end-page: 11277
  ident: bb0060
  article-title: Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 1221
  year: 2005
  end-page: 1230
  ident: bb0535
  article-title: Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics
  publication-title: Environ. Sci. Technol.
– volume: 311
  year: 2020
  ident: bb0130
  article-title: Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zerovalent iron nanoparticles
  publication-title: J. Mol. Liq.
– volume: 324
  start-page: 605
  year: 2017
  end-page: 616
  ident: bb0825
  article-title: Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles
  publication-title: J. Hazard. Mater.
– volume: 316
  start-page: 186
  year: 2016
  end-page: 193
  ident: bb0145
  article-title: Simultaneous removal of Cr (VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism
  publication-title: J. Hazard. Mater.
– volume: 223
  start-page: 196
  year: 2019
  end-page: 203
  ident: bb0870
  article-title: Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: effect, mechanism and ecotoxicity
  publication-title: Chemosphere
– volume: 278
  start-page: 592
  year: 2014
  end-page: 596
  ident: bb0425
  article-title: Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics
  publication-title: J. Hazard. Mater.
– volume: 23
  start-page: 6253
  year: 2016
  end-page: 6263
  ident: bb0225
  article-title: Nanoscale zerovalent iron-mediated degradation of DDT in soil
  publication-title: Environ. Sci. Pollut. Res.
– volume: 334
  start-page: 508
  year: 2018
  end-page: 518
  ident: bb0460
  article-title: Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron
  publication-title: Chem. Eng. J.
– volume: 345
  start-page: 57
  year: 2015
  end-page: 66
  ident: bb0695
  article-title: Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration
  publication-title: Appl. Surf. Sci.
– volume: 533
  start-page: 76
  year: 2015
  end-page: 81
  ident: bb0515
  article-title: Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts
  publication-title: Sci. Total Environ.
– volume: 339
  start-page: 22
  year: 2017
  end-page: 32
  ident: bb0210
  article-title: Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism
  publication-title: J. Hazard. Mater.
– volume: 542
  start-page: 252
  year: 2017
  end-page: 261
  ident: bb0505
  article-title: Reduction of carbon tetrachloride by nanoscale palladized zero-valent iron@graphene composites: kinetics, activation energy, effects of reaction conditions and degradation mechanism
  publication-title: Appl. Catal. A Gen.
– volume: 139
  start-page: 966
  year: 2013
  end-page: 974
  ident: bb0010
  article-title: Fenton and photo-Fenton oxidation of petroleum aromatic hydrocarbons using nanoscale zero-valent iron
  publication-title: J. Environ. Eng.
– volume: 52
  start-page: 3625
  year: 2018
  end-page: 3633
  ident: bb0335
  article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI
  publication-title: Environ. Sci. Technol.
– volume: 2
  year: 2021
  ident: bb0475
  article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions
  publication-title: The Innovation
– volume: 365
  start-page: 751
  year: 2019
  end-page: 758
  ident: bb0820
  article-title: Novel synthesis of nanoscale zerovalent iron from coal fly ash and its application in oxidative degradation of methyl orange by Fenton reaction
  publication-title: J. Hazard. Mater.
– volume: 403
  year: 2021
  ident: bb0625
  article-title: Enhanced bisphenol S anaerobic degradation using an NZVI–HA-modified anode in bioelectrochemical systems
  publication-title: J. Hazard. Mater.
– volume: 359
  start-page: 713
  year: 2019
  end-page: 722
  ident: bb0790
  article-title: Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol
  publication-title: Chem. Eng. J.
– volume: 188
  start-page: 77
  year: 2016
  end-page: 86
  ident: bb0220
  article-title: Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation
  publication-title: Appl. Catal. B Environ.
– volume: 264
  start-page: 587
  year: 2015
  end-page: 594
  ident: bb0380
  article-title: Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system
  publication-title: Chem. Eng. J.
– volume: 359
  start-page: 13
  year: 2019
  end-page: 31
  ident: bb0775
  article-title: Removal of nitrophenols and their derivatives by chemical redox: a review
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 2051
  year: 2018
  end-page: 2064
  ident: bb0520
  article-title: A review on pesticide removal through different processes
  publication-title: Environ. Sci. Pollut. Res.
– volume: 449
  start-page: 157
  year: 2013
  end-page: 167
  ident: bb0690
  article-title: Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol
  publication-title: Sci. Total Environ.
– volume: 12
  start-page: 2909
  year: 2020
  ident: bb0500
  article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles
  publication-title: Water
– volume: 313
  start-page: 912
  year: 2017
  end-page: 927
  ident: bb0290
  article-title: Applications of high gravity technologies for wastewater treatment: a review
  publication-title: Chem. Eng. J.
– volume: 361
  start-page: 99
  year: 2019
  end-page: 108
  ident: bb0755
  article-title: Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron
  publication-title: Chem. Eng. J.
– volume: 185
  start-page: 1
  year: 2018
  end-page: 14
  ident: bb0810
  article-title: Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review
  publication-title: Microchim. Acta
– volume: 54
  start-page: 12171
  year: 2019
  end-page: 12188
  ident: bb0875
  article-title: Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review
  publication-title: J. Mater. Sci.
– volume: 369
  start-page: 621
  year: 2019
  end-page: 631
  ident: bb0850
  article-title: Removal of organic dye by biomass-based iron carbide composite with an improved stability and efficiency
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 2600
  year: 2008
  end-page: 2605
  ident: bb0255
  article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium
  publication-title: Environ. Sci. Technol.
– volume: 287
  start-page: 618
  year: 2016
  end-page: 632
  ident: bb0650
  article-title: Review on nano zerovalent iron (nZVI): from synthesis to environmental applications
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 1138
  year: 2011
  end-page: 1142
  ident: bb0590
  article-title: Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent iron particles
  publication-title: Ultrason. Sonochem.
– volume: 197
  start-page: 401
  year: 2018
  end-page: 406
  ident: bb0405
  article-title: Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI
  publication-title: Sep. Purif. Technol.
– volume: 124
  start-page: 521
  year: 2019
  end-page: 532
  ident: bb0655
  article-title: Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater
  publication-title: Environ. Int.
– volume: 53
  start-page: 8105
  year: 2019
  end-page: 8114
  ident: bb0760
  article-title: Degradation of tetrabromobisphenol A by sulfidated nanoscale zerovalent iron in a dynamic two-step anoxic/oxic process
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 1618
  year: 2009
  end-page: 1626
  ident: bb0370
  article-title: Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling
  publication-title: Green Chem.
– volume: 147
  start-page: 137
  year: 2017
  end-page: 142
  ident: bb0740
  article-title: Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron
  publication-title: Appl. Clay Sci.
– volume: 321
  start-page: 20
  year: 2017
  end-page: 30
  ident: bb0545
  article-title: Critical evaluation of the use of different nanoscale zero-valent iron particles for the treatment of effluent water from a small biological wastewater treatment plant
  publication-title: Chem. Eng. J.
– volume: 333
  start-page: 220
  year: 2015
  end-page: 228
  ident: bb0670
  article-title: Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect
  publication-title: Appl. Surf. Sci.
– volume: 229
  year: 2018
  ident: bb0785
  article-title: Reduced graphene oxide/attapulgite-supported nanoscale zero-valent iron removal of Acid Red 18 from aqueous solution
  publication-title: Water Air Soil Pollut.
– volume: 231
  year: 2020
  ident: bb0025
  article-title: Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: a review
  publication-title: Sep. Purif. Technol.
– volume: 211-212
  start-page: 146
  year: 2012
  end-page: 153
  ident: bb0110
  article-title: Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu (II)
  publication-title: J. Hazard. Mater.
– volume: 359
  start-page: 1046
  year: 2019
  end-page: 1055
  ident: bb0150
  article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate
  publication-title: Chem. Eng. J.
– volume: 104
  start-page: 155
  year: 2014
  end-page: 161
  ident: bb0855
  article-title: Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron
  publication-title: Chemosphere
– volume: 37
  start-page: 217
  year: 2019
  end-page: 235
  ident: bb0800
  article-title: Polyaniline/attapulgite-supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution
  publication-title: Adsorpt. Sci. Technol.
– volume: 1487
  start-page: 22
  year: 2017
  end-page: 29
  ident: bb0860
  article-title: Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101(Cr) modified zero valent iron nanoparticles
  publication-title: J. Chromatogr. A
– volume: 13
  start-page: 110
  year: 2015
  end-page: 119
  ident: bb0605
  article-title: Applications of nanomaterials in environmental science and engineering: review
  publication-title: Pract. Period. Hazard. Toxic Radioact. Waste Manage
– volume: 12
  start-page: 131
  year: 2021
  end-page: 138
  ident: bb0510
  article-title: Optimization modeling of nFe
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 340
  start-page: 399
  year: 2017
  end-page: 406
  ident: bb0350
  article-title: Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni
  publication-title: J. Hazard. Mater.
– volume: 169
  start-page: 413
  year: 2017
  end-page: 417
  ident: bb0445
  article-title: Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres
  publication-title: Chemosphere
– volume: 243
  year: 2020
  ident: bb0730
  article-title: Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide
  publication-title: Chemosphere
– volume: 202
  start-page: 65
  year: 2018
  end-page: 80
  ident: bb0320
  article-title: Optimization of azo printing dye removal with oak leaves-nZVI/H
  publication-title: J. Clean. Prod.
– volume: 15
  year: 2021
  ident: bb0160
  article-title: Treating wastewater under zero waste principle using wetland mesocosms
  publication-title: Front. Environ. Sci. Eng.
– volume: 134
  start-page: 168
  year: 2016
  end-page: 174
  ident: bb0265
  article-title: Facile preparation of amorphous iron nanoparticles filled alginate matrix composites with high stability
  publication-title: Compos. Sci. Technol.
– volume: 42
  start-page: 7424
  year: 2008
  end-page: 7430
  ident: bb0315
  article-title: pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water
  publication-title: Environ. Sci. Technol.
– volume: 150
  start-page: 420
  year: 2015
  end-page: 426
  ident: bb0770
  article-title: Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles
  publication-title: J. Environ. Manag.
– volume: 284
  start-page: 1242
  year: 2016
  end-page: 1250
  ident: bb0395
  article-title: Catalytic debromination of tetrabromobisphenol A by Ni/nZVI bimetallic particles
  publication-title: Chem. Eng. J.
– volume: 390
  start-page: 50
  year: 2016
  end-page: 59
  ident: bb0705
  article-title: Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole
  publication-title: Appl. Surf. Sci.
– volume: 612
  start-page: 1532
  year: 2017
  end-page: 1542
  ident: bb0035
  article-title: Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants
  publication-title: Sci. Total Environ.
– volume: 1097
  start-page: 3
  year: 2015
  end-page: 7
  ident: bb0560
  article-title: Production of iron nanopowders by the electric explosion of wire
  publication-title: Adv. Mater. Res.
– volume: 14
  year: 2012
  ident: bb0805
  article-title: Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles
  publication-title: J. Nanopart. Res.
– volume: 260
  year: 2020
  ident: bb6000
  article-title: Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol a degradation: preparation, performance, and mechanism of action
  publication-title: J. Environ. Manage.
– volume: 23
  start-page: 17880
  year: 2016
  end-page: 17900
  ident: bb0390
  article-title: Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation
  publication-title: Environ. Sci. Pollut. Res.
– volume: 44
  start-page: 5501
  year: 2018
  end-page: 5519
  ident: bb0570
  article-title: Activated persulfate by chelating agent Fe/complex for in situ degradation of phenol: intermediate identification and optimization study
  publication-title: Res. Chem. Intermed.
– volume: 1
  start-page: 64
  year: 2003
  end-page: 69
  ident: bb0065
  article-title: Mass production of nanoparticles by high gravity reactive precipitation technology with low cost
  publication-title: China Par.
– volume: 9
  start-page: 963
  year: 2019
  end-page: 973
  ident: bb0525
  article-title: Magnetic graphene oxide-nano zero valent iron (GO-nZVI) nanohybrids synthesized using biocompatible cross-linkers for methylene blue removal
  publication-title: RSC Adv.
– volume: 6
  start-page: 7995
  year: 2018
  end-page: 8002
  ident: bb0050
  article-title: Green synthesis of thin shell carbon-encapsulated iron nanoparticles via hydrothermal carbonization
  publication-title: ACS Sustain. Chem. Eng.
– volume: 303
  start-page: 145
  year: 2016
  end-page: 153
  ident: bb0495
  article-title: One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II
  publication-title: J. Hazard. Mater.
– volume: 116
  start-page: 180
  year: 2018
  end-page: 198
  ident: bb0765
  article-title: Physical and chemical treatments for removal of perchlorate from water-a review
  publication-title: Process Saf. Environ.
– volume: 219
  start-page: 677
  year: 2016
  end-page: 686
  ident: bb0135
  article-title: Biological denitrification process based on the Fe (0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition
  publication-title: Bioresour. Technol.
– volume: 174
  start-page: 446
  year: 2015
  end-page: 451
  ident: bb0170
  article-title: Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography
  publication-title: Food Chem.
– volume: 407
  start-page: 4986
  year: 2009
  end-page: 4993
  ident: bb0310
  article-title: Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils
  publication-title: Sci. Total Environ.
– volume: 116
  start-page: 25470
  year: 2012
  end-page: 25477
  ident: bb0360
  article-title: Dissociation of water at iron surfaces: generalized gradient functional and range-separated hybrid functional study
  publication-title: J. Phys. Chem. C
– volume: 321
  start-page: 158
  year: 2014
  end-page: 165
  ident: bb0455
  article-title: Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane
  publication-title: Appl. Surf. Sci.
– volume: 78
  start-page: 144
  year: 2015
  end-page: 153
  ident: bb0575
  article-title: Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron
  publication-title: Water Res.
– volume: 23
  start-page: 13298
  year: 2016
  end-page: 13307
  ident: bb0120
  article-title: Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ
  publication-title: Sci. Pollut. Res. Int
– volume: 243
  start-page: 218
  year: 2018
  end-page: 227
  ident: bb0300
  article-title: Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix
  publication-title: Environ. Pollut.
– volume: 181-182
  start-page: 113
  year: 2012
  end-page: 119
  ident: bb0085
  article-title: Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles
  publication-title: Chem. Eng. J.
– volume: 558
  start-page: 271
  year: 2018
  end-page: 279
  ident: bb0485
  article-title: SiO
  publication-title: Colloids Surf. A
– volume: 307
  start-page: 145
  year: 2016
  end-page: 153
  ident: bb0305
  article-title: Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT
  publication-title: J. Hazard. Mater.
– volume: 316
  start-page: 232
  year: 2016
  end-page: 241
  ident: bb0880
  article-title: Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study
  publication-title: J. Hazard. Mater.
– volume: 150
  start-page: 229
  year: 2015
  end-page: 242
  ident: bb0665
  article-title: Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms
  publication-title: Sep. Purif. Technol.
– volume: 409
  start-page: 2336
  year: 2011
  end-page: 2341
  ident: bb0055
  article-title: Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene
  publication-title: Sci. Total Environ.
– volume: 222
  start-page: 331
  year: 2017
  end-page: 337
  ident: bb0715
  article-title: Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron
  publication-title: Environ. Pollut.
– volume: 177
  start-page: 341
  year: 2016
  end-page: 355
  ident: bb0580
  article-title: Textile dye degradation using nano zero valent iron: a review
  publication-title: J. Environ. Manag.
– volume: 39
  start-page: 948
  year: 2000
  end-page: 954
  ident: bb0070
  article-title: Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation
  publication-title: Ind. Eng. Chem. Res.
– volume: 50
  start-page: 12992
  year: 2016
  end-page: 13001
  ident: bb0215
  article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment
  publication-title: Environ. Sci. Technol.
– volume: 368
  start-page: 639
  year: 2019
  end-page: 648
  ident: bb0470
  article-title: 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water
  publication-title: Chem. Eng. J.
– volume: 174
  start-page: 258
  year: 2011
  end-page: 265
  ident: bb0285
  article-title: Inhibiting 1,3-dinitrobenzene formation in Fenton oxidation of nitrobenzene through a controllable reductive pretreatment with zero-valent iron
  publication-title: Chem. Eng. J.
– volume: 293
  year: 2019
  ident: bb0410
  article-title: Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin
  publication-title: Bioresour. Technol.
– volume: 269
  start-page: 16
  year: 2019
  end-page: 23
  ident: bb0415
  article-title: Anchoring nZVI on metal-organic framework for removal of uranium(VI) from aqueous solution
  publication-title: J. Solid State Chem.
– volume: 47
  start-page: 6691
  year: 2013
  end-page: 6700
  ident: bb0450
  article-title: Enhanced chitosan beads-supported Fe
  publication-title: Water Res.
– volume: 7
  start-page: 6849
  year: 2019
  end-page: 6858
  ident: bb0115
  article-title: Solvent-free synthesis of 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutant
  publication-title: J. Mater. Chem. A
– volume: 166
  start-page: 80
  year: 2017
  end-page: 88
  ident: bb0725
  article-title: Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes
  publication-title: Chemosphere
– volume: 267
  start-page: 194
  year: 2014
  end-page: 205
  ident: bb0190
  article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review
  publication-title: J. Hazard. Mater.
– volume: 85
  start-page: 137
  year: 2002
  end-page: 146
  ident: bb0280
  article-title: The role of electrochemistry and electrochemical technology in environmental protection
  publication-title: Chem. Eng. J.
– volume: 69
  start-page: 173
  year: 2018
  ident: bb0745
  article-title: Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline
  publication-title: J. Environ. Sci. China
– volume: 79
  start-page: 2279
  year: 2019
  end-page: 2288
  ident: bb0660
  article-title: Study on the treatment of simulated azo dye wastewater by a novel micro-electrolysis filler
  publication-title: Water Sci. Technol.
– volume: 118
  start-page: 13817
  year: 2014
  end-page: 13825
  ident: bb0185
  article-title: Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics
  publication-title: J. Phys. Chem. C
– volume: 39
  start-page: 3314
  year: 2005
  end-page: 3320
  ident: bb0235
  article-title: Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water
  publication-title: Environ. Sci. Technol.
– volume: 285
  start-page: 459
  year: 2016
  end-page: 466
  ident: bb0195
  article-title: Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 3396
  year: 2000
  end-page: 3402
  ident: bb0555
  article-title: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay
  publication-title: J. Agric. Food Chem.
– volume: 6
  start-page: 639
  year: 2004
  end-page: 647
  ident: bb0075
  article-title: A new method to produce nanoscale iron for nitrate removal
  publication-title: J. Nanopart. Res.
– volume: 287
  start-page: 367
  year: 2016
  end-page: 380
  ident: bb0325
  article-title: Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 13533
  year: 2017
  end-page: 13544
  ident: bb0400
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
– volume: 355
  start-page: 65
  year: 2019
  end-page: 75
  ident: bb0645
  article-title: Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study
  publication-title: Chem. Eng. J.
– volume: 410
  start-page: 67
  year: 2013
  end-page: 73
  ident: bb0345
  article-title: Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles
  publication-title: J. Colloid Interface Sci.
– volume: 33
  start-page: 139
  year: 2008
  end-page: 145
  ident: bb0830
  article-title: Investigation of the correlations between nitro group charges and some properties of nitro organic compounds
  publication-title: Propell. Explos. Pyrot.
– volume: 247
  year: 2020
  ident: bb0180
  article-title: Activation of Peroxymonosulfate by Fe
  publication-title: Sep. Purif. Technol.
– volume: 371
  start-page: 8
  year: 2019
  end-page: 17
  ident: bb0100
  article-title: Rapid adsorption and reductive degradation of naphthol green B from aqueous solution by polypyrrole/attapulgite composites supported nanoscale zero-valent iron
  publication-title: J. Hazard. Mater.
– volume: 44
  start-page: 4258
  year: 2015
  end-page: 4263
  ident: bb0205
  article-title: Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates
  publication-title: Environ. Sci. Technol.
– volume: 190
  start-page: 208
  year: 2017
  end-page: 222
  ident: bb0585
  article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review
  publication-title: J. Environ. Manag.
– volume: 273
  year: 2021
  ident: bb0815
  article-title: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater
  publication-title: Chemosphere
– volume: 11
  start-page: 1000
  year: 2019
  end-page: 1010
  ident: bb0615
  article-title: Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water
  publication-title: Nanoscale
– volume: 182
  start-page: 78
  year: 2017
  end-page: 86
  ident: bb0865
  article-title: Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples
  publication-title: Sep. Purif. Technol.
– volume: 8
  start-page: 767
  year: 2013
  end-page: 774
  ident: bb0270
  article-title: Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method
  publication-title: Asia Pac. J. Chem. Eng.
– volume: 172
  start-page: 158
  year: 2017
  end-page: 167
  ident: bb0835
  article-title: Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H
  publication-title: Sep. Purif. Technol.
– volume: 184
  start-page: 1492
  year: 2011
  end-page: 1498
  ident: bb0045
  article-title: Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles
  publication-title: J. Solid State Chem.
– volume: 79
  start-page: 672
  year: 2010
  ident: bb0635
  article-title: Reductive degradation of tetrabromobisphenol a over iron-silver bimetallic nanoparticles under ultrasound radiation
  publication-title: Chemosphere
– volume: 760
  year: 2021
  ident: bb0420
  article-title: Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: a review
  publication-title: Sci. Total Environ.
– volume: 15
  year: 2021
  ident: bb0620
  article-title: Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: implications for biostability control of reclaimed water
  publication-title: Front. Environ. Sci. Eng.
– volume: 90
  start-page: 1470
  year: 2013
  end-page: 1477
  ident: bb0355
  article-title: Degradation of 3,3′-iminobis-propanenitrile in aqueous solution by Fe
  publication-title: Chemosphere
– volume: 363
  start-page: 601
  year: 2011
  end-page: 607
  ident: bb0080
  article-title: Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron
  publication-title: J. Colloid Interface Sci.
– volume: 307
  start-page: 364
  year: 2017
  end-page: 371
  ident: bb0735
  article-title: Formation of assimilable organic carbon during the oxidation of water containing Microcystis aeruginosa by ozone and an advanced oxidation process using ozone/hydrogen peroxide
  publication-title: Chem. Eng. J.
– volume: 172-173
  start-page: 73
  year: 2015
  end-page: 81
  ident: bb0700
  article-title: A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol
  publication-title: Appl. Catal. B Environ.
– volume: 4
  start-page: 27
  year: 2016
  end-page: 45
  ident: bb0530
  article-title: Iron oxide shell mediated environmental remediation properties of nano zero-valent iron
  publication-title: Environ. Sci. Nano.
– volume: 168
  start-page: 1467
  year: 2017
  end-page: 1476
  ident: bb0540
  article-title: Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils
  publication-title: Chemosphere
– volume: 135
  start-page: 68
  year: 2019
  end-page: 81
  ident: bb0680
  article-title: Effect of mesoporous silica molecular sieve coating on nZVI for 2,4-DCP degradation: morphology and mechanism during the reaction
  publication-title: Chem. Eng. Process.
– volume: 9
  start-page: 888
  year: 2018
  ident: bb0020
  article-title: Flux, impact, and fate of halogenated xenobiotic compounds in the gut
  publication-title: Front. Physiol.
– volume: 321
  start-page: 564
  year: 2017
  end-page: 571
  ident: bb0295
  article-title: Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 3820
  year: 2016
  end-page: 3828
  ident: bb0240
  article-title: Effect of structural transformation of nanoparticulate zero-valent iron on generation of reactive oxygen species
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 8627
  year: 2018
  end-page: 8637
  ident: bb0245
  article-title: Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
– volume: 294
  start-page: 290
  year: 2016
  end-page: 297
  ident: bb0490
  article-title: Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel
  publication-title: Chem. Eng. J.
– volume: 68
  start-page: 1425
  year: 2013
  end-page: 1439
  ident: bb0595
  article-title: Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review
  publication-title: Water Sci. Technol.
– volume: 66
  start-page: 47
  year: 2013
  end-page: 52
  ident: bb0375
  article-title: Photodegradation of nonylphenol by simulated sunlight
  publication-title: Mar. Pollut. Bull.
– volume: 48
  start-page: 92
  year: 2016
  end-page: 101
  ident: bb0780
  article-title: Enhanced dechlorination of 2,4-dichlorophenol by recoverable Ni/Fe-Fe
  publication-title: J. Environ. Sci. China
– volume: 765
  year: 2021
  ident: bb6005
  article-title: Application of coagulation/flocculation in oily wastewater treatment: a review
  publication-title: Sci. Total Environ.
– volume: 378
  year: 2019
  ident: bb0600
  article-title: Reductive debromination of tetrabromobisphenol A by tailored carbon nitride Fe/Cu nanocomposites under an oxic condition
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 9558
  year: 2016
  end-page: 9565
  ident: bb0175
  article-title: Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)
  publication-title: Environ. Sci. Technol.
– volume: 202
  start-page: 130
  year: 2018
  end-page: 137
  ident: bb0140
  article-title: Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine
  publication-title: Sep. Purif. Technol.
– volume: 393
  start-page: 316
  year: 2017
  end-page: 324
  ident: bb0610
  article-title: Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles
  publication-title: Appl. Surf. Sci.
– volume: 229
  start-page: 1
  year: 2018
  end-page: 16
  ident: bb0030
  article-title: Removal of trinitrotoluene with nano zerovalent iron impregnated graphene oxide
  publication-title: Water Air Soil Pollut.
– volume: 59
  start-page: 150
  year: 2016
  end-page: 158
  ident: bb0385
  article-title: Reductive immobilization of Re (VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique
  publication-title: Sci. China Chem.
– volume: 116
  start-page: 219
  year: 2004
  end-page: 228
  ident: bb0435
  article-title: Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron
  publication-title: J. Hazard. Mater.
– volume: 119
  start-page: 1
  year: 2017
  end-page: 6
  ident: bb0430
  article-title: Decolorization of Reactive Red 2 in aqueous solutions using RPB-prepared nanoscale zero-valent iron
  publication-title: Chem. Eng. Process.
– volume: 322
  start-page: 571
  year: 2017
  end-page: 581
  ident: bb0005
  article-title: Nano-Fe
  publication-title: Chem. Eng. J.
– volume: 219
  start-page: 186
  year: 2019
  end-page: 207
  ident: bb0015
  article-title: A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges
  publication-title: Sep. Purif. Technol.
– volume: 51
  start-page: 751
  year: 2021
  end-page: 790
  ident: bb0480
  article-title: Recent developments of doped g-C
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 82
  start-page: 1518
  year: 2011
  end-page: 1532
  ident: bb0040
  article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity
  publication-title: Chemosphere
– volume: 67
  start-page: 1
  year: 2018
  end-page: 3
  ident: bb0260
  article-title: The colorful chemistry of nanoscale zero-valent iron (nZVI)
  publication-title: J. Environ. Sci.
– volume: 312
  start-page: 336
  year: 2017
  end-page: 350
  ident: bb0165
  article-title: Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review
  publication-title: Chem. Eng. J.
– volume: 347
  start-page: 669
  year: 2018
  end-page: 681
  ident: bb0250
  article-title: Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: synergistic effect and mechanism
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 8528
  year: 2008
  end-page: 8533
  ident: bb0365
  article-title: Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 5816
  year: 2005
  end-page: 5823
  ident: bb0330
  article-title: Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process
  publication-title: Environ. Sci. Technol.
– volume: 317
  start-page: 613
  year: 2017
  end-page: 622
  ident: bb0710
  article-title: Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: the effect of metal ions
  publication-title: Chem. Eng. J.
– volume: 322
  start-page: 179
  year: 2016
  end-page: 186
  ident: bb0095
  article-title: Enhancement in dehydriding performance of magnesium hydride by iron incorporation: a combined experimental and theoretical investigation
  publication-title: J. Power Sources
– volume: 239
  start-page: 698
  year: 2018
  end-page: 705
  ident: bb0465
  article-title: Simultaneous removal of Cu
  publication-title: Environ. Pollut.
– volume: 31
  start-page: 161
  year: 2017
  end-page: 165
  ident: bb0640
  article-title: Removal of selected organochlorine compounds by ozone-based processes
  publication-title: Chem. Biochem. Eng. Q.
– volume: 233
  year: 2020
  ident: bb0685
  article-title: Highly efficient Fenton-like catalyst Fe-g-C
  publication-title: Sep. Purif. Technol.
– volume: 24
  start-page: 1448
  year: 2016
  end-page: 1455
  ident: bb0550
  article-title: Removal of Reactive Red 198 from aqueous solution by combined method multi-walled carbon nanotubes and zero-valent iron: equilibrium, kinetics, and thermodynamic
  publication-title: Chin. J. Chem. Eng.
– volume: 1185
  start-page: 369
  year: 2019
  end-page: 378
  ident: bb0340
  article-title: Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates
  publication-title: J. Mol. Struct.
– volume: 42
  start-page: 2600
  year: 2008
  ident: 10.1016/j.scitotenv.2021.148546_bb0255
  article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702589u
– volume: 449
  start-page: 157
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0690
  article-title: Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.01.008
– volume: 1097
  start-page: 3
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0560
  article-title: Production of iron nanopowders by the electric explosion of wire
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.1097.3
– volume: 260
  year: 2020
  ident: 10.1016/j.scitotenv.2021.148546_bb6000
  article-title: Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol a degradation: preparation, performance, and mechanism of action
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.110105
– volume: 369
  start-page: 621
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0850
  article-title: Removal of organic dye by biomass-based iron carbide composite with an improved stability and efficiency
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.02.077
– volume: 403
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0625
  article-title: Enhanced bisphenol S anaerobic degradation using an NZVI–HA-modified anode in bioelectrochemical systems
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124053
– volume: 287
  start-page: 367
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0325
  article-title: Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.11.038
– volume: 82
  start-page: 1518
  year: 2011
  ident: 10.1016/j.scitotenv.2021.148546_bb0040
  article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.11.018
– volume: 54
  start-page: 12171
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0875
  article-title: Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03606-5
– volume: 53
  start-page: 8105
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0760
  article-title: Degradation of tetrabromobisphenol A by sulfidated nanoscale zerovalent iron in a dynamic two-step anoxic/oxic process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b06834
– volume: 1487
  start-page: 22
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0860
  article-title: Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101(Cr) modified zero valent iron nanoparticles
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2017.01.046
– volume: 53
  start-page: 13344
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0795
  article-title: Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04210
– volume: 6
  start-page: 639
  year: 2004
  ident: 10.1016/j.scitotenv.2021.148546_bb0075
  article-title: A new method to produce nanoscale iron for nitrate removal
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-004-6672-2
– volume: 239
  start-page: 698
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0465
  article-title: Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: synthesis, reactivity and mechanism
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.04.084
– volume: 31
  start-page: 161
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0640
  article-title: Removal of selected organochlorine compounds by ozone-based processes
  publication-title: Chem. Biochem. Eng. Q.
  doi: 10.15255/CABEQ.2016.1025
– volume: 69
  start-page: 173
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0745
  article-title: Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline
  publication-title: J. Environ. Sci. China
  doi: 10.1016/j.jes.2017.10.006
– volume: 244
  start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0155
  article-title: Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.04.062
– volume: 14
  year: 2012
  ident: 10.1016/j.scitotenv.2021.148546_bb0805
  article-title: Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-012-1239-0
– volume: 219
  start-page: 677
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0135
  article-title: Biological denitrification process based on the Fe (0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.08.014
– volume: 340
  start-page: 399
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0350
  article-title: Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.07.030
– volume: 42
  start-page: 8528
  year: 2008
  ident: 10.1016/j.scitotenv.2021.148546_bb0365
  article-title: Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es801947h
– volume: 44
  start-page: 5501
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0570
  article-title: Activated persulfate by chelating agent Fe/complex for in situ degradation of phenol: intermediate identification and optimization study
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-018-3436-7
– volume: 542
  start-page: 252
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0505
  article-title: Reduction of carbon tetrachloride by nanoscale palladized zero-valent iron@graphene composites: kinetics, activation energy, effects of reaction conditions and degradation mechanism
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2017.05.028
– volume: 68
  start-page: 1425
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0595
  article-title: Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.358
– volume: 8
  start-page: 767
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0270
  article-title: Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method
  publication-title: Asia Pac. J. Chem. Eng.
  doi: 10.1002/apj.1720
– volume: 294
  start-page: 290
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0490
  article-title: Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.005
– volume: 184
  start-page: 1492
  year: 2011
  ident: 10.1016/j.scitotenv.2021.148546_bb0045
  article-title: Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2011.04.018
– volume: 202
  start-page: 65
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0320
  article-title: Optimization of azo printing dye removal with oak leaves-nZVI/H2O2 system using statistically designed experiment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.117
– volume: 12
  start-page: 2909
  issue: 10
  year: 2020
  ident: 10.1016/j.scitotenv.2021.148546_bb0500
  article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles
  publication-title: Water
  doi: 10.3390/w12102909
– volume: 150
  start-page: 420
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0770
  article-title: Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.12.022
– volume: 78
  start-page: 144
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0575
  article-title: Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.04.009
– volume: 285
  start-page: 459
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0195
  article-title: Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.09.078
– volume: 169
  start-page: 413
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0445
  article-title: Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.11.092
– volume: 24
  start-page: 1448
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0550
  article-title: Removal of Reactive Red 198 from aqueous solution by combined method multi-walled carbon nanotubes and zero-valent iron: equilibrium, kinetics, and thermodynamic
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2016.04.027
– volume: 765
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb6005
  article-title: Application of coagulation/flocculation in oily wastewater treatment: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142795
– volume: 79
  start-page: 2279
  issue: 12
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0660
  article-title: Study on the treatment of simulated azo dye wastewater by a novel micro-electrolysis filler
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2019.234
– volume: 15
  issue: 4
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0620
  article-title: Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: implications for biostability control of reclaimed water
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-020-1360-8
– volume: 50
  start-page: 3820
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0240
  article-title: Effect of structural transformation of nanoparticulate zero-valent iron on generation of reactive oxygen species
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b04988
– volume: 201-202
  start-page: 60
  year: 2012
  ident: 10.1016/j.scitotenv.2021.148546_bb0630
  article-title: Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.11.009
– volume: 243
  year: 2020
  ident: 10.1016/j.scitotenv.2021.148546_bb0730
  article-title: Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125260
– volume: 307
  start-page: 364
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0735
  article-title: Formation of assimilable organic carbon during the oxidation of water containing Microcystis aeruginosa by ozone and an advanced oxidation process using ozone/hydrogen peroxide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.08.073
– volume: 409
  start-page: 2336
  year: 2011
  ident: 10.1016/j.scitotenv.2021.148546_bb0055
  article-title: Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.02.045
– volume: 321
  start-page: 564
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0295
  article-title: Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.141
– volume: 181-182
  start-page: 113
  year: 2012
  ident: 10.1016/j.scitotenv.2021.148546_bb0085
  article-title: Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.11.037
– volume: 322
  start-page: 571
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0005
  article-title: Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.04.063
– volume: 359
  start-page: 13
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0775
  article-title: Removal of nitrophenols and their derivatives by chemical redox: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.111
– volume: 185
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0810
  article-title: Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-017-2638-9
– volume: 7
  start-page: 6849
  issue: 12
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0115
  article-title: Solvent-free synthesis of 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutant
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11661J
– volume: 390
  start-page: 50
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0705
  article-title: Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.08.027
– volume: 558
  start-page: 271
  issue: 2018
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0485
  article-title: SiO2-coated zero-valent iron nanocomposites for aqueous nitrobenzene reduction in groundwater: performance, reduction mechanism and the effects of hydrogeochemical constituents
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2018.08.081
– volume: 182
  start-page: 78
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0865
  article-title: Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.01.071
– volume: 23
  start-page: 13298
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0120
  article-title: Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ
  publication-title: Sci. Pollut. Res. Int
  doi: 10.1007/s11356-016-6488-5
– volume: 284
  start-page: 1242
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0395
  article-title: Catalytic debromination of tetrabromobisphenol A by Ni/nZVI bimetallic particles
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.09.079
– volume: 116
  start-page: 219
  year: 2004
  ident: 10.1016/j.scitotenv.2021.148546_bb0435
  article-title: Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.09.005
– volume: 433
  start-page: 189
  year: 2014
  ident: 10.1016/j.scitotenv.2021.148546_bb0200
  article-title: Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.07.022
– volume: 9
  start-page: 888
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0020
  article-title: Flux, impact, and fate of halogenated xenobiotic compounds in the gut
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.00888
– volume: 4
  start-page: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0530
  article-title: Iron oxide shell mediated environmental remediation properties of nano zero-valent iron
  publication-title: Environ. Sci. Nano.
  doi: 10.1039/C6EN00398B
– volume: 23
  start-page: 17880
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0390
  article-title: Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-016-6626-0
– volume: 79
  start-page: 672
  year: 2010
  ident: 10.1016/j.scitotenv.2021.148546_bb0635
  article-title: Reductive degradation of tetrabromobisphenol a over iron-silver bimetallic nanoparticles under ultrasound radiation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.02.011
– volume: 37
  start-page: 217
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0800
  article-title: Polyaniline/attapulgite-supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution
  publication-title: Adsorpt. Sci. Technol.
  doi: 10.1177/0263617418822917
– volume: 23
  start-page: 6253
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0225
  article-title: Nanoscale zerovalent iron-mediated degradation of DDT in soil
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-5850-3
– volume: 51
  start-page: 11269
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0060
  article-title: Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02480
– volume: 229
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0030
  article-title: Removal of trinitrotoluene with nano zerovalent iron impregnated graphene oxide
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-017-3664-2
– volume: 116
  start-page: 25470
  year: 2012
  ident: 10.1016/j.scitotenv.2021.148546_bb0360
  article-title: Dissociation of water at iron surfaces: generalized gradient functional and range-separated hybrid functional study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3097814
– volume: 166
  start-page: 80
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0725
  article-title: Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.09.056
– volume: 293
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0410
  article-title: Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122068
– volume: 190
  start-page: 208
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0585
  article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.12.068
– volume: 287
  start-page: 618
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0650
  article-title: Review on nano zerovalent iron (nZVI): from synthesis to environmental applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.11.046
– volume: 347
  start-page: 669
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0250
  article-title: Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: synergistic effect and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.088
– volume: 533
  start-page: 76
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0515
  article-title: Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.06.091
– volume: 33
  start-page: 139
  year: 2008
  ident: 10.1016/j.scitotenv.2021.148546_bb0830
  article-title: Investigation of the correlations between nitro group charges and some properties of nitro organic compounds
  publication-title: Propell. Explos. Pyrot.
  doi: 10.1002/prep.200700205
– volume: 371
  start-page: 8
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0100
  article-title: Rapid adsorption and reductive degradation of naphthol green B from aqueous solution by polypyrrole/attapulgite composites supported nanoscale zero-valent iron
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.02.096
– volume: 172-173
  start-page: 73
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0700
  article-title: A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.02.016
– volume: 378
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0600
  article-title: Reductive debromination of tetrabromobisphenol A by tailored carbon nitride Fe/Cu nanocomposites under an oxic condition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122059
– volume: 66
  start-page: 47
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0375
  article-title: Photodegradation of nonylphenol by simulated sunlight
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2012.11.014
– volume: 311
  year: 2020
  ident: 10.1016/j.scitotenv.2021.148546_bb0130
  article-title: Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zerovalent iron nanoparticles
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113317
– volume: 233
  year: 2020
  ident: 10.1016/j.scitotenv.2021.148546_bb0685
  article-title: Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.116023
– volume: 8
  start-page: 22161
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0840
  article-title: Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene
  publication-title: RSC Adv.
  doi: 10.1039/C8RA04314K
– volume: 273
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0815
  article-title: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128576
– volume: 278
  start-page: 592
  year: 2014
  ident: 10.1016/j.scitotenv.2021.148546_bb0425
  article-title: Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.06.030
– volume: 368
  start-page: 639
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0470
  article-title: 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.007
– volume: 262
  start-page: 19
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0750
  article-title: Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP)
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.04.032
– volume: 172
  start-page: 158
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0835
  article-title: Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.008
– volume: 59
  start-page: 150
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0385
  article-title: Reductive immobilization of Re (VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-015-5452-4
– volume: 52
  start-page: 8627
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0245
  article-title: Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01735
– volume: 247
  year: 2020
  ident: 10.1016/j.scitotenv.2021.148546_bb0180
  article-title: Activation of Peroxymonosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: electron transfer and transformation products
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.116942
– volume: 15
  issue: 4
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0160
  article-title: Treating wastewater under zero waste principle using wetland mesocosms
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-020-1351-9
– volume: 48
  start-page: 3396
  year: 2000
  ident: 10.1016/j.scitotenv.2021.148546_bb0555
  article-title: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9913458
– volume: 363
  start-page: 601
  year: 2011
  ident: 10.1016/j.scitotenv.2021.148546_bb0080
  article-title: Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.07.057
– volume: 334
  start-page: 508
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0460
  article-title: Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.060
– volume: 12
  start-page: 131
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0510
  article-title: Optimization modeling of nFe0/Cu-PRB design for Cr (VI) removal from groundwater
  publication-title: Int. J. Environ. Sci. Technol.
– volume: 21
  start-page: 226
  year: 2014
  ident: 10.1016/j.scitotenv.2021.148546_bb0275
  article-title: A novel ultrasound assisted method in synthesis of NZVI particles
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2013.04.015
– volume: 42
  start-page: 7424
  year: 2008
  ident: 10.1016/j.scitotenv.2021.148546_bb0315
  article-title: pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800649p
– volume: 359
  start-page: 1046
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0150
  article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.080
– volume: 264
  start-page: 587
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0380
  article-title: Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.11.128
– volume: 361
  start-page: 99
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0755
  article-title: Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.024
– volume: 50
  start-page: 9558
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0175
  article-title: Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02170
– volume: 322
  start-page: 179
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0095
  article-title: Enhancement in dehydriding performance of magnesium hydride by iron incorporation: a combined experimental and theoretical investigation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.031
– volume: 317
  start-page: 613
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0710
  article-title: Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: the effect of metal ions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.070
– volume: 262
  start-page: 59
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0440
  article-title: Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.09.038
– volume: 316
  start-page: 232
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0880
  article-title: Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.05.040
– volume: 174
  start-page: 258
  year: 2011
  ident: 10.1016/j.scitotenv.2021.148546_bb0285
  article-title: Inhibiting 1,3-dinitrobenzene formation in Fenton oxidation of nitrobenzene through a controllable reductive pretreatment with zero-valent iron
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.09.014
– volume: 333
  start-page: 220
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0670
  article-title: Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.02.025
– volume: 39
  start-page: 3314
  year: 2005
  ident: 10.1016/j.scitotenv.2021.148546_bb0235
  article-title: Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048743y
– volume: 13
  start-page: 110
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0605
  article-title: Applications of nanomaterials in environmental science and engineering: review
  publication-title: Pract. Period. Hazard. Toxic Radioact. Waste Manage
  doi: 10.1061/(ASCE)1090-025X(2009)13:2(110)
– volume: 9
  start-page: 963
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0525
  article-title: Magnetic graphene oxide-nano zero valent iron (GO-nZVI) nanohybrids synthesized using biocompatible cross-linkers for methylene blue removal
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08386J
– volume: 39
  start-page: 1221
  year: 2005
  ident: 10.1016/j.scitotenv.2021.148546_bb0535
  article-title: Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049190u
– volume: 50
  start-page: 12992
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0215
  article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03997
– volume: 147
  start-page: 137
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0740
  article-title: Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2017.07.023
– volume: 134
  start-page: 168
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0265
  article-title: Facile preparation of amorphous iron nanoparticles filled alginate matrix composites with high stability
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.08.018
– volume: 324
  start-page: 605
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0825
  article-title: Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.11.032
– volume: 321
  start-page: 158
  year: 2014
  ident: 10.1016/j.scitotenv.2021.148546_bb0455
  article-title: Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.09.202
– volume: 202
  start-page: 130
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0140
  article-title: Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.03.048
– volume: 104
  start-page: 155
  year: 2014
  ident: 10.1016/j.scitotenv.2021.148546_bb0855
  article-title: Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.085
– volume: 150
  start-page: 229
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0665
  article-title: Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.07.009
– volume: 177
  start-page: 341
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0580
  article-title: Textile dye degradation using nano zero valent iron: a review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2016.04.034
– volume: 393
  start-page: 316
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0610
  article-title: Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.10.020
– volume: 355
  start-page: 65
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0645
  article-title: Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.126
– volume: 316
  start-page: 186
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0145
  article-title: Simultaneous removal of Cr (VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.05.041
– volume: 44
  start-page: 4258
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0205
  article-title: Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903801r
– volume: 407
  start-page: 4986
  year: 2009
  ident: 10.1016/j.scitotenv.2021.148546_bb0310
  article-title: Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.05.033
– volume: 51
  start-page: 13533
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0400
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02695
– volume: 760
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0420
  article-title: Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143413
– volume: 135
  start-page: 68
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0680
  article-title: Effect of mesoporous silica molecular sieve coating on nZVI for 2,4-DCP degradation: morphology and mechanism during the reaction
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2018.11.011
– volume: 174
  start-page: 446
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0170
  article-title: Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2014.11.050
– volume: 211-212
  start-page: 146
  year: 2012
  ident: 10.1016/j.scitotenv.2021.148546_bb0110
  article-title: Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu (II)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.10.056
– volume: 219
  start-page: 186
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0015
  article-title: A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.03.028
– volume: 359
  start-page: 713
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0790
  article-title: Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.180
– volume: 267
  start-page: 194
  year: 2014
  ident: 10.1016/j.scitotenv.2021.148546_bb0190
  article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.12.062
– volume: 124
  start-page: 521
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0655
  article-title: Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.01.047
– volume: 531
  start-page: 177
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0125
  article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2016.11.001
– volume: 197
  start-page: 401
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0405
  article-title: Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.01.032
– volume: 85
  start-page: 137
  year: 2002
  ident: 10.1016/j.scitotenv.2021.148546_bb0280
  article-title: The role of electrochemistry and electrochemical technology in environmental protection
  publication-title: Chem. Eng. J.
  doi: 10.1016/S1385-8947(01)00218-2
– volume: 119
  start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0430
  article-title: Decolorization of Reactive Red 2 in aqueous solutions using RPB-prepared nanoscale zero-valent iron
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2017.05.001
– volume: 6
  start-page: 7995
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0050
  article-title: Green synthesis of thin shell carbon-encapsulated iron nanoparticles via hydrothermal carbonization
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b01416
– volume: 760
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0230
  article-title: Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143333
– volume: 312
  start-page: 336
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0165
  article-title: Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.154
– volume: 1185
  start-page: 369
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0340
  article-title: Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2019.03.003
– volume: 47
  start-page: 6691
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0450
  article-title: Enhanced chitosan beads-supported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.09.006
– volume: 39
  start-page: 948
  year: 2000
  ident: 10.1016/j.scitotenv.2021.148546_bb0070
  article-title: Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie990549a
– volume: 139
  start-page: 966
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0010
  article-title: Fenton and photo-Fenton oxidation of petroleum aromatic hydrocarbons using nanoscale zero-valent iron
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0000705
– volume: 612
  start-page: 1532
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0035
  article-title: Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.006
– volume: 168
  start-page: 1467
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0540
  article-title: Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.11.100
– volume: 201
  start-page: 764
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0565
  article-title: XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.03.057
– volume: 146
  start-page: 32
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0090
  article-title: Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.11.095
– volume: 100
  start-page: 245
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0845
  article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.05.019
– volume: 337
  start-page: 372
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0720
  article-title: Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.090
– volume: 67
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0260
  article-title: The colorful chemistry of nanoscale zero-valent iron (nZVI)
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.04.025
– volume: 52
  start-page: 3625
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0335
  article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05847
– volume: 116
  start-page: 180
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0765
  article-title: Physical and chemical treatments for removal of perchlorate from water-a review
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2018.02.009
– volume: 1
  start-page: 64
  year: 2003
  ident: 10.1016/j.scitotenv.2021.148546_bb0065
  article-title: Mass production of nanoparticles by high gravity reactive precipitation technology with low cost
  publication-title: China Par.
  doi: 10.1016/S1672-2515(07)60110-9
– volume: 307
  start-page: 145
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0305
  article-title: Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.12.063
– volume: 243
  start-page: 218
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0300
  article-title: Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.08.061
– volume: 118
  start-page: 13817
  year: 2014
  ident: 10.1016/j.scitotenv.2021.148546_bb0185
  article-title: Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp501846f
– volume: 339
  start-page: 22
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0210
  article-title: Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.06.006
– volume: 39
  start-page: 5816
  year: 2005
  ident: 10.1016/j.scitotenv.2021.148546_bb0330
  article-title: Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050006u
– volume: 25
  start-page: 2051
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0520
  article-title: A review on pesticide removal through different processes
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0796-2
– volume: 2
  issue: 1
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0475
  article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions
  publication-title: The Innovation
  doi: 10.1016/j.xinn.2021.100076
– volume: 51
  start-page: 751
  year: 2021
  ident: 10.1016/j.scitotenv.2021.148546_bb0480
  article-title: Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2020.1734433
– volume: 303
  start-page: 145
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0495
  article-title: One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.10.034
– volume: 18
  start-page: 1138
  year: 2011
  ident: 10.1016/j.scitotenv.2021.148546_bb0590
  article-title: Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent iron particles
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2011.03.015
– volume: 231
  year: 2020
  ident: 10.1016/j.scitotenv.2021.148546_bb0025
  article-title: Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: a review
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.115929
– volume: 223
  start-page: 196
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0870
  article-title: Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: effect, mechanism and ecotoxicity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.02.074
– volume: 90
  start-page: 1470
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0355
  article-title: Degradation of 3,3′-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.09.040
– volume: 345
  start-page: 57
  year: 2015
  ident: 10.1016/j.scitotenv.2021.148546_bb0695
  article-title: Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.03.131
– volume: 365
  start-page: 751
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0820
  article-title: Novel synthesis of nanoscale zerovalent iron from coal fly ash and its application in oxidative degradation of methyl orange by Fenton reaction
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.11.073
– volume: 269
  start-page: 16
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0415
  article-title: Anchoring nZVI on metal-organic framework for removal of uranium(VI) from aqueous solution
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2018.09.013
– volume: 11
  start-page: 1000
  year: 2019
  ident: 10.1016/j.scitotenv.2021.148546_bb0615
  article-title: Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water
  publication-title: Nanoscale
  doi: 10.1039/C8NR08302A
– volume: 11
  start-page: 1618
  year: 2009
  ident: 10.1016/j.scitotenv.2021.148546_bb0370
  article-title: Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling
  publication-title: Green Chem.
  doi: 10.1039/b913056j
– volume: 188
  start-page: 77
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0220
  article-title: Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.01.047
– volume: 313
  start-page: 912
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0290
  article-title: Applications of high gravity technologies for wastewater treatment: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.125
– volume: 222
  start-page: 331
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0715
  article-title: Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.12.030
– volume: 321
  start-page: 20
  year: 2017
  ident: 10.1016/j.scitotenv.2021.148546_bb0545
  article-title: Critical evaluation of the use of different nanoscale zero-valent iron particles for the treatment of effluent water from a small biological wastewater treatment plant
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.104
– volume: 229
  issue: 12
  year: 2018
  ident: 10.1016/j.scitotenv.2021.148546_bb0785
  article-title: Reduced graphene oxide/attapulgite-supported nanoscale zero-valent iron removal of Acid Red 18 from aqueous solution
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-018-4033-5
– volume: 48
  start-page: 92
  year: 2016
  ident: 10.1016/j.scitotenv.2021.148546_bb0780
  article-title: Enhanced dechlorination of 2,4-dichlorophenol by recoverable Ni/Fe-Fe3O4 nanocomposites
  publication-title: J. Environ. Sci. China
  doi: 10.1016/j.jes.2015.10.033
– volume: 410
  start-page: 67
  year: 2013
  ident: 10.1016/j.scitotenv.2021.148546_bb0345
  article-title: Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.08.020
SSID ssj0000781
Score 2.6994889
SecondaryResourceType review_article
Snippet During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148546
SubjectTerms adsorption
carbon dioxide
dehalogenation
environment
human health
hydrogenation
industry
iron
Mechanism
NZVI
NZVI-based composites
Organic pollutants
oxidation
Removal
wastewater
Title Removal of organic compounds by nanoscale zero-valent iron and its composites
URI https://dx.doi.org/10.1016/j.scitotenv.2021.148546
https://www.proquest.com/docview/2568249721
https://www.proquest.com/docview/2661002800
Volume 792
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS-wwcBBFEB6iq_J8fhDBa7W7TdquNxFlddGDKHoLTTKFFV8rtgp68Lc707SKInrwVFomIWS-O18A2_2c1FSGxGnc5E6GLg5SJH5UEQ6dzIdW2SbL9yweXcqTa3U9BQddLQynVbay38v0Rlq3X3bb29y9m0y4xlemw5i7z5AUJkeFK9hlwlS-8_Ke5sHNbHyUmRiboD_keNG-dUm26SM5ioM-SY1UsSX8tYb6JKsbBXS0APOt5Sj2_eEWYQqLHsz6WZJPPVg5fC9ZI7CWZ6se_PF_5oQvOFqC03P8XxJ9iTIXfqaTFZxYzvOVKmGeRJEVZUWoQ_GM92VAoLSl4L1FVjgxqSsPz3Hnahkujw4vDkZBO1QhsHQ7dUAGjjEYOxMZzFSeYeq4oY7MotRK5azKOLAocRijS1wSYRIaMiEjY5RJQiujFZguygL_grBK5WROoVSmz36hYe8DB9LFBByZ_irE3UVq23Yc58EXt7pLLbvRbxjQjAHtMbAK4dvCO9904-clex2m9Af60aQafl681eFWE3dxyCQrsHyoNBmEKTmoRGPfwJCJ00Sow3-_OcQazPEb68VBuA7T9f0DbpDBU5vNhqI3YWb_eDw64-f4_Gr8Cr2AA2Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NT9VAcIIYIwkh-JTwobgmeqz0tbttn4kHIpCHfBwMJNzW7u40eURbQgvkefBP8Qed6bYQiJGD4drObrYzs_PR-QJ4PyxITeVIN42b3MnQJUGGdB9VjCMni5FVts3yPUzGx_LriTqZgeu-FobTKjvZ72V6K627JxsdNjfOJhOu8ZXZKOHuMySFyVHpMiv3cHpFflv9eXeLiPwhina2j76Mg260QGClTJuA1LwxmDgTG8xVkWPmuK2MzOPMSuWsyjm8JnGUoEtdGmMaGjKkYmOUSUMrY9r3CTyVJC54bMLH37d5Jdw9x4e1SZLQ8e4kldGHNBUZw5fkmUZDElOZYtP77yrxnnJoNd7OIix0pqrY9Nh4ATNYDuCZH145HcDS9m2NHIF1QqIewLz_FSh8hdNLOPiGPytiaFEVwg-RsoIz2XmgUy3MVJR5WdXEKyh-4XkVEChtKXhvkZdOTJraw3Ogu34Fx4-C6iWYLasSl0FYpQqy31AqM2RH1LC7g5F0CQHHZrgCSY9IbbsW5zxp44fuc9lO9Q0FNFNAewqsQHiz8Mx3-Xh4yaeeUvoOw2rSRQ8vftfTVtN15hhNXmJ1UWuyQDPyiImp_wFDNlUbEg9X_-cQb-H5-OhgX-_vHu6twRy_YaUcha9htjm_wDdkbTVmveVuAd8f-zr9Ab63PkM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+organic+compounds+by+nanoscale+zero-valent+iron+and+its+composites&rft.jtitle=The+Science+of+the+total+environment&rft.au=Li%2C+Qian&rft.au=Chen%2C+Zhongshan&rft.au=Wang%2C+Huihui&rft.au=Yang%2C+Hui&rft.date=2021-10-20&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=792&rft.spage=148546&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.148546&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon