Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription
Packaging the long and fragile genomes of eukaryotic species into nucleosomes is all well and good, but how do cells gain access to the DNA again after it has been bundled away? The solution, in every species from yeast to man, is to post-translationally modify histones, altering their chemical prop...
Saved in:
Published in | Essays in biochemistry |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
23.04.2019
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Packaging the long and fragile genomes of eukaryotic species into nucleosomes is all well and good, but how do cells gain access to the DNA again after it has been bundled away? The solution, in every species from yeast to man, is to post-translationally modify histones, altering their chemical properties to either relax the chromatin, label it for remodelling or make it more compact still. Histones are subject to a myriad of modifications: acetylation, methylation, phosphorylation, ubiquitination etc. This review focuses on histone acylations, a diverse group of modifications which occur on the ε-amino group of Lysine residues and includes the well-characterised Lysine acetylation. Over the last 50 years, histone acetylation has been extensively characterised, with the discovery of histone acetyltransferases (HATs) and histone deacetylases (HDACs), and global mapping experiments, revealing an association of hyperacetylated histones with accessible, transcriptionally active chromatin. More recently, there has been an explosion in the number of unique short chain 'acylations' identified by MS, including: propionylation, butyrylation, crotonylation, succinylation, malonylation and 2-hydroxyisobutyrylation. These novel modifications add a range of chemical environments to histones, and similar to acetylation, appear to accumulate at transcriptional start sites and correlate with gene activity. |
---|---|
AbstractList | Packaging the long and fragile genomes of eukaryotic species into nucleosomes is all well and good, but how do cells gain access to the DNA again after it has been bundled away? The solution, in every species from yeast to man, is to post-translationally modify histones, altering their chemical properties to either relax the chromatin, label it for remodelling or make it more compact still. Histones are subject to a myriad of modifications: acetylation, methylation, phosphorylation, ubiquitination etc. This review focuses on histone acylations, a diverse group of modifications which occur on the ε-amino group of Lysine residues and includes the well-characterised Lysine acetylation. Over the last 50 years, histone acetylation has been extensively characterised, with the discovery of histone acetyltransferases (HATs) and histone deacetylases (HDACs), and global mapping experiments, revealing an association of hyperacetylated histones with accessible, transcriptionally active chromatin. More recently, there has been an explosion in the number of unique short chain 'acylations' identified by MS, including: propionylation, butyrylation, crotonylation, succinylation, malonylation and 2-hydroxyisobutyrylation. These novel modifications add a range of chemical environments to histones, and similar to acetylation, appear to accumulate at transcriptional start sites and correlate with gene activity. |
Author | Cowley, Shaun M English, David M Barnes, Claire E |
Author_xml | – sequence: 1 givenname: Claire E surname: Barnes fullname: Barnes, Claire E organization: Department of Molecular and Cell Biology, University of Leicester, Leicester, UK – sequence: 2 givenname: David M surname: English fullname: English, David M organization: Department of Molecular and Cell Biology, University of Leicester, Leicester, UK – sequence: 3 givenname: Shaun M orcidid: 0000-0002-2510-1305 surname: Cowley fullname: Cowley, Shaun M email: smc57@le.ac.uk organization: Department of Molecular and Cell Biology, University of Leicester, Leicester, UK. smc57@le.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30940741$$D View this record in MEDLINE/PubMed |
BookMark | eNo1T8lOwzAUtBCILnDijnziFngvduKUW4nKIlXiAufKy0sb1DiR7Ur07wminGY0mkUzY-e-98TYDcI9gswfVk91DlgBlHjGpqikzFAU1YTNYvwCECWo4pJNBCwkKIlTRktL6bjXqe09v-N1_8i15_Q9aO9av-WBBgqpbwPxvuG7NqZxkGt7isTRsD2MnCK3u9B3o-rHBsdT0D7a0A6_tit20eh9pOsTztnn8-qjfs3W7y9v9XKdWSlVygpnlDOV1kIhktAoF6BVqVTV5CQWCI3QRjiSJUiDiM6gLZrKlAINVaXN5-z2r3c4mI7cZghtp8Nx8_83_wHuelg8 |
CitedBy_id | crossref_primary_10_1152_ajprenal_00091_2023 crossref_primary_10_2174_0115748855275769231114094037 crossref_primary_10_17343_sdutfd_1273169 crossref_primary_10_3390_genes13040705 crossref_primary_10_1021_acs_jmedchem_0c00830 crossref_primary_10_1038_s41467_023_37734_z crossref_primary_10_3390_plants10091884 crossref_primary_10_3390_biomedicines10040748 crossref_primary_10_1371_journal_pgen_1008770 crossref_primary_10_1111_acel_14408 crossref_primary_10_3390_cancers13184700 crossref_primary_10_3390_ijms252010982 crossref_primary_10_1097_YPG_0000000000000297 crossref_primary_10_3390_nu15030767 crossref_primary_10_1016_j_bbalip_2021_159019 crossref_primary_10_1016_j_tim_2024_04_004 crossref_primary_10_1016_j_lfs_2021_120191 crossref_primary_10_1038_s41388_021_02079_8 crossref_primary_10_1007_s12011_022_03134_5 crossref_primary_10_1016_j_coviro_2019_07_011 crossref_primary_10_1016_j_jtbi_2021_110946 crossref_primary_10_1093_nargab_lqab107 crossref_primary_10_1016_j_isci_2024_111176 crossref_primary_10_1021_acs_orglett_2c03931 crossref_primary_10_1016_j_ijpharm_2025_125332 crossref_primary_10_3390_ijms20215449 crossref_primary_10_1016_j_bbamcr_2021_118965 crossref_primary_10_3389_fphys_2020_580171 crossref_primary_10_1155_2020_8836258 crossref_primary_10_1016_j_foodres_2019_108646 crossref_primary_10_1038_s41589_020_0517_x crossref_primary_10_3389_fmicb_2020_632367 crossref_primary_10_1038_s41420_024_02157_2 crossref_primary_10_1093_nar_gkae1223 crossref_primary_10_1186_s13059_020_02216_8 crossref_primary_10_1002_advs_202309088 crossref_primary_10_1007_s40495_023_00338_8 crossref_primary_10_1093_nar_gkz1229 crossref_primary_10_1101_gad_349066_121 crossref_primary_10_3389_fonc_2022_1053618 crossref_primary_10_1016_j_coisb_2020_09_002 crossref_primary_10_1146_annurev_immunol_092719_082622 crossref_primary_10_1016_j_hrthm_2021_01_007 crossref_primary_10_15252_embr_202052023 crossref_primary_10_2174_1389557522666220330144151 crossref_primary_10_1021_acs_jmedchem_1c00787 crossref_primary_10_3390_antibiotics12020186 crossref_primary_10_3390_ijms22094594 crossref_primary_10_3390_toxins14020096 crossref_primary_10_1016_j_semcancer_2020_11_019 crossref_primary_10_1038_s41580_021_00441_y crossref_primary_10_1016_j_cellsig_2025_111703 crossref_primary_10_2174_1566524022666220511123104 crossref_primary_10_1016_j_bcp_2021_114546 crossref_primary_10_1016_j_bbagrm_2020_194567 crossref_primary_10_1101_gr_278050_123 crossref_primary_10_1111_tpj_17165 crossref_primary_10_3390_cells8050485 crossref_primary_10_1093_nar_gkab722 crossref_primary_10_3389_fimmu_2022_874706 crossref_primary_10_1083_jcb_202006151 crossref_primary_10_3390_cells13211812 crossref_primary_10_3390_ijms22062828 crossref_primary_10_1007_s12038_021_00215_w crossref_primary_10_1093_stcltm_szac004 crossref_primary_10_1111_ahg_12528 crossref_primary_10_1111_jcmm_16676 crossref_primary_10_1002_cpz1_746 crossref_primary_10_1038_s42003_024_06874_3 crossref_primary_10_1038_s41392_024_02030_9 crossref_primary_10_1016_j_semcancer_2020_07_015 crossref_primary_10_1042_BCJ20240543 crossref_primary_10_1111_febs_15895 crossref_primary_10_1016_j_pharmthera_2023_108547 crossref_primary_10_3390_brainsci11081031 crossref_primary_10_3390_ijms222312853 crossref_primary_10_3390_cells11162501 crossref_primary_10_1016_j_immuni_2023_07_002 crossref_primary_10_1016_j_cmet_2024_11_005 crossref_primary_10_1002_mco2_70134 crossref_primary_10_1134_S0006297923040016 crossref_primary_10_1186_s43046_021_00088_y crossref_primary_10_3390_biom9120829 crossref_primary_10_1101_gad_348904_121 crossref_primary_10_1016_j_bone_2024_117043 crossref_primary_10_1016_j_bbrc_2019_09_109 crossref_primary_10_1248_bpb_b23_00456 crossref_primary_10_1267_ahc_21_00017 crossref_primary_10_15252_embr_202152774 crossref_primary_10_18632_aging_205109 crossref_primary_10_1021_acschembio_1c00863 crossref_primary_10_3389_fpls_2020_00125 crossref_primary_10_1073_pnas_2405905121 crossref_primary_10_1002_ctm2_1766 crossref_primary_10_1002_advs_202402710 crossref_primary_10_1021_acs_jproteome_4c00320 crossref_primary_10_3390_ijms22020846 crossref_primary_10_1111_liv_15600 crossref_primary_10_3390_cancers12040784 crossref_primary_10_1039_D1MO00236H crossref_primary_10_1016_j_ceb_2020_10_014 crossref_primary_10_3390_biomedicines10010170 crossref_primary_10_3390_ijms23158400 crossref_primary_10_1002_cbic_202000459 crossref_primary_10_15252_embj_2021108903 crossref_primary_10_1074_jbc_RA120_015164 crossref_primary_10_1128_mBio_00530_21 crossref_primary_10_3390_ijms26062605 crossref_primary_10_1042_EBC20190040 crossref_primary_10_1186_s12885_020_06937_8 crossref_primary_10_1186_s13148_021_01001_z crossref_primary_10_1016_j_molmet_2024_102032 crossref_primary_10_1016_j_apsb_2020_12_012 crossref_primary_10_1007_s00018_022_04427_7 crossref_primary_10_1038_s41588_021_00882_3 crossref_primary_10_1021_acs_jpcb_9b05206 crossref_primary_10_1016_j_tig_2022_04_010 crossref_primary_10_1111_cpr_13647 crossref_primary_10_3389_fcell_2021_624914 crossref_primary_10_1093_nar_gkaa1176 crossref_primary_10_3389_fcell_2021_739780 crossref_primary_10_3390_ijms22137046 crossref_primary_10_3389_fendo_2019_00878 crossref_primary_10_1073_pnas_2413127122 crossref_primary_10_1016_j_biopha_2022_113548 crossref_primary_10_1016_j_cell_2020_05_026 crossref_primary_10_1016_j_dnarep_2019_102768 crossref_primary_10_1093_femsml_uqab013 crossref_primary_10_1021_jacs_0c05605 crossref_primary_10_1007_s12035_023_03213_1 crossref_primary_10_1093_plphys_kiad614 crossref_primary_10_1089_ars_2022_0190 crossref_primary_10_1007_s10557_022_07422_z crossref_primary_10_1021_acs_jmedchem_2c00687 crossref_primary_10_3892_ije_2023_17 crossref_primary_10_1021_acs_biochem_2c00288 crossref_primary_10_1038_s41598_020_69510_0 crossref_primary_10_1136_jmg_2024_110045 crossref_primary_10_1016_j_bbrc_2025_151538 crossref_primary_10_1016_j_phrs_2021_105834 crossref_primary_10_1002_cbic_202300875 crossref_primary_10_1021_acschembio_1c01000 crossref_primary_10_1021_acschembio_1c00794 crossref_primary_10_3390_cancers14153743 crossref_primary_10_3390_ijms24065951 crossref_primary_10_26508_lsa_202201572 crossref_primary_10_1016_j_sbi_2021_06_012 crossref_primary_10_3389_fcimb_2023_1218583 crossref_primary_10_1186_s12977_023_00623_w crossref_primary_10_1002_cbic_202100327 crossref_primary_10_1080_21505594_2022_2123363 crossref_primary_10_3390_ijms231810976 |
ContentType | Journal Article |
Copyright | 2019 The Author(s). |
Copyright_xml | – notice: 2019 The Author(s). |
DBID | NPM |
DOI | 10.1042/EBC20180061 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1744-1358 |
ExternalDocumentID | 30940741 |
Genre | Journal Article Review |
GroupedDBID | --- --Z -~X 0R~ 4.4 5GY 5RE 85S AABGO AAHRG ABDPE ACGFS ACNCT AENEX AGAMA AHMUE ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBD EBS EJD EMOBN F5P H13 HZ~ L7B ML- MV1 NPM NTEUP O9- P2P RHI RPO SV3 XZL ZKB ZUP |
ID | FETCH-LOGICAL-c447t-5db7db8aa3711e3a1490a76778f2e3910f3ab3de4604b111db1c5f8b631be86c2 |
IngestDate | Thu Apr 03 07:11:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chromatin Acetylation Transcription Histone |
Language | English |
License | 2019 The Author(s). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c447t-5db7db8aa3711e3a1490a76778f2e3910f3ab3de4604b111db1c5f8b631be86c2 |
ORCID | 0000-0002-2510-1305 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6484784 |
PMID | 30940741 |
ParticipantIDs | pubmed_primary_30940741 |
PublicationCentury | 2000 |
PublicationDate | 20190423 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 04 year: 2019 text: 20190423 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Essays in biochemistry |
PublicationTitleAlternate | Essays Biochem |
PublicationYear | 2019 |
SSID | ssj0036075 |
Score | 2.5601697 |
SecondaryResourceType | review_article |
Snippet | Packaging the long and fragile genomes of eukaryotic species into nucleosomes is all well and good, but how do cells gain access to the DNA again after it has... |
SourceID | pubmed |
SourceType | Index Database |
Title | Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30940741 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LT9wwEIethaoVl6r0BX0gHyouVWgcO3GWG42oUFX1BBI3ZMdjUYkmq2w4LH8940eSBVqJ9hKtYm3W8rc7Hs_O_IaQT4rZPM-lThhTKhEWsmSeqjQpi7kpM5WXc-0TZH8WJ2fi-3l-Ppv9WMtauu71QX3zx7qS_6GK95Crq5L9B7LjQ_EGvka-eEXCeH0U46Ma-tXVhLBqfe2y1-2P5SodLKDrWzRs3i10QgKNU9BYDTlwXWhGD8vP9WXXOv81pCf3bhMbTMqd-P1yqVY-i1b_cu22Qr-4KSLaRfH_6kq5Tx0rHWLB8JhIP8VhKxfWCzlnl-q6iQMxFMH8vyqhWvgAgvmUQiSMBzH2B8YZ7QOu6PHXKnOqYWkQYV_DtPjtOXEn6SfFI0bvKWUPQxtkA88Mrgmqi9yEXZkX6BvF-kycx5e1WWyRZ8M7750tvI9x-oI8j4cDehRIb5MZNC_J09AudPWKwBpvuk-r9pCqho6s6cSatpZG1nRiTUfWdGSNTzD0DuvX5Ozb8Wl1ksQ2GUkthOyT3GhpdKkUl4wBV3jmTZV0woA2A47uoOVKcwOiSIXGrc1oVue21AVnGsqizt6QzQbns0OoVgVIq4VJIUU_GbTJsxoyOa-twfWTu-RtWJ-LRdBCuRhW7t1fR96Trem78oE8sfjjg4_oyfV6zyO6BSclSy8 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acetylation+%26+Co%3A+an+expanding+repertoire+of+histone+acylations+regulates+chromatin+and+transcription&rft.jtitle=Essays+in+biochemistry&rft.au=Barnes%2C+Claire+E&rft.au=English%2C+David+M&rft.au=Cowley%2C+Shaun+M&rft.date=2019-04-23&rft.eissn=1744-1358&rft_id=info:doi/10.1042%2FEBC20180061&rft_id=info%3Apmid%2F30940741&rft_id=info%3Apmid%2F30940741&rft.externalDocID=30940741 |