A Convolutional Neural Network Architecture to Enhance Oximetry Ability to Diagnose Pediatric Obstructive Sleep Apnea

This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO 2 ) signals from children were used for this purpose. A convolutio...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 25; no. 8; pp. 2906 - 2916
Main Authors Vaquerizo-Villar, Fernando, Alvarez, Daniel, Kheirandish-Gozal, Leila, Gutierrez-Tobal, Gonzalo C., Barroso-Garcia, Veronica, Santamaria-Vazquez, Eduardo, Campo, Felix del, Gozal, David, Hornero, Roberto
Format Journal Article
LanguageEnglish
Published United States IEEE 01.08.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO 2 ) signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO 2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject (AHI CNN ) was obtained by aggregating the output of the CNN for each 20-min SpO 2 segment. AHI CNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI estimated by a conventional feature-engineering approach based on multi-layer perceptron (AHI MLP ). Specifically, AHI CNN reached higher four-class Cohen's kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHI MLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information automatically learned from the SpO 2 signal by deep-learning techniques helps to enhance the diagnostic ability of oximetry in the context of pediatric OSA.
AbstractList This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO2) signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject (AHICNN) was obtained by aggregating the output of the CNN for each 20-min SpO2 segment. AHICNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI estimated by a conventional feature-engineering approach based on multi-layer perceptron (AHIMLP). Specifically, AHICNN reached higher four-class Cohen's kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHIMLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information automatically learned from the SpO2 signal by deep-learning techniques helps to enhance the diagnostic ability of oximetry in the context of pediatric OSA.
This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO 2 ) signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO 2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject (AHI CNN ) was obtained by aggregating the output of the CNN for each 20-min SpO 2 segment. AHI CNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI estimated by a conventional feature-engineering approach based on multi-layer perceptron (AHI MLP ). Specifically, AHI CNN reached higher four-class Cohen’s kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHI MLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information automatically learned from the SpO 2 signal by deep-learning techniques helps to enhance the diagnostic ability of oximetry in the context of pediatric OSA.
This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO 2 ) signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO 2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject (AHI CNN ) was obtained by aggregating the output of the CNN for each 20-min SpO 2 segment. AHI CNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI estimated by a conventional feature-engineering approach based on multi-layer perceptron (AHI MLP ). Specifically, AHI CNN reached higher four-class Cohen's kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHI MLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information automatically learned from the SpO 2 signal by deep-learning techniques helps to enhance the diagnostic ability of oximetry in the context of pediatric OSA.
This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO2) signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject (AHICNN) was obtained by aggregating the output of the CNN for each 20-min SpO2 segment. AHICNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI estimated by a conventional feature-engineering approach based on multi-layer perceptron (AHIMLP). Specifically, AHICNN reached higher four-class Cohen's kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHIMLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information automatically learned from the SpO2 signal by deep-learning techniques helps to enhance the diagnostic ability of oximetry in the context of pediatric OSA.This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO2) signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject (AHICNN) was obtained by aggregating the output of the CNN for each 20-min SpO2 segment. AHICNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI estimated by a conventional feature-engineering approach based on multi-layer perceptron (AHIMLP). Specifically, AHICNN reached higher four-class Cohen's kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHIMLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information automatically learned from the SpO2 signal by deep-learning techniques helps to enhance the diagnostic ability of oximetry in the context of pediatric OSA.
Author Gutierrez-Tobal, Gonzalo C.
Vaquerizo-Villar, Fernando
Santamaria-Vazquez, Eduardo
Barroso-Garcia, Veronica
Gozal, David
Kheirandish-Gozal, Leila
Alvarez, Daniel
Hornero, Roberto
Campo, Felix del
Author_xml – sequence: 1
  givenname: Fernando
  orcidid: 0000-0002-5898-2006
  surname: Vaquerizo-Villar
  fullname: Vaquerizo-Villar, Fernando
  email: fernando.vaquerizo@gib.tel.uva.es
  organization: Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0003-1027-2395
  surname: Alvarez
  fullname: Alvarez, Daniel
  email: dalvgon@gmail.com
  organization: Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
– sequence: 3
  givenname: Leila
  surname: Kheirandish-Gozal
  fullname: Kheirandish-Gozal, Leila
  email: gozall@health.missouri.edu
  organization: Department of Child Health, The University of Missouri School of Medicine, Columbia, MO 65211, USA
– sequence: 4
  givenname: Gonzalo C.
  orcidid: 0000-0002-1237-3424
  surname: Gutierrez-Tobal
  fullname: Gutierrez-Tobal, Gonzalo C.
  email: gguttob@gmail.com
  organization: Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
– sequence: 5
  givenname: Veronica
  orcidid: 0000-0001-5648-206X
  surname: Barroso-Garcia
  fullname: Barroso-Garcia, Veronica
  email: veronica.barroso@gib.tel.uva.es
  organization: Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
– sequence: 6
  givenname: Eduardo
  orcidid: 0000-0002-7688-4258
  surname: Santamaria-Vazquez
  fullname: Santamaria-Vazquez, Eduardo
  email: eduardo.santamaria@gib.tel.uva.es
  organization: Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
– sequence: 7
  givenname: Felix del
  orcidid: 0000-0002-4554-2167
  surname: Campo
  fullname: Campo, Felix del
  email: fsas@telefonica.net
  organization: Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
– sequence: 8
  givenname: David
  orcidid: 0000-0001-8195-6036
  surname: Gozal
  fullname: Gozal, David
  email: gozald@health.missouri.edu
  organization: Department of Child Health, The University of Missouri School of Medicine, Columbia, MO 65211, USA
– sequence: 9
  givenname: Roberto
  orcidid: 0000-0001-9915-2570
  surname: Hornero
  fullname: Hornero, Roberto
  email: robhor@tel.uva.es
  organization: Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33406046$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URB_0ByAkZIkNmwS_5uEN0hAKLaoIErC2PJ6bxmVip7YnJf8eD0kq6AIvfC3f7xxd-5yiI-cdIPSCkimlRL79_P7yasoII1NORC0JfYJOGC3rCWOkPjqcqRTH6DzGW5JXna9k-Qwdcy5ISUR5goYGz7zb-H5I1jvd4y8whD8l3fvwEzfBLG0Ck4YAOHl84ZbaGcDzX3YFKWxx09repu3Y-2D1jfMR8FforE7BGjxvYwqDSXYD-FsPsMbN2oF-jp4udB_hfF_P0I-PF99nl5Pr-aerWXM9MUJUaVIYXbJWdsIUlcyr6yjlFBZ1JReMFkyAaSmTWnIAYxYV4aWWpmVdAcKw2vAz9G7nux7aFXQGXMqPU-tgVzpslddW_dtxdqlu_EbVoiSUl9ngzd4g-LsBYlIrGw30vXbgh6iYqEqaN15n9PUj9NYPIX9ppoqirlmVU8rUq78nehjlkEgGqh1ggo8xwEIZm_QYTh7Q9ooSNcavxvjVGL_ax5-V9JHyYP4_zcudxgLAAy85LZlk_DcUC7v8
CODEN IJBHA9
CitedBy_id crossref_primary_10_1002_tee_23974
crossref_primary_10_1016_j_prrv_2025_01_004
crossref_primary_10_3390_e23081016
crossref_primary_10_1016_j_bspc_2024_107460
crossref_primary_10_17780_ksujes_1205807
crossref_primary_10_1016_j_bspc_2024_107428
crossref_primary_10_1007_s13755_024_00320_8
crossref_primary_10_1016_j_compbiomed_2023_107628
crossref_primary_10_1109_JBHI_2022_3164517
crossref_primary_10_1109_JBHI_2023_3267087
crossref_primary_10_1109_TIM_2023_3261931
crossref_primary_10_1016_j_measurement_2024_116170
crossref_primary_10_1109_ACCESS_2024_3426928
crossref_primary_10_3390_app15010376
crossref_primary_10_1016_j_compbiomed_2022_105784
crossref_primary_10_1109_ACCESS_2023_3319452
crossref_primary_10_1109_JSEN_2024_3523393
crossref_primary_10_1183_20734735_0151_2022
crossref_primary_10_1109_JBHI_2024_3495975
crossref_primary_10_1007_s00521_024_09889_3
crossref_primary_10_1016_j_siny_2021_101292
crossref_primary_10_1109_JBHI_2021_3129245
crossref_primary_10_1016_j_ymeth_2022_04_017
crossref_primary_10_1109_JBHI_2022_3199454
crossref_primary_10_3390_diagnostics13203187
crossref_primary_10_1016_j_bspc_2023_105490
crossref_primary_10_1002_widm_1478
crossref_primary_10_1002_aisy_202200275
crossref_primary_10_1016_j_compbiomed_2023_106549
crossref_primary_10_3390_s23187924
crossref_primary_10_1088_1361_6579_ac98f0
crossref_primary_10_1038_s41598_024_67729_9
crossref_primary_10_1016_j_engappai_2023_106161
Cites_doi 10.3390/s19224934
10.1016/j.cppeds.2011.10.001
10.1016/S0300-2896(11)70026-6
10.1183/13993003.01788-2018
10.1542/peds.2012-1672
10.1164/rccm.201705-0930OC
10.5664/jcsm.27497
10.1093/jamia/ocy131
10.1109/JBHI.2018.2817368
10.5665/sleep.3392
10.1088/1741-2552/ab260c
10.5664/jcsm.2172
10.1542/peds.113.1.e19
10.1016/j.eswax.2020.100033
10.1016/j.cmpb.2017.12.020
10.1088/1749-4699/8/1/014008
10.1007/s11325-018-1637-3
10.1016/j.smrv.2015.05.008
10.1001/jamaoto.2015.2354
10.1109/JBHI.2018.2886064
10.1016/S1389-9457(01)00115-0
10.5665/sleep.1388
10.1016/j.cmpb.2018.04.005
10.1007/s10618-019-00619-1
10.1093/sleep/20.11.991
10.1056/NEJMoa1215881
10.1016/j.ijporl.2013.05.011
10.1016/j.cmpb.2019.04.032
10.1088/1361-6579/aae66a
10.1164/rccm.201108-1455CI
10.1542/peds.105.2.405
10.1109/EMBC.2019.8857934
10.1214/aoms/1177703732
10.1016/j.compbiomed.2020.103726
10.5664/jcsm.6586
10.1038/s41598-019-49330-7
10.1016/j.compbiomed.2018.06.028
10.1142/S0129065713500202
10.1378/chest.120.2.625
10.1080/17476348.2018.1495563
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/JBHI.2020.3048901
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 2916
ExternalDocumentID PMC8460136
33406046
10_1109_JBHI_2020_3048901
9316292
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Ministerio de Educación, Cultura y Deporte
  grantid: FPU16/02938
  funderid: 10.13039/501100003176
– fundername: Sociedad Española de Neumología y Cirugía Torácica
  grantid: 649/2018
  funderid: 10.13039/501100007509
– fundername: European Regional Development Fund
  grantid: DPI2017-84280-R; RTC-2017-6516-1
  funderid: 10.13039/501100008530
– fundername: National Heart, Lung, and Blood Institute
  grantid: R24 HL114473; 75N92019R002
  funderid: 10.13039/100000050
– fundername: Instituto de Salud Carlos III
  funderid: 10.13039/501100004587
– fundername: FEDER
– fundername: Agencia Estatal de Investigación
  funderid: 10.13039/501100011033
– fundername: Ramón y Cajal
  grantid: RYC2019-028566-I
– fundername: European Commission
  funderid: 10.13039/501100000780
– fundername: Ministerio de Ciencia e Innovación
  funderid: 10.13039/501100004837
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
6IL
ADZIZ
CHZPO
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c447t-5ca62b9d4c579999dd1131ef879f21524ecb129a93eeccf7036a9cb2d5e4c28c3
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Thu Aug 21 18:22:29 EDT 2025
Fri Jul 11 07:44:38 EDT 2025
Sun Jun 29 14:39:28 EDT 2025
Thu Jan 02 22:57:55 EST 2025
Thu Apr 24 22:52:02 EDT 2025
Tue Jul 01 02:59:59 EDT 2025
Wed Aug 27 02:39:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c447t-5ca62b9d4c579999dd1131ef879f21524ecb129a93eeccf7036a9cb2d5e4c28c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5898-2006
0000-0001-8195-6036
0000-0001-9915-2570
0000-0003-1027-2395
0000-0002-4554-2167
0000-0002-1237-3424
0000-0001-5648-206X
0000-0002-7688-4258
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8460136
PMID 33406046
PQID 2558827489
PQPubID 85417
PageCount 11
ParticipantIDs pubmed_primary_33406046
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8460136
proquest_journals_2558827489
ieee_primary_9316292
proquest_miscellaneous_2476124738
crossref_citationtrail_10_1109_JBHI_2020_3048901
crossref_primary_10_1109_JBHI_2020_3048901
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
epstein (ref47) 2009; 5
ref12
ref15
ref14
ref11
ref17
ref16
ref18
ref45
chollet (ref41) 2015
ref48
ref42
ref44
ref43
nikkonen (ref46) 2019; 9
ref49
ref8
iber (ref31) 2007
ref7
ref9
ref4
ref3
ref6
kingma (ref36) 2015
he (ref35) 2014
canziani (ref50) 2016
ref34
ref37
mcclatchey (ref10) 2002
ref30
ref33
ref32
kheirandish-gozal (ref5) 2010; 55
goodfellow (ref19) 2016
ref2
ref1
ref39
snoek (ref40) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
bergstra (ref38) 2011
References_xml – ident: ref21
  doi: 10.3390/s19224934
– ident: ref32
  doi: 10.1016/j.cppeds.2011.10.001
– ident: ref3
  doi: 10.1016/S0300-2896(11)70026-6
– year: 2015
  ident: ref41
– ident: ref18
  doi: 10.1183/13993003.01788-2018
– start-page: 1
  year: 2011
  ident: ref38
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proc Adv Neural Inf Process Syst 24 25th Annu Conf Neural Inf Process Syst
– ident: ref1
  doi: 10.1542/peds.2012-1672
– ident: ref14
  doi: 10.1164/rccm.201705-0930OC
– volume: 5
  start-page: 263
  year: 2009
  ident: ref47
  article-title: Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.27497
– ident: ref43
  doi: 10.1093/jamia/ocy131
– ident: ref34
  doi: 10.1109/JBHI.2018.2817368
– ident: ref33
  doi: 10.5665/sleep.3392
– ident: ref24
  doi: 10.1088/1741-2552/ab260c
– ident: ref2
  doi: 10.5664/jcsm.2172
– ident: ref7
  doi: 10.1542/peds.113.1.e19
– ident: ref25
  doi: 10.1016/j.eswax.2020.100033
– start-page: 1
  year: 2015
  ident: ref36
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent - Conf Track Proc
– ident: ref15
  doi: 10.1016/j.cmpb.2017.12.020
– start-page: 2951
  year: 2012
  ident: ref40
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv Neural Inf Process Syst
– ident: ref39
  doi: 10.1088/1749-4699/8/1/014008
– ident: ref16
  doi: 10.1007/s11325-018-1637-3
– ident: ref4
  doi: 10.1016/j.smrv.2015.05.008
– year: 2002
  ident: ref10
  publication-title: Clinical Laboratory Medicine
– ident: ref12
  doi: 10.1001/jamaoto.2015.2354
– start-page: 1026
  year: 2014
  ident: ref35
  article-title: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
  publication-title: Proc IEEE Int Conf Comput Vis
– ident: ref45
  doi: 10.1109/JBHI.2018.2886064
– ident: ref48
  doi: 10.1016/S1389-9457(01)00115-0
– ident: ref29
  doi: 10.5665/sleep.1388
– year: 2016
  ident: ref50
  article-title: An analysis of deep neural network models for practical applications
  publication-title: Comput Vis Pattern Recognit
– ident: ref23
  doi: 10.1016/j.cmpb.2018.04.005
– ident: ref22
  doi: 10.1007/s10618-019-00619-1
– ident: ref42
  doi: 10.1093/sleep/20.11.991
– ident: ref30
  doi: 10.1056/NEJMoa1215881
– ident: ref11
  doi: 10.1016/j.ijporl.2013.05.011
– ident: ref20
  doi: 10.1016/j.cmpb.2019.04.032
– ident: ref17
  doi: 10.1088/1361-6579/aae66a
– year: 2007
  ident: ref31
  article-title: The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specification
– volume: 55
  start-page: 1366
  year: 2010
  ident: ref5
  article-title: What is 'Abnormal' in pediatric sleep?
  publication-title: Respir Care
– ident: ref6
  doi: 10.1164/rccm.201108-1455CI
– ident: ref27
  doi: 10.1542/peds.105.2.405
– ident: ref28
  doi: 10.1109/EMBC.2019.8857934
– ident: ref37
  doi: 10.1214/aoms/1177703732
– ident: ref26
  doi: 10.1016/j.compbiomed.2020.103726
– ident: ref13
  doi: 10.5664/jcsm.6586
– volume: 9
  year: 2019
  ident: ref46
  article-title: Artificial neural network analysis of the oxygen saturation signal enables accurate diagnostics of sleep apnea
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-49330-7
– ident: ref44
  doi: 10.1016/j.compbiomed.2018.06.028
– year: 2016
  ident: ref19
  publication-title: Deep Learning
– ident: ref49
  doi: 10.1142/S0129065713500202
– ident: ref9
  doi: 10.1378/chest.120.2.625
– ident: ref8
  doi: 10.1080/17476348.2018.1495563
SSID ssj0000816896
Score 2.5034246
Snippet This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2906
SubjectTerms Apnea
Apnea–hypopnea index (AHI)
Artificial neural networks
Bayesian analysis
Computer architecture
Context
Convolution
convolutional neural networks (CNN)
Deep learning
Desaturation
Diagnostic systems
Feature extraction
Indexes
Multilayers
Neural networks
Optimization
Oximetry
Oxygen content
pediatric obstructive sleep apnea (OSA)
Pediatrics
Segments
Sleep
Sleep apnea
Sleep disorders
State-of-the-art reviews
Training
Title A Convolutional Neural Network Architecture to Enhance Oximetry Ability to Diagnose Pediatric Obstructive Sleep Apnea
URI https://ieeexplore.ieee.org/document/9316292
https://www.ncbi.nlm.nih.gov/pubmed/33406046
https://www.proquest.com/docview/2558827489
https://www.proquest.com/docview/2476124738
https://pubmed.ncbi.nlm.nih.gov/PMC8460136
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RDohLaUs_0tLKlXqqmiWxnQ8fAwVtkbYcWiRuUWJPBIImK5pFwK9n7HgjFqGqp0TyJHI0z_FM5uUNwBfKETRvIhUij3QoGxOFVSNkGGcxr7Gu8tyxCWc_0-mJPDpNTtfg2_gvDCI68hlO7Kmr5ZtOL-ynsl0l4pQreuE-o8Rt-Fdr_J7iGki4dlycTkJaiNIXMeNI7R7tTX9QMsgpRyXI0h64CRtCSKsck67sSK7FylPR5mPS5INd6HALZsv5D-STi8miryf67pG04_8-4At47sNRVgz4eQlr2L6CjZkvuG_DomD7XXvt8UmWVszDHRx7nBUP6hCs79hBe2ZhxI5vzv9gf3XLCke-vbVj3wdWH7KxPQg7rr1-7TWyX5eIc1bMW6xew8nhwe_9aeg7NYRayqwPE12lvFZG6iSjiFMZE8cixibPVGMb50rUNQUWlRJIkGms6FeldM1NglLzXIs3sN52Lb4D1gieCJM0us65NKlWcaUMzw0BijLJJA8gWnqr1F7G3HbTuCxdOhOp0vq6tL4uva8D-DpeMh80PP5lvG39Mhp6lwSws4RE6Vf535LSMUpQrH5PAJ_HYVqftuhStdgtyEZmFETKTNDM3w4IGu-9RGAA2Qq2RgOr_b060p6fOQ1wChut2t77p2f7ATa55d44ouIOrJMr8SMFT339ya2ae_QCFR4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9RAEJ4QTJAX_IFiFXVNfDL2aHe3P_axIuRADh6EhLem3Z0GIrQXvSPiX-_sdq_hCDE-tclOmzbzbXdm5-s3AB8pR9C8iVSIPNKhbEwUVo2QYZzFvMa6ynPHJpwcp-MzeXienK_A5-FfGER05DMc2VNXyzedntutsh0l4pQr-uA-onU_ifu_tYYdFddCwjXk4nQS0lSUvowZR2rn8Mv4gNJBTlkqgZZWwXVYE0Ja7Zh0aU1yTVYeijfv0ybvrEP7T2CyeIOefvJjNJ_VI_3nnrjj_77iU9jwASkregQ9gxVsn8PaxJfcN2FesN2uvfEIJUsr5-EOjj_OijuVCDbr2F57YYHETn5fXuPs5y0rHP321o597Xl9yIYGIeyk9gq2N8i-XyFOWTFtsXoBZ_t7p7vj0PdqCLWU2SxMdJXyWhmpk4xiTmVMHIsYmzxTjW2dK1HXFFpUSiCBprGyX5XSNTcJSs1zLV7Catu1-ApYI3giTNLoOufSpFrFlTI8NwQpyiWTPIBo4a1SeyFz20_jqnQJTaRK6-vS-rr0vg7g03DJtFfx-JfxpvXLYOhdEsD2AhKln-e_SkrIKEWxCj4BfBiGaYbaskvVYjcnG5lRGCkzQU--1SNouPcCgQFkS9gaDKz69_JIe3nhVMApcLR6e68fftr38Hh8Ojkqjw6Ov72BdW6ZOI62uA2r5FZ8S6HUrH7nZtBfg9kYZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network+architecture+to+enhance+oximetry+ability+to+diagnose+pediatric+obstructive+sleep+apnea&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Vaquerizo-Villar%2C+Fernando&rft.au=%C3%81lvarez%2C+Daniel&rft.au=Kheirandish-Gozal%2C+Leila&rft.au=Guti%C3%A9rrez-Tobal%2C+Gonzalo+C.&rft.date=2021-08-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=25&rft.issue=8&rft.spage=2906&rft.epage=2916&rft_id=info:doi/10.1109%2FJBHI.2020.3048901&rft_id=info%3Apmid%2F33406046&rft.externalDocID=PMC8460136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon