Removal of organic compounds by nanoscale zero-valent iron and its composites
During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) partic...
Saved in:
Published in | The Science of the total environment Vol. 792; p. 148546 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants.
[Display omitted]
•Synthesis and modification of NZVI and NZVI-based composites were summarized.•Removal of organic pollutants by NZVI and NZVI-based composites were reviewed and compared.•The interaction mechanism was discussed from spectroscopy analysis and theoretical calculation.•The challenges and perspectives for NZVI-based composites were discussed. |
---|---|
AbstractList | During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants.During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants. During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO₂ group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO₂ and H₂O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants. During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural environment, which have inevitably aroused severe menace to human health and the environmental system. The nano zero-valent iron (NZVI) particles and NZVI-based materials have widely applied to remove organic pollutants. This article reviews the key advancements of different methods for the synthesis of NZVI and NZVI-based materials. Different modification methods (e.g., doped NZVI, encapsulated NZVI and supported NZVI) are also introduced detailedly for overcoming the defects of NZVI such as aggregation and easy oxidation. The removal of different organic pollutants including dyes, halogenated organic compounds, nitro-organic compounds, phenolic compounds, pesticides, and antibiotics are summarized. The interaction mechanisms, including adsorption, reduction, and active oxidation of organic pollutants by NZVI/NZVI-based composites, are discussed. The dyes are mainly removed by destroying their chromogenic group according to the reduction or the Fenton-like reaction with NZVI. The removal of halogenated organic compounds (HOCs) is realized by the dehalogenation process, including reductive elimination, hydrogenolysis, and hydrogenation. As for the nitro-organic compounds, three different reduction pathways as nitro-reduction (into amino), cleavage at the carbon‑nitrogen bond or denitration of the NO2 group may take effect. The phenolic compounds can be mineralized into inorganic molecules, including CO2 and H2O, by Fenton oxidation. This review might provide the basis for future studies on developing more effective NZVI-based materials for the treatment of wastewaters contaminated by organic pollutants. [Display omitted] •Synthesis and modification of NZVI and NZVI-based composites were summarized.•Removal of organic pollutants by NZVI and NZVI-based composites were reviewed and compared.•The interaction mechanism was discussed from spectroscopy analysis and theoretical calculation.•The challenges and perspectives for NZVI-based composites were discussed. |
ArticleNumber | 148546 |
Author | Li, Qian Wang, Xiangke Wen, Tao Wang, Shuqin Chen, Zhongshan Hu, Baowei Wang, Huihui Yang, Hui |
Author_xml | – sequence: 1 givenname: Qian surname: Li fullname: Li, Qian organization: School of Life Science, Shaoxing University, Shaoxing 312000, China – sequence: 2 givenname: Zhongshan surname: Chen fullname: Chen, Zhongshan email: zschen@ncepu.edu.cn organization: School of Life Science, Shaoxing University, Shaoxing 312000, China – sequence: 3 givenname: Huihui surname: Wang fullname: Wang, Huihui organization: MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China – sequence: 4 givenname: Hui surname: Yang fullname: Yang, Hui organization: MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China – sequence: 5 givenname: Tao surname: Wen fullname: Wen, Tao organization: MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China – sequence: 6 givenname: Shuqin surname: Wang fullname: Wang, Shuqin organization: School of Life Science, Shaoxing University, Shaoxing 312000, China – sequence: 7 givenname: Baowei surname: Hu fullname: Hu, Baowei email: hbw@usx.edu.cn organization: School of Life Science, Shaoxing University, Shaoxing 312000, China – sequence: 8 givenname: Xiangke surname: Wang fullname: Wang, Xiangke email: xkwang@ncepu.edu.cn organization: School of Life Science, Shaoxing University, Shaoxing 312000, China |
BookMark | eNqNkL1u2zAURonCBWqnfYZyzCL3UqJIaehgGElawEGAoJ0J_lwXNGTSIWkDztNXhooOWZy73OWcbzgLMgsxICFfGSwZMPFtt8zWl1gwnJY11GzJeNdy8YHMWSf7ikEtZmQOwLuqF738RBY572A82bE5eXzGfTzpgcYtjemPDt5SG_eHeAwuU3OmQYeYrR6QvmKK1YhiKNSnGKgOjvqSJz77gvkz-bjVQ8Yv__4N-X1_92v9o9o8PfxcrzaV5VyWSgAYg8KZxqButxo7J6FtuW46y1tnW81YLzn2Ap10skEJpmeiMaY1EixvbsjttHtI8eWIuai9zxaHQQeMx6xqIRhA3QFcR1vR1byXNRvR7xNqU8w54VaNYXXxMZSk_aAYqEtxtVP_i6tLcTUVH335xj8kv9fp_A5zNZk4Rjt5TBcOg0XnE9qiXPRXN_4ChbKj1A |
CitedBy_id | crossref_primary_10_1039_D3RA01505J crossref_primary_10_1080_01496395_2021_1972009 crossref_primary_10_1016_j_colsurfa_2021_128069 crossref_primary_10_4028_p_40bl00 crossref_primary_10_1016_j_cej_2022_139420 crossref_primary_10_1016_j_jwpe_2022_102653 crossref_primary_10_1016_j_scitotenv_2024_169922 crossref_primary_10_1007_s11356_023_31281_2 crossref_primary_10_3390_w16111607 crossref_primary_10_1016_j_colsurfa_2024_135675 crossref_primary_10_3390_w15030540 crossref_primary_10_1016_j_cej_2023_144053 crossref_primary_10_1016_j_jtice_2021_11_021 crossref_primary_10_1007_s42773_023_00231_z crossref_primary_10_1016_j_molstruc_2024_139163 crossref_primary_10_1016_j_jhazmat_2021_128004 crossref_primary_10_1016_j_molstruc_2021_132003 crossref_primary_10_3390_w16091241 crossref_primary_10_1016_j_inoche_2022_109705 crossref_primary_10_1016_j_jksus_2022_102050 crossref_primary_10_1039_D3EW00801K crossref_primary_10_1016_j_ijbiomac_2024_131141 crossref_primary_10_1016_j_cej_2025_159683 crossref_primary_10_3390_w15122303 crossref_primary_10_1007_s11356_022_19906_4 crossref_primary_10_1016_j_seppur_2021_119605 crossref_primary_10_1016_j_techfore_2024_123898 crossref_primary_10_1016_j_seppur_2024_128134 crossref_primary_10_1080_09593330_2023_2179944 crossref_primary_10_1039_D3CE01058A crossref_primary_10_1016_j_seppur_2023_123781 crossref_primary_10_3390_molecules29235697 crossref_primary_10_1016_j_ceja_2022_100321 crossref_primary_10_1016_j_jece_2024_114410 crossref_primary_10_1016_j_jwpe_2024_105463 crossref_primary_10_1007_s11368_021_03116_5 crossref_primary_10_1016_j_jconhyd_2022_104019 crossref_primary_10_1016_j_jhazmat_2022_128513 crossref_primary_10_1016_j_envres_2023_115986 crossref_primary_10_2174_1877946812666211217152703 crossref_primary_10_1016_j_jcis_2021_12_175 crossref_primary_10_1016_j_enmm_2022_100720 crossref_primary_10_1016_j_jece_2023_110896 crossref_primary_10_1016_j_jwpe_2022_102671 crossref_primary_10_1021_acsearthspacechem_4c00132 crossref_primary_10_3390_w16121639 crossref_primary_10_1016_j_cjche_2022_05_010 crossref_primary_10_1016_j_surfin_2021_101568 crossref_primary_10_1016_j_envpol_2021_118076 crossref_primary_10_1016_j_reactfunctpolym_2021_105132 crossref_primary_10_1016_j_jece_2021_106870 crossref_primary_10_1016_j_scitotenv_2022_157961 crossref_primary_10_1016_j_apmt_2021_101339 crossref_primary_10_1016_j_jcis_2021_07_154 crossref_primary_10_1021_acs_jpca_3c00134 crossref_primary_10_1021_acsestengg_2c00212 crossref_primary_10_3390_toxics12110814 crossref_primary_10_1016_j_nanoso_2024_101101 crossref_primary_10_1016_j_eti_2023_103301 crossref_primary_10_1016_j_ccr_2024_216120 crossref_primary_10_1016_j_ijbiomac_2022_06_136 crossref_primary_10_1016_j_jwpe_2022_103413 crossref_primary_10_1016_j_envpol_2024_124961 crossref_primary_10_1016_j_colsurfa_2023_132094 crossref_primary_10_1016_j_matchemphys_2023_127944 crossref_primary_10_1016_j_jes_2021_10_003 crossref_primary_10_1061_IJGNAI_GMENG_8325 crossref_primary_10_1007_s10876_022_02293_8 crossref_primary_10_1007_s11356_022_22408_y crossref_primary_10_1016_j_jics_2022_100598 crossref_primary_10_1016_j_cej_2023_145591 crossref_primary_10_1016_j_cej_2024_154911 crossref_primary_10_1016_j_mtchem_2022_101344 crossref_primary_10_1016_j_jenvman_2024_121393 crossref_primary_10_1016_j_scitotenv_2023_168084 crossref_primary_10_1007_s11356_021_18179_7 crossref_primary_10_1016_j_aej_2022_07_055 crossref_primary_10_1039_D1EW00501D crossref_primary_10_1016_j_jenvman_2024_121971 crossref_primary_10_3390_polym15183764 crossref_primary_10_1016_j_seppur_2021_119634 crossref_primary_10_1016_j_scitotenv_2021_152280 crossref_primary_10_1080_09593330_2022_2068377 crossref_primary_10_1016_j_cjche_2021_12_029 crossref_primary_10_1016_j_cej_2024_151060 crossref_primary_10_1016_j_chemosphere_2023_140923 crossref_primary_10_2166_wrd_2022_103 crossref_primary_10_1016_j_envadv_2024_100542 crossref_primary_10_1360_SSC_2022_0241 crossref_primary_10_1021_acsestengg_4c00423 crossref_primary_10_1007_s11051_022_05436_0 crossref_primary_10_3390_su14159451 crossref_primary_10_1016_j_seppur_2022_122631 crossref_primary_10_1039_D4EN00267A crossref_primary_10_1016_j_envres_2023_117911 crossref_primary_10_1016_j_rineng_2024_102938 crossref_primary_10_1039_D2NA00610C crossref_primary_10_1016_j_jwpe_2023_104222 crossref_primary_10_1016_j_hybadv_2023_100113 crossref_primary_10_1016_j_jece_2022_107851 crossref_primary_10_1016_j_jwpe_2021_102555 crossref_primary_10_1016_j_cej_2025_160995 crossref_primary_10_1016_j_inoche_2022_109588 crossref_primary_10_20935_AcadBiol6264 crossref_primary_10_1016_j_envpol_2022_119398 crossref_primary_10_1039_D4MA00178H crossref_primary_10_1021_acsestwater_3c00002 crossref_primary_10_1007_s11356_022_25047_5 crossref_primary_10_1016_j_jclepro_2022_132980 crossref_primary_10_1016_j_jwpe_2022_103281 crossref_primary_10_1016_j_seppur_2021_120286 crossref_primary_10_15377_2410_3624_2022_09_1 crossref_primary_10_1016_j_seppur_2021_120042 crossref_primary_10_1016_j_jwpe_2023_104216 crossref_primary_10_1007_s11356_024_31823_2 crossref_primary_10_1016_j_seppur_2021_119975 crossref_primary_10_1016_j_ijbiomac_2022_08_034 crossref_primary_10_1016_j_chemosphere_2022_134509 crossref_primary_10_1007_s11368_023_03682_w crossref_primary_10_2166_wst_2023_270 crossref_primary_10_1002_aesr_202300055 crossref_primary_10_1016_j_matpr_2023_07_071 crossref_primary_10_1155_2022_9739915 crossref_primary_10_1016_j_jhazmat_2024_134649 crossref_primary_10_31857_S0044460X23110100 crossref_primary_10_1016_j_jhazmat_2022_129482 crossref_primary_10_1016_j_molliq_2022_121005 crossref_primary_10_1021_acsomega_2c01031 crossref_primary_10_17482_uumfd_990044 crossref_primary_10_1016_j_jece_2024_115012 crossref_primary_10_1016_j_jphotochem_2022_114309 crossref_primary_10_1016_j_jallcom_2022_167461 crossref_primary_10_1007_s11356_023_28168_7 crossref_primary_10_1016_j_jclepro_2021_128641 crossref_primary_10_1021_acsami_1c21850 crossref_primary_10_1016_j_chemosphere_2023_139958 crossref_primary_10_1080_21622515_2023_2220090 crossref_primary_10_1007_s00289_023_04715_7 crossref_primary_10_1007_s13201_021_01554_7 crossref_primary_10_1016_j_chemosphere_2021_132600 crossref_primary_10_3390_catal12090999 crossref_primary_10_1007_s13762_022_04498_w crossref_primary_10_1016_j_matchemphys_2024_130132 crossref_primary_10_1016_j_jhazmat_2022_129013 crossref_primary_10_1016_j_psep_2022_02_034 crossref_primary_10_1071_EN22014 crossref_primary_10_1007_s11706_023_0661_9 crossref_primary_10_1016_j_seppur_2024_126936 crossref_primary_10_5004_dwt_2022_28302 crossref_primary_10_1016_j_psep_2024_01_010 crossref_primary_10_1016_j_matpr_2021_09_534 crossref_primary_10_1016_j_enmm_2022_100666 crossref_primary_10_1039_D3EN00785E crossref_primary_10_1007_s11051_023_05742_1 crossref_primary_10_1016_j_cej_2025_160937 crossref_primary_10_1021_acsomega_1c04938 crossref_primary_10_1016_j_scp_2022_100653 crossref_primary_10_1016_j_seppur_2024_127331 crossref_primary_10_1007_s11356_022_18857_0 crossref_primary_10_1016_j_jenvman_2022_115403 crossref_primary_10_1039_D1NA00843A crossref_primary_10_1007_s11783_024_1841_2 crossref_primary_10_1098_rsos_240380 crossref_primary_10_1016_j_jphotochem_2022_114010 crossref_primary_10_1016_j_cej_2025_161594 crossref_primary_10_1016_j_jhazmat_2023_130867 crossref_primary_10_1007_s11356_021_16483_w crossref_primary_10_1007_s10653_024_01879_7 crossref_primary_10_1016_j_powtec_2022_118023 crossref_primary_10_1016_j_ccr_2022_214562 crossref_primary_10_1016_j_jhazmat_2021_127439 crossref_primary_10_1016_j_jhazmat_2022_128703 crossref_primary_10_1007_s10570_021_04358_9 crossref_primary_10_1134_S1070363223110087 crossref_primary_10_1007_s11164_022_04789_4 crossref_primary_10_3390_s25020585 crossref_primary_10_1007_s13201_021_01555_6 crossref_primary_10_1016_j_jclepro_2023_137812 crossref_primary_10_1007_s11051_023_05919_8 crossref_primary_10_3390_ijerph182413107 crossref_primary_10_1016_j_cej_2024_150836 crossref_primary_10_1002_wer_1673 crossref_primary_10_1039_D2EW00440B crossref_primary_10_1007_s00339_022_05532_x crossref_primary_10_1515_gps_2022_0024 crossref_primary_10_1016_j_enmm_2021_100607 crossref_primary_10_1007_s11356_021_18432_z crossref_primary_10_1016_j_seppur_2021_120408 crossref_primary_10_1016_j_susmat_2025_e01362 crossref_primary_10_1016_j_susmat_2022_e00430 crossref_primary_10_1016_j_jenvman_2022_116831 crossref_primary_10_1016_j_envres_2023_117408 crossref_primary_10_1016_j_cej_2023_146049 crossref_primary_10_1016_j_seppur_2021_119660 crossref_primary_10_1016_j_scitotenv_2021_149662 crossref_primary_10_1016_j_jhazmat_2021_127537 crossref_primary_10_1039_D4EN00613E crossref_primary_10_1002_idm2_12203 crossref_primary_10_1016_j_ijbiomac_2022_04_149 crossref_primary_10_1016_j_seppur_2022_121241 crossref_primary_10_1007_s00449_021_02645_0 crossref_primary_10_1016_j_jbiotec_2021_11_007 crossref_primary_10_1016_j_watres_2024_121309 crossref_primary_10_1007_s11356_023_29879_7 crossref_primary_10_1016_j_biortech_2023_129603 crossref_primary_10_1016_j_ceramint_2025_01_219 crossref_primary_10_1016_j_rser_2021_111643 crossref_primary_10_1007_s13762_022_03924_3 crossref_primary_10_1007_s42773_022_00173_y crossref_primary_10_1021_acs_langmuir_1c02275 crossref_primary_10_1016_j_jhazmat_2023_130730 crossref_primary_10_1016_j_jhazmat_2023_132113 crossref_primary_10_1021_acs_cgd_3c00497 crossref_primary_10_1002_slct_202104188 crossref_primary_10_1007_s11270_023_06417_2 crossref_primary_10_1016_j_seppur_2021_120222 crossref_primary_10_1007_s11356_022_20516_3 crossref_primary_10_1016_j_enmm_2021_100584 crossref_primary_10_1007_s11356_022_18682_5 crossref_primary_10_1016_j_scitotenv_2022_155279 crossref_primary_10_1016_j_colsurfa_2023_132001 crossref_primary_10_1016_j_jhazmat_2024_136520 crossref_primary_10_1016_j_surfin_2022_101787 crossref_primary_10_1016_j_inoche_2023_110591 crossref_primary_10_1016_j_jece_2023_110115 crossref_primary_10_1016_j_jes_2021_07_015 crossref_primary_10_1016_j_seppur_2025_131404 crossref_primary_10_1016_j_chemosphere_2022_135349 crossref_primary_10_1039_D3NJ02301J crossref_primary_10_1007_s42773_022_00146_1 crossref_primary_10_1016_j_jwpe_2023_104625 crossref_primary_10_1007_s12221_023_00100_3 crossref_primary_10_1016_j_envres_2022_114998 crossref_primary_10_1016_j_chemosphere_2021_133443 crossref_primary_10_1016_j_seppur_2021_120345 crossref_primary_10_1016_j_molliq_2022_119323 crossref_primary_10_1007_s11356_021_17782_y crossref_primary_10_1016_j_biortech_2022_126690 crossref_primary_10_1016_j_jwpe_2023_104187 crossref_primary_10_1007_s11356_022_22245_z crossref_primary_10_1016_j_chemosphere_2023_140082 crossref_primary_10_1016_j_chemosphere_2024_143535 crossref_primary_10_1016_j_ijbiomac_2024_131625 crossref_primary_10_1039_D4RA02789B crossref_primary_10_1002_tqem_21877 crossref_primary_10_1016_j_jece_2022_107214 crossref_primary_10_1016_j_jhazmat_2021_127192 crossref_primary_10_1039_D4RA04336G crossref_primary_10_1016_j_seppur_2021_120118 crossref_primary_10_1016_j_matchemphys_2025_130376 crossref_primary_10_3390_min13111385 crossref_primary_10_1016_j_jhazmat_2022_130657 crossref_primary_10_1016_j_surfin_2022_102053 crossref_primary_10_3390_molecules29204928 crossref_primary_10_1039_D4EN00737A crossref_primary_10_1007_s00396_021_04926_2 crossref_primary_10_1007_s10876_022_02276_9 crossref_primary_10_1016_j_jhazmat_2021_127748 crossref_primary_10_1016_j_molliq_2024_125356 crossref_primary_10_1016_j_seppur_2025_131748 crossref_primary_10_1016_j_chemosphere_2022_134118 crossref_primary_10_1021_acs_iecr_2c00037 crossref_primary_10_1016_j_jhazmat_2022_128672 crossref_primary_10_1016_j_surfin_2021_101482 crossref_primary_10_3390_gels9040344 crossref_primary_10_5004_dwt_2022_27963 crossref_primary_10_1016_j_ese_2024_100457 crossref_primary_10_1016_j_eti_2022_102998 crossref_primary_10_1002_adsu_202200106 crossref_primary_10_1016_j_surfin_2022_101771 crossref_primary_10_1016_j_colsurfa_2023_131366 crossref_primary_10_1016_j_jece_2022_108081 crossref_primary_10_1016_j_envres_2022_114041 crossref_primary_10_1007_s13762_023_04951_4 crossref_primary_10_1016_j_jclepro_2022_135513 crossref_primary_10_1021_acsomega_1c04950 crossref_primary_10_1039_D1TA08335J crossref_primary_10_1016_j_jhazmat_2022_129092 crossref_primary_10_1039_D1DT03592D crossref_primary_10_1007_s13201_022_01725_0 crossref_primary_10_1515_biol_2022_0056 crossref_primary_10_3390_catal13111440 crossref_primary_10_1016_j_chemosphere_2021_132204 crossref_primary_10_1016_j_jenvman_2024_120383 crossref_primary_10_1016_j_jwpe_2025_106937 crossref_primary_10_5004_dwt_2022_28025 crossref_primary_10_1016_j_jclepro_2022_131276 crossref_primary_10_1016_j_seppur_2023_123644 |
Cites_doi | 10.1021/es702589u 10.1016/j.scitotenv.2013.01.008 10.4028/www.scientific.net/AMR.1097.3 10.1016/j.jenvman.2020.110105 10.1016/j.jhazmat.2019.02.077 10.1016/j.jhazmat.2020.124053 10.1016/j.cej.2015.11.038 10.1016/j.chemosphere.2010.11.018 10.1007/s10853-019-03606-5 10.1021/acs.est.8b06834 10.1016/j.chroma.2017.01.046 10.1021/acs.est.9b04210 10.1007/s11051-004-6672-2 10.1016/j.envpol.2018.04.084 10.15255/CABEQ.2016.1025 10.1016/j.jes.2017.10.006 10.1016/j.jenvman.2019.04.062 10.1007/s11051-012-1239-0 10.1016/j.biortech.2016.08.014 10.1016/j.jhazmat.2017.07.030 10.1021/es801947h 10.1007/s11164-018-3436-7 10.1016/j.apcata.2017.05.028 10.2166/wst.2013.358 10.1002/apj.1720 10.1016/j.cej.2016.03.005 10.1016/j.jssc.2011.04.018 10.1016/j.jclepro.2018.08.117 10.3390/w12102909 10.1016/j.jenvman.2014.12.022 10.1016/j.watres.2015.04.009 10.1016/j.cej.2015.09.078 10.1016/j.chemosphere.2016.11.092 10.1016/j.cjche.2016.04.027 10.1016/j.scitotenv.2020.142795 10.2166/wst.2019.234 10.1007/s11783-020-1360-8 10.1021/acs.est.5b04988 10.1016/j.jhazmat.2011.11.009 10.1016/j.chemosphere.2019.125260 10.1016/j.cej.2016.08.073 10.1016/j.scitotenv.2011.02.045 10.1016/j.cej.2017.03.141 10.1016/j.cej.2011.11.037 10.1016/j.cej.2017.04.063 10.1016/j.cej.2018.11.111 10.1007/s00604-017-2638-9 10.1039/C8TA11661J 10.1016/j.apsusc.2016.08.027 10.1016/j.colsurfa.2018.08.081 10.1016/j.seppur.2017.01.071 10.1007/s11356-016-6488-5 10.1016/j.cej.2015.09.079 10.1016/j.jhazmat.2004.09.005 10.1016/j.jcis.2014.07.022 10.3389/fphys.2018.00888 10.1039/C6EN00398B 10.1007/s11356-016-6626-0 10.1016/j.chemosphere.2010.02.011 10.1177/0263617418822917 10.1007/s11356-015-5850-3 10.1021/acs.est.7b02480 10.1007/s11270-017-3664-2 10.1021/jp3097814 10.1016/j.chemosphere.2016.09.056 10.1016/j.biortech.2019.122068 10.1016/j.jenvman.2016.12.068 10.1016/j.cej.2015.11.046 10.1016/j.cej.2018.04.088 10.1016/j.scitotenv.2015.06.091 10.1002/prep.200700205 10.1016/j.jhazmat.2019.02.096 10.1016/j.apcatb.2015.02.016 10.1016/j.cej.2019.122059 10.1016/j.marpolbul.2012.11.014 10.1016/j.molliq.2020.113317 10.1016/j.seppur.2019.116023 10.1039/C8RA04314K 10.1016/j.chemosphere.2020.128576 10.1016/j.jhazmat.2014.06.030 10.1016/j.cej.2019.03.007 10.1016/j.molliq.2018.04.032 10.1016/j.seppur.2016.08.008 10.1007/s11426-015-5452-4 10.1021/acs.est.8b01735 10.1016/j.seppur.2020.116942 10.1007/s11783-020-1351-9 10.1021/jf9913458 10.1016/j.jcis.2011.07.057 10.1016/j.cej.2017.10.060 10.1016/j.ultsonch.2013.04.015 10.1021/es800649p 10.1016/j.cej.2018.11.080 10.1016/j.cej.2014.11.128 10.1016/j.cej.2018.12.024 10.1021/acs.est.6b02170 10.1016/j.jpowsour.2016.05.031 10.1016/j.cej.2017.02.070 10.1016/j.cej.2014.09.038 10.1016/j.jhazmat.2016.05.040 10.1016/j.cej.2011.09.014 10.1016/j.apsusc.2015.02.025 10.1021/es048743y 10.1061/(ASCE)1090-025X(2009)13:2(110) 10.1039/C8RA08386J 10.1021/es049190u 10.1021/acs.est.6b03997 10.1016/j.clay.2017.07.023 10.1016/j.compscitech.2016.08.018 10.1016/j.jhazmat.2016.11.032 10.1016/j.apsusc.2014.09.202 10.1016/j.seppur.2018.03.048 10.1016/j.chemosphere.2013.10.085 10.1016/j.seppur.2015.07.009 10.1016/j.jenvman.2016.04.034 10.1016/j.apsusc.2016.10.020 10.1016/j.cej.2018.08.126 10.1016/j.jhazmat.2016.05.041 10.1021/es903801r 10.1016/j.scitotenv.2009.05.033 10.1021/acs.est.7b02695 10.1016/j.scitotenv.2020.143413 10.1016/j.cep.2018.11.011 10.1016/j.foodchem.2014.11.050 10.1016/j.jhazmat.2011.10.056 10.1016/j.seppur.2019.03.028 10.1016/j.cej.2018.11.180 10.1016/j.jhazmat.2013.12.062 10.1016/j.envint.2019.01.047 10.1016/j.apcata.2016.11.001 10.1016/j.seppur.2018.01.032 10.1016/S1385-8947(01)00218-2 10.1016/j.cep.2017.05.001 10.1021/acssuschemeng.8b01416 10.1016/j.scitotenv.2020.143333 10.1016/j.cej.2016.11.154 10.1016/j.molstruc.2019.03.003 10.1016/j.watres.2013.09.006 10.1021/ie990549a 10.1061/(ASCE)EE.1943-7870.0000705 10.1016/j.scitotenv.2017.09.006 10.1016/j.chemosphere.2016.11.100 10.1016/j.chemosphere.2018.03.057 10.1016/j.chemosphere.2015.11.095 10.1016/j.watres.2016.05.019 10.1016/j.cej.2017.12.090 10.1016/j.jes.2018.04.025 10.1021/acs.est.7b05847 10.1016/j.psep.2018.02.009 10.1016/S1672-2515(07)60110-9 10.1016/j.jhazmat.2015.12.063 10.1016/j.envpol.2018.08.061 10.1021/jp501846f 10.1016/j.jhazmat.2017.06.006 10.1021/es050006u 10.1007/s11356-017-0796-2 10.1016/j.xinn.2021.100076 10.1080/10643389.2020.1734433 10.1016/j.jhazmat.2015.10.034 10.1016/j.ultsonch.2011.03.015 10.1016/j.seppur.2019.115929 10.1016/j.chemosphere.2019.02.074 10.1016/j.chemosphere.2012.09.040 10.1016/j.apsusc.2015.03.131 10.1016/j.jhazmat.2018.11.073 10.1016/j.jssc.2018.09.013 10.1039/C8NR08302A 10.1039/b913056j 10.1016/j.apcatb.2016.01.047 10.1016/j.cej.2016.10.125 10.1016/j.envpol.2016.12.030 10.1016/j.cej.2017.03.104 10.1007/s11270-018-4033-5 10.1016/j.jes.2015.10.033 10.1016/j.jcis.2013.08.020 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.148546 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2021_148546 S0048969721036184 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c447t-600bbe6db3bea5fae8d70554a38c45dc5a11974e96ed7d73e70b9163bb5b70c43 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 21:11:12 EDT 2025 Fri Jul 11 00:46:09 EDT 2025 Tue Jul 01 04:25:04 EDT 2025 Thu Apr 24 23:05:06 EDT 2025 Fri Feb 23 02:44:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NZVI-based composites Removal Organic pollutants NZVI Mechanism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c447t-600bbe6db3bea5fae8d70554a38c45dc5a11974e96ed7d73e70b9163bb5b70c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2568249721 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2661002800 proquest_miscellaneous_2568249721 crossref_citationtrail_10_1016_j_scitotenv_2021_148546 crossref_primary_10_1016_j_scitotenv_2021_148546 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_148546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-20 |
PublicationDateYYYYMMDD | 2021-10-20 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Qiu, Wang, Zhao, Hu, Zhu (bb0565) 2018; 201 Luo, Chen, Megharaj, Naidu (bb0490) 2016; 294 Xiong, Zhang, Zhang, Lai, Yao (bb0775) 2019; 359 Wen, Zhu, Wei, Huang, Ma (bb0735) 2017; 307 Zhao, Liu, Cai, Han, Qian, Zhao (bb0845) 2016; 100 Sun, Yu, Tsang, Cao, Lin, Wang, Graham, Alessi, Komarek, Ok, Feng, Li (bb0655) 2019; 124 Li, Yan, Zhang (bb0370) 2009; 11 Shi, Chen, Lu, Shi, Wu, Hu (bb0620) 2021; 15 Liu, Pang, Liu, Li, Zhang, Mao, Qiu, Hu, Yang, Wang (bb0475) 2021; 2 Guo, Huang, Chen, Zhao, Liu, Sun, Gong (bb0210) 2017; 339 Han, Yan (bb0215) 2016; 50 Xu, Zhang, Cheng, Tian, Zhao, Tang (bb0800) 2019; 37 Zhou, Wang, Zhi, Guo, Zhou, Nie, Huang, Yang, Huang, Luo (bb0875) 2019; 54 Liu, Diao, Huo, Kong, Du (bb0465) 2018; 239 Šimkovič, Derco, Dudáš, Urminská (bb0640) 2017; 31 Xu, Liu, Chen, Tang (bb0780) 2016; 48 Lv, Ma, Li, Yang (bb0500) 2020; 12 Pulido, Bravo, Saura-Calixto (bb0555) 2000; 48 Rahmani, Poormohammadi, Zamani, Tahmasebi Birgani, Jorfi, Gholizadeh, Mohammadi, Almasi (bb0570) 2018; 44 Maamoun, Falyouna, Eljamal, Bensaida, Eljamal (bb0510) 2021; 12 Hua, Liu, Gu, Wang, Zhang (bb0260) 2018; 67 Li, Chen, Zhang, Wang (bb0385) 2016; 59 Janssen, Koene (bb0280) 2002; 85 Oleszczuk, Kołtowski (bb0540) 2017; 168 Fan, O Brien Johnson, Tratnyek, Johnson (bb0175) 2016; 50 Wang, Lu, Lin, Huang, Tang, Xue, Yang, Yin, Dang (bb0715) 2017; 222 Wang, Song, Tang, Yu (bb0730) 2020; 243 Huang, Li, Wu, Dong, Cao, Liu, Lin, Jiang (bb0265) 2016; 134 Wang, Nan (bb0685) 2020; 233 Ahmed, Zhou, Ngo, Guo, Johir, Sornalingam, Belhaj, Kallel (bb0005) 2017; 322 He, Ma, Collins, Waite (bb0240) 2016; 50 Sahu, Shih (bb0600) 2019; 378 Xu, Tian, Zhang, Tang, Zhao, Chen (bb0785) 2018; 229 Zhu, Fang, Dionysiou, Liu, Gao, Qin, Zhou (bb0880) 2016; 316 Lee, Sedlak (bb0365) 2008; 42 Chen, Jin, Chen, Megharaj, Naidu (bb0080) 2011; 363 Luo, Yang, Chen, Megharaj, Naidu (bb0495) 2016; 303 Wang, Zhu, Liu, Ma, Li (bb0690) 2013; 449 Liu, Li, Ma, Qin, He (bb0455) 2014; 321 Dehghani, Karri, Alimohammadi, Nazmara, Zarei, Saeedi (bb0130) 2020; 311 Lu, Dong, Zhang, Hu, Wen, Yang, Wu (bb0485) 2018; 558 Kim, Eichhorn, Jensen, Weber, Aga (bb0330) 2005; 39 Gu, Jia, Li, Teppen, Boyd (bb0205) 2015; 44 Li, Xu, Jin, Li, Dharmarajan, Chen (bb0405) 2018; 197 Chen, Hsu, Li (bb0075) 2004; 6 Jamei, Khosravi, Anvaripour (bb0270) 2013; 8 Wang, Wang, Ma, Liu, Ning (bb0695) 2015; 345 Shan, Yan, Tyagi, Surampalli, Zhang (bb0605) 2015; 13 Xie, Ren, Zhu, Gou, Chen (bb0765) 2018; 116 Wan, Feng, Li, He, Zhao, Liu, Lin, Yang, Liang (bb0680) 2019; 135 Banks, Jun, Heo, Her, Park, Yoon (bb0025) 2020; 231 Lin, Lo, Liou (bb0435) 2004; 116 Machado, Pacheco, Nouws, Albergaria, Delerue-Matos (bb0515) 2015; 533 Xu, Cao, Zhou, Lou, Wang, Xu, Lowry (bb0795) 2019; 53 Ezzatahmadi, Ayoko, Millar, Speight, Yan, Li, Li, Zhu, Xi (bb0165) 2017; 312 Zhou, Lei, Wu, Yuan (bb0860) 2017; 1487 Kim, Ahn, Kim, Shin, Hwang (bb0335) 2018; 52 Lin, Chen (bb0430) 2017; 119 Rasheed, Pandian, Muthukumar (bb0590) 2011; 18 Katsenovich, Miralles-Wilhelm (bb0310) 2009; 407 Lin, Weng, Dharmarajan, Chen (bb0445) 2017; 169 Tang, Tang, Zeng, Yang, Xie, Zhou, Pang, Fang, Wang, Xiong (bb0670) 2015; 333 Feng, Zhong, Zhang, Fan, Yang, Shih, Li, Wu, Yan (bb0180) 2020; 247 Hao, Qiu, Yang, Hu, Wang (bb0230) 2021; 760 Diao, Xu, Chen, Jiang, Yang, Kong, Sun, Hu, Hao, Liu (bb0145) 2016; 316 Stefaniuk, Oleszczuk, Ok (bb0650) 2016; 287 Shi, Zhu, Zhang, Zhang, Li, Fan (bb0615) 2019; 11 Si, Yang, Wang, Cheng (bb0635) 2010; 79 Bystrzejewski (bb0045) 2011; 184 Chen, Yu, Zhang, Liu, Liu, Zhou, Han, Zhou (bb0095) 2016; 322 Kang, Liu, Wang, Cai (bb0305) 2016; 307 Chen, Lin, Hao, Xu, Huang (bb0100) 2019; 371 Gomes, Dias-Ferreira, Ottosen, Ribeiro (bb0200) 2014; 433 Oprčkal, Mladenovič, Vidmar, Mauko Pranjić, Milačič, Ščančar (bb0545) 2017; 321 Bharti, Khurana, Shaw, Saxena, Khurana, Rai (bb0030) 2018; 229 Blum, Andersson, Ahrens, Wiberg, Haglund (bb0035) 2017; 612 Song, Fang, Zhu, Zhu, Wu, Chen, Wu, Wang, Gao, Zhou (bb0645) 2019; 355 Jin, Zhang, Wen, Wang, Gu, Zhao, Wang, Chen, Hayat, Wang (bb0300) 2018; 243 Wu, Yue, Gao, Ren, Gao (bb0745) 2018; 69 Filip, Karlicky, Marusak, Lazar, Cerník, Otyepka, Zboril (bb0185) 2014; 118 Han, Shi, Wang, Pan, Fang, Yu (bb0225) 2016; 23 Wang, Sun, Duan, Ang, Tade, Wang (bb0700) 2015; 172-173 Wu, Yue, Ren, Gao (bb0750) 2018; 262 Zeng, Walker, Zhu (bb0825) 2017; 324 Pustovalov, Zhuravkov (bb0560) 2015; 1097 Dai, Fan, Yi, Dong, Yuan (bb0115) 2019; 7 Cao, Liu, Xu, Zhang, Yang, Zhou, Xu, Lowry (bb0060) 2017; 51 Li, Zhao, Zhu (bb0420) 2021; 760 Han, Liu, Horita, Yan (bb0220) 2016; 188 He, Lin, Dong, Li, Wang, Chu, Luo, Liu (bb0250) 2018; 347 Li, Yang, Li, Yin, Tao, Wu, Luo (bb0415) 2019; 269 Wang, Wang, Ma, Fu (bb0725) 2017; 166 He, Li, Shi, Xu, Sheng, Gu, Jiang, Xi (bb0245) 2018; 52 Xue, Sethi (bb0805) 2012; 14 Chen, Qiu, Fang, Yang, Pokeung, Gu, Cheng, Lan (bb0085) 2012; 181-182 Fan, Li, Cao (bb0170) 2015; 174 Li, Li, Xiao, Wei, Han, Huang (bb0395) 2016; 284 Zhang, Gao, He, Yang, Wang, Ma, Xia, Xu (bb0835) 2017; 172 Zhao, Chang, Hao, Yu, Morel, Zhang (bb0850) 2019; 369 Zhou, Lei, Li, Zhao, Liu (bb0865) 2017; 182 Liang, Yang, Xu, Peng, Lu, Xiang (bb0425) 2014; 278 Tan, Vakili, Horri, Poh, Abdullah, Salamatinia (bb0665) 2015; 150 Gao, Wang, Wu, Naidu, Chen (bb0195) 2016; 285 Pourfadakari, Yousefi, Mahvi (bb0550) 2016; 24 Ma, Lv, Yang, Wang, Chen (bb0505) 2017; 542 Li, Hu, Shi, Fan, Luo, Wei (bb0390) 2016; 23 He, Zhao (bb0235) 2005; 39 Kumar, Bae, Han, Chang, Lee (bb0350) 2017; 340 Liu, Yang, Wang, Yan (bb0450) 2013; 47 Hoch, Mack, Hydutsky, Hershman, Skluzacek, Mallouk (bb0255) 2008; 42 Xu, Cao, Wang, Zhang, Gao, Ahmed, Zhang, Yang, Zhou, Lowry (bb0790) 2019; 359 Wu, Wang, Blaney, Peng, Chen, Cui, Deng, Wang, Huang, Yu (bb0755) 2019; 361 Yoon, Bae (bb0820) 2019; 365 Lazar, Otyepka (bb0360) 2012; 116 Yang, Li, Wang, Wang, Chu, Xia (bb0810) 2018; 185 Liu, Ma, Zhuang, Hu, Chen, Liu, Wang (bb0480) 2021; 51 Zhao, Zhou, Yan, Yang, Xing, Li, Wu, Wang, Zheng (bb6005) 2021; 765 Atashgahi, Shetty, Smidt, de Vos (bb0020) 2018; 9 Rajajayavel, Ghoshal (bb0575) 2015; 78 Choi, Lee (bb0110) 2012; 211-212 Kuang, Wang, Chen, Megharaj, Naidu (bb0345) 2013; 410 Raychoudhury, Scheytt (bb0595) 2013; 68 Danish, Gu, Lu, Brusseau, Ahmad, Naqvi, Farooq, Zaman, Fu, Miao (bb0125) 2017; 531 Lin, Shih, Macfarlane, Lin (bb0440) 2015; 262 Zhang, Li, Tong, Jiang, Wang, Sun, Li, Liu, Shen (bb0840) 2018; 8 Kose, Kirpik, Kose (bb0340) 2019; 1185 Wang, Wang, Lu, Ma (bb0720) 2017; 337 Dong, Hou, Qiao, Cheng, Zhang, Wang, Li, Wang, Ning, Zeng (bb0150) 2019; 359 Li, Jin, Megharaj, Naidu, Chen (bb0380) 2015; 264 Danish, Gu, Lu, Naqvi (bb0120) 2016; 23 Lai, Zhou, Yang, Yang, Wang (bb0355) 2013; 90 Liu, Wei, Luo, Li, Wang, Luo, Crittenden (bb0470) 2019; 368 Weng, Cai, Lin, Chen (bb0740) 2017; 147 Deng, Li, Yang, Xing, Li, Zhang (bb0135) 2016; 219 Alshabib, Onaizi (bb0015) 2019; 219 Kecić, Kerkez, Prica, Lužanin, Bečelić-Tomin, Pilipović, Dalmacija (bb0320) 2018; 202 Shi, Xu, Liu, Chen, Fan, Liu, Chen (bb0625) 2021; 403 Mehrabi, Masud, Afolabi, Hwang, Calderon Ortiz, Aich (bb0525) 2019; 9 Li, Ji, Li, Song, Wang, Qi, Li (bb0410) 2019; 293 Shimizu, Tokumura, Nakajima, Kawase (bb0630) 2012; 201-202 Wang, Du, Ma (bb0705) 2016; 390 Bao, Damtie, Hosseinzadeh, Wei, Jin, Vo, Ye, Liu, Wang, Yu, Chen, Wu, Frost, Ni (bb6000) 2020; 260 Yao, Yang, Chen, Qiu, Hu, Wang (bb0815) 2021; 273 Mu, Jia, Ai, Zhang (bb0530) 2016; 4 Sun, Liu, Han, Qin, Yang, Xing (bb0660) 2019; 79 Zhou, Ma, Liu, Lin, Sun, Zhang, Li, Fan (bb0870) 2019; 223 Wang, Chen, Yang, Huang, Yang, He, Wang, Qiu (bb0710) 2017; 317 Li, Duan, Li, Zhang (bb0375) 2013; 66 Alizadeh Fard, Torabian, Bidhendi, Aminzadeh (bb0010) 2013; 139 Deng, Dong, Zhang, Jiang, Cheng, Hou, Zhang, Fan (bb0140) 2018; 202 Ezzat, Moustafa (bb0160) 2021; 15 Jiao, Luo, He, Liu (bb0290) 2017; 313 Zhou, Thanh, Gong, Kim, Kim, Chang (bb0855) 2014; 104 Cao, Xu, Tang, Tang, Cao (bb0055) 2011; 409 Jiang, Lu, Liu, Li, Dai, Xu, Chu (bb0285) 2011; 174 Jamei, Khosravi, Anvaripour (bb0275) 2014; 21 Khalil, Eljamal, Jribi, Matsunaga (bb0325) 2016; 287 Chen, Wang, Guo, Wang, Zheng (bb0070) 2000; 39 Rani, Shanker, Jassal (bb0585) 2017; 190 Brausch, Rand (bb0040) 2011; 82 Dong, Wang, Geng, Li, Zhao (bb0155) 2019; 244 Marican, Durán-Lara (bb0520) 2018; 25 Li, Zhang, Sun, Liang, Pan, Zhang, Guan (bb0400) 2017; 51 Calderon, Smith, Aracil, Fullana (bb0050) 2018; 6 Katsoyiannis, Ruettimann, Hug (bb0315) 2008; 42 Nurmi, Tratnyek, Sarathy, Baer, Amonette, Pecher, Wang, Linehan, Matson, Penn, Driessen (bb0535) 2005; 39 Liu, Cao, Yuan, Zhang, Guo, Yang, He, Zhao, Xu (bb0460) 2018; 334 Jiao, Qin, Luo, He, Feng, Liu (bb0295) 2017; 321 Wu, Zhao, Hou, Zeng, Xing (bb0760) 2019; 53 Xin, Han, Zheng, Shao, Kolditz (bb0770) 2015; 150 Fu, Dionysiou, Liu (bb0190) 2014; 267 Raman, Kanmani (bb0580) 2016; 177 Zhang (bb0830) 2008; 33 Chen, Cao, Wei, Gong, Xian (bb0090) 2016; 146 Chen, Shao (bb0065) 2003; 1 Shen, Mu, Wang, Ai, Zhang (bb0610) 2017; 393 Yang (10.1016/j.scitotenv.2021.148546_bb0810) 2018; 185 Danish (10.1016/j.scitotenv.2021.148546_bb0120) 2016; 23 Chen (10.1016/j.scitotenv.2021.148546_bb0070) 2000; 39 Jamei (10.1016/j.scitotenv.2021.148546_bb0275) 2014; 21 Mu (10.1016/j.scitotenv.2021.148546_bb0530) 2016; 4 Šimkovič (10.1016/j.scitotenv.2021.148546_bb0640) 2017; 31 Liu (10.1016/j.scitotenv.2021.148546_bb0470) 2019; 368 Zhou (10.1016/j.scitotenv.2021.148546_bb0875) 2019; 54 Kim (10.1016/j.scitotenv.2021.148546_bb0330) 2005; 39 Jiao (10.1016/j.scitotenv.2021.148546_bb0290) 2017; 313 Luo (10.1016/j.scitotenv.2021.148546_bb0490) 2016; 294 Guo (10.1016/j.scitotenv.2021.148546_bb0210) 2017; 339 Pourfadakari (10.1016/j.scitotenv.2021.148546_bb0550) 2016; 24 Shi (10.1016/j.scitotenv.2021.148546_bb0625) 2021; 403 Wen (10.1016/j.scitotenv.2021.148546_bb0735) 2017; 307 Janssen (10.1016/j.scitotenv.2021.148546_bb0280) 2002; 85 Luo (10.1016/j.scitotenv.2021.148546_bb0495) 2016; 303 Pulido (10.1016/j.scitotenv.2021.148546_bb0555) 2000; 48 Sun (10.1016/j.scitotenv.2021.148546_bb0660) 2019; 79 Chen (10.1016/j.scitotenv.2021.148546_bb0090) 2016; 146 Li (10.1016/j.scitotenv.2021.148546_bb0395) 2016; 284 Shi (10.1016/j.scitotenv.2021.148546_bb0620) 2021; 15 Dong (10.1016/j.scitotenv.2021.148546_bb0155) 2019; 244 Weng (10.1016/j.scitotenv.2021.148546_bb0740) 2017; 147 Ahmed (10.1016/j.scitotenv.2021.148546_bb0005) 2017; 322 Xu (10.1016/j.scitotenv.2021.148546_bb0780) 2016; 48 Kumar (10.1016/j.scitotenv.2021.148546_bb0350) 2017; 340 Gao (10.1016/j.scitotenv.2021.148546_bb0195) 2016; 285 Lin (10.1016/j.scitotenv.2021.148546_bb0440) 2015; 262 Katsenovich (10.1016/j.scitotenv.2021.148546_bb0310) 2009; 407 Wang (10.1016/j.scitotenv.2021.148546_bb0715) 2017; 222 He (10.1016/j.scitotenv.2021.148546_bb0250) 2018; 347 Li (10.1016/j.scitotenv.2021.148546_bb0405) 2018; 197 Wang (10.1016/j.scitotenv.2021.148546_bb0685) 2020; 233 Cao (10.1016/j.scitotenv.2021.148546_bb0060) 2017; 51 Cao (10.1016/j.scitotenv.2021.148546_bb0055) 2011; 409 Choi (10.1016/j.scitotenv.2021.148546_bb0110) 2012; 211-212 Dehghani (10.1016/j.scitotenv.2021.148546_bb0130) 2020; 311 Hao (10.1016/j.scitotenv.2021.148546_bb0230) 2021; 760 Xu (10.1016/j.scitotenv.2021.148546_bb0800) 2019; 37 Han (10.1016/j.scitotenv.2021.148546_bb0225) 2016; 23 Xu (10.1016/j.scitotenv.2021.148546_bb0785) 2018; 229 Maamoun (10.1016/j.scitotenv.2021.148546_bb0510) 2021; 12 Hoch (10.1016/j.scitotenv.2021.148546_bb0255) 2008; 42 Zhou (10.1016/j.scitotenv.2021.148546_bb0870) 2019; 223 Chen (10.1016/j.scitotenv.2021.148546_bb0080) 2011; 363 Sahu (10.1016/j.scitotenv.2021.148546_bb0600) 2019; 378 Liang (10.1016/j.scitotenv.2021.148546_bb0425) 2014; 278 Mehrabi (10.1016/j.scitotenv.2021.148546_bb0525) 2019; 9 Wu (10.1016/j.scitotenv.2021.148546_bb0745) 2018; 69 Deng (10.1016/j.scitotenv.2021.148546_bb0135) 2016; 219 Xue (10.1016/j.scitotenv.2021.148546_bb0805) 2012; 14 Shimizu (10.1016/j.scitotenv.2021.148546_bb0630) 2012; 201-202 Han (10.1016/j.scitotenv.2021.148546_bb0215) 2016; 50 Khalil (10.1016/j.scitotenv.2021.148546_bb0325) 2016; 287 Dai (10.1016/j.scitotenv.2021.148546_bb0115) 2019; 7 Huang (10.1016/j.scitotenv.2021.148546_bb0265) 2016; 134 Bao (10.1016/j.scitotenv.2021.148546_bb6000) 2020; 260 Qiu (10.1016/j.scitotenv.2021.148546_bb0565) 2018; 201 He (10.1016/j.scitotenv.2021.148546_bb0240) 2016; 50 Rahmani (10.1016/j.scitotenv.2021.148546_bb0570) 2018; 44 Diao (10.1016/j.scitotenv.2021.148546_bb0145) 2016; 316 Lin (10.1016/j.scitotenv.2021.148546_bb0435) 2004; 116 Li (10.1016/j.scitotenv.2021.148546_bb0375) 2013; 66 Jamei (10.1016/j.scitotenv.2021.148546_bb0270) 2013; 8 Hua (10.1016/j.scitotenv.2021.148546_bb0260) 2018; 67 Kang (10.1016/j.scitotenv.2021.148546_bb0305) 2016; 307 Sun (10.1016/j.scitotenv.2021.148546_bb0655) 2019; 124 Wu (10.1016/j.scitotenv.2021.148546_bb0760) 2019; 53 Tan (10.1016/j.scitotenv.2021.148546_bb0665) 2015; 150 Wu (10.1016/j.scitotenv.2021.148546_bb0750) 2018; 262 Oleszczuk (10.1016/j.scitotenv.2021.148546_bb0540) 2017; 168 Wang (10.1016/j.scitotenv.2021.148546_bb0710) 2017; 317 Zhou (10.1016/j.scitotenv.2021.148546_bb0855) 2014; 104 Lu (10.1016/j.scitotenv.2021.148546_bb0485) 2018; 558 Zhao (10.1016/j.scitotenv.2021.148546_bb0850) 2019; 369 Gu (10.1016/j.scitotenv.2021.148546_bb0205) 2015; 44 Wan (10.1016/j.scitotenv.2021.148546_bb0680) 2019; 135 Song (10.1016/j.scitotenv.2021.148546_bb0645) 2019; 355 Wang (10.1016/j.scitotenv.2021.148546_bb0705) 2016; 390 Jiang (10.1016/j.scitotenv.2021.148546_bb0285) 2011; 174 Xin (10.1016/j.scitotenv.2021.148546_bb0770) 2015; 150 Zhang (10.1016/j.scitotenv.2021.148546_bb0830) 2008; 33 Shan (10.1016/j.scitotenv.2021.148546_bb0605) 2015; 13 Oprčkal (10.1016/j.scitotenv.2021.148546_bb0545) 2017; 321 Danish (10.1016/j.scitotenv.2021.148546_bb0125) 2017; 531 Kim (10.1016/j.scitotenv.2021.148546_bb0335) 2018; 52 Rasheed (10.1016/j.scitotenv.2021.148546_bb0590) 2011; 18 Zhao (10.1016/j.scitotenv.2021.148546_bb0845) 2016; 100 Fan (10.1016/j.scitotenv.2021.148546_bb0175) 2016; 50 Nurmi (10.1016/j.scitotenv.2021.148546_bb0535) 2005; 39 Zhang (10.1016/j.scitotenv.2021.148546_bb0835) 2017; 172 Alshabib (10.1016/j.scitotenv.2021.148546_bb0015) 2019; 219 Chen (10.1016/j.scitotenv.2021.148546_bb0100) 2019; 371 Lin (10.1016/j.scitotenv.2021.148546_bb0430) 2017; 119 Ezzat (10.1016/j.scitotenv.2021.148546_bb0160) 2021; 15 Lin (10.1016/j.scitotenv.2021.148546_bb0445) 2017; 169 Zhou (10.1016/j.scitotenv.2021.148546_bb0865) 2017; 182 Xu (10.1016/j.scitotenv.2021.148546_bb0790) 2019; 359 Ma (10.1016/j.scitotenv.2021.148546_bb0505) 2017; 542 Pustovalov (10.1016/j.scitotenv.2021.148546_bb0560) 2015; 1097 Si (10.1016/j.scitotenv.2021.148546_bb0635) 2010; 79 Jiao (10.1016/j.scitotenv.2021.148546_bb0295) 2017; 321 Xie (10.1016/j.scitotenv.2021.148546_bb0765) 2018; 116 Liu (10.1016/j.scitotenv.2021.148546_bb0480) 2021; 51 Liu (10.1016/j.scitotenv.2021.148546_bb0450) 2013; 47 Zhu (10.1016/j.scitotenv.2021.148546_bb0880) 2016; 316 Xiong (10.1016/j.scitotenv.2021.148546_bb0775) 2019; 359 Alizadeh Fard (10.1016/j.scitotenv.2021.148546_bb0010) 2013; 139 Atashgahi (10.1016/j.scitotenv.2021.148546_bb0020) 2018; 9 Zhou (10.1016/j.scitotenv.2021.148546_bb0860) 2017; 1487 Lv (10.1016/j.scitotenv.2021.148546_bb0500) 2020; 12 Wang (10.1016/j.scitotenv.2021.148546_bb0720) 2017; 337 Machado (10.1016/j.scitotenv.2021.148546_bb0515) 2015; 533 Lazar (10.1016/j.scitotenv.2021.148546_bb0360) 2012; 116 Liu (10.1016/j.scitotenv.2021.148546_bb0465) 2018; 239 Li (10.1016/j.scitotenv.2021.148546_bb0370) 2009; 11 Li (10.1016/j.scitotenv.2021.148546_bb0390) 2016; 23 Chen (10.1016/j.scitotenv.2021.148546_bb0085) 2012; 181-182 Bystrzejewski (10.1016/j.scitotenv.2021.148546_bb0045) 2011; 184 Han (10.1016/j.scitotenv.2021.148546_bb0220) 2016; 188 Chen (10.1016/j.scitotenv.2021.148546_bb0095) 2016; 322 Gomes (10.1016/j.scitotenv.2021.148546_bb0200) 2014; 433 Feng (10.1016/j.scitotenv.2021.148546_bb0180) 2020; 247 Shen (10.1016/j.scitotenv.2021.148546_bb0610) 2017; 393 Xu (10.1016/j.scitotenv.2021.148546_bb0795) 2019; 53 Calderon (10.1016/j.scitotenv.2021.148546_bb0050) 2018; 6 Filip (10.1016/j.scitotenv.2021.148546_bb0185) 2014; 118 Li (10.1016/j.scitotenv.2021.148546_bb0385) 2016; 59 Lee (10.1016/j.scitotenv.2021.148546_bb0365) 2008; 42 He (10.1016/j.scitotenv.2021.148546_bb0235) 2005; 39 Liu (10.1016/j.scitotenv.2021.148546_bb0475) 2021; 2 Stefaniuk (10.1016/j.scitotenv.2021.148546_bb0650) 2016; 287 Kose (10.1016/j.scitotenv.2021.148546_bb0340) 2019; 1185 Liu (10.1016/j.scitotenv.2021.148546_bb0460) 2018; 334 Katsoyiannis (10.1016/j.scitotenv.2021.148546_bb0315) 2008; 42 Wang (10.1016/j.scitotenv.2021.148546_bb0695) 2015; 345 Fan (10.1016/j.scitotenv.2021.148546_bb0170) 2015; 174 Shi (10.1016/j.scitotenv.2021.148546_bb0615) 2019; 11 Zeng (10.1016/j.scitotenv.2021.148546_bb0825) 2017; 324 Blum (10.1016/j.scitotenv.2021.148546_bb0035) 2017; 612 Fu (10.1016/j.scitotenv.2021.148546_bb0190) 2014; 267 Wang (10.1016/j.scitotenv.2021.148546_bb0700) 2015; 172-173 Yao (10.1016/j.scitotenv.2021.148546_bb0815) 2021; 273 Kuang (10.1016/j.scitotenv.2021.148546_bb0345) 2013; 410 Ezzatahmadi (10.1016/j.scitotenv.2021.148546_bb0165) 2017; 312 Jin (10.1016/j.scitotenv.2021.148546_bb0300) 2018; 243 Lai (10.1016/j.scitotenv.2021.148546_bb0355) 2013; 90 He (10.1016/j.scitotenv.2021.148546_bb0245) 2018; 52 Li (10.1016/j.scitotenv.2021.148546_bb0410) 2019; 293 Zhao (10.1016/j.scitotenv.2021.148546_bb6005) 2021; 765 Rajajayavel (10.1016/j.scitotenv.2021.148546_bb0575) 2015; 78 Li (10.1016/j.scitotenv.2021.148546_bb0400) 2017; 51 Deng (10.1016/j.scitotenv.2021.148546_bb0140) 2018; 202 Liu (10.1016/j.scitotenv.2021.148546_bb0455) 2014; 321 Marican (10.1016/j.scitotenv.2021.148546_bb0520) 2018; 25 Wu (10.1016/j.scitotenv.2021.148546_bb0755) 2019; 361 Yoon (10.1016/j.scitotenv.2021.148546_bb0820) 2019; 365 Bharti (10.1016/j.scitotenv.2021.148546_bb0030) 2018; 229 Brausch (10.1016/j.scitotenv.2021.148546_bb0040) 2011; 82 Raman (10.1016/j.scitotenv.2021.148546_bb0580) 2016; 177 Wang (10.1016/j.scitotenv.2021.148546_bb0730) 2020; 243 Banks (10.1016/j.scitotenv.2021.148546_bb0025) 2020; 231 Raychoudhury (10.1016/j.scitotenv.2021.148546_bb0595) 2013; 68 Wang (10.1016/j.scitotenv.2021.148546_bb0690) 2013; 449 Rani (10.1016/j.scitotenv.2021.148546_bb0585) 2017; 190 Zhang (10.1016/j.scitotenv.2021.148546_bb0840) 2018; 8 Li (10.1016/j.scitotenv.2021.148546_bb0415) 2019; 269 Dong (10.1016/j.scitotenv.2021.148546_bb0150) 2019; 359 Tang (10.1016/j.scitotenv.2021.148546_bb0670) 2015; 333 Kecić (10.1016/j.scitotenv.2021.148546_bb0320) 2018; 202 Chen (10.1016/j.scitotenv.2021.148546_bb0065) 2003; 1 Chen (10.1016/j.scitotenv.2021.148546_bb0075) 2004; 6 Li (10.1016/j.scitotenv.2021.148546_bb0380) 2015; 264 Li (10.1016/j.scitotenv.2021.148546_bb0420) 2021; 760 Wang (10.1016/j.scitotenv.2021.148546_bb0725) 2017; 166 |
References_xml | – volume: 244 start-page: 1 year: 2019 end-page: 12 ident: bb0155 article-title: Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater publication-title: J. Environ. Manag. – volume: 337 start-page: 372 year: 2017 end-page: 384 ident: bb0720 article-title: Synthesis of magnetically recoverable Fe publication-title: Chem. Eng. J. – volume: 53 start-page: 13344 year: 2019 end-page: 13352 ident: bb0795 article-title: Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron publication-title: Environ. Sci. Technol. – volume: 433 start-page: 189 year: 2014 end-page: 195 ident: bb0200 article-title: Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants publication-title: J. Colloid Interface Sci. – volume: 262 start-page: 19 year: 2018 end-page: 28 ident: bb0750 article-title: Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP) publication-title: J. Mol. Liq. – volume: 100 start-page: 245 year: 2016 end-page: 266 ident: bb0845 article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation publication-title: Water Res. – volume: 262 start-page: 59 year: 2015 end-page: 67 ident: bb0440 article-title: Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles publication-title: Chem. Eng. J. – volume: 201 start-page: 764 year: 2018 end-page: 771 ident: bb0565 article-title: XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate publication-title: Chemosphere – volume: 531 start-page: 177 year: 2017 end-page: 186 ident: bb0125 article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite publication-title: Appl. Catal. A Gen. – volume: 146 start-page: 32 year: 2016 end-page: 39 ident: bb0090 article-title: Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water publication-title: Chemosphere – volume: 21 start-page: 226 year: 2014 end-page: 233 ident: bb0275 article-title: A novel ultrasound assisted method in synthesis of NZVI particles publication-title: Ultrason. Sonochem. – volume: 201-202 start-page: 60 year: 2012 end-page: 67 ident: bb0630 article-title: Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation publication-title: J. Hazard. Mater. – volume: 760 year: 2021 ident: bb0230 article-title: Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis publication-title: Sci. Total Environ. – volume: 8 start-page: 22161 year: 2018 end-page: 22168 ident: bb0840 article-title: Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene publication-title: RSC Adv. – volume: 51 start-page: 11269 year: 2017 end-page: 11277 ident: bb0060 article-title: Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron publication-title: Environ. Sci. Technol. – volume: 39 start-page: 1221 year: 2005 end-page: 1230 ident: bb0535 article-title: Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics publication-title: Environ. Sci. Technol. – volume: 311 year: 2020 ident: bb0130 article-title: Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zerovalent iron nanoparticles publication-title: J. Mol. Liq. – volume: 324 start-page: 605 year: 2017 end-page: 616 ident: bb0825 article-title: Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles publication-title: J. Hazard. Mater. – volume: 316 start-page: 186 year: 2016 end-page: 193 ident: bb0145 article-title: Simultaneous removal of Cr (VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism publication-title: J. Hazard. Mater. – volume: 223 start-page: 196 year: 2019 end-page: 203 ident: bb0870 article-title: Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: effect, mechanism and ecotoxicity publication-title: Chemosphere – volume: 278 start-page: 592 year: 2014 end-page: 596 ident: bb0425 article-title: Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics publication-title: J. Hazard. Mater. – volume: 23 start-page: 6253 year: 2016 end-page: 6263 ident: bb0225 article-title: Nanoscale zerovalent iron-mediated degradation of DDT in soil publication-title: Environ. Sci. Pollut. Res. – volume: 334 start-page: 508 year: 2018 end-page: 518 ident: bb0460 article-title: Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron publication-title: Chem. Eng. J. – volume: 345 start-page: 57 year: 2015 end-page: 66 ident: bb0695 article-title: Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration publication-title: Appl. Surf. Sci. – volume: 533 start-page: 76 year: 2015 end-page: 81 ident: bb0515 article-title: Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts publication-title: Sci. Total Environ. – volume: 339 start-page: 22 year: 2017 end-page: 32 ident: bb0210 article-title: Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism publication-title: J. Hazard. Mater. – volume: 542 start-page: 252 year: 2017 end-page: 261 ident: bb0505 article-title: Reduction of carbon tetrachloride by nanoscale palladized zero-valent iron@graphene composites: kinetics, activation energy, effects of reaction conditions and degradation mechanism publication-title: Appl. Catal. A Gen. – volume: 139 start-page: 966 year: 2013 end-page: 974 ident: bb0010 article-title: Fenton and photo-Fenton oxidation of petroleum aromatic hydrocarbons using nanoscale zero-valent iron publication-title: J. Environ. Eng. – volume: 52 start-page: 3625 year: 2018 end-page: 3633 ident: bb0335 article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI publication-title: Environ. Sci. Technol. – volume: 2 year: 2021 ident: bb0475 article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions publication-title: The Innovation – volume: 365 start-page: 751 year: 2019 end-page: 758 ident: bb0820 article-title: Novel synthesis of nanoscale zerovalent iron from coal fly ash and its application in oxidative degradation of methyl orange by Fenton reaction publication-title: J. Hazard. Mater. – volume: 403 year: 2021 ident: bb0625 article-title: Enhanced bisphenol S anaerobic degradation using an NZVI–HA-modified anode in bioelectrochemical systems publication-title: J. Hazard. Mater. – volume: 359 start-page: 713 year: 2019 end-page: 722 ident: bb0790 article-title: Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol publication-title: Chem. Eng. J. – volume: 188 start-page: 77 year: 2016 end-page: 86 ident: bb0220 article-title: Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation publication-title: Appl. Catal. B Environ. – volume: 264 start-page: 587 year: 2015 end-page: 594 ident: bb0380 article-title: Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system publication-title: Chem. Eng. J. – volume: 359 start-page: 13 year: 2019 end-page: 31 ident: bb0775 article-title: Removal of nitrophenols and their derivatives by chemical redox: a review publication-title: Chem. Eng. J. – volume: 25 start-page: 2051 year: 2018 end-page: 2064 ident: bb0520 article-title: A review on pesticide removal through different processes publication-title: Environ. Sci. Pollut. Res. – volume: 449 start-page: 157 year: 2013 end-page: 167 ident: bb0690 article-title: Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol publication-title: Sci. Total Environ. – volume: 12 start-page: 2909 year: 2020 ident: bb0500 article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles publication-title: Water – volume: 313 start-page: 912 year: 2017 end-page: 927 ident: bb0290 article-title: Applications of high gravity technologies for wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 361 start-page: 99 year: 2019 end-page: 108 ident: bb0755 article-title: Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron publication-title: Chem. Eng. J. – volume: 185 start-page: 1 year: 2018 end-page: 14 ident: bb0810 article-title: Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review publication-title: Microchim. Acta – volume: 54 start-page: 12171 year: 2019 end-page: 12188 ident: bb0875 article-title: Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review publication-title: J. Mater. Sci. – volume: 369 start-page: 621 year: 2019 end-page: 631 ident: bb0850 article-title: Removal of organic dye by biomass-based iron carbide composite with an improved stability and efficiency publication-title: J. Hazard. Mater. – volume: 42 start-page: 2600 year: 2008 end-page: 2605 ident: bb0255 article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium publication-title: Environ. Sci. Technol. – volume: 287 start-page: 618 year: 2016 end-page: 632 ident: bb0650 article-title: Review on nano zerovalent iron (nZVI): from synthesis to environmental applications publication-title: Chem. Eng. J. – volume: 18 start-page: 1138 year: 2011 end-page: 1142 ident: bb0590 article-title: Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent iron particles publication-title: Ultrason. Sonochem. – volume: 197 start-page: 401 year: 2018 end-page: 406 ident: bb0405 article-title: Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI publication-title: Sep. Purif. Technol. – volume: 124 start-page: 521 year: 2019 end-page: 532 ident: bb0655 article-title: Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater publication-title: Environ. Int. – volume: 53 start-page: 8105 year: 2019 end-page: 8114 ident: bb0760 article-title: Degradation of tetrabromobisphenol A by sulfidated nanoscale zerovalent iron in a dynamic two-step anoxic/oxic process publication-title: Environ. Sci. Technol. – volume: 11 start-page: 1618 year: 2009 end-page: 1626 ident: bb0370 article-title: Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling publication-title: Green Chem. – volume: 147 start-page: 137 year: 2017 end-page: 142 ident: bb0740 article-title: Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron publication-title: Appl. Clay Sci. – volume: 321 start-page: 20 year: 2017 end-page: 30 ident: bb0545 article-title: Critical evaluation of the use of different nanoscale zero-valent iron particles for the treatment of effluent water from a small biological wastewater treatment plant publication-title: Chem. Eng. J. – volume: 333 start-page: 220 year: 2015 end-page: 228 ident: bb0670 article-title: Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect publication-title: Appl. Surf. Sci. – volume: 229 year: 2018 ident: bb0785 article-title: Reduced graphene oxide/attapulgite-supported nanoscale zero-valent iron removal of Acid Red 18 from aqueous solution publication-title: Water Air Soil Pollut. – volume: 231 year: 2020 ident: bb0025 article-title: Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: a review publication-title: Sep. Purif. Technol. – volume: 211-212 start-page: 146 year: 2012 end-page: 153 ident: bb0110 article-title: Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu (II) publication-title: J. Hazard. Mater. – volume: 359 start-page: 1046 year: 2019 end-page: 1055 ident: bb0150 article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate publication-title: Chem. Eng. J. – volume: 104 start-page: 155 year: 2014 end-page: 161 ident: bb0855 article-title: Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron publication-title: Chemosphere – volume: 37 start-page: 217 year: 2019 end-page: 235 ident: bb0800 article-title: Polyaniline/attapulgite-supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution publication-title: Adsorpt. Sci. Technol. – volume: 1487 start-page: 22 year: 2017 end-page: 29 ident: bb0860 article-title: Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101(Cr) modified zero valent iron nanoparticles publication-title: J. Chromatogr. A – volume: 13 start-page: 110 year: 2015 end-page: 119 ident: bb0605 article-title: Applications of nanomaterials in environmental science and engineering: review publication-title: Pract. Period. Hazard. Toxic Radioact. Waste Manage – volume: 12 start-page: 131 year: 2021 end-page: 138 ident: bb0510 article-title: Optimization modeling of nFe publication-title: Int. J. Environ. Sci. Technol. – volume: 340 start-page: 399 year: 2017 end-page: 406 ident: bb0350 article-title: Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni publication-title: J. Hazard. Mater. – volume: 169 start-page: 413 year: 2017 end-page: 417 ident: bb0445 article-title: Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres publication-title: Chemosphere – volume: 243 year: 2020 ident: bb0730 article-title: Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide publication-title: Chemosphere – volume: 202 start-page: 65 year: 2018 end-page: 80 ident: bb0320 article-title: Optimization of azo printing dye removal with oak leaves-nZVI/H publication-title: J. Clean. Prod. – volume: 15 year: 2021 ident: bb0160 article-title: Treating wastewater under zero waste principle using wetland mesocosms publication-title: Front. Environ. Sci. Eng. – volume: 134 start-page: 168 year: 2016 end-page: 174 ident: bb0265 article-title: Facile preparation of amorphous iron nanoparticles filled alginate matrix composites with high stability publication-title: Compos. Sci. Technol. – volume: 42 start-page: 7424 year: 2008 end-page: 7430 ident: bb0315 article-title: pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water publication-title: Environ. Sci. Technol. – volume: 150 start-page: 420 year: 2015 end-page: 426 ident: bb0770 article-title: Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles publication-title: J. Environ. Manag. – volume: 284 start-page: 1242 year: 2016 end-page: 1250 ident: bb0395 article-title: Catalytic debromination of tetrabromobisphenol A by Ni/nZVI bimetallic particles publication-title: Chem. Eng. J. – volume: 390 start-page: 50 year: 2016 end-page: 59 ident: bb0705 article-title: Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole publication-title: Appl. Surf. Sci. – volume: 612 start-page: 1532 year: 2017 end-page: 1542 ident: bb0035 article-title: Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants publication-title: Sci. Total Environ. – volume: 1097 start-page: 3 year: 2015 end-page: 7 ident: bb0560 article-title: Production of iron nanopowders by the electric explosion of wire publication-title: Adv. Mater. Res. – volume: 14 year: 2012 ident: bb0805 article-title: Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles publication-title: J. Nanopart. Res. – volume: 260 year: 2020 ident: bb6000 article-title: Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol a degradation: preparation, performance, and mechanism of action publication-title: J. Environ. Manage. – volume: 23 start-page: 17880 year: 2016 end-page: 17900 ident: bb0390 article-title: Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation publication-title: Environ. Sci. Pollut. Res. – volume: 44 start-page: 5501 year: 2018 end-page: 5519 ident: bb0570 article-title: Activated persulfate by chelating agent Fe/complex for in situ degradation of phenol: intermediate identification and optimization study publication-title: Res. Chem. Intermed. – volume: 1 start-page: 64 year: 2003 end-page: 69 ident: bb0065 article-title: Mass production of nanoparticles by high gravity reactive precipitation technology with low cost publication-title: China Par. – volume: 9 start-page: 963 year: 2019 end-page: 973 ident: bb0525 article-title: Magnetic graphene oxide-nano zero valent iron (GO-nZVI) nanohybrids synthesized using biocompatible cross-linkers for methylene blue removal publication-title: RSC Adv. – volume: 6 start-page: 7995 year: 2018 end-page: 8002 ident: bb0050 article-title: Green synthesis of thin shell carbon-encapsulated iron nanoparticles via hydrothermal carbonization publication-title: ACS Sustain. Chem. Eng. – volume: 303 start-page: 145 year: 2016 end-page: 153 ident: bb0495 article-title: One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II publication-title: J. Hazard. Mater. – volume: 116 start-page: 180 year: 2018 end-page: 198 ident: bb0765 article-title: Physical and chemical treatments for removal of perchlorate from water-a review publication-title: Process Saf. Environ. – volume: 219 start-page: 677 year: 2016 end-page: 686 ident: bb0135 article-title: Biological denitrification process based on the Fe (0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition publication-title: Bioresour. Technol. – volume: 174 start-page: 446 year: 2015 end-page: 451 ident: bb0170 article-title: Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography publication-title: Food Chem. – volume: 407 start-page: 4986 year: 2009 end-page: 4993 ident: bb0310 article-title: Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils publication-title: Sci. Total Environ. – volume: 116 start-page: 25470 year: 2012 end-page: 25477 ident: bb0360 article-title: Dissociation of water at iron surfaces: generalized gradient functional and range-separated hybrid functional study publication-title: J. Phys. Chem. C – volume: 321 start-page: 158 year: 2014 end-page: 165 ident: bb0455 article-title: Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane publication-title: Appl. Surf. Sci. – volume: 78 start-page: 144 year: 2015 end-page: 153 ident: bb0575 article-title: Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron publication-title: Water Res. – volume: 23 start-page: 13298 year: 2016 end-page: 13307 ident: bb0120 article-title: Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ publication-title: Sci. Pollut. Res. Int – volume: 243 start-page: 218 year: 2018 end-page: 227 ident: bb0300 article-title: Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix publication-title: Environ. Pollut. – volume: 181-182 start-page: 113 year: 2012 end-page: 119 ident: bb0085 article-title: Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles publication-title: Chem. Eng. J. – volume: 558 start-page: 271 year: 2018 end-page: 279 ident: bb0485 article-title: SiO publication-title: Colloids Surf. A – volume: 307 start-page: 145 year: 2016 end-page: 153 ident: bb0305 article-title: Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT publication-title: J. Hazard. Mater. – volume: 316 start-page: 232 year: 2016 end-page: 241 ident: bb0880 article-title: Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study publication-title: J. Hazard. Mater. – volume: 150 start-page: 229 year: 2015 end-page: 242 ident: bb0665 article-title: Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms publication-title: Sep. Purif. Technol. – volume: 409 start-page: 2336 year: 2011 end-page: 2341 ident: bb0055 article-title: Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene publication-title: Sci. Total Environ. – volume: 222 start-page: 331 year: 2017 end-page: 337 ident: bb0715 article-title: Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron publication-title: Environ. Pollut. – volume: 177 start-page: 341 year: 2016 end-page: 355 ident: bb0580 article-title: Textile dye degradation using nano zero valent iron: a review publication-title: J. Environ. Manag. – volume: 39 start-page: 948 year: 2000 end-page: 954 ident: bb0070 article-title: Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation publication-title: Ind. Eng. Chem. Res. – volume: 50 start-page: 12992 year: 2016 end-page: 13001 ident: bb0215 article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment publication-title: Environ. Sci. Technol. – volume: 368 start-page: 639 year: 2019 end-page: 648 ident: bb0470 article-title: 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water publication-title: Chem. Eng. J. – volume: 174 start-page: 258 year: 2011 end-page: 265 ident: bb0285 article-title: Inhibiting 1,3-dinitrobenzene formation in Fenton oxidation of nitrobenzene through a controllable reductive pretreatment with zero-valent iron publication-title: Chem. Eng. J. – volume: 293 year: 2019 ident: bb0410 article-title: Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin publication-title: Bioresour. Technol. – volume: 269 start-page: 16 year: 2019 end-page: 23 ident: bb0415 article-title: Anchoring nZVI on metal-organic framework for removal of uranium(VI) from aqueous solution publication-title: J. Solid State Chem. – volume: 47 start-page: 6691 year: 2013 end-page: 6700 ident: bb0450 article-title: Enhanced chitosan beads-supported Fe publication-title: Water Res. – volume: 7 start-page: 6849 year: 2019 end-page: 6858 ident: bb0115 article-title: Solvent-free synthesis of 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutant publication-title: J. Mater. Chem. A – volume: 166 start-page: 80 year: 2017 end-page: 88 ident: bb0725 article-title: Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes publication-title: Chemosphere – volume: 267 start-page: 194 year: 2014 end-page: 205 ident: bb0190 article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review publication-title: J. Hazard. Mater. – volume: 85 start-page: 137 year: 2002 end-page: 146 ident: bb0280 article-title: The role of electrochemistry and electrochemical technology in environmental protection publication-title: Chem. Eng. J. – volume: 69 start-page: 173 year: 2018 ident: bb0745 article-title: Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline publication-title: J. Environ. Sci. China – volume: 79 start-page: 2279 year: 2019 end-page: 2288 ident: bb0660 article-title: Study on the treatment of simulated azo dye wastewater by a novel micro-electrolysis filler publication-title: Water Sci. Technol. – volume: 118 start-page: 13817 year: 2014 end-page: 13825 ident: bb0185 article-title: Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics publication-title: J. Phys. Chem. C – volume: 39 start-page: 3314 year: 2005 end-page: 3320 ident: bb0235 article-title: Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water publication-title: Environ. Sci. Technol. – volume: 285 start-page: 459 year: 2016 end-page: 466 ident: bb0195 article-title: Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles publication-title: Chem. Eng. J. – volume: 48 start-page: 3396 year: 2000 end-page: 3402 ident: bb0555 article-title: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay publication-title: J. Agric. Food Chem. – volume: 6 start-page: 639 year: 2004 end-page: 647 ident: bb0075 article-title: A new method to produce nanoscale iron for nitrate removal publication-title: J. Nanopart. Res. – volume: 287 start-page: 367 year: 2016 end-page: 380 ident: bb0325 article-title: Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition publication-title: Chem. Eng. J. – volume: 51 start-page: 13533 year: 2017 end-page: 13544 ident: bb0400 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. – volume: 355 start-page: 65 year: 2019 end-page: 75 ident: bb0645 article-title: Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study publication-title: Chem. Eng. J. – volume: 410 start-page: 67 year: 2013 end-page: 73 ident: bb0345 article-title: Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles publication-title: J. Colloid Interface Sci. – volume: 33 start-page: 139 year: 2008 end-page: 145 ident: bb0830 article-title: Investigation of the correlations between nitro group charges and some properties of nitro organic compounds publication-title: Propell. Explos. Pyrot. – volume: 247 year: 2020 ident: bb0180 article-title: Activation of Peroxymonosulfate by Fe publication-title: Sep. Purif. Technol. – volume: 371 start-page: 8 year: 2019 end-page: 17 ident: bb0100 article-title: Rapid adsorption and reductive degradation of naphthol green B from aqueous solution by polypyrrole/attapulgite composites supported nanoscale zero-valent iron publication-title: J. Hazard. Mater. – volume: 44 start-page: 4258 year: 2015 end-page: 4263 ident: bb0205 article-title: Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates publication-title: Environ. Sci. Technol. – volume: 190 start-page: 208 year: 2017 end-page: 222 ident: bb0585 article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review publication-title: J. Environ. Manag. – volume: 273 year: 2021 ident: bb0815 article-title: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater publication-title: Chemosphere – volume: 11 start-page: 1000 year: 2019 end-page: 1010 ident: bb0615 article-title: Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water publication-title: Nanoscale – volume: 182 start-page: 78 year: 2017 end-page: 86 ident: bb0865 article-title: Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples publication-title: Sep. Purif. Technol. – volume: 8 start-page: 767 year: 2013 end-page: 774 ident: bb0270 article-title: Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method publication-title: Asia Pac. J. Chem. Eng. – volume: 172 start-page: 158 year: 2017 end-page: 167 ident: bb0835 article-title: Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H publication-title: Sep. Purif. Technol. – volume: 184 start-page: 1492 year: 2011 end-page: 1498 ident: bb0045 article-title: Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles publication-title: J. Solid State Chem. – volume: 79 start-page: 672 year: 2010 ident: bb0635 article-title: Reductive degradation of tetrabromobisphenol a over iron-silver bimetallic nanoparticles under ultrasound radiation publication-title: Chemosphere – volume: 760 year: 2021 ident: bb0420 article-title: Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: a review publication-title: Sci. Total Environ. – volume: 15 year: 2021 ident: bb0620 article-title: Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: implications for biostability control of reclaimed water publication-title: Front. Environ. Sci. Eng. – volume: 90 start-page: 1470 year: 2013 end-page: 1477 ident: bb0355 article-title: Degradation of 3,3′-iminobis-propanenitrile in aqueous solution by Fe publication-title: Chemosphere – volume: 363 start-page: 601 year: 2011 end-page: 607 ident: bb0080 article-title: Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron publication-title: J. Colloid Interface Sci. – volume: 307 start-page: 364 year: 2017 end-page: 371 ident: bb0735 article-title: Formation of assimilable organic carbon during the oxidation of water containing Microcystis aeruginosa by ozone and an advanced oxidation process using ozone/hydrogen peroxide publication-title: Chem. Eng. J. – volume: 172-173 start-page: 73 year: 2015 end-page: 81 ident: bb0700 article-title: A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 27 year: 2016 end-page: 45 ident: bb0530 article-title: Iron oxide shell mediated environmental remediation properties of nano zero-valent iron publication-title: Environ. Sci. Nano. – volume: 168 start-page: 1467 year: 2017 end-page: 1476 ident: bb0540 article-title: Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils publication-title: Chemosphere – volume: 135 start-page: 68 year: 2019 end-page: 81 ident: bb0680 article-title: Effect of mesoporous silica molecular sieve coating on nZVI for 2,4-DCP degradation: morphology and mechanism during the reaction publication-title: Chem. Eng. Process. – volume: 9 start-page: 888 year: 2018 ident: bb0020 article-title: Flux, impact, and fate of halogenated xenobiotic compounds in the gut publication-title: Front. Physiol. – volume: 321 start-page: 564 year: 2017 end-page: 571 ident: bb0295 article-title: Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor publication-title: Chem. Eng. J. – volume: 50 start-page: 3820 year: 2016 end-page: 3828 ident: bb0240 article-title: Effect of structural transformation of nanoparticulate zero-valent iron on generation of reactive oxygen species publication-title: Environ. Sci. Technol. – volume: 52 start-page: 8627 year: 2018 end-page: 8637 ident: bb0245 article-title: Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron publication-title: Environ. Sci. Technol. – volume: 294 start-page: 290 year: 2016 end-page: 297 ident: bb0490 article-title: Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel publication-title: Chem. Eng. J. – volume: 68 start-page: 1425 year: 2013 end-page: 1439 ident: bb0595 article-title: Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review publication-title: Water Sci. Technol. – volume: 66 start-page: 47 year: 2013 end-page: 52 ident: bb0375 article-title: Photodegradation of nonylphenol by simulated sunlight publication-title: Mar. Pollut. Bull. – volume: 48 start-page: 92 year: 2016 end-page: 101 ident: bb0780 article-title: Enhanced dechlorination of 2,4-dichlorophenol by recoverable Ni/Fe-Fe publication-title: J. Environ. Sci. China – volume: 765 year: 2021 ident: bb6005 article-title: Application of coagulation/flocculation in oily wastewater treatment: a review publication-title: Sci. Total Environ. – volume: 378 year: 2019 ident: bb0600 article-title: Reductive debromination of tetrabromobisphenol A by tailored carbon nitride Fe/Cu nanocomposites under an oxic condition publication-title: Chem. Eng. J. – volume: 50 start-page: 9558 year: 2016 end-page: 9565 ident: bb0175 article-title: Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR) publication-title: Environ. Sci. Technol. – volume: 202 start-page: 130 year: 2018 end-page: 137 ident: bb0140 article-title: Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine publication-title: Sep. Purif. Technol. – volume: 393 start-page: 316 year: 2017 end-page: 324 ident: bb0610 article-title: Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles publication-title: Appl. Surf. Sci. – volume: 229 start-page: 1 year: 2018 end-page: 16 ident: bb0030 article-title: Removal of trinitrotoluene with nano zerovalent iron impregnated graphene oxide publication-title: Water Air Soil Pollut. – volume: 59 start-page: 150 year: 2016 end-page: 158 ident: bb0385 article-title: Reductive immobilization of Re (VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique publication-title: Sci. China Chem. – volume: 116 start-page: 219 year: 2004 end-page: 228 ident: bb0435 article-title: Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron publication-title: J. Hazard. Mater. – volume: 119 start-page: 1 year: 2017 end-page: 6 ident: bb0430 article-title: Decolorization of Reactive Red 2 in aqueous solutions using RPB-prepared nanoscale zero-valent iron publication-title: Chem. Eng. Process. – volume: 322 start-page: 571 year: 2017 end-page: 581 ident: bb0005 article-title: Nano-Fe publication-title: Chem. Eng. J. – volume: 219 start-page: 186 year: 2019 end-page: 207 ident: bb0015 article-title: A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges publication-title: Sep. Purif. Technol. – volume: 51 start-page: 751 year: 2021 end-page: 790 ident: bb0480 article-title: Recent developments of doped g-C publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 82 start-page: 1518 year: 2011 end-page: 1532 ident: bb0040 article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity publication-title: Chemosphere – volume: 67 start-page: 1 year: 2018 end-page: 3 ident: bb0260 article-title: The colorful chemistry of nanoscale zero-valent iron (nZVI) publication-title: J. Environ. Sci. – volume: 312 start-page: 336 year: 2017 end-page: 350 ident: bb0165 article-title: Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review publication-title: Chem. Eng. J. – volume: 347 start-page: 669 year: 2018 end-page: 681 ident: bb0250 article-title: Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: synergistic effect and mechanism publication-title: Chem. Eng. J. – volume: 42 start-page: 8528 year: 2008 end-page: 8533 ident: bb0365 article-title: Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen publication-title: Environ. Sci. Technol. – volume: 39 start-page: 5816 year: 2005 end-page: 5823 ident: bb0330 article-title: Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process publication-title: Environ. Sci. Technol. – volume: 317 start-page: 613 year: 2017 end-page: 622 ident: bb0710 article-title: Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: the effect of metal ions publication-title: Chem. Eng. J. – volume: 322 start-page: 179 year: 2016 end-page: 186 ident: bb0095 article-title: Enhancement in dehydriding performance of magnesium hydride by iron incorporation: a combined experimental and theoretical investigation publication-title: J. Power Sources – volume: 239 start-page: 698 year: 2018 end-page: 705 ident: bb0465 article-title: Simultaneous removal of Cu publication-title: Environ. Pollut. – volume: 31 start-page: 161 year: 2017 end-page: 165 ident: bb0640 article-title: Removal of selected organochlorine compounds by ozone-based processes publication-title: Chem. Biochem. Eng. Q. – volume: 233 year: 2020 ident: bb0685 article-title: Highly efficient Fenton-like catalyst Fe-g-C publication-title: Sep. Purif. Technol. – volume: 24 start-page: 1448 year: 2016 end-page: 1455 ident: bb0550 article-title: Removal of Reactive Red 198 from aqueous solution by combined method multi-walled carbon nanotubes and zero-valent iron: equilibrium, kinetics, and thermodynamic publication-title: Chin. J. Chem. Eng. – volume: 1185 start-page: 369 year: 2019 end-page: 378 ident: bb0340 article-title: Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates publication-title: J. Mol. Struct. – volume: 42 start-page: 2600 year: 2008 ident: 10.1016/j.scitotenv.2021.148546_bb0255 article-title: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium publication-title: Environ. Sci. Technol. doi: 10.1021/es702589u – volume: 449 start-page: 157 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0690 article-title: Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.01.008 – volume: 1097 start-page: 3 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0560 article-title: Production of iron nanopowders by the electric explosion of wire publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.1097.3 – volume: 260 year: 2020 ident: 10.1016/j.scitotenv.2021.148546_bb6000 article-title: Bentonite-supported nano zero-valent iron composite as a green catalyst for bisphenol a degradation: preparation, performance, and mechanism of action publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.110105 – volume: 369 start-page: 621 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0850 article-title: Removal of organic dye by biomass-based iron carbide composite with an improved stability and efficiency publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.02.077 – volume: 403 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0625 article-title: Enhanced bisphenol S anaerobic degradation using an NZVI–HA-modified anode in bioelectrochemical systems publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124053 – volume: 287 start-page: 367 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0325 article-title: Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.11.038 – volume: 82 start-page: 1518 year: 2011 ident: 10.1016/j.scitotenv.2021.148546_bb0040 article-title: A review of personal care products in the aquatic environment: environmental concentrations and toxicity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.11.018 – volume: 54 start-page: 12171 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0875 article-title: Applications of nanoscale zero-valent iron and its composites to the removal of antibiotics: a review publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03606-5 – volume: 53 start-page: 8105 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0760 article-title: Degradation of tetrabromobisphenol A by sulfidated nanoscale zerovalent iron in a dynamic two-step anoxic/oxic process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b06834 – volume: 1487 start-page: 22 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0860 article-title: Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101(Cr) modified zero valent iron nanoparticles publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2017.01.046 – volume: 53 start-page: 13344 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0795 article-title: Sulfur dose and sulfidation time affect reactivity and selectivity of post-sulfidized nanoscale zerovalent iron publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b04210 – volume: 6 start-page: 639 year: 2004 ident: 10.1016/j.scitotenv.2021.148546_bb0075 article-title: A new method to produce nanoscale iron for nitrate removal publication-title: J. Nanopart. Res. doi: 10.1007/s11051-004-6672-2 – volume: 239 start-page: 698 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0465 article-title: Simultaneous removal of Cu2+ and bisphenol A by a novel biochar-supported zero valent iron from aqueous solution: synthesis, reactivity and mechanism publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.04.084 – volume: 31 start-page: 161 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0640 article-title: Removal of selected organochlorine compounds by ozone-based processes publication-title: Chem. Biochem. Eng. Q. doi: 10.15255/CABEQ.2016.1025 – volume: 69 start-page: 173 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0745 article-title: Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline publication-title: J. Environ. Sci. China doi: 10.1016/j.jes.2017.10.006 – volume: 244 start-page: 1 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0155 article-title: Enhancing effects of activated carbon supported nano zero-valent iron on anaerobic digestion of phenol-containing organic wastewater publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.04.062 – volume: 14 year: 2012 ident: 10.1016/j.scitotenv.2021.148546_bb0805 article-title: Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles publication-title: J. Nanopart. Res. doi: 10.1007/s11051-012-1239-0 – volume: 219 start-page: 677 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0135 article-title: Biological denitrification process based on the Fe (0)-carbon micro-electrolysis for simultaneous ammonia and nitrate removal from low organic carbon water under a microaerobic condition publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.014 – volume: 340 start-page: 399 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0350 article-title: Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.07.030 – volume: 42 start-page: 8528 year: 2008 ident: 10.1016/j.scitotenv.2021.148546_bb0365 article-title: Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen publication-title: Environ. Sci. Technol. doi: 10.1021/es801947h – volume: 44 start-page: 5501 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0570 article-title: Activated persulfate by chelating agent Fe/complex for in situ degradation of phenol: intermediate identification and optimization study publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-018-3436-7 – volume: 542 start-page: 252 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0505 article-title: Reduction of carbon tetrachloride by nanoscale palladized zero-valent iron@graphene composites: kinetics, activation energy, effects of reaction conditions and degradation mechanism publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2017.05.028 – volume: 68 start-page: 1425 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0595 article-title: Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review publication-title: Water Sci. Technol. doi: 10.2166/wst.2013.358 – volume: 8 start-page: 767 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0270 article-title: Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method publication-title: Asia Pac. J. Chem. Eng. doi: 10.1002/apj.1720 – volume: 294 start-page: 290 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0490 article-title: Simultaneous removal of trichloroethylene and hexavalent chromium by green synthesized agarose-Fe nanoparticles hydrogel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.005 – volume: 184 start-page: 1492 year: 2011 ident: 10.1016/j.scitotenv.2021.148546_bb0045 article-title: Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2011.04.018 – volume: 202 start-page: 65 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0320 article-title: Optimization of azo printing dye removal with oak leaves-nZVI/H2O2 system using statistically designed experiment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.117 – volume: 12 start-page: 2909 issue: 10 year: 2020 ident: 10.1016/j.scitotenv.2021.148546_bb0500 article-title: Heterogeneous Fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid by nano-scale zero-valent iron assembled on magnetite nanoparticles publication-title: Water doi: 10.3390/w12102909 – volume: 150 start-page: 420 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0770 article-title: Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.12.022 – volume: 78 start-page: 144 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0575 article-title: Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron publication-title: Water Res. doi: 10.1016/j.watres.2015.04.009 – volume: 285 start-page: 459 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0195 article-title: Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.078 – volume: 169 start-page: 413 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0445 article-title: Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.11.092 – volume: 24 start-page: 1448 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0550 article-title: Removal of Reactive Red 198 from aqueous solution by combined method multi-walled carbon nanotubes and zero-valent iron: equilibrium, kinetics, and thermodynamic publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2016.04.027 – volume: 765 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb6005 article-title: Application of coagulation/flocculation in oily wastewater treatment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142795 – volume: 79 start-page: 2279 issue: 12 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0660 article-title: Study on the treatment of simulated azo dye wastewater by a novel micro-electrolysis filler publication-title: Water Sci. Technol. doi: 10.2166/wst.2019.234 – volume: 15 issue: 4 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0620 article-title: Significant increase of assimilable organic carbon (AOC) levels in MBR effluents followed by coagulation, ozonation and combined treatments: implications for biostability control of reclaimed water publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-020-1360-8 – volume: 50 start-page: 3820 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0240 article-title: Effect of structural transformation of nanoparticulate zero-valent iron on generation of reactive oxygen species publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04988 – volume: 201-202 start-page: 60 year: 2012 ident: 10.1016/j.scitotenv.2021.148546_bb0630 article-title: Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.11.009 – volume: 243 year: 2020 ident: 10.1016/j.scitotenv.2021.148546_bb0730 article-title: Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125260 – volume: 307 start-page: 364 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0735 article-title: Formation of assimilable organic carbon during the oxidation of water containing Microcystis aeruginosa by ozone and an advanced oxidation process using ozone/hydrogen peroxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.073 – volume: 409 start-page: 2336 year: 2011 ident: 10.1016/j.scitotenv.2021.148546_bb0055 article-title: Synthesis of monodispersed CMC-stabilized Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.02.045 – volume: 321 start-page: 564 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0295 article-title: Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.141 – volume: 181-182 start-page: 113 year: 2012 ident: 10.1016/j.scitotenv.2021.148546_bb0085 article-title: Removal mechanism of antibiotic metronidazole from aquatic solutions by using nanoscale zero-valent iron particles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.11.037 – volume: 322 start-page: 571 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0005 article-title: Nano-Fe0 immobilized onto functionalized biochar gaining excellent stability during sorption and reduction of chloramphenicol via transforming to reusable magnetic composite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.04.063 – volume: 359 start-page: 13 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0775 article-title: Removal of nitrophenols and their derivatives by chemical redox: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.111 – volume: 185 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0810 article-title: Advances in the use of carbonaceous materials for the electrochemical determination of persistent organic pollutants. A review publication-title: Microchim. Acta doi: 10.1007/s00604-017-2638-9 – volume: 7 start-page: 6849 issue: 12 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0115 article-title: Solvent-free synthesis of 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutant publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11661J – volume: 390 start-page: 50 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0705 article-title: Novel synthesis of carbon spheres supported nanoscale zero-valent iron for removal of metronidazole publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.08.027 – volume: 558 start-page: 271 issue: 2018 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0485 article-title: SiO2-coated zero-valent iron nanocomposites for aqueous nitrobenzene reduction in groundwater: performance, reduction mechanism and the effects of hydrogeochemical constituents publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2018.08.081 – volume: 182 start-page: 78 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0865 article-title: Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.01.071 – volume: 23 start-page: 13298 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0120 article-title: Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite. Environ publication-title: Sci. Pollut. Res. Int doi: 10.1007/s11356-016-6488-5 – volume: 284 start-page: 1242 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0395 article-title: Catalytic debromination of tetrabromobisphenol A by Ni/nZVI bimetallic particles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.079 – volume: 116 start-page: 219 year: 2004 ident: 10.1016/j.scitotenv.2021.148546_bb0435 article-title: Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.09.005 – volume: 433 start-page: 189 year: 2014 ident: 10.1016/j.scitotenv.2021.148546_bb0200 article-title: Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.07.022 – volume: 9 start-page: 888 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0020 article-title: Flux, impact, and fate of halogenated xenobiotic compounds in the gut publication-title: Front. Physiol. doi: 10.3389/fphys.2018.00888 – volume: 4 start-page: 27 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0530 article-title: Iron oxide shell mediated environmental remediation properties of nano zero-valent iron publication-title: Environ. Sci. Nano. doi: 10.1039/C6EN00398B – volume: 23 start-page: 17880 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0390 article-title: Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6626-0 – volume: 79 start-page: 672 year: 2010 ident: 10.1016/j.scitotenv.2021.148546_bb0635 article-title: Reductive degradation of tetrabromobisphenol a over iron-silver bimetallic nanoparticles under ultrasound radiation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.02.011 – volume: 37 start-page: 217 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0800 article-title: Polyaniline/attapulgite-supported nanoscale zero-valent iron for the rival removal of azo dyes in aqueous solution publication-title: Adsorpt. Sci. Technol. doi: 10.1177/0263617418822917 – volume: 23 start-page: 6253 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0225 article-title: Nanoscale zerovalent iron-mediated degradation of DDT in soil publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5850-3 – volume: 51 start-page: 11269 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0060 article-title: Removal of antibiotic florfenicol by sulfide-modified nanoscale zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02480 – volume: 229 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0030 article-title: Removal of trinitrotoluene with nano zerovalent iron impregnated graphene oxide publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-017-3664-2 – volume: 116 start-page: 25470 year: 2012 ident: 10.1016/j.scitotenv.2021.148546_bb0360 article-title: Dissociation of water at iron surfaces: generalized gradient functional and range-separated hybrid functional study publication-title: J. Phys. Chem. C doi: 10.1021/jp3097814 – volume: 166 start-page: 80 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0725 article-title: Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.056 – volume: 293 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0410 article-title: Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122068 – volume: 190 start-page: 208 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0585 article-title: Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.12.068 – volume: 287 start-page: 618 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0650 article-title: Review on nano zerovalent iron (nZVI): from synthesis to environmental applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.11.046 – volume: 347 start-page: 669 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0250 article-title: Zeolite supported Fe/Ni bimetallic nanoparticles for simultaneous removal of nitrate and phosphate: synergistic effect and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.088 – volume: 533 start-page: 76 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0515 article-title: Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.06.091 – volume: 33 start-page: 139 year: 2008 ident: 10.1016/j.scitotenv.2021.148546_bb0830 article-title: Investigation of the correlations between nitro group charges and some properties of nitro organic compounds publication-title: Propell. Explos. Pyrot. doi: 10.1002/prep.200700205 – volume: 371 start-page: 8 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0100 article-title: Rapid adsorption and reductive degradation of naphthol green B from aqueous solution by polypyrrole/attapulgite composites supported nanoscale zero-valent iron publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.02.096 – volume: 172-173 start-page: 73 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0700 article-title: A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.02.016 – volume: 378 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0600 article-title: Reductive debromination of tetrabromobisphenol A by tailored carbon nitride Fe/Cu nanocomposites under an oxic condition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122059 – volume: 66 start-page: 47 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0375 article-title: Photodegradation of nonylphenol by simulated sunlight publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2012.11.014 – volume: 311 year: 2020 ident: 10.1016/j.scitotenv.2021.148546_bb0130 article-title: Insights into endocrine-disrupting Bisphenol-A adsorption from pharmaceutical effluent by chitosan immobilized nanoscale zerovalent iron nanoparticles publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113317 – volume: 233 year: 2020 ident: 10.1016/j.scitotenv.2021.148546_bb0685 article-title: Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116023 – volume: 8 start-page: 22161 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0840 article-title: Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene publication-title: RSC Adv. doi: 10.1039/C8RA04314K – volume: 273 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0815 article-title: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128576 – volume: 278 start-page: 592 year: 2014 ident: 10.1016/j.scitotenv.2021.148546_bb0425 article-title: Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron: mechanism and kinetics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.06.030 – volume: 368 start-page: 639 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0470 article-title: 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.007 – volume: 262 start-page: 19 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0750 article-title: Immobilization of nanoscale zero-valent iron particles (nZVI) with synthesized activated carbon for the adsorption and degradation of chloramphenicol (CAP) publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.04.032 – volume: 172 start-page: 158 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0835 article-title: Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.08.008 – volume: 59 start-page: 150 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0385 article-title: Reductive immobilization of Re (VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique publication-title: Sci. China Chem. doi: 10.1007/s11426-015-5452-4 – volume: 52 start-page: 8627 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0245 article-title: Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01735 – volume: 247 year: 2020 ident: 10.1016/j.scitotenv.2021.148546_bb0180 article-title: Activation of Peroxymonosulfate by Fe0@Fe3O4 core-shell nanowires for sulfate radical generation: electron transfer and transformation products publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116942 – volume: 15 issue: 4 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0160 article-title: Treating wastewater under zero waste principle using wetland mesocosms publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-020-1351-9 – volume: 48 start-page: 3396 year: 2000 ident: 10.1016/j.scitotenv.2021.148546_bb0555 article-title: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay publication-title: J. Agric. Food Chem. doi: 10.1021/jf9913458 – volume: 363 start-page: 601 year: 2011 ident: 10.1016/j.scitotenv.2021.148546_bb0080 article-title: Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.07.057 – volume: 334 start-page: 508 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0460 article-title: Insight into the kinetics and mechanism of removal of aqueous chlorinated nitroaromatic antibiotic chloramphenicol by nanoscale zero-valent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.060 – volume: 12 start-page: 131 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0510 article-title: Optimization modeling of nFe0/Cu-PRB design for Cr (VI) removal from groundwater publication-title: Int. J. Environ. Sci. Technol. – volume: 21 start-page: 226 year: 2014 ident: 10.1016/j.scitotenv.2021.148546_bb0275 article-title: A novel ultrasound assisted method in synthesis of NZVI particles publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2013.04.015 – volume: 42 start-page: 7424 year: 2008 ident: 10.1016/j.scitotenv.2021.148546_bb0315 article-title: pH dependence of Fenton reagent generation and As (III) oxidation and removal by corrosion of zero valent iron in aerated water publication-title: Environ. Sci. Technol. doi: 10.1021/es800649p – volume: 359 start-page: 1046 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0150 article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.080 – volume: 264 start-page: 587 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0380 article-title: Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.128 – volume: 361 start-page: 99 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0755 article-title: Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.024 – volume: 50 start-page: 9558 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0175 article-title: Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02170 – volume: 322 start-page: 179 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0095 article-title: Enhancement in dehydriding performance of magnesium hydride by iron incorporation: a combined experimental and theoretical investigation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.031 – volume: 317 start-page: 613 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0710 article-title: Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: the effect of metal ions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.070 – volume: 262 start-page: 59 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0440 article-title: Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.09.038 – volume: 316 start-page: 232 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0880 article-title: Efficient transformation of DDTs with persulfate activation by zero-valent iron nanoparticles: a mechanistic study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.05.040 – volume: 174 start-page: 258 year: 2011 ident: 10.1016/j.scitotenv.2021.148546_bb0285 article-title: Inhibiting 1,3-dinitrobenzene formation in Fenton oxidation of nitrobenzene through a controllable reductive pretreatment with zero-valent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.09.014 – volume: 333 start-page: 220 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0670 article-title: Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.02.025 – volume: 39 start-page: 3314 year: 2005 ident: 10.1016/j.scitotenv.2021.148546_bb0235 article-title: Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water publication-title: Environ. Sci. Technol. doi: 10.1021/es048743y – volume: 13 start-page: 110 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0605 article-title: Applications of nanomaterials in environmental science and engineering: review publication-title: Pract. Period. Hazard. Toxic Radioact. Waste Manage doi: 10.1061/(ASCE)1090-025X(2009)13:2(110) – volume: 9 start-page: 963 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0525 article-title: Magnetic graphene oxide-nano zero valent iron (GO-nZVI) nanohybrids synthesized using biocompatible cross-linkers for methylene blue removal publication-title: RSC Adv. doi: 10.1039/C8RA08386J – volume: 39 start-page: 1221 year: 2005 ident: 10.1016/j.scitotenv.2021.148546_bb0535 article-title: Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics publication-title: Environ. Sci. Technol. doi: 10.1021/es049190u – volume: 50 start-page: 12992 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0215 article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03997 – volume: 147 start-page: 137 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0740 article-title: Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2017.07.023 – volume: 134 start-page: 168 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0265 article-title: Facile preparation of amorphous iron nanoparticles filled alginate matrix composites with high stability publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.08.018 – volume: 324 start-page: 605 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0825 article-title: Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.11.032 – volume: 321 start-page: 158 year: 2014 ident: 10.1016/j.scitotenv.2021.148546_bb0455 article-title: Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.09.202 – volume: 202 start-page: 130 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0140 article-title: Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.03.048 – volume: 104 start-page: 155 year: 2014 ident: 10.1016/j.scitotenv.2021.148546_bb0855 article-title: Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.085 – volume: 150 start-page: 229 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0665 article-title: Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.07.009 – volume: 177 start-page: 341 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0580 article-title: Textile dye degradation using nano zero valent iron: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.04.034 – volume: 393 start-page: 316 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0610 article-title: Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.020 – volume: 355 start-page: 65 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0645 article-title: Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.126 – volume: 316 start-page: 186 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0145 article-title: Simultaneous removal of Cr (VI) and phenol by persulfate activated with bentonite-supported nanoscale zero-valent iron: reactivity and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.05.041 – volume: 44 start-page: 4258 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0205 article-title: Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates publication-title: Environ. Sci. Technol. doi: 10.1021/es903801r – volume: 407 start-page: 4986 year: 2009 ident: 10.1016/j.scitotenv.2021.148546_bb0310 article-title: Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.05.033 – volume: 51 start-page: 13533 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0400 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02695 – volume: 760 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0420 article-title: Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143413 – volume: 135 start-page: 68 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0680 article-title: Effect of mesoporous silica molecular sieve coating on nZVI for 2,4-DCP degradation: morphology and mechanism during the reaction publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2018.11.011 – volume: 174 start-page: 446 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0170 article-title: Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.11.050 – volume: 211-212 start-page: 146 year: 2012 ident: 10.1016/j.scitotenv.2021.148546_bb0110 article-title: Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu (II) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.10.056 – volume: 219 start-page: 186 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0015 article-title: A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: current status and potential challenges publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.03.028 – volume: 359 start-page: 713 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0790 article-title: Distributing sulfidized nanoscale zerovalent iron onto phosphorus-functionalized biochar for enhanced removal of antibiotic florfenicol publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.180 – volume: 267 start-page: 194 year: 2014 ident: 10.1016/j.scitotenv.2021.148546_bb0190 article-title: The use of zero-valent iron for groundwater remediation and wastewater treatment: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.12.062 – volume: 124 start-page: 521 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0655 article-title: Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and hetero-chloride from hydraulic fracturing wastewater publication-title: Environ. Int. doi: 10.1016/j.envint.2019.01.047 – volume: 531 start-page: 177 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0125 article-title: An efficient catalytic degradation of trichloroethene in a percarbonate system catalyzed by ultra-fine heterogeneous zeolite supported zero valent iron-nickel bimetallic composite publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2016.11.001 – volume: 197 start-page: 401 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0405 article-title: Enhanced adsorption and Fenton oxidation of 2,4-dichlorophenol in aqueous solution using organobentonite supported nZVI publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.01.032 – volume: 85 start-page: 137 year: 2002 ident: 10.1016/j.scitotenv.2021.148546_bb0280 article-title: The role of electrochemistry and electrochemical technology in environmental protection publication-title: Chem. Eng. J. doi: 10.1016/S1385-8947(01)00218-2 – volume: 119 start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0430 article-title: Decolorization of Reactive Red 2 in aqueous solutions using RPB-prepared nanoscale zero-valent iron publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2017.05.001 – volume: 6 start-page: 7995 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0050 article-title: Green synthesis of thin shell carbon-encapsulated iron nanoparticles via hydrothermal carbonization publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b01416 – volume: 760 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0230 article-title: Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143333 – volume: 312 start-page: 336 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0165 article-title: Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.154 – volume: 1185 start-page: 369 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0340 article-title: Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2019.03.003 – volume: 47 start-page: 6691 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0450 article-title: Enhanced chitosan beads-supported Fe0-nanoparticles for removal of heavy metals from electroplating wastewater in permeable reactive barriers publication-title: Water Res. doi: 10.1016/j.watres.2013.09.006 – volume: 39 start-page: 948 year: 2000 ident: 10.1016/j.scitotenv.2021.148546_bb0070 article-title: Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie990549a – volume: 139 start-page: 966 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0010 article-title: Fenton and photo-Fenton oxidation of petroleum aromatic hydrocarbons using nanoscale zero-valent iron publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0000705 – volume: 612 start-page: 1532 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0035 article-title: Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.006 – volume: 168 start-page: 1467 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0540 article-title: Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.11.100 – volume: 201 start-page: 764 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0565 article-title: XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.057 – volume: 146 start-page: 32 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0090 article-title: Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.095 – volume: 100 start-page: 245 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0845 article-title: An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation publication-title: Water Res. doi: 10.1016/j.watres.2016.05.019 – volume: 337 start-page: 372 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0720 article-title: Synthesis of magnetically recoverable Fe0/graphene-TiO2 nanowires composite for both reduction and photocatalytic oxidation of metronidazole publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.090 – volume: 67 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0260 article-title: The colorful chemistry of nanoscale zero-valent iron (nZVI) publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.04.025 – volume: 52 start-page: 3625 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0335 article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05847 – volume: 116 start-page: 180 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0765 article-title: Physical and chemical treatments for removal of perchlorate from water-a review publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2018.02.009 – volume: 1 start-page: 64 year: 2003 ident: 10.1016/j.scitotenv.2021.148546_bb0065 article-title: Mass production of nanoparticles by high gravity reactive precipitation technology with low cost publication-title: China Par. doi: 10.1016/S1672-2515(07)60110-9 – volume: 307 start-page: 145 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0305 article-title: Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.12.063 – volume: 243 start-page: 218 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0300 article-title: Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.08.061 – volume: 118 start-page: 13817 year: 2014 ident: 10.1016/j.scitotenv.2021.148546_bb0185 article-title: Anaerobic reaction of nanoscale zerovalent iron with water: mechanism and kinetics publication-title: J. Phys. Chem. C doi: 10.1021/jp501846f – volume: 339 start-page: 22 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0210 article-title: Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: synthesis, characteristic, adsorption performance and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.06.006 – volume: 39 start-page: 5816 year: 2005 ident: 10.1016/j.scitotenv.2021.148546_bb0330 article-title: Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process publication-title: Environ. Sci. Technol. doi: 10.1021/es050006u – volume: 25 start-page: 2051 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0520 article-title: A review on pesticide removal through different processes publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0796-2 – volume: 2 issue: 1 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0475 article-title: Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions publication-title: The Innovation doi: 10.1016/j.xinn.2021.100076 – volume: 51 start-page: 751 year: 2021 ident: 10.1016/j.scitotenv.2021.148546_bb0480 article-title: Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2020.1734433 – volume: 303 start-page: 145 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0495 article-title: One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.10.034 – volume: 18 start-page: 1138 year: 2011 ident: 10.1016/j.scitotenv.2021.148546_bb0590 article-title: Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent iron particles publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2011.03.015 – volume: 231 year: 2020 ident: 10.1016/j.scitotenv.2021.148546_bb0025 article-title: Selected advanced water treatment technologies for perfluoroalkyl and polyfluoroalkyl substances: a review publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115929 – volume: 223 start-page: 196 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0870 article-title: Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: effect, mechanism and ecotoxicity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.02.074 – volume: 90 start-page: 1470 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0355 article-title: Degradation of 3,3′-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.09.040 – volume: 345 start-page: 57 year: 2015 ident: 10.1016/j.scitotenv.2021.148546_bb0695 article-title: Synthesis, characterization, and reactivity of cellulose modified nano zero-valent iron for dye discoloration publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.03.131 – volume: 365 start-page: 751 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0820 article-title: Novel synthesis of nanoscale zerovalent iron from coal fly ash and its application in oxidative degradation of methyl orange by Fenton reaction publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.11.073 – volume: 269 start-page: 16 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0415 article-title: Anchoring nZVI on metal-organic framework for removal of uranium(VI) from aqueous solution publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2018.09.013 – volume: 11 start-page: 1000 year: 2019 ident: 10.1016/j.scitotenv.2021.148546_bb0615 article-title: Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water publication-title: Nanoscale doi: 10.1039/C8NR08302A – volume: 11 start-page: 1618 year: 2009 ident: 10.1016/j.scitotenv.2021.148546_bb0370 article-title: Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling publication-title: Green Chem. doi: 10.1039/b913056j – volume: 188 start-page: 77 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0220 article-title: Trichloroethene hydrodechlorination by Pd-Fe bimetallic nanoparticles: solute-induced catalyst deactivation analyzed by carbon isotope fractionation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.01.047 – volume: 313 start-page: 912 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0290 article-title: Applications of high gravity technologies for wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.125 – volume: 222 start-page: 331 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0715 article-title: Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.12.030 – volume: 321 start-page: 20 year: 2017 ident: 10.1016/j.scitotenv.2021.148546_bb0545 article-title: Critical evaluation of the use of different nanoscale zero-valent iron particles for the treatment of effluent water from a small biological wastewater treatment plant publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.104 – volume: 229 issue: 12 year: 2018 ident: 10.1016/j.scitotenv.2021.148546_bb0785 article-title: Reduced graphene oxide/attapulgite-supported nanoscale zero-valent iron removal of Acid Red 18 from aqueous solution publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-018-4033-5 – volume: 48 start-page: 92 year: 2016 ident: 10.1016/j.scitotenv.2021.148546_bb0780 article-title: Enhanced dechlorination of 2,4-dichlorophenol by recoverable Ni/Fe-Fe3O4 nanocomposites publication-title: J. Environ. Sci. China doi: 10.1016/j.jes.2015.10.033 – volume: 410 start-page: 67 year: 2013 ident: 10.1016/j.scitotenv.2021.148546_bb0345 article-title: Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.08.020 |
SSID | ssj0000781 |
Score | 2.6994889 |
SecondaryResourceType | review_article |
Snippet | During the latest several decades, the continuous development of the economy and industry has brought more and more serious organic pollutants to the natural... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 148546 |
SubjectTerms | adsorption carbon dioxide dehalogenation environment human health hydrogenation industry iron Mechanism NZVI NZVI-based composites Organic pollutants oxidation Removal wastewater |
Title | Removal of organic compounds by nanoscale zero-valent iron and its composites |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.148546 https://www.proquest.com/docview/2568249721 https://www.proquest.com/docview/2661002800 |
Volume | 792 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NS-wwcBBFEB6iq_J8fhDBa7W7TdquNxFlddGDKHoLTTKFFV8rtgp68Lc707SKInrwVFomIWS-O18A2_2c1FSGxGnc5E6GLg5SJH5UEQ6dzIdW2SbL9yweXcqTa3U9BQddLQynVbay38v0Rlq3X3bb29y9m0y4xlemw5i7z5AUJkeFK9hlwlS-8_Ke5sHNbHyUmRiboD_keNG-dUm26SM5ioM-SY1UsSX8tYb6JKsbBXS0APOt5Sj2_eEWYQqLHsz6WZJPPVg5fC9ZI7CWZ6se_PF_5oQvOFqC03P8XxJ9iTIXfqaTFZxYzvOVKmGeRJEVZUWoQ_GM92VAoLSl4L1FVjgxqSsPz3Hnahkujw4vDkZBO1QhsHQ7dUAGjjEYOxMZzFSeYeq4oY7MotRK5azKOLAocRijS1wSYRIaMiEjY5RJQiujFZguygL_grBK5WROoVSmz36hYe8DB9LFBByZ_irE3UVq23Yc58EXt7pLLbvRbxjQjAHtMbAK4dvCO9904-clex2m9Af60aQafl681eFWE3dxyCQrsHyoNBmEKTmoRGPfwJCJ00Sow3-_OcQazPEb68VBuA7T9f0DbpDBU5vNhqI3YWb_eDw64-f4_Gr8Cr2AA2Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1NT9VAcIIYIwkh-JTwobgmeqz0tbttn4kHIpCHfBwMJNzW7u40eURbQgvkefBP8Qed6bYQiJGD4drObrYzs_PR-QJ4PyxITeVIN42b3MnQJUGGdB9VjCMni5FVts3yPUzGx_LriTqZgeu-FobTKjvZ72V6K627JxsdNjfOJhOu8ZXZKOHuMySFyVHpMiv3cHpFflv9eXeLiPwhina2j76Mg260QGClTJuA1LwxmDgTG8xVkWPmuK2MzOPMSuWsyjm8JnGUoEtdGmMaGjKkYmOUSUMrY9r3CTyVJC54bMLH37d5Jdw9x4e1SZLQ8e4kldGHNBUZw5fkmUZDElOZYtP77yrxnnJoNd7OIix0pqrY9Nh4ATNYDuCZH145HcDS9m2NHIF1QqIewLz_FSh8hdNLOPiGPytiaFEVwg-RsoIz2XmgUy3MVJR5WdXEKyh-4XkVEChtKXhvkZdOTJraw3Ogu34Fx4-C6iWYLasSl0FYpQqy31AqM2RH1LC7g5F0CQHHZrgCSY9IbbsW5zxp44fuc9lO9Q0FNFNAewqsQHiz8Mx3-Xh4yaeeUvoOw2rSRQ8vftfTVtN15hhNXmJ1UWuyQDPyiImp_wFDNlUbEg9X_-cQb-H5-OhgX-_vHu6twRy_YaUcha9htjm_wDdkbTVmveVuAd8f-zr9Ab63PkM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removal+of+organic+compounds+by+nanoscale+zero-valent+iron+and+its+composites&rft.jtitle=The+Science+of+the+total+environment&rft.au=Li%2C+Qian&rft.au=Chen%2C+Zhongshan&rft.au=Wang%2C+Huihui&rft.au=Yang%2C+Hui&rft.date=2021-10-20&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=792&rft.spage=148546&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.148546&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |